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External human–machine interfaces: Gimmick or necessity? 

Joost de Winter *, Dimitra Dodou 
Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

The last few years have seen a wealth of research on external human–machine interfaces (eHMIs). It has been 
argued that eHMIs are vital because they fill the social interaction void that arises with the introduction of 
automated vehicles (AVs). However, there is still much discussion about whether eHMIs are needed. The present 
article surveys arguments for and against eHMIs. We list three arguments against eHMIs: (1) Implicit commu-
nication dominates pedestrian-AV interaction, and there is no social interaction void to be filled, (2) There is a 
large variety of eHMI concepts and a lack of standardization and consensus, and (3) eHMIs may elicit various 
negative effects such as distraction, confusion, and overreliance. Next, we present five reasons why eHMIs may 
be useful or required: (1) eHMIs can make planned actions of the AV visible, thereby increasing the efficiency of 
pedestrian-AV interaction, (2) Participants value an eHMI compared to no eHMI, (3) eHMIs do not have to be 
limited to showing instructions or the AV’s planned actions; showing the AV mode or the AV’s cooperative or 
detection capabilities are other uses of eHMIs, (4) Recent research shows that driver eye contact is important in 
traffic, and a social interaction void thus exists, and (5) A large portion of pedestrian-vehicle accidents in current 
traffic is caused by unclear implicit communication, suggesting that pedestrians may benefit from explicit eHMIs. 
It is hoped that this article contributes to the critical discussion of whether eHMIs are needed and how they 
should be designed.   

1. Introduction 

The last few years have seen a surge of interest in automated driving. 
This trend can be identified in academia, signified by a large number of 
publications (Ayoub et al., 2019; Gandia et al., 2019), and in industry, 
signified by numerous news items and forecasts (Deloitte, 2019; Litman, 
2021). This surge of interest may be a genuine reflection of advance-
ments in technology, including progress in sensor systems, computa-
tional speed, and computer vision. However, recent claims suggest that 
the optimism about automated driving may be part of a hype cycle 
(Anderson, 2020; Stilgoe, 2019) and that we are entering the “trough of 
disillusionment” (Norton, 2021; Pel et al., 2020). 

Within the specific area of Human Factors of automated driving, 
there has been an equivalent burst of activity, of which one may wonder 
whether it is part of the same hype cycle. In particular, the field has seen 
an explosion of so-called external human–machine interfaces (eHMI) for 
automated vehicles (AVs), a subject that requires critical reflection. 

The typical line of reasoning in favor of eHMIs is as follows (e.g., 
Ackermans et al., 2020; Carmona et al., 2021; Faas et al., 2020; Hensch 
et al., 2019; Othersen et al., 2019a): Current non-automated traffic is, to 

a large extent, social (Färber, 2016; Vinkhuyzen and Cefkin, 2016). 
Driver eye contact and other gestures ensure safe interaction between 
drivers and pedestrians. In automated driving, there may not be 
anybody in the driver’s seat, or the driver may not be paying attention to 
traffic. Thus, automated driving creates a ‘social interaction void’ 
(Rasouli and Tsotsos, 2019), and substitute systems should be deployed 
that allow the AV to communicate with other road users. These systems 
are now called eHMIs, a term that appears to have been coined around 
2016 (Peng, 2016; Vinkhuyzen and Cefkin, 2016) and which grew 
popular presumably through the EU project interACT (e.g., Weber et al., 
2019). 

At the same time, in informal interactions with fellow researchers, 
we have been told that eHMIs may be unnecessary and seem more of a 
gimmick than something that will be deployed in future traffic. These 
anecdotal observations suggest that a critical reflection on the subject of 
eHMIs is necessary. The present article surveys arguments against and 
for eHMIs, intending to contribute to a critical discussion and advance 
the field. This work is based on a literature survey and our own research 
experiences in the past couple of years. We first review arguments 
against eHMIs, subsequently introduce arguments in favor of eHMIs, and 
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end with closing statements. 

