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An improved mean-field homogenization model for the three-dimensional 
elastic properties of masonry 
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Department of Materials, Mechanics, Management and Design (3MD), Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628CN, Delft, The 
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A B S T R A C T   

Accurate assessment of the overall mechanical behavior of masonry, composed of bricks and mortar joints, re-
mains challenging due to its inhomogeneous and orthotropic nature. In this study, the feasibility of various mean- 
field homogenization schemes for the three-dimensional orthotropic elastic properties of masonry is compre-
hensively investigated. Three kinds of masonry patterns are considered, including the stack bonded pattern, the 
running bonded pattern and the double-leaf Flemish bonded pattern that has received limited attention so far. 
Special attention is paid to the homogenization schemes which have not been applied to the masonry case, such 
as Lielens’ interpolative double inclusions (D-I) and the interaction direct derivative (IDD) schemes. After a 
comparison between the well-known mean-field homogenization schemes, an improved micro-mechanical model 
is proposed by combining the advantages of the IDD and D-I models. The validation of the proposed model is 
conducted through a comparison against experimental data from literature and numerical results obtained via 
finite element analyses (FEA). The results show that the proposed model can accurately evaluate the orthotropic 
elastic properties of the three masonry typologies for a wide range of stiffness ratios between brick and mortar, 
ranging from 1 to 1000. The proposed model also shows better performance than the classical schemes especially 
when the stiffness ratios between brick and mortar are higher than 10, which is of major importance for the 
application of mean-field homogenization based multiscale methods to the nonlinear analysis of masonry. 
Furthermore, the presented homogenization method can be of interest for other anisotropic materials, e.g., 
laminate materials.   

1. Introduction 

For the purpose of housing safety of still-in-use masonry buildings 
and the protection of ancient architectures, it is essential to thoroughly 
understand the mechanical behavior of masonry structures and provide 
accurate assessment of their resilience against different loads (e.g., 
gravity, wind and earthquake). Nevertheless, it is still a significant 
challenge to characterize masonry material and conduct structural 
analysis accordingly even if masonry is generally not seen as a high-tech 
material (Rekik and Lebon, 2012). This complexity mainly stems from 
the composite nature of masonry showing heterogeneous and aniso-
tropic behavior. Specifically, masonry is generally deemed as a 
two-phase material composed of units and mortar or a three-phase 
material by further considering the interface between the units and 
mortar (Rekik and Lebon, 2012; Lourenço and Rots, 1997). The het-
erogeneous behavior of masonry is characterized by the different 

properties of constituents and complicated interaction between them. 
The highly orthotropic behavior arises from different geometric 
arrangement of units (Kumar et al., 2016), and from the much lower 
stiffness of mortar than that of units especially for ancient masonry 
structures (Almeida and Lourenço, 2020). 

In view of the complexity involved in the material characterization of 
masonry composite, extensive experimental and modelling work is 
present in literature (Adam et al., 2010; Chang et al., 2020, 2021, 2022; 
Drougkas et al., 2015a, 2016; Jafari et al., 2020; Kaushik et al., 2007; 
Lourenco et al., 2007; Page, 1978). A comprehensive experimental 
material characterization of existing masonry is often not performed, 
because it is costly and hindered by the invasiveness of testing methods 
required to determine the complete orthotropic nonlinear behavior 
(Jafari et al., 2022). Among the modelling approaches, the 
brick-to-brick modelling provides the most detailed description by 
modelling every brick separately connected by interfaces (Louren ç o 
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and Rots, 1997) or contact elements (D’ Altri et al., 2019); nevertheless 
the high computational costs make its application to structural analysis 
of buildings limited. As an alternative, homogenization-based ap-
proaches become increasingly popular among the masonry community 
(Zucchini and Louren ç o, 2002). Homogenization approaches are aimed 
at deriving the composite behavior from a representative volume 
element (RVE) that contains the geometries and constitutive relations of 
the individual constituents and offers a continuum description of the 
composite (Dormieux et al., 2006). The masonry composites can then be 
assumed effectively homogeneous by determining the macro stresses 
and strains of the RVE. 

Over the last decades, many numerical, semi-analytical and analyt-
ical homogenization models for masonry have been proposed, each with 
its advantages and limitations (Almeida and Louren ç o, 2020; Lourenco 
et al., 2007). The numerical homogenization models, based on finite 
element (FE) representation of masonry RVE, have been widely reported 
to evaluate both linear and nonlinear response of masonry (Page, 1978; 
Anthoine, 1995; Cecchi and Sab, 2002; Hu and Tuohuti, 2014; Massart 
et al., 2004). This method can accurately describe the interaction be-
tween the constituents and the macro stresses and strains of the RVE 
(Drougkas et al., 2015b), which, therefore, has been used by several 
researchers as benchmark to validate analytical models (Zucchini and 
Louren ç o, 2002; Cecchi and Sab, 2002; Drougkas et al., 2015b). For 
computational efficiency, several semi-analytical or reduced order ap-
proaches were developed for masonry in the past decade. One of the 
most used semi-analytical approaches for masonry homogenization is 
the transformation field analysis (TFA) that considers the inelastic strain 
as uniform in the region of the RVE, characterized by nonlinear response 
(Dvorak, 1992). The TFA-based homogenization procedures have been 
extensively adopted to study both the in-plane and out-of-plane 
nonlinear response of periodic masonry by Sacco and co-workers 
(Chettah et al., 2013; Sacco, 2009; Addessi and Sacco, 2012; Addessi 
et al., 2010, 2020, 2021; Marfia and Sacco, 2012; Sacco et al., 2010). 
Recently, Almeida & Lourenço (Almeida and Louren ç o, 2020) inves-
tigated the feasibility of a new semi-analytical multiscale modelling 
technique called mechanics of structure genome (MSG) for masonry 
homogenization. It was observed that the results obtained by this 
semi-analytical method are in agreement with those of various 
comparative methods with a much lower computational cost with 
respect to a full FE solution. Almeida & Cecchi (Almeida and Cecchi, 
2021) further applied the MSG technique to the homogenization of 
masonry reinforced by fiber reinforced polymer (FRP). It was observed 
that the results obtained by the MSG agreed with those from a 3D FE 
benchmark. For a full analytical approach, different closed-form solu-
tions have been proposed since the 1950’s (Bati et al., 1999). A two-step 
analysis procedure was usually adopted by early analytical homogeni-
zation models (Louren ç o, 1996; Maier et al., 1991; Pande et al., 1989; 
Pietruszczak and Niu, 1992). In such cases, masonry was deemed as 
layered materials, in which the head and bed joints are homogenized in 
sequence. These “two-step” models cannot distinguish between different 
masonry typologies and the homogenization results always depend on 
the step order (Kumar et al., 2016; Zucchini and Louren ç o, 2002; Wang 
et al., 2007). Another type of closed-form solution to the masonry ho-
mogenization is the micromechanical modelling developed by (Zucchini 
and Louren ç o, 2002; Drougkas et al., 2015b; Taliercio, 2014). Based on 
internal deformation mechanisms, such models assemble the stress 
equilibrium and strain compatibility conditions into a collection of 
closed-form equations which can then be solved in a single analysis step. 

Among various homogenization methods, the mean-field homoge-
nization technique provides a cost-effective way to derive the global 
properties of the composite from its micro-structures (Pierard et al., 
2004). Following the solutions to the matrix-inclusion problem by 
Eshelby (1957) and Laws (1977), several mean-field homogenization 
models have been proposed. By imposing that the size of the heteroge-
neity is one scale lower than the size of a RVE of the continuum material, 
the strain of the continuum material can be calculated as average strain 

by considering linear displacements, periodic boundary conditions or 
uniform traction at the boundary of the volume (Nemat-Nasser and Hori, 
2013). The global stiffness tensor of the composite can thus be deter-
mined by considering the elastic tensors of constituents and the con-
centration tensor related to the inclusions which contain information 
regarding their shapes, orientations and volume concentrations. 