2. Arguments against eHMIs 

2.1. Argument 1 against eHMIs: Implicit communication dominates; no 
social interaction void exists 

Several scientists argue that research in AV-pedestrian interaction 
should focus on how the AV behaves (also called: implicit communica-
tion) and that one should not add bells and whistles in the form of 
eHMIs. Their line of reasoning is that in current vehicle–pedestrian 
interaction, explicit modes of communication, such as eye contact, hand 
gestures, nodding, or using the high beams, are rare (e.g., Lee et al., 
2021) and that the above-mentioned social interaction void is therefore 
trivial or nonexistent. That is, pedestrians are able to cross the road 
without using explicit communication, and implicit communication is 
the primary cue that pedestrians use (Moore et al., 2019). 

More specifically, eHMIs are claimed to substitute driver eye contact. 
However, in current traffic, pedestrians often cannot even see the driver, 
let alone establish eye contact or perceive other gestures. Driving at 
night or a driver wearing sunglasses, windshield glare, sunlight, and 
shadows are some of the reasons why the driver’s eyes may not be visible 
(AlAdawy et al., 2019). Moore et al. (2019) showed that pedestrians 
usually cross the road without noticing the AV’s features and hardly 
adjust their walking behavior, even when there is no driver in the 
driver’s seat at all. Besides, in current traffic, there appears to be no need 
to employ eHMIs (other than the already existing cueing systems such as 
the horn, blinkers, brake lights, and headlamps), so why then would we 
need to deploy eHMIs on AVs? 

Other authors do not outright reject the need for eHMIs but portray 
eHMIs as of secondary importance. For example, Domeyer et al. (2020) 
emphasized that implicit communication has precedence over explicit 
communication: “the concepts [of motion-based communication] 
described here do not invalidate the need for research on lighting and 
other explicit signals, it suggests that behavior is the basis for on-road 
communication”. Similarly, Lee et al. (2021) concluded that “road 
users rarely used explicit communication to convey information about 
crossing intentions” (p. 377), and they implied “that there may be 
limited requirement for automated vehicles to adopt explicit commu-
nication solutions …” (p. 378). 

2.2. Argument 2 against eHMIs: There is a lack of standardization and 
consensus 

A large variety of eHMI concepts have been proposed so far. Interest 
in eHMIs arose around 2015 and 2016 when vehicle manufacturers 
introduced futuristic-looking concept cars that could communicate via 
eHMIs. LED strips, text messages, and projections on the ground were 
among the most eye-catching designs (for a review of 22 eHMI concepts 
from the industry, see Bazilinskyy et al., 2019). Academia enthusiasti-
cally picked up the topic of eHMIs and continued the investigation. A 
survey of the literature by Dey et al. (2020a) identified 70 concepts 
available by mid-2019, a number that continues to grow. eHMIs take 
many forms, including eHMIs that speak (Mahadevan et al., 2018), 
googly eyes (Chang et al., 2017), a smile (Deb et al., 2018), and laser-like 
displays (Dietrich et al., 2018; Mok et al., 2022). Dey et al. (2020a) 
referred to the present situation as an “eHMI jungle”. 

When reading Dey et al.’s review paper, one cannot avoid the 

impression that the field lacks consensus and standardization. Current 
attempts at standardization of eHMIs (ISO 23049:2018; International 
Organization for Standardization, 2018) appear to be of preliminary and 
suggestive nature: The ISO document provides no recommendations 
about the visual appearance of the communication, other than that “care 
should be taken such that consistency or coherency with existing vehicle 
interfaces is maintained” (p. 4)1. While there is research concerned with 
technical specifications of eHMIs, such as display size, luminance, and 
the distinguishability and interpretation of colors and animations 
(Blankenbach et al., 2022; Clamann et al., 2017; GRE Autonomous 
Vehicle Signalling Requirements, 2019; Werner, 2018), concrete rec-
ommendations regarding eHMI design seem lacking. 

An inspection of the literature shows there is disagreement about 
some of the fundamentals of eHMI design. Human Factors experts 
(Tabone et al., 2021a) and current standards (International Organiza-
tion for Standardization, 2018) suggest that an eHMI should not instruct, 
such as via the text WALK. The reasoning behind this is that an 
instructive message can cause accidents if a non-automated vehicle is 
arriving simultaneously or if the message is picked up by a pedestrian for 
whom the message was not intended. At the same time, it can be argued 
that an instructive eHMI is unambiguous and safe to use if the AV can 
ascertain that it is indeed safe to cross at that moment, just like current 
(pedestrian) traffic lights are used. Researchers especially caution 
against text-based eHMIs, because text requires focused attention (Cef-
kin, 2018; Dey et al., 2022). However, an advantage of text-based eHMIs 
is that they can be understood directly (language barriers not consid-
ered), while non-textual eHMIs require training or experience (Bazi-
linskyy et al., 2019; De Clercq et al., 2019). Indeed, evaluations of eHMIs 
show that instructive text-based messages such as WALK or DON’T 
WALK are relatively unambiguous and processed efficiently by users 
(Bazilinskyy et al., 2019, 2022; Ferenchak and Shafique, 2022; Guo 
et al., 2022). Currently, there appears to be no clarity in the literature 
about whether (instructive) text messages should or should not be used. 

Another design choice of importance concerns the color of the eHMI. 
Cyan is an often recommended color because of its neutrality (as 
opposed to red or green). However, research shows that, depending on 
its precise tone, cyan risks confusion with green (Bazilinskyy et al., 
2020; Dey et al., 2020b; GRE Autonomous Vehicle Signalling Re-
quirements, 2019). It is not currently clear which colors are recom-
mendable, whether it be cyan, yellow, orange, or purple. 

Finally, it is unknown how eHMIs should be deployed in actual 
traffic. As it turns out, most of the eHMI research to date has been 
conducted in default scenarios, where a single pedestrian wants to cross 
the road in front of a single eHMI-equipped AV. However, it is easily 
possible to imagine a situation where two or more AVs give cues to a 
pedestrian, a situation that does not seem to have been considered so far. 
Future AVs may have to have to rely on connectivity and collaborative 
perception (Chen et al., 2019) to be able to understand the intentions of 
other road users. In turn, these developments raise the question of which 
agent in future connected traffic (e.g., AV, cloud) will have the authority 
to advise or instruct other agents. How eHMIs should address a specific 
pedestrian when multiple road users are present is another understudied 
topic (Colley et al., 2020), which has been addressed by several re-
searchers but not resolved (Dey et al., 2021b; Dietrich et al., 2018; 
Hübner et al., 2022; Joisten et al., 2021; Verstegen et al., 2021; Wilbrink 
et al., 2021). A possible solution would be to provide personalized in-
formation to the pedestrian, such as via augmented reality (Hasan and 
Hasan, 2022; Tabone et al., 2021b; Tran et al., 2022). 

1 The ISO document also provides little guidance on the type of modality to 
use. It first mentions that “… visual signalling is recommended”, while later in 
the document leaves the choice of modality open by highlighting the advan-
tages and disadvantages of auditory versus visual signaling. The ISO document 
also states that signals should be “distinct and salient yet not distractive”, but 
does not specify how this could be accomplished. 
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Other types of vulnerable road users, such as cyclists, have not been 
considered much in eHMI research (exceptions are Bazilinskyy et al., 
2021; Berge et al., 2022; GRE Autonomous Vehicle Signalling Re-
quirements, 2019; Hou et al., 2020; Kaß et al., 2020a; b; Kunst et al., 
2022; Li et al., 2021; Verstegen et al., 2021; Vlakveld et al., 2020; Yang 
et al., in press; and see Von Sawitzky et al., 2020; 2022, for Augmented 
Reality concepts for cyclists). Cyclists may interact with AVs in more 
dynamic situations, and may necessitate eHMIs that can be viewed from 
all sides (e.g., Vlakveld et al., 2020). Additionally, researchers have 
devised eHMIs that communicate to manual vehicles, such as in a 
bottleneck scenario (Rettenmaier et al., 2020) or to communicate 
yielding intention at junctions (e.g., Avsar et al., 2021; Mirnig et al., 
2021; Papakostopoulos et al., 2021). These developments raise the 
question of whether eHMIs will have to be separately tailored to 
different road users (pedestrians, cyclists, manual vehicles) and 
scenarios. 