Due to the simple averaging method proposed by the mean-field 
homogenization technique, it has been adopted to evaluate the overall 
behaviors of various composite-like materials (Pierard et al., 2004; 
Deude et al., 2002; Doghri et al., 2016; Fritsch et al., 2013; Morin et al., 
2017; Pardoen and Hutchinson, 2003; Pens ́e e et al., 2002; Pichler et al., 
2007; Ulm et al., 2004; Zhu et al., 2009). However, the application of 
this technique to masonry has received very limited attention. The 
feasibility of mean-field techniques to predict the three-dimensional 
elastic response of masonry has not yet been comprehensively exam-
ined. The first application of mean-field homogenization technique to 
masonry was carried out by Pietruszczak & Niu (Pietruszczak and Niu, 
1992), who arrived at the homogenization through two successive steps. 
The Mori-Tanaka scheme was applied first where the head joints are 
approximated by elliptic cylinders. The derived effective medium was 
then homogenized with the bed mortar joints by using the periodic 
layered homogenization method. This procedure, as mentioned above, is 
one of the “two-step” models which introduce several errors. Bati et al. 
(1999) proposed a single-step homogenization procedure, with the 
bricks being approximated by aligned elliptic cylindrical inclusions 
embedded in the surrounding mortar matrix. The authors validated the 
plausibility of such elliptical cylinder assumption through a comparison 
with experimental data. However, this work only focused on the deri-
vation of in-plane elastic constants. Moreover, only the running bonded 
pattern was considered, thus ignoring other possible masonry typol-
ogies. Wang et al. (2007) adopted the periodic eigenstrain homogeni-
zation method for masonry homogenization. The disturbance field 
caused by the constituents was derived by Fourier series, which is 
similar to the Eshelby’s tensor of an inclusion-matrix system (Eshelby, 
1957). Likewise, the formation of this model was also limited to in-plane 
loading characteristics and only considered the single leaf structures (i. 
e., stack and running bonded masonry). Kumar et al. (2016) applied the 
self-consistent scheme (SCS) to running bonded masonry, where the 
analytical model was compared with an FE solution. The authors 
investigated the influence of the stiffness ratio between constituents and 
the thickness of mortar on the overall elastic behavior of masonry 
composites. It was found that the analytical results obtained by the SCS 
scheme were close to the FE results, but the model validation was 
restricted to the Young’s moduli in three directions, thus ignoring shear 
moduli and Poisson’s ratios. Recently, Drougkas & Sarhosis (Drougkas 
and Sarhosis, 2021) proposed a micro-mechanical model for the pre-
diction of elastic stiffness and compressive strength of three-leaf ma-
sonry by adopting the mean-field homogenization theory. In this model, 
the dilute scheme was used, with the bricks and stones being approxi-
mated as ellipsoids which were embedded in an infinite mortar matrix. 
However, the prediction results for the vertical Young’s modulus from 
the proposed model showed large differences with respect to the 
experimental data. 

This study comprehensively investigates the feasibility and accuracy 
of different mean-field homogenization schemes for the evaluation of 
the orthotropic elastic properties of three different masonry typologies, 
including the stack bonded, running bonded and double-leaf Flemish 
bonded masonry. The Flemish bonded pattern represents a significant 
part of masonry structures but has received limited attention in litera-
ture. Eight homogenization schemes are investigated, including those 
are not considered in previous works, such as Lielens’ interpolative 
double inclusions (D-I), interaction direct derivative (IDD) and effective 
self-consistent (ESCS) schemes. A wide range of stiffness ratios between 
brick and mortar, ranging from 1 to 1000, is considered to assess the 
performance of each homogenization scheme for inelastic behavior. 
After a comparison between the well-known schemes, an improved 
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model is proposed by combining the advantages of the IDD and D-I 
models. The proposed model can account for the geometry and prop-
erties of each microscopic phase and the global geometry of the RVE at 
the same time. This allows to approximate the distribution of each in-
clusion in the RVE to some extent. Therefore, compared to the classical 
mean-field homogenization schemes, the proposed model is more suit-
able for the approximation of the orthotropic masonry-like materials 
with a periodical distribution of microscopic phases. Validations of the 
proposed model is conducted by a comparison against FE benchmark 
and experimental results obtained from literature. 

2. Research significance and objectives 

The application of mean-field homogenization technique for the 
prediction of effective elastic properties of masonry has not yet been 
comprehensively examined. The available reported literature was 
mainly restricted to the derivation of Young’s moduli of running bonded 
masonry using the dilute, MT and SCS homogenization schemes by 
considering bricks as elliptical cylindrical or ellipsoidal inclusions. 
These results ignored the study of shear moduli and Poisson’s ratios, the 
response of different masonry patterns and a comprehensive investiga-
tion on the choice of the inclusion phase (to be selected between bricks 
and mortar). Differently, in this study a wider range of mean-field ho-
mogenization schemes is considered predicting all the elastic constants 
of different masonry patterns including an investigation on different 
inclusion-matrix assumptions. In addition, for the application of mean- 
field homogenization to masonry, the available reported literature was 
restricted to the situations of a limited stiffness ratio between brick and 
mortar less than 30. Considering the broader scope of developing an 
analytical based multiscale model for masonry, a wide range of stiffness 
ratios between brick and mortar, ranging from 1 to 1000, is considered 
in present study to assess the performance of each homogenization 
scheme for inelastic behavior. These findings can thus be of relevance 
for other orthotropic materials such as cross-ply laminates. 

This study presents the first step towards developing an analytically 
based multiscale model for masonry. As a simple and efficient upscaling 
method, the mean-field homogenization technique has been successfully 
applied to many analytical or semi-analytical multiscale methods by 
combining it with different damage, plasticity or fracture models at 
macro and microscale, for the nonlinear analyses of various isotropic 
composite materials in different fields ranging from metal composites 
(Doghri et al., 2016), alloys (Pardoen and Hutchinson, 2003), rocks 
(Deude et al., 2002; Pens é e et al., 2002), cementitious materials 
(Pichler et al., 2007; Ulm et al., 2004), geomaterials (Zhu et al., 2009) 
and bones (Fritsch et al., 2013; Morin et al., 2017). These analytical or 
semi-analytical multiscale procedures achieve a balance between the 
accuracy and computational cost, and their implementation to simulate 
structural behavior is considered feasible. However, such application to 
masonry is limited. The main problem pending is the error of the 
orthotropic effective elastic tensor of masonry introduced by the clas-
sical mean-field homogenization schemes when large differences in 
stiffness between brick and mortar are expected. This issue is obvious in 
the case of nonlinear analysis, where the tangent stiffness of one or both 
components gradually tends to zero with increasing inelastic behavior. 
The improved mean-filed homogenization model proposed in present 
study accurately predicts the stiffness tensors of masonry composites for 
a wide range of stiffness ratios between brick and mortar, ranging from 1 
to 1000, and thus has the potential to be incorporated to the 
well-established multiscale models to achieve the nonlinear analysis of 
masonry. One of the potential nonlinear extensions is to apply the model 
developed in present study to the so-called microporomechnics theory 
(Dormieux et al., 2006). By combining the mean-field homogenization 
technique and the linear elastic fracture mechanics theory, the micro-
poromechnics theory has been successfully used to explain phenomena 
such as failure of rock (Barth é l é my et al., 2003; Zhu et al., 2008) and 
degradation of concrete (Esposito and Hendriks, 2016). Furthermore, it 

has been shown that, by adopting the microporomechnics theory, the 
nonlinear response of quasi-brittle material as concrete can be predicted 
based on a limited number of parameters, mainly the elastic and 
strength values (Esposito and Hendriks, 2015, 2016). This become of 
paramount importance for masonry that requires a large number of tests 
for its characterization, which cannot often be performed for existing 
structures (Jafari, 2021). 

3. Definition of RVEs for selected masonry typologies 

Three masonry typologies, including stack, running and Flemish 
bonded patterns, are considered in this study. For a clear discussion, a 
right-hand Cartesian frame is defined. The bed joint (i.e., horizontal 
direction), head joint (i.e., vertical direction) and the direction of wall 
thickness (i.e., transversal direction) align with the x, y and z axis, 
respectively. The RVE term was first used by Hill (1963) and it is 
descibed as the smallest material volume element for which the 
macroscopic constitutive representation is a sufficiently accurate model 
to represent mean constitutive response (Drugan and Willis, 1996). 
Although in general the RVE notion is not easy to define, for ordered 
materials as masonry, the RVE can be defined as the element which 
completely decribes the structure by periodicity. Therefore, the RVE 
shall be selected/modelled such that duplicating it provides sufficient 
accuracy of representing the material’s larger scales (Omairey et al., 
2019). In this study, the masonry RVE is derived by properly selecting a 
periodic unit cell in which the microstructures can be described exactly. 
The selected stack bonded RVE contains one completed stretcher brick 
and the surrounding mortar joints, which can be further discretized into 
bed, head and cross joints. The cross joints are here defined as the vol-
ume of mortar joints at the intersection between head and bed joints 
(Fig. 1a). The running bonded RVE is formed by four half-sized stretcher 
bricks with mortar joints between them (Fig. 1b). The Flemish bonded 
RVE is discretized into one completed header brick, four quarter-sized 
header bricks and eight half-sized stretcher bricks surrounded by four 
kinds of mortar joints (i.e., bed, head, cross and collar joints), as shown 
in Fig. 1c. The dimensions of masonry constituents are designated as 
follows: lb, hb and tb are the length, height and thickness of the units, and 
lm, hm and tm are the thickness of head, bed and collar mortar joints, 
respectively. 