At the moment, it is not clear how the above challenges should be 
addressed and how to blend eHMIs with existing signals such as traffic 
lights, turn indicators, and the horn. It is conceivable that the above 
challenges will never be resolved and that the right solution forward is 
to use no eHMI at all. It could even be argued that the dozens of eHMI 
papers that have appeared are merely a manifestation of the creativity of 
researchers and designers, without being grounded in a real problem to 
be solved. 

2.3. Argument 3 against eHMIs: eHMIs elicit negative effects 

It has often been argued that current traffic is visually demanding 
and that distractions are a significant risk for drivers (Horberry et al., 
2006) and pedestrians (Tapiro et al., 2020). It can be argued that adding 
light sources in the form of eHMIs will exacerbate this problem. Norman 
and Emmenegger noted: “If messages are placed outside of the car, 
human attention becomes more scattered, especially when there are 
many vehicles, so they may miss a critical signal” (as quoted in Tabone 
et al., 2021a; p. 10). 

Most of the eHMI research thus far has been conducted online or in 
virtual-reality environments, with little opportunity for visual or 
cognitive distraction. There is a limited but growing number of eHMI 
studies conducted with real vehicles, but typically in simple settings 
such as parking lots (Ahn et al., 2021; Chen et al., 2020; Hensch et al., 
2020; Liu et al., 2021), indoor environments (Burns et al., 2019; Reschke 
et al., 2018), test tracks (Faas et al., 2021; Fuest et al., 2020; Horn et al., 
2021), or roads with otherwise restricted access (Barendse, 2019; Dey 
et al., 2021a; Habibovic et al., 2018; Joisten et al., 2019; Morales 
Alvarez et al., 2019; Mührmann, 2019; Papakostopoulos et al., 2021; 
Zadeh Darrehshourian, 2021). Research in real traffic is still relatively 
rare (Cefkin et al., 2019; Forke et al., 2021; Merat et al., 2018; Mirnig 
et al., 2021; Monzel et al., 2021), and some evidence concurs that eHMIs 
will have to compete with other visual cues in the environment. In 
particular, Cefkin et al. (2019) found that, in real traffic, which can be 
busy and requires distributed visual attention, pedestrians often did not 
even notice the eHMI on the car. Similarly, in a Wizard of Oz study in 
real traffic, Shutko et al. (2018) reported that pedestrians did not glance 
at the AV more often when eHMI was present as compared to when it 
was absent. 

Apart from visual attention requirements, eHMIs may cause confu-
sion because it may be unclear which road user the eHMI message ad-
dresses (for discussion, see Tabone et al., 2021a) or because the eHMI 
message is not intuitive (see Ackermann et al., 2019; De Clercq et al., 
2019; Hensch et al., 2019). The literature is replete with examples of 
confusing eHMI messages, such as the text GO (Eisma et al., 2021), ar-
rows (Kunst et al., 2022; Zang et al., in press), and a red lamp (Bazi-
linskyy et al., 2020) being misunderstood regarding whether the 
message represents an instruction for the pedestrian or a representation 
of the AV’s intent. Also, some light-based eHMIs have been mis-
interpreted as sensors instead of communication devices (Bazilinskyy 

et al., 2019; Fratini et al., 2021; Shutko et al., 2018). 
The good news is that research suggests that pedestrians get easily 

accustomed to novel types of eHMIs after a number of encounters (e.g., 
Colley et al., 2022; De Clercq et al., 2019; Eisele and Petzoldt, 2022; 
Hochman et al., 2020; Lee et al., 2022). However, a question remains 
whether, in conditions of time pressure or stress, participants would 
refer back to what is intuitive rather than learned (cf. Taylor and Garvey, 
1959) or fail to see the eHMI altogether (see Bazilinskyy et al., 2022 for 
the use of eHMIs in near-collision situations). Furthermore, a pitfall is 
that repeated exposure to eHMIs can cause overreliance, resulting in 
dangerous interactions. An example of this is offered by Kaleefathullah 
et al. (in press). These authors let pedestrians cross a road in an 
immersive virtual environment. The pedestrians encountered AVs with a 
LED-strip eHMI that signaled that the AV would stop. At the 19th 
encounter, the LED strip turned on, but the AV did not stop. The results 
showed that many pedestrians stepped onto the road or even walked 
under the virtual car (see Fig. 1). Kaleefathullah et al. argued that such 
apparent eHMI failures might also occur in reality, for example, when 
the AV fails to detect the pedestrian but stops for another pedestrian 
further down the road. 

3. Arguments for eHMIs 

3.1. Argument 1 for eHMIs: eHMIs can contribute to ‘superhuman 
performance’ 

The first argument in favor of eHMIs is referred to as ‘superhuman 
performance’. To explain this, it is useful to first remember how an AV 
works: An AV senses elements of the road environment via cameras, 
radar, etc., and classifies objects using computer vision. The next step in 
the control loop is that the robot analyses the sensed data and makes 
plans and decisions. Next, the robot implements actions; that is, it 
controls itself and acts upon the environment. These functions are 
equivalent to the stages of automation as outlined by Parasuraman et al. 
(2000). 

The essence here is that the robot (AVs) has knowledge about the 
environment and has plans about what it will do in that environment. 
For example, the AV likely knows where other road users are, what route 
to drive, and when to slow down for upcoming curves or crosswalks. In 
fact, path planning is a key subfield of robotics (Latombe, 2012; Sucan 
et al., 2012). Given that an AV has knowledge about the state of the 
environment and its future actions, the AV could share its upcoming 
actions using an eHMI. Such sharing would open up possibilities that 
may increase the efficiency and safety of the traffic. That is, the traffic 
performance could be higher than it is now, something that we call 
superhuman performance. 

By comparison, in today’s non-automated traffic, drivers also have 
knowledge about the environment and plans about which maneuvers 
they will perform. However, this knowledge is fuzzy and private to the 
driver. While drivers can indicate direction, turn their head and eyes, 
use the horn, or flash high beams, they have limited capacity to indicate, 
for example, whether they have the intention to maintain or reduce 
speed. Today’s means of explicit communication, such as turn signals, 
brake lights, high beams, and the horn, are easily operated by a human 
driver (by pressing the brake, pulling/turning a lever, or pushing the 
steering wheel) but are not necessarily optimal for future automated and 
connected traffic. 

De Clercq et al. (2019) tested a number of eHMIs on the front of the 
AV (e.g., front brake light, smiling display, text ‘WALK’, moving LED 
strip) in a virtual environment presented from a pedestrian’s perspec-
tive. The experimenters asked participants to hold a button whenever 
they felt safe to cross for approaching AVs that stopped or maintained 
speed. The results indicated that each of the eHMIs improved perfor-
mance compared to no eHMI. That is, the eHMIs made participants feel 
safe to cross the road when it was indeed safe to cross (i.e., when the car 
stopped) and less safe to cross the road when it was unsafe to cross (i.e., 
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when the AV maintained speed). 
Fig. 2 provides the corresponding results for AVs that came to a full 

stop. It shows the percentage of participants holding the button as a 
function of the distance between the pedestrian and the AV. In all cases, 

the car started braking when it was 35 m from the pedestrian. The eHMI 
switched state from non-yielding to yielding at 50 m (before the car 
started braking), at 35 m (the same moment the car started braking), or 
at 20 m (after the car started braking). The black dashed line represents 

Fig. 1. Pedestrian walking distance as a function of elapsed time in a ‘failure trail’ where the eHMI turned on while the AV maintained speed. The green vertical line 
represents the front of the car when it passed. Many participants (indicated by red lines) stepped onto the road. Some of those participants crashed with the AV; this 
occurs when a red line crosses the green vertical line. The pavement and road are visualized as light and dark gray textures, respectively (adapted from Kaleefathullah 
et al., in press). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Results that illustrate the concept of superhuman performance (from De Clercq et al., 2019). The blue area shows the percentage of participants feeling safe to 
cross as a function of the AV-pedestrian distance. The black dashed line represents the results without eHMI. The vertical dotted line shows the moment the eHMI 
changed its state from non-yielding to yielding. In all cases, the AV started to brake at a distance of 35 m from the participant, stopped 7.5 m from the participant, 
after which it drove off. It can be seen that eHMIs caused participants to express their crossing intention earlier when the AV used an eHMI, especially when the eHMI 
onset occurred before the AV started to slow down (i.e., before revealing implicit cues). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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the button-press results for the baseline condition without eHMI. It can 
clearly be seen that after the eHMI had switched state, participants felt 
safer to cross, i.e., the blue surface area lies above the black dashed line. 
Importantly, the biggest gains were achieved for the 50-m condition, 
that is, when the eHMI switched on before the vehicle braked. 