4. State-of-the-art for mean-field homogenization 

Following the solution provided by Eshelby (1957) for the elastic 
matrix-inclusion problem, several models for composite materials have 
been proposed, creating a new field which can be named as 
Eshelbian-based continuum micromechanics. By considering an inclu-
sion embedded in an infinite elastic matrix that is subjected to homo-
geneous boundary conditions (uniform displacement or uniform 
tractions), the effective (macroscopic) stiffness tensor C∗ and compli-
ance tensors D∗ can be expressed in the following forms: 

C∗ =Cm +
∑

i
ci(Ci − Cm) : Ai (1a)  

D∗ =Dm +
∑

i
ci(Di − Dm) : Bi (1b) 

To be clear from the context, tensors are designated by boldface 
symbols and a colon is used to denote the tensor operation for double dot 
product. For a matrix-inclusion system, the matrix and the inclusion of 
type-i are labeled by m and i, respectively. Cm, Dm and Ci, Di are the 
stiffness and compliance tensors of matrix material and type-i inclusion, 
respectively. cm and ci are the volume fractions of the surrounding ma-
trix and type-i inclusion, respectively. Ai and Bi are the average strain 
and stress concentration tensors, respectively. The strain and stress over 
type-i inclusion (〈ε〉Ωi 

and 〈σ〉Ωi
) and the macroscopic applied ones (E 

and Σ) can be linked by Ai and Bi: 
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〈ε〉Ωi
=Ai : E (2a)  

〈σ〉Ωi
=Bi : Σ (2b) 

Various homogenization schemes adopt different expressions of Ai 

and Bi to evaluate the interaction degree between matrix and inclusions. 
The Voigt and Reuss schemes assume uniform strain and uniform stress 
in the RVE, respectively, thus ignoring the interaction between phases 
(Pierard et al., 2004). The dilute scheme also ignores the interactions 
between phases under the assumption that each inclusion is embedded 
in an unbounded matrix in isolate (Mura, 2013). The Mori-Tanaka (MT) 
scheme and self-consistent scheme (SCS) are developed based on the 
dilute scheme to further consider the interactions between inclusions. 

The MT scheme allows for slight interactions between inclusions by 
assuming that each type-i inclusion is sequentially embedded in the 
surrounding matrix (Benveniste, 1987). In the assumption of the SCS 
method, each inclusion is directly embedded in the homogenized 
effective medium with the unknown stiffness tensor C∗ (Klusemann and 
Svendsen, 2010). The effective self-consistent scheme (ESCS) and the 
interaction direct derivative (IDD) schemes are developed on the basis of 
three-phase model (Zheng and Du, 2001). The ESCS scheme assumes 
that each inclusion (Ωi) is first embedded into a finite matrix (Ωm) and 
then the type-i inclusion-matrix cell denoted by ΩDi, with ΩDi = Ωi + Ωm, 
is embedded in the infinite homogenized effective medium denoted by 
ΩE with unknown effective (macro) stiffness tensor C∗. However, the 
implementation of the implicit ESCS requires an additional iterative 

Fig. 1. Derivation of the masonry RVEs: (a) stack bonded; (b) running bonded; (c) Flemish bonded.  
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loop and this scheme can only provide a reasonable approximation for 
low stiffness and low volume fraction (Klusemann and Svendsen, 2010). 
Therefore, the IDD scheme was proposed as an explicit version of the 
ESCS scheme. Different from the assumption of the ESCS scheme, the 
type-i inclusion-matrix cell ΩDi is embedded in the infinite surrounding 
matrix denoted by Ωm in the assumption of the IDD scheme (Zheng and 
Du, 2001; Du and Zheng, 2002). 

The expressions of Ai and/or Bi for some classical mean-field ho-
mogenization schemes are summarized in Table 1, where I is the fourth- 
order symmetric identity tensor. Sm

i and S∗
i are the Eshelby tensors which 

contain the geometric information of type-i inclusion. Likewise, Sm
Di and 

S∗
Di are the Eshelby tensors of type-i inclusion-matrix cell for the ESCS 

and IDD schemes. The labels m and ∗ imply that the Eshelby tensor is 
calculated according to the Poisson’s ratio of the matrix vm and of the 
effective composite materialv∗, respectively. 

Another classical scheme named as double inclusions (D-I) model 
was proposed by selecting an appropriate interpolation between the 
stiffness estimates from the MT and inverse MT schemes (Pierard et al., 
2004; Lielens, 1999). The effective stiffness C∗(D− I) is determined as 
follow: 

C∗(D− I) =

{

(1 − 1/2cI(1 + cI))
[
C∗(MT)]− 1

+ 1
/

2cI(1 + cI)
[
C∗(MT − 1)

]− 1
}− 1

(3)  

where cI =
∑

i
ci is sum of the volume fractions of all inclusion families; 

C∗(MT) and C∗(MT− 1)are the estimation of macro stiffness tensors from the 
MT and the inverse MT schemes, respectively. The inverse MT scheme 
corresponds to MT model where the matrix and inclusions are permuted 
for two-phase materials (Pierard et al., 2004). 

5. Proposed homogenization-based model for masonry 

Fig. 2 provides a physical interpretation for the aforementioned 
homogenization schemes. Consider a fictitious two-phase material with 
a specific geometry shown in Fig. 2a. Generally, to make a precise pre-
diction for the effective elasticity of two-phase materials, information 
concerning property and geometry (shape and orientation) of each 
phase, as well as global geometry of the RVE (the matrix-inclusion cell), 
is needed. The Voigt and Reuss schemes only consider the elastic 
properties and ignore all the geometric information. Although the 
dilute, MT and SCS schemes further account for the geometry of the 
inclusion phase, the information concerning the geometries of the ma-
trix phase and the RVE is lost (Fig. 2b). The ESCS and IDD methods 
successfully account for the global geometric information of the RVE 
which is included in the Eshelby tensors of the matrix-inclusion cell (S∗

Di 
and Sm

Di), but the geometric information of the matrix phase is still 
missing (Fig. 2c). Although the D-I model better reveals the geometric 
information of a two-phase material by simultaneously considering the 
geometries of both inclusion and matrix phases, it however fails to 

account for the global geometry of the RVE (Fig. 2d). 
Consequently, an improved homogenization approach can be pro-

posed by the combination of the ideas of the D-I and IDD models. The D-I 
model was proposed according to the fact that the real properties of 
composites are closer to the MT estimate for small volume fraction of 
inclusions cI and closer to the inverse MT estimate for large cI (Lielens, 
1999). The stiffness estimate of the D-I model is obtained by selecting an 
appropriate interpolation between the MT estimate and the inverse MT 
estimate (Eq. (3)), which is therefore close to the real properties of 
composites for both small and large volume fractions of inclusions. From 
the viewpoint of physical meanings, the IDD method can be seen as a 
more advanced model with respect to the MT scheme to further consider 
the global geometry of the RVE. For the IDD method, the Eshelby tensor 
Sm

Di is calculated based on the aspect ratio of RVE (matrix-inclusion cell) 
and the Eshelby tensor Sm

i is calculated based on the aspect ratio of in-
clusion phase (Fig. 2c). In most cases when the aspect ratio of RVE is 
different from that of the inclusion phase, i.e., Sm

Di ∕= Sm
i , the stiffness 

estimates from the IDD and MT method are different. However, for a 
special case when the composite RVE has the same aspect ratio as the 
inclusion phase, i.e., Sm

Di = Sm
i , the stiffness estimates from the IDD and 

MT methods are identical. In such special case, by replacing the Sm
Di with 

Sm
i in the expression of stress concentration tensor of the IDD scheme 

B(IDD)
i (Table 1), the expression of B(IDD)

i will be transformed into Eq. (4), 
which is equal to that of the MT scheme B(MT)

i (see also (Zheng and Du, 
2001; Weng, 1990)). 

B(IDD)

i =B(Dilute)
i :

[

I −
∑

i
ci(Di − Dm) : B(Dilute)

i : Cm :
(
I − Sm

i

)
]− 1 

=B(MT)
i , if Sm

Di =Sm
i (4) 

The homogenization approach developed in present study is ob-
tained by applying the interpolation function of D-I model to the IDD 
and inverse IDD estimates. For a two-phase material, the IDD estimate 
can be obtained by choosing the smaller volume part as the inclusion 
phase. Alternatively, by selecting the larger volume part as inclusion 
phase leads to another approximation of the average stress concentra-
tion tensor B(IDD− 1)

i and corresponding macro compliance tensor D∗(IDD− 1). 
This is here after called the inverse IDD model. 

D∗(IDD− 1) =Di + cm(Dm − Di) : B(
IDD− 1)

i (5) 

By properly choosing an interpolation between the IDD and the in-
verse IDD estimates, a new homogenization model is established as 
follows: 

C∗(New) =
[
(1 − ζ(cI))D∗(IDD) + ζ(cI)D∗(IDD− 1)

]− 1
(6)  

where C∗(New) is the stiffness estimate of the proposed model. ζ(cI) is a 
smooth function of interpolation which satisfies the following condi-
tions (Pierard et al., 2004): 

Table 1 
Expressions of average strain concentration tensor Ai and/or average stress concentration tensor Bi for some classical mean-field homoge-
nization schemes.  

Scheme Ai Bi 

Voigt I – 
Reuss – I 
Dilute [I + Sm

i : C− 1
m : (Ci − Cm)]

− 1 Ci : A(Dilute)
i : Dm 

MT 
A(Dilute)

i :

(

cmI +
∑

i
ciA(Dilute)

i

)− 1 

B(Dilute)
i :

(

cmI +
∑

i
ciB(Dilute)

i

)− 1 

SCS [I + S∗
i : C∗− 1 : (Ci − C∗)]

− 1 Ci : A(SCS)
i : D∗

ESCS – B(Dilute)
i : [I − C∗ : (I − S∗

Di) : (D
∗ − Dm)]

− 1 

IDD – 
B(Dilute)

i :

[

I −
∑

i
ci(Di − Dm) : B(Dilute)

i : Cm : (I − Sm
Di)

]− 1  
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ζ(cI)> 0 ,
dζ
dvI

(cI)> 0, lim
vI →0

ζ(cI)= 0, lim
vI →1

ζ(cI)= 1 (7) 

The simple quadratic expression for ζ(cI) proposed by Lielens (1999) 
is adopted in this study: 

ζ(cI)=
1
2

cI(1+ cI) (8) 

The proposed model combines the advantages of the IDD and D-I 
models and thus is able to account for the microscopic geometry of each 
phase and the global geometry of the RVE at the same time, as shown in 
Fig. 2e. From the viewpoint of physical meanings, the proposed model 
can also be seen as an improved version of D-I model to further consider 
the global geometries of the composite RVE and the containment rela-
tionship between each microscopic phase and its corresponding matrix- 
inclusion cell (RVE). This allows to consider the distribution of each 
inclusion to some extent, leading to a more accurate approximation for 
the real behavior of the RVE. With the condition Sm

Di = Sm
i , the stiffness 

estimate of the proposed model is equal to that of the D-I model. 
The proposed model and other classical mean-field homogenization 

schemes have been applied to the stack, running and Flemish bonded 
masonry RVEs. The derivation of an explicit expression for the Eshelby’s 
tensor is possible only for simple shapes of the inclusions such as sphere, 
ellipsoid, penny shaped and cylinder (Mura, 2013). Bati et al. (1999) 
approximated the brick units by elliptical cylindrical inclusions, where 
the feasibility of such hypothesis has also been validated against ex-
periments by the authors. Accordingly, in this study, the inclusions are 
considered as elliptical cylinders. The expression of Eshelby tensor for 
elliptic cylindrical inclusions is shown in Appendix A. 

For the dilute, MT, SCS and IDD schemes, two options for the matrix- 
inclusion system are studied. One possible option considers mortar joints 
as elliptical cylindrical inclusions, which are embedded in an infinite 
brick matrix (Fig. 3a). Another option treats the bricks as elliptical cy-
lindrical inclusions and the mortar joints are considered as matrix phase 
(Fig. 3b). Following the naming rule of the MT and inverse MT models 
(Lielens, 1999), the model corresponding to the assumption that con-
siders the mortar as inclusions is named as the scheme itself (i.e., the 

dilute, MT, SCS and IDD), while the inverse model corresponds to the 
assumption considering the bricks as inclusions (i.e., the inverse dilute, 
inverse MT, inverse SCS and inverse IDD). Additionally, the inverse MT 
model corresponds to the model adopted by Bati et al. (1999), the in-
verse dilute model corresponds to the model adopted by Drougkas & 
Sarhosis (Drougkas and Sarhosis, 2021) and the inverse SCS model 
corresponds to the model used by Kumar et al. (2016). There is no dif-
ference between the Voigt or Reuss model and the inverse Voigt or in-
verse Reuss model, because the aspect ratios of microscopic phases in 
the composites has not been considered. The inverse ESCS model is 
invalid, as the concentration of the brick inclusions is far beyond its 
numerical limit of 0.5 (Klusemann and Svendsen, 2010). Fig. 3c gives 
the assumptions of matrix-inclusion system for the proposed model, 
where each elliptical cylindrical inclusion is first embedded into a 
matrix-inclusion cell (RVE) that is also idealized as an elliptical cylinder. 
The elliptical cylindrical matrix-inclusion cell is then embedded into the 
infinite matrix. For the IDD, ESCS and the proposed models, the inclu-
sion phase and corresponding matrix-inclusion cell (RVE) should be 
idealized as the same type (both idealized as elliptical cylinders in 
present study), otherwise the estimate of effective stiffness tensor would 
be physically unacceptable (Zheng and Du, 2001). If the inclusion phase 
and corresponding matrix-inclusion cell (RVE) are idealized as different 
types (e.g., elliptical cylindrical inclusion and ellipsoidal 
matrix-inclusion cell), negative values of the effective Young’s moduli 
are obtained that are not physically possible. 

The stiffness estimate of the proposed model strongly depends on the 
selection and calculation of the Eshelby tensor of each inclusion phase 
Sm

i and the Eshelby tensor of its corresponding matrix-inclusion cell. 
Fig. 4 illustrates how the Sm

i and Sm
Di are determined for the proposed 

model, where the stack bonded pattern is used as an example for 
simplicity. For each type-i inclusion, the Eshelby tensor Sm

i is calculated 
based on its own aspect ratio and the Eshelby tensor Sm

Di is calculated 
based on the aspect ratio of the global RVE (ΩDi = ΩRVE). This means 
that different types of inclusions correspond to different aspect ratios, 
while the aspect ratios of different types of matrix-inclusion cells are 
chosen to be identical (equal to the aspect ratio of the RVE). Due to the 

Fig. 2. Schematic illustration for the physical interpretation of different homogenization models: (a) specific geometry of a fictitious two-phase material; (b) dilute, 
MT and SCS models; (c) IDD method; (d) D-I model; (e) the proposed model. 
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Fig. 3. Assumptions of matrix-inclusion system: (a) elliptical cylindrical mortar inclusions embedded in the brick matrix for classical methods (Pietruszczak and Niu, 
1992); (b) elliptical cylindrical brick inclusions embedded in the mortar matrix for classical (inverse) methods (Kumar et al., 2016; Bati et al., 1999; Drougkas and 
Sarhosis, 2021); (c) matrix-inclusion assumption for the proposed model. 
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differences in the aspect ratios of inclusions, the Eshelby tensor Sm
i is 

different from each other’s (Sm
1 ∕= Sm

2 ∕= Sm
3 ∕= Sm

4 in Fig. 4). It should be 
noted that the calculation of the Eshelby tensor also depends on the 
Poisson’s ratio of the surrounding matrix besides the aspect ratio values, 
as shown in Appendix A. Therefore, although all the matrix-inclusion 
cells have an identical aspect ratio for a given masonry RVE, the 
Eshelby tensors Sm

Di used in the IDD (brick as matrix) and inverse IDD 
(mortar as matrix) estimates are different when the Poisson’s ratios of 
brick and mortar are different (Sm

D1 = Sm
D2 = Sm

D3 ∕= Sm
D4 in Fig. 4). 

6. Model validation against FEM 

Experimental data about the Poisson’s ratio, out-of-plane Young’s 
moduli and shear moduli of masonry are limited in the literature. 
Consequently, the proposed model is initially validated through a 
parametric comparison against the FEA results. The meshes used in the 
FEA are given in Fig. 5. Similarly to earlier studies (Kumar et al., 2016; 
Zucchini and Louren ç o, 2002; Drougkas et al., 2015b), twenty-noded 
quadratic three-dimensional elements with reduced integration are 
used in the simulation with a maximum element size of 5mm. 

Masonry is a two-dimensionally periodic material. The masonry RVE 
is considered such that the masonry domain can be generated by 
repeating the RVE in horizontal and vertical directions (Kumar et al., 
2016). This implies that each RVE in the composite has the same 
deformation mode and there is no separation or overlap between the 
neighboring RVEs. Therefore, periodic boundary conditions (PBC) are 
applied to the FE models to assure displacement conformity and peri-
odicity at the external faces of the masonry RVE in horizontal and 

vertical directions. 
For a volume of RVE denoted by V, the periodicity conditions on the 

boundary surface ∂V is defined as (Xia et al., 2003): 

ui(x1, x2, x3)= εikxk + u∗
i (x1, x2, x3) (9)  

where ui is the displacement components, εik is the average strain and 
u∗

i is the periodic part of the displacement components on the boundary 
surface ∂V. For parallelepiped RVE models as used in this study, the 
displacements on a pair of opposite boundary surfaces with normals 
along direction j (horizontal and vertical directions) are expressed as: 

uj+
i = εikxj+

k + u∗
i (10a)  

uj−
i = εikxj−

k + u∗
i (10b)  

where index “j+ ” means along the positive j direction and “j − ” means 
along the negative j direction. The difference between Eqs. (10a) and 
(10b) is: 

uj+
i − uj−

i = εik(xj+
k − xj−

k

)
= εikΔxj

k = constant (11) 

For the parallelepiped RVE models, Δxj
k is constant. This means that 

the PBC can be described as keeping constant the displacement differ-
ence of two pairs of nodes on the opposite boundary surfaces. 

In present study, PBCs are imposed with adequate tying of the dis-
placements of the nodes on opposite surfaces of the FE models in hori-
zontal and vertical directions, as shown in Fig. 6. Specifying three 
reference nodes (p1, p2 and p3), PBCs are achieved by linking the degrees 
of freedom (DoF) of the nodes on two pairs of opposite surfaces to those 
of the reference nodes (Omairey et al., 2019): 

ux(top nodes) − ux(bottom nodes) = uxp1 − uxp2 (12a)  

uy(top nodes) − uy(bottom nodes) = uyp1 − uyp2 (12b)  

uz(top nodes) − uz(bottom nodes) = uzp1 − uzp2 (12c)  

Fig. 4. Schematic illustration for the selection of each type of inclusion and its 
corresponding matrix-inclusion cell to determine the Eshelby tensors Sm

i and Sm
Di 

for the proposed model (exemplified by stack bonded pattern). 

Fig. 5. FE models of masonry RVEs: (a) stack bonded, (b) running bonded and (c) Flemish bonded.  