The results in Fig. 2 illustrate that eHMIs are not to be seen as a 
replacement for something that is missing. Rather, eHMIs should be seen 
as an augmentation of current traffic and as a means of ‘making visible 
the invisible’. In this way, a level of performance is attained that is 
higher than when relying on implicit communication only. 

3.2. Argument 2 for eHMIs: Pedestrians want eHMIs 

The previous argument addressed performance, i.e., does an eHMI 
make pedestrians cross when they can cross and does it inhibit pedes-
trians from crossing when it is unsafe to cross? The current argument is 
about acceptance, i.e., do pedestrians want to receive information from 
an eHMI? Acceptance can be measured via questionnaires alongside 
performance in an experiment. For example, in the above-reviewed 
experiment of De Clercq et al. (2019), participants were asked to rank 
the five experimental conditions (four eHMI types and a baseline con-
dition). The baseline condition came out worst, with 23 of 28 partici-
pants indicating this as the least preferred choice among the five options. 

Many other virtual-reality studies confirm high acceptance ratings of 
eHMIs (e.g., Deb et al., 2018; Dou et al., 2021; Ferenchak and Shafique, 
2022; He et al., 2021). These findings are supported by a number of 
evaluations in real traffic:  

● In the CityMobil2 project, pedestrians encountered AVs during 
demonstrations in three European cities. Questionnaires revealed 
that pedestrians would appreciate receiving information from the 
AV, for example, about whether it will stop, its speed, and whether it 
has detected the pedestrian (Merat et al., 2018). 

● Cefkin et al. (2019) tested an eHMI in the form of a light strip indi-
cating the intention of the AV in a busy urban environment. In post- 
experiment interviews, participants reported that they did not notice 
the eHMI. However, most participants also reported that they liked 
the idea of an eHMI and that they would pay more attention if they 
were more used to it.  

● Monzel et al. (2021) evaluated an eHMI in the form of a front brake 
light mounted on 102 vehicles driving at an airport for 3.5 months. 
Questionnaires and interviews with 197 staff members who 
encountered the vehicles revealed that the eHMI was moderately 
positively received (with a mean frequency of positive and negative 
experiences of 3.35 and 1.99, respectively, on a scale of 1 = never to 
5 = very often), where it was regarded as a means to better under-
stand and predict the behavior of the vehicles.  

● Forke et al. (2021) conducted a field study in mixed traffic, where 
pedestrians encountered an automated shuttle indicating its inten-
tion and awareness of other road users by means of an eHMI. In post- 
experiment interviews, 17 participants indicated that the external 
communication was necessary, 8 indicated it was helpful but not 
necessary, and 5 indicated it was not necessary. Furthermore, 16 
participants indicated that the eHMI increased comprehensibility or 
predictability, whereas 14 reported no difference. 

3.3. Argument 3 for eHMIs: Different forms of eHMI signaling are possible 

The third argument in favor of eHMIs is that eHMIs do not just have 
to provide an instruction or show their intention, as was the case in the 
above-reviewed experiment of De Clercq et al. (2019) and the majority 
of eHMI research so far (Dey et al., 2020a). In a review paper by 
Schieben et al. (2019), four strategies for eHMI communication are 
outlined: 

(1) Information about the AV’s driving mode (manual/automated). 
(2) Information about the AV’s maneuvers or upcoming maneuvers 

(as already explained). 
(3) Information about AV’s perception of the environment. 
(4) Information about AV’s cooperation abilities. 
Regarding the first communication strategy, it is known that mode 

confusions are a common issue in human-automation interaction. In 
aviation, many accidents have been attributed to mode errors (Mumaw, 
2021; Sarter and Woods, 1995; Silva and Hansman, 2015), where the 
pilot executed an action appropriate for one mode while the automation 
system was actually in a different mode. Mode errors have been attrib-
uted not only to the large number of modes but also to the interaction 
between modes, i.e., mode changes can be initiated by the pilot, as well 
as indirectly through environmental triggers or completed tasks (e.g., 
target altitude achieved). In aviation, the human–machine interface 
plays a vital role in preventing mode confusion (Sarter and Woods, 
1995). 