Fig. 6. The reference nodes and the boundary surfaces in FE models for the 
definition of periodic boundary conditions. 
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ux(left nodes) − ux(right nodes) = uxp1 − uxp3 (12d)  

uy(left nodes) − uy(right nodes) = uyp1 − uyp3 (12e)  

uz(left nodes) − uz(right nodes) = uzp1 − uzp3 (12f)  

where ux, uy anduz are displacement components along x, y and z di-
rections, respectively. Refer to Fig. 6 to identify Left-Right, Top-Bottom 
and Front-Back surfaces along with x, y and z directions, respectively. It 
should be noted that, in Eq. (12a-f), the nodes in a pair of opposite 
surfaces should have one-to-one correspondence. No constraint is 
imposed in z direction and the front and back surfaces remain free to 
deformation for both applied normal and shear stresses, as there is no 
periodicity in that direction. 

Stress-prescribed analyses have been carried out in present study, 
with uniform normal stresses (pressure) and shear stresses (surface 
traction) being applied on the surfaces of the FE models. The resulting 
stress distribution in the constituents of the masonry composite is not 
uniform but rather depends on the relative elasticity parameters of the 
involved components. The effective elastic constants of masonry are 
obtained by six loading conditions of the RVE under compression along 
x, y and z axes, and shear in xy, xz and yz planes. For each loading 
condition, the average stresses and strains in the RVE are calculated as 
(Yang et al., 2012): 

σij =
1
V

∫

V
σijdV =

∑n

e=1

σ(e)
ij

n
= Σij (13a)  

εij =
1
V

∫

V
εijdV =

∑n

e=1

ε(e)ij

n
(13b)  

where σij and εij are the average stresses and strains in the RVE, 
respectively. V is the volume of the RVE. n is the number of elements in 
the FE model. σ(e)

ij and ε(e)ij are the average stresses and strains for a 
generic element. Σijis the prescribed stresses (uniform pressure or sur-
face traction) on the surfaces of the FE model. It should be mentioned 
that the above equations are only valid in the case all the elements of the 
mesh of the RVE share the same volume, which is the case in this study. 
After obtaining σij and εij, the effective compliance tensor D∗

ijkl of a ma-
sonry RVE can be obtained from Eq. (14) (Xia et al., 2003). The effective 
elastic constants of masonry RVE can be derived from D∗

ijkl accordingly. 

σij =D∗
ijklεkl (14) 

In this study, the mortar joints and bricks are all considered isotropic 
and the global orthotropic response of the homogenized masonry is 
caused by the geometrical arrangement of the constituents. To make a 
comparison with other classical micromechanical models, the parame-
ters of the masonry constituents used in earlier work (Zucchini and 
Louren ç o, 2002; Drougkas et al., 2015b) are adopted in this section. 
The dimensions of bricks are 210 × 52 × 100mm3 (lb × hb × tb), and a 
value of 10mm is adopted for the thickness of mortar joints (lm = hm =

tm = 10mm). The Young’s modulus and Poisson’s ratio of bricks are 20 
GPa (Eb = 20 GPa) and 0.15 (vb = 0.15), respectively. The Poisson’s ratio 
of mortar is 0.15 (vm = 0.15). The Young’s modulus of mortar is changed 
to yield varied values for brick-to-mortar stiffness ratio from 1 to 1000 
(1 ≤ Eb/Em ≤ 1000). Different stiffness ratios between mortar and bricks 
are considered. This allows to assess the performance of each mean-field 
homogenization models for inelastic behavior. As stated by Zucchini & 
Lourenço (Zucchini and Lourenço, 2002), nonlinear behavior is associ-
ated with (tangent) stiffness degradation and homogenization of 
nonlinear process will result in large stiffness differences between the 
components. Note that the ratio Eb/Em tends to infinity when softening 
of the mortar is complete and only the unit remains structurally active. 

6.1. Stack and running bonded masonry 

Fig. 7 and Fig. 8 show the prediction results of effective vertical 
Young’s moduli E∗

y from different mean-field homogenization models in 
the range 1 ≤ Eb/Em ≤ 1000 for stack and running bonded patterns, 
respectively. Except the Voigt, Reuss and dilute models that ignore the 
interactions between phases, all other homogenization models can 
provide relatively precise predictions for the vertical Young’s moduli E∗

y 

in the range 1 ≤ Eb/Em ≤ 10. This is consistent with the results in liter-
atures (Kumar et al., 2016; Bati et al., 1999; Wang et al., 2007). How-
ever, with increasing the stiffness ratios Eb/Em from 10 to 1000, 
unacceptable errors are found for these classical models. For large 
stiffness ratios, compared with the FE results, the models assuming 
mortar joints as inclusions all overestimate the vertical effective Young’s 
moduli E∗

y. On the contrary, almost all the inverse models underestimate 
the effective elastic properties. The only exception is the SCS scheme for 
which the values predicted by the SCS and the inverse SCS models are 
both significantly higher than the FE results, which confirms the claim 
that the SCS method is suitable for the prediction of polycrystals, but not 
for two-phase materials (Pierard et al., 2004). 

For the dimensions and properties of masonry constituents adopted 
in this section, errors of the models with mortar joints as inclusions are 
much larger than those of the inverse models with bricks as inclusions 
when the stiffness ratios Eb/Em are higher than 10. This might be 
attributed to the fact that the models considering mortar joints as three 
separated inclusion families fail to evaluate the interactions between the 
mortar inclusions, which are connected with each other in real masonry. 
In this respect, for the models with mortar as inclusions, two other 
possible choices for the discretization of mortar joints excluding the 
cross joints are considered here: i). Continuous horizontal mortar joints 
(Fig. 9a) and ii). Continuous vertical mortar joints (Fig. 9b). Fig. 10 
shows the comparison between the three possible choices of the dis-
cretization of mortar joints for the prediction of E∗

y for a stiffness ratio 
Eb/Em = 30. For the stack bonded masonry, the three kinds of dis-
cretization provide nearly equal prediction results for all the models 
with mortar as inclusions. This can be explained by the fact that the cross 
joints are located in the corners of the stack bonded RVE, thus with 
minor influence on the overall continuity of mortar joints in both hori-
zontal and vertical directions, i.e., the aspect ratios of horizontal (or 
vertical) mortar joints show little difference under the three kinds of 
discretization assumptions. For the running bonded masonry, the model 
with continuous horizontal mortar joints results in lower values of E∗

y 

with respect to the model with cross joints, but still provide a large 
overestimation with respect to the FEM results. The continuous hori-
zontal mortar joints can better reveal the interactions between the 
mortar inclusions in the horizontal direction. Nevertheless, the different 
kinds of discretization of mortar joints have almost no influence on the 
D-I and the proposed models, because the contribution of the MT and 
IDD schemes to the Lielens’ interpolative function is limited (see Eq. 
(6)). 

The discretization choice of continuous horizontal mortar joints is 
adopted in the following analysis. Results of all the orthotropic effective 
elastic constants predicted by different models are summarized in Ta-
bles 2 and 3, providing the average and maximum absolute errors with 
respect to the FE benchmark in the range 1 ≤ Eb/Em ≤ 1000. It should be 
noted that all models can make accurate predictions for the transversal 
Young’s modulus E∗

z in the entire range of stiffness ratios Eb/Em. This can 
be attributed to the fact that the stack and running bonded masonry are 
both single-leaf structures without change in geometry across the 
thickness of the RVE, thus the use of elliptical cylindrical inclusions is 
reasonable. In such case, E∗

z is less influenced by the properties of the 
mortar because the tension in this direction acts mainly on the stiffer 
phase, namely the bricks (Almeida and Louren ç o, 2020; Drougkas et al., 
2015b). In the mean-field homogenization models, an inclusion with 
lower stiffness (i.e., the mortar) will result in the amplification of shear 
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and normal strain under a given macro stress, and the degree of such 
amplification effect is governed by the Eshelby tensor (Dormieux et al., 
2006). The components S3333, S3322 and S3311 of the Eshelby tensor for 

elliptic cylindrical inclusions are zeros, as shown in Appendix A. 
Accordingly, the influence of such amplification effect on the normal 
strain in the z direction may be very limited, resulting in a lower degree 
of dependency of E∗

z on the properties of mortar. The same explanation 
applies to the assumption of brick inclusions, as a stiffer inclusion is 
responsible for the shear and normal strain reduction under a given 
macro stress. 

Although with relevant errors, the D-I model shows the best perfor-
mance among the classical mean-field homogenization schemes. This is 
consistent with the conclusion in (Pierard et al., 2004), where the au-
thors compared different well-known mean-field homogenization 
models for composite fibers and concluded that “The interpolative 
double inclusion model proposed by Lielens provides perhaps the best 
mean-field predictions to date for two-phase composites”. However, see 
Table 2, the D-I model shows unacceptable errors up to 22.9% and 
33.4% for the predictions of E∗

x and v∗xy, respectively, for the stack 
bonded pattern. 

The proposed model outperforms the classical mean-field homoge-
nization models and makes accurate predictions for all the orthotropic 

Fig. 7. The macroscopic vertical Young’s moduli E∗
y calculated by different mean-field homogenization models for stack bonded pattern: (a) the models with mortar 

joints as inclusions; (b) the inverse models with bricks as inclusions. 

Fig. 8. The macroscopic vertical Young’s moduli E∗
y calculated by different mean-field homogenization models for running bonded pattern: (a) the models with 

mortar as inclusions; (b) the inverse models with bricks as inclusions. 

Fig. 9. Alternative choices for the discretization of mortar joints: (a) contin-
uous horizontal mortar joints; (b) continuous vertical mortar joints. 
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elastic constants for both stack and running bonded patterns. Fig. 11 and 
Fig. 12 present the orthotropic elastic constants predicted by the pro-
posed model for different stiffness ratios Eb/Em for stack and running 
bonded masonry, respectively. It is observed that the values obtained 
with the FE method and the proposed model are very close for the entire 
range of stiffness ratios, with differences being mainly restricted to the 
in-plane Poisson’s ratio, v∗xy. In the stack bonded case, the transversal 
Young’s modulus is larger than its counterparts in the other two di-
rections. The vertical and horizontal Young’s moduli are significantly 
decreased with the decline in the stiffness of mortar, while the Young’s 
modulus in transversal direction is less influenced by the properties of 
mortar, with a tendency to practically stabilize from Eb/ Em values 
higher than 10. Moreover, the vertical Young’s modulus is a little bit 
lower than the horizontal one and the same tendency is observed in the 
experimental tests by other researchers (Ma et al., 2001; Nasedkina and 
Rajagopal, 2017), which can be attributed to the fact that the mortar 
phase in horizontal direction has a lower volume fraction than the 
vertical one (Stefanou et al., 2008). The horizontal Young’s modulus of 
the running bonded case is higher than that of stack bonded pattern 
because of the staggered arrangements of the bed joints in horizontal 
direction, as also reported by (Drougkas et al., 2015b), while the 
transversal and vertical Young’s moduli for running bonded pattern are 
almost the same as for the stack bonded. 

The proposed model is also compared with the well-known single- 
step analytical micromechanical models by Zucchini & Lourenço 
(Zucchini and Louren ç o, 2002) and Drougkas et al. (2015b), where the 
authors derived the average elasticity of masonry by assembling the 
stress equilibrium and strain compatibility conditions in the RVE into an 
collection of equations which can be analytically solved. The Zucchini & 
Lourenço model only addressed the running bonded case, while 
Drougkas et al. developed models for both the stack, running and 
Flemish bonded typologies. For the stack bonded pattern, the proposed 
model provides a more accurate prediction for the in-plane Poisson’s 
ratio v∗xy than the one of Drougkas, while errors of these two models are 
nearly equal for other orthotropic elastic constants (Fig. 11). For the 
running bonded pattern, the errors of the proposed model are slightly 
higher for the predictions of v∗xy, while the proposed model provides 
nearly equal or even more accurate predictions than the two reference 
models for other elastic constants (Fig. 12). Additionally, the proposed 
model has some distinct advantages over such analytical micro-
mechanical models. The proposed model can be easily applied to various 
masonry patterns by selecting different masonry RVEs, while the 

development of the models of Zucchini & Lourenço and Drougkas et al. 
depends on the masonry patterns (i.e., each pattern corresponds to a 
different set of expressions). Furthermore, the proposed model has ad-
vantages in nonlinear extension. Many multiscale methods have been 
established over the past decades for the nonlinear analyses of various 
composite-like materials, such as metal composites (Doghri et al., 2016), 
alloys (Pardoen and Hutchinson, 2003), rocks (Deude et al., 2002; Pens ́e 
e et al., 2002), cementitious materials (Pichler et al., 2007; Ulm et al., 
2004), geomaterials (Zhu et al., 2009) and bones (Fritsch et al., 2013; 
Morin et al., 2017), by combining the mean-field homogenization 
technique with different damage, plasticity or fracture models at 
macroscopic and microscopic scales. The proposed model has the po-
tential to be applied to these well-established mean-field homogeniza-
tion based multiscale methods to achieve the nonlinear analysis of 
masonry. For example, by following the so-called microporomechnics 
theory (Dormieux et al., 2006) and further considering the microcracks 
as several families of penny-shaped inclusions, the macroscopic 
nonlinear response of homogenized masonry can be derived as a result 
of the evolution of open microcracks, the frictional sliding on the lips of 
closed microcracks and the opening-closure transition between micro-
cracks. A preliminary model is presented in (Zhou et al., 2022). 

6.2. Flemish bonded masonry 

As discussed above, the assumption of elliptical cylindrical in-
clusions provides a good approximation for the deformation character-
istics of the single-leaf structures in the wall thickness direction; 
nevertheless, this assumption is not suitable for the double-leaf Flemish 
bonded masonry due to the existence of collar joints (Fig. 1c). Therefore, 
for the Flemish bonded case, three assumptions are made for the in-
clusion shapes: i). A model in which every inclusion is considered as an 
elliptic cylinder, ii). A model in which every inclusion is considered as 
an ellipsoid, iii). A model in which a combination of elliptical cylindrical 
and ellipsoidal inclusions is considered. Specifically, for the third model, 
the bed, head and cross mortar joints and the header bricks with un-
changing geometry in the z direction are approximated by the elliptical 
cylinders, while the collar joints and stretcher bricks with non- 
continuous layout across the thickness are approximated by ellipsoids 
(Fig. 13). It should be noted that, for the proposed model, each inclusion 
and corresponding matrix-inclusion cell (RVE) should be idealized as the 
same type to ensure the rationality of the results. Specifically, the 
matrix-inclusion cell is idealized as an elliptical cylinder for the elliptical 
cylindrical inclusions and the matrix-inclusion cell is idealized as an 

Fig. 10. Comparison between the three possible choices of the discretization of mortar joints for the prediction of E∗
y for a stiffness ratio Eb/Em = 30: (a) stack 

bonded; (b) running bonded. 
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ellipsoid for the ellipsoidal inclusions, as shown in Fig. 13. Appendix B 
gives the expression of Eshelby tensor for ellipsoidal inclusions. Fig. 14 
shows the comparison between the three models with different as-
sumptions for the inclusions’ shape, providing the errors with respect to 
the FEA results for 1 ≤ Eb/Em ≤ 1000. The first model with elliptical 
cylindrical inclusions shows a relatively smaller error for the prediction 
of E∗

x. Among the three assumptions, the third one with the combination 
of elliptical cylinders and ellipsoids provides the best approximation for 
the remaining elastic constants. 

Fig. 15 shows the orthotropic elastic properties predicted by the 
proposed model in the range 1 ≤ Eb/Em ≤ 1000 for the Flemish bonded 
pattern, including a comparison with the FE analysis, the micro-
mechanical model by Drougkas et al. (2015b) and the D-I model. 
Compared with the stack and running bonded pattern, the transversal 
Young’s modulus E∗

z of Flemish bonded case is significantly reduced due 
to the existence of collar joints. Compared with the D-I model that shows 
the best performance among the classical mean-field models, the pro-
posed model makes better prediction results which are much closer to 
the FEA values. Due to the lack of considering the inclusion distributions 
in the masonry RVE, the classical mean-field homogenization schemes 
result in large errors for the effective stiffness tensor of Flemish bonded 
masonry. It can be observed that, even in the range 1 ≤ Eb/ Em ≤ 10, the 
D-I model which shows the best performance among the classical 

mean-field models still results in large errors for the prediction of E∗
z , E∗

y, 
G∗

xz and v∗yz. Compared with the FEA results, the in-plane Poisson’s ratio 
v∗xy is slightly overestimated by the proposed model. Large differences 
exist between the proposed model and FE benchmark for the prediction 
of out-of-plane Young’s moduli E∗

z when the stiffness ratio Eb/Em is larger 
than 30. However, the proposed model makes accurate prediction re-
sults for the remaining elastic constants, especially for the shear moduli. 

7. Model validation against experiments 

An analysis of case studies is performed to further examine the 
feasibility and accuracy of the proposed model. After an extensive 
literature review on the research of masonry compression tests, the 
proposed model has been applied to a large number of experimental 
cases. In many of the cases, the values of Young’s moduli and/or Pois-
son’s ratios of the constituents are not given. Accordingly, only the 
experimental cases that provide the values of Young’s moduli of ma-
sonry constituents are selected. For the cited work lacking the values of 
Poisson’s ratios of mortar joints, a nominal value is used according to the 
type of mortar. The selection of such nominal values should be based on 
the mortar’s deformability, i.e., lower values of Poisson’s ratios should 
be chosen for stronger mortar and vice versa. Following the work in 
(Drougkas et al., 2015b), the nominal values of 0.25, 0.20 and 0.15 are 

Fig. 11. Comparison between the proposed model, the FEA and the reference micromechanical model for stack bonded pattern: (a)Young’s moduli; (b) Shear 
moduli; (c) Poisson’s ratios. 
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adopted in this study for the lime mortar (weak) (Drougkas et al., 2016, 
2019; Kaushik et al., 2007; Panizza et al., 2012), lime-cement mortar 
(intermediate) (Kaushik et al., 2007; Page, 1978; Drougkas et al., 2019; 
Gumaste et al., 2007; Venkatarama Reddy and Gupta, 2006; Vermelt-
foort et al., 2007) and Portland cement mortar (strong) (Kaushik et al., 
2007; Drougkas et al., 2019; Ferretti et al., 2015; Oliveira et al., 2006), 
respectively. The selected experimental cases represent a great variety of 
types, properties and dimensions of the masonry constituents. The 
selected cases consist of the stack, running and Flemish bonded masonry 
patterns. Besides solid clay bricks (SC) that represents the most common 
unit material, soil-cement blocks (S-CB), stabilized mud blocks (SMB), 
calcium silicate bricks (CS), autoclaved aerated concrete blocks (AAC), 
and solid softmud bricks (SSM) are considered. 