In the same vein, in automated driving currently on the road, one 
sees a variety of automation subsystems, such as adaptive cruise control, 
automated lane keeping, automated emergency braking, and traffic light 
detection. These systems combined constitute the ‘automated driving 
system’. It is easy to imagine that drivers may have difficulty under-
standing which automation system is active (Banks et al., 2018; Dönmez 
Özkan et al., 2021; Feldhütter et al., 2017). Similarly, other road users, 
such as pedestrians, may have difficulty understanding whether an 
approaching vehicle is driving automatically or not and whether this 
vehicle can be expected to respond to their presence. An eHMI could 
resolve this confusion by communicating the current automation mode. 
Information about the AV mode is especially important in situations 
where clarity is needed about who is in control and about what can be 
expected from the car occupants. For example, confusion may arise if the 
car behaves indecisively (e.g., in a deadlock situation) or if the driver in 
the car is not paying attention (e.g., making a phone call). In the latter 
case, a police officer will not have to issue a fine if it is known that the 
car is driving automatically at that time. 

Regarding the third point, AVs at present have imperfect sensing 
abilities. It is hard for a computer vision system to anticipate whether a 
pedestrian standing on the curb is about to cross the road or not, 
something that should be inferred from the pedestrian’s posture or 
bodily signals (Rudenko et al., 2020). Whether the AV understands the 
traffic situation could be conveyed via an eHMI. For example, Epke et al. 
(2021) tested a system where the driver gestured towards a simulated 
AV, and the AV signaled back I SEE YOU (Fig. 3). Epke et al. showed that 
the confirmatory message allowed the pedestrian to terminate the 
gesture earlier in time, as the pedestrian knew that the AV understood 
the gesture. Similarly, Colley et al. (2021) showed that confirmatory 
eHMI messages (‘Thank you’ or ‘You’re welcome’ as a response to, 
respectively, a pedestrian’s gesture giving right of way to the AV or 
thanking the AV for stopping) increased pedestrians’ trust in the AV as 
well as perceived safety and intelligence as compared to no confirmatory 
messages. 

Regarding the fourth point, although research on HMIs for cooper-
ative driving exists (e.g., Zimmermann et al., 2015), research into eHMIs 
for cooperation in traffic is still scarce. The ISO guidelines provide one 
example in which road users cooperate: “an ADS-DV [Automated 
Driving System – Dedicated Vehicle] that is approaching the crosswalk 
can display to the car behind that there are pedestrians crossing the road 
(something that the vehicle behind cannot ‘see’)”. A similar concept was 
proposed by Ter Borg et al. (2019), where a parked car warns a pedes-
trian about an approaching vehicle (Fig. 4). In theory, eHMIs could 
facilitate any type of multi-agent interaction, using high-definition maps 
and V2X communication as inputs. 

In summary, eHMIs could communicate not only the AV’s maneuver 
intentions but also the automation mode and whether the AV un-
derstands the situation. 

J. de Winter and D. Dodou                                                                                                                                                                                                                   



Transportation Research Interdisciplinary Perspectives 15 (2022) 100643

6

3.4. Argument 4 for eHMIs: Eye contact is important 

Moore et al. (2019) suggested that eHMIs are unneeded because eye 
contact does not play a major role in traffic. Although eye contact is not 
essential, it could still be a feature that helps predict how a situation will 
unfold. In a recent experiment in a parking garage with 36 participants 
(De Winter et al., 2021), it was measured using a head-mounted eye- 
tracker where pedestrians look when walking around. The results 
showed that pedestrians often glanced at the driver (see Fig. 5, for an 

example), presumably to predict what the driver would do, infer 
whether the driver had seen them, or communicate that they have seen 
the driver. Pedestrians did not look at the driver only; many other fea-
tures were glanced at, such as the wheels and backs of cars. The eye- 
tracking analysis suggested that pedestrians appear to extract what-
ever information they may need to predict what will happen next. 