Table 4 summarizes the results of case studies for the effective ver-
tical Young’s modulus, where the prediction from the proposed model is 
compared with the FEA results and experimental values. The prediction 
results from the proposed model agree well with the FEM values for the 
three selected masonry patterns (Fig. 16a). However, larger differences 
exist between the model results and corresponding experimental values 
in a few cases (Fig. 16b). In this respect, the potential factors including 
the mortar type, brick type and the stiffness ratios, which may lead to 

these differences, are further analyzed. Fig. 17 shows the influence of the 
stiffness ratio of masonry constituents on the errors between results of 
the proposed model and experimental values. The errors are randomly 
scattered over the stiffness ratios, indicating that the stiffness ratio has 
little effect on the performance of the proposed model. The percentages 
of errors larger than 10% for the different types of mortar and units are 
shown in Fig. 18. Considering the mortar types, the proposed model 
gives a prediction closer to the experiments for the lime (weak) and 
lime-cement (intermediate) mortar. For the types of units, the errors are 
always lower than 10% for nearly all the cases involving the S-CB, SMB, 
CS and ACC units, with large errors being restricted to the SC and SSM 
units. However, the vast majority of available experimental cases in 
existing literature are limited to lime-cement mortar and SC bricks. 
Therefore, the conclusion about the effects of constituent types on the 
performance of the proposed model should be further investigated by 
experimental programs. Another possible explanation for the differences 
between experimental values and the results obtained by FEA and the 
proposed model is as follows: ideal conditions (e.g., perfect materials 
and perfect interfacial bonds) are considered in the FEA and in the 
proposed model, while the experiments are generally also influenced by 
other uncertain factors, such as the manufacturing quality of the 

Fig. 12. Comparison between the proposed model, the FEA and the reference micromechanical models for running bonded pattern: (a)Young’s moduli; (b) Shear 
moduli; (c) Poisson’s ratios. 
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specimens, defects in the material and imperfect bond between the 
constituents. Accordingly, the FEA and the proposed model are likely to 
overestimate experimental values. 

8. Conclusions 

Unreinforced brick masonry, composed of mortar joints and bricks, is 
considered as an inhomogeneous and orthotropic material that is diffi-
cult to characterize. Aiming at developing an analytical-based multi-
scale model for masonry, this study represents a first step in which the 
orthotropic elastic properties of masonry is derived from the isotropic 
properties of its constituents by applying the mean-field homogenization 
technique. After comparing the accuracy of various classical mean-field 
homogenization schemes, an improved model is proposed by combining 
the advantages of the interaction direct derivative (IDD) and double 
inclusion (D-I) schemes. The proposed model is able to approximate the 
distribution of each inclusion in the RVE to some extent by simulta-
neously considering the geometries of all the microscopic phases and the 

macroscopic RVE. The results show that the proposed model can provide 
accurate evaluation for the orthotropic stiffness tensors of different 
masonry typologies for a wide range of stiffness ratios between brick and 
mortar, ranging from 1 to 1000, with a simple closed-form solution. The 
paper itself does not concentrate on the issue of nonlinear homogeni-
zation. But as the accuracy of the proposed model is assessed for an 
increasing ratio between the stiffness of the two components, the ben-
efits of adopting the proposed method for nonlinear analysis are 
demonstrated. The main results are as follows:  

1. Eight classical mean-field homogenization schemes have been 
applied to the representative element volumes (RVE) of stack, 
running and Flemish bonded masonry. For each scheme, two as-
sumptions of the matrix-inclusion system were considered, with the 
bricks or the mortar joints being approximated by elliptical cylin-
drical inclusions. A wide range of stiffness ratios between brick and 
mortar, ranging from 1 to 1000, is considered to assess the perfor-
mance of each homogenization scheme for inelastic behavior. The 

Fig. 13. Assumptions of matrix-inclusion system for Flemish bonded pattern when a combination of elliptical cylindrical and ellipsoidal inclusions is considered.  

Fig. 14. Average and maximum absolute errors of the proposed model for Flemish bonded masonry in comparison with FEA results in the range1 ≤ Eb/ Em ≤ 1000 
considering three possible assumptions for the inclusions’ shape: (a) average absolute error; (b) maximum absolute error. 
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orthotropic elastic constants calculated by these schemes were then 
compared with those obtained via finite element analyses (FEA). The 
results show that, among the classical mean-field homogenization 
schemes, the D-I model shows the best performance but still results in 
unacceptable errors for the stack bonded masonry, with maximum 
absolute errors up to 22.9% and 33.4% for the overall horizontal 
Young’s modulus and in-plane Poisson’s ratio, respectively. 

2. By properly choosing an interpolation between the IDD and the in-
verse IDD models, a new homogenization model is proposed. The 
IDD and the inverse IDD methods correspond to the assumptions 
with mortar joints and bricks, respectively, as inclusion phases. The 
proposed model well overcomes the limitation of the classical mean- 
field homogenization models and can simultaneously account for the 
microscopic geometries of constituents and the global geometry of 
masonry RVE. Performance of the proposed model is superior to that 
of the classical mean-field models for the homogenization of the 
three selected masonry patterns, especially when the stiffness ratios 
between brick and mortar are higher than 10.  

3. The proposed model was initially validated through a comparison 
against FEA. It shows that the proposed model can make an accurate 
prediction for the orthotropic elastic properties of the stack and 
running bonded masonry. For the Flemish bonded pattern, errors of 

the proposed model are mainly restricted to the out-of-plane Young’s 
modulus when the stiffness ratio between the constituents is larger 
than 30. The proposed model was also validated against the exper-
imental data obtained from literature. The prediction results from 
the proposed model are close to the experimental data for the ma-
jority of the experimental cases.  

4. This paper also investigates the influence of different discretization 
choices of mortar joints and different assumptions for the inclusions’ 
shapes on the model performance. The discretization choice of 
continuous horizontal mortar joints provides the most accurate 
prediction for the vertical Young’s modulus, although prediction 
obtained considering continuous vertical mortar joints or the pres-
ence of a cross joint provides similar results. The assumption of 
elliptical cylindrical inclusions provides a good approximation for 
the deformation characteristics of single-leaf masonry, while the 
assumption with the combination of elliptical cylinders and ellip-
soids is more appropriate for the Flemish bonded pattern due to the 
existence of collar joints.  

5. The proposed model is easier and faster to be applied with respect to 
finite element analyses or the other analytical micromechanical 
models. In particular, regarding the latter category it does not 
require an ad-hoc derivation for each masonry typology. The 

Fig. 15. Comparison between the proposed model, the FEA, the micromechanical model of Drougkas and the D-I model for Flemish bonded pattern: (a)Young’s 
moduli; (b) Shear moduli; (c) Poisson’s ratios. 
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Table 4 
Case studies: model results in comparison with the FEA and experimental values for the effective vertical Young’s modulus E∗

y (nominal values are in brackets).  

Numbers/Refs. Bond 
type 

aUnit 
type 

bMortar 
type 

Eb/Em Parameters of units Parameters of mortar Results of E∗
y 

lb 
(mm) 

hb 
(mm) 

tb 
(mm) 

vb (− ) Eb 
(MPa) 

lm 

(mm) 
hm 

(mm) 
tm 

(mm) 
vm (− ) Em 

(MPa) 
Exp. 
(MPa) 

FEA 
(MPa) 

Model 
(MPa) 

S1 (Reddy et al., 2009) Stack S-CB II 1.21 305 100 143 0.08 8000 6 – – 0.19 6600 7800 7921 7896 
S2 (Reddy et al., 2009) Stack S-CB II 1.21 305 100 143 0.08 8000 12 – – 0.19 6600 7200 7389 7804 
S3 (Reddy et al., 2009) Stack S-CB II 1.21 305 100 143 0.08 8000 20 – – 0.19 6600 7100 7264 7698 
S4 (Reddy et al., 2009) Stack S-CB II 1.21 305 100 143 0.08 8000 30 – – 0.19 6600 6900 6986 7587 
S5 (Drougkas et al., 2016) Stack SC III 16.97 290 50 140 0.16 4243 10 – – {0.25} 250 1469 1157 1203 
S6 (Drougkas et al., 2016) Stack SC III 33.94 290 50 140 0.16 4243 10 – – 0.162 125 417 814 806 
S7 (Kaushik et al., 2007) Stack SC III 9.72 230 75 110 {0.15} 5300 10 – – {0.25} 545 2239 2176 2152 
S8 (Kaushik et al., 2007) Stack SC II 1.61 230 75 110 {0.15} 5300 10 – – {0.20} 3300 3542 4403 4296 
S9 (Kaushik et al., 2007) Stack SC I 1.41 230 75 110 {0.15} 5300 10 – – {0.15} 3750 3585 4517 4322 
S10 (Kaushik et al., 2007) Stack SC III 13.79 230 75 110 {0.15} 7516 10 – – {0.25} 545 2630 3096 2876 
S10 (Kaushik et al., 2007) Stack SC II 2.28 230 75 110 {0.15} 7516 10 – – {0.20} 3300 4712 5302 5180 
S11 (Kaushik et al., 2007) Stack SC I 2.00 230 75 110 {0.15} 7516 10 – – {0.15} 3750 5219 5398 5207 
S12 (Oliveira et al., 2006) Stack SC I 3.04 285 50 130 0.20 12,750 10 – – {0.15} 4200 10,000 9750 9025 
S13 (Gumaste et al., 2007) Stack SC II 4.06 228 75 108 {0.15} 976 12 – – {0.20} 238 401 709 664 
S14 (Gumaste et al., 2007) Stack SC II 0.46 235 75.5 111 {0.15} 3372 12 – – {0.20} 7257 3872 3974 3771 
S15 (Panizza et al., 2012) Stack SC II 1.05 125 55 120 {0.15} 5756 10 – – {0.25} 5487 2132 5681 5719 
S16 (Drougkas et al., 2019) Stack SC III 26.77 188 48 88 0.14 2570 10 – – {0.25} 96 296 480 454 
S17 (Drougkas et al., 2019) Stack SC III 3.37 188 48 88 0.14 2570 10 – – {0.25} 762 670 1797 1653 
S18 (Drougkas et al., 2019) Stack SC II 10.94 188 48 88 0.14 2570 10 – – {0.20} 235 985 964 891 
S19 (Drougkas et al., 2019) Stack SC I 0.77 188 48 88 0.14 2570 10 – – {0.15} 3325 865 2726 2704 
S20 (Venkatarama Reddy and 

Gupta, 2006) 
Stack SMB II 4.72 305 100 143 {0.15} 5900 20 – – {0.20} 1250 3100 3294 3396 

S21 (Venkatarama Reddy and 
Gupta, 2006) 

Stack SMB II 1.13 305 100 143 {0.15} 6100 20 – – {0.20} 5400 6000 5857 5749 

S22 (Venkatarama Reddy and 
Gupta, 2006) 

Stack SMB II 3.05 305 100 143 {0.15} 6100 20 – – {0.20} 2000 5100 4318 4480 

S23 (Venkatarama Reddy and 
Gupta, 2006) 

Stack SMB II 1.52 305 100 143 {0.15} 6100 20 – – {0.20} 4000 5300 4713 5333 

S24 (Adam et al., 2010) Stack SC – 1.17 250 55 110 0.10 2000 10 – – 0.20 1700 1936 1950 1934 
S25 (Vermeltfoort et al., 2007) Stack CS II 7.95 212 53 100 0.15 16,700 13 – – 0.22 2100 6800 7849 6764 
R1 (Gumaste et al., 2007) Running SC II 0.62 230 75 105 {0.15} 3372 12 12 – {0.20} 5450 5232 3590 3636 
R2 (Gumaste et al., 2007) Running SC II 0.47 230 75 105 {0.15} 3372 12 12 – {0.20} 7083 4824 3954 3764 
R3 (Gumaste et al., 2007) Running SC II 0.39 230 75 105 {0.15} 3372 12 12 – {0.20} 8568 5024 4030 3853 
R4 (Gumaste et al., 2007) Running SC II 4.10 230 75 105 {0.15} 976 12 12 – {0.20} 238 580 717 652 
R5 (Gumaste et al., 2007) Running SC II 0.65 230 75 105 {0.15} 976 12 12 – {0.20} 1500 735 1033 1045 
R6 (Gumaste et al., 2007) Running SC II 0.11 230 75 105 {0.15} 976 12 12 – {0.20} 8568 400 1250 1308 
R7 (Vermeltfoort et al., 2007) Running SC II 2.42 206 50 96 0.13 4000 12.5 10 – {0.20} 1650 3200 3095 3162 
R8 (Page, 1978) Running SC II 6.95 110 35 50 0.167 6740 5 5 – {0.20} 970 3700 3912 3637 
R9 (Ferretti et al., 2015) Running ACC I 0.25 250 50 100 {0.15} 1320 1.5 1.5 – {0.15} 5300 1473 1462 1368 
F1 (Binda et al., 1988) Flemish SSM III 4.12 250 55 120 0.09 4865 10 10 10 0.06 1180 1651 3100 2942 
F2 (Binda et al., 1988) Flemish SSM II 0.86 250 55 120 0.09 4865 10 10 10 0.09 5650 3833 5000 5036 
F3 (Binda et al., 1988) Flemish SSM I 0.27 250 55 120 0.09 4865 10 10 10 0.12 17,760 4567 6390 6280  

a Unit type: S-CB = Soil-cement blocks; SC = solid clay bricks; SMB = Stabilized mud blocks; CS = Calcium silicate bricks; AAC = Autoclaved aerated concrete blocks; SSM = Solid softmud bricks. 
b Mortar type: I = Portland cement mortar (strong); II = Lime-cement mortar (intermediate); III = lime mortar (weak). 
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potential of the proposed model for nonlinear analysis has been 
preliminarily demonstrated by considering different stiffness ratios 
between brick and mortar. It was observed that the proposed model 
can provide accurate predictions for the orthotropic effective stiff-
ness tensors of masonry composites even for a large stiffness ratio of 
1000 between brick and mortar. Its application within the micro-
poromechanics theory is thus considered suitable for the develop-
ment of an analytical-based multiscale model for masonry. 
Additionally, as the proposed model provides closed-form analytical 
expressions for the orthotropic stiffness tensor of masonry, it can be 
easily utilized in some of the available numerical procedures devel-
oped for the masonry nonlinear problems, such as (Drougkas and 
Sarhosis, 2021; Pel à et al., 2013), which involve calculating the 
effective (tangent/secant) stiffness tensors (matrices) of masonry in 
each iterative step of the nonlinear process. 
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Fig. 16. Comparison of the vertical Young’s modulus E∗
y between: (a) FEM and the proposed model; (b) experiments and the proposed model. (The dotted lines are 

10% deviation lines). 

Fig. 17. Absolute errors between model results and experimental values for 
different stiffness ratios Eb/Em . 

Fig. 18. Percentages of the absolute errors greater than 10% for different types 
of mortar and units. 
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Appendix 

A. Eshelby tensor for elliptic cylindrical inclusions 

For isotropic media, the nonzero elements of the Eshelby’s tensor for elliptic cylindrical inclusions with semi-axes a, b, c (c→∞) are as follows 
(Weinberger et al., 2005): 

S3311 = S3322 = S3333 = 0  

S1111 =
1

2(1 − v)

[
b2 + 2ab
(a + b)2 +(1 − 2v)

b
a + b

]

S2222 =
1

2(1 − v)

[
a2 + 2ab
(a + b)2 +(1 − 2v)

a
a + b

]

S1122 =
1

2(1 − v)

[
b2

(a + b)2 − (1 − 2v)
b

a + b

]

S2233 =
1

2(1 − v)
2va

a + b  

S2211 =
1

2(1 − v)

[
a2

(a + b)2 − (1 − 2v)
a

a + b

]

S1212 =
1

2(1 − v)

[
a2 + b2

2(a + b)2 −
(1 − 2v)

2

]

S1133 =
1

2(1 − v)
2vb

a + b  

S2323 =
a

2(a + b)

S3131 =
b

2(a + b)

where v denotes the Poisson’s ratio of the matrix phase. The semi axis a, b, and c are parallel to the coordinate x, y and z, respectively. All other 
components Sijkl are zeros. 

B. Eshelby tensor for ellipsoidal inclusions 

For isotropic media, the components of Eshelby’s tensor Sijkl for an ellipsoid with semi-axes a, b, c are as follows (Weinberger et al., 2005): 

S1112 = S1223 = S1232 = 0  

S1111 =
3

8π(1 − v)
a2I11 +

1 − 2v
8π(1 − v)

I1  

S1122 =
3

8π(1 − v)
b2I12 +

1 − 2v
8π(1 − v)

I1  

S1133 =
3

8π(1 − v)
c2I13 +

1 − 2v
8π(1 − v)

I1  

S1212 =
a2 + b2

8π(1 − v)
I12 +

1 − 2v
8π(1 − v)

(I1 + I2)

where v is the Poisson’s ratio of the matrix phase. The semi axis a, b, and c are parallel to coordinate x, y and z, respectively. Other nonzero elements 
can be determined by changing the subscript in the above expressions. The Ii and Iij terms are expressed as follows: 

I1 =
4πabc

(
a2 − b2

)
(a2 − c2)

1/2 [F(θ, k) − E(θ, k)]

I3 =
4πabc

(
b2 − c2

)
(a2 − c2)

1/2

[
b(a2 − c2)

1/2

ac
− E(θ, k)

]
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where 

θ= arcsin
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 − c2

a2

√

k =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 − b2

a2 − c2

√

and 

I1 + I2 + I3 = 4π  

3I11 + I12 + I13 =
4π
a2  

3a2I11 + b2I12 + c2I13 = 3I1  

I12 =
I1 − I2

a2 − b2  

and the standard elliptic integrals are expressed as follows: 

F(θ, k) =
∫ θ

0

dw
(
1 − k2 sin2 w

)1/2  

E(θ, k)=
∫ θ

0

(
1 − k2 sin2 w

)1/2dw  
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