Similarly, Uttley et al. (2020) investigated road user interactions in a 
car park and found that pedestrians looked at the drivers in 65% of the 
vehicle–pedestrian encounters as identified by two observers. Moreover, 
it was found that in the encounters in which the pedestrian did not look 
at the driver, it was more likely that the driver slowed down without 
coming to a complete stop, whereas when the pedestrian did look at the 
driver, the driver either stopped or continued. The authors argued that 
the slowing down was indicative of the driver’s hesitation and that 
looking at the driver “is prompting the driver to make a clear decision 
about their behaviour” (p. 42). 

The two studies discussed above were conducted in a parking 
garage/car park, which is a relatively unstructured environment. 
However, a recent online study suggests that eye contact is also relevant 
in a more straightforward scenario of a single vehicle approaching a 
single pedestrian (Onkhar et al., 2022). In Onkhar et al., the onset and 
offset timing of the driver’s eye contact and yielding behavior of the 
vehicle were varied in different configurations. Participants had to hold 
a key on the keyboard whenever they believed it was safe to cross and 
answer post-trial questions on the intuitiveness of the driver’s eye con-
tact. The conclusions of the study by Onkhar et al. (2022) were as 
follows: 

(1) Implicit communication is dominant. In simple words, pedes-
trians do not want to cross in front of a car that drives off, even if the 
driver in the car makes eye contact. 

(2) Driver eye contact has no effect when the car is still far away, and 
eye contact cannot be seen. 

(3) Pedestrians can still figure out what to do when the driver makes 
no eye contact at all. 

(4) However, driver eye contact has a strong effect in a specific zone. 
That is, when the car is slowing down or waiting, eye-contact increases 
pedestrians’ willingness to cross and ensures a more intuitive interac-
tion. Qualitatively, this zone corresponds to what Dey et al. (2021a) 
referred to as “when the speed of the vehicle is slow enough to not be an 
obvious threat, but still fast enough to raise a doubt about a vehicle’s 
stopping intention”. 

In summary, eye contact does appear to have a role in traffic. Eye 
contact is not the only cue that pedestrians use; the importance of eye 
contact is likely dependent on many factors, including the distance to 
the approaching vehicle (see also Dey et al., 2019) and whether other 

Fig. 3. Hand gesture towards the AV (left) as an indication that the participant wanted to cross, and the virtual-reality environment with eHMI on AV displaying I 
SEE YOU and an avatar visualizing the participants’ body (right) (Epke et al., 2021). 

Fig. 4. A scenario where a cooperative eHMI on a parked car provides crossing 
information that takes into account an approaching car outside the pedestrian’s 
view (Ter Borg et al., 2019). 

Fig. 5. Example of a participant’s gaze towards a car driver (De Winter 
et al., 2021). 
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cues (e.g., traffic lights, implicit communication) provide redundant 
information. Consequently, when an AV features a distracted driver or 
no driver at all, this is not disastrous, but it may create some uncertainty 
or confusion on behalf of the pedestrian. The implication is that eHMIs 
may be needed to fill that social interaction void. 

3.5. Argument 5 for eHMIs. Implicit communication causes confusion 

The fifth and final argument for eHMIs is about implicit communi-
cation. First, consider Fig. 6, which introduces four different forms of 
implicit and explicit communication:  

• Left top: Implicit communication can be non-anthropomorphic, i.e., 
not as a human would communicate. For example, an AV could 
change its pitch (i.e., forward tilt) or move laterally in the lane in a 
way that is not human-like in order to communicate its yielding 
intention (for studies into the effects of different forms of lateral 
movement, see Fuest et al., 2018; Sripada et al., 2021, and for pitch, 
see Bindschädel et al., 2022; Dietrich et al., 2019; Othersen et al., 
2019b). Schmidt et al. (2019) evaluated a wide range of ‘engineered 
vehicle trajectories’ for AV-pedestrian communication. The trajec-
tories differed in terms of approach speed, acceleration, deceleration, 
and pedestrian responsiveness, and many were non- 
anthropomorphic, i.e., not according to common social conventions.  

• Right top: Non-anthropomorphic communication can also be 
explicit, i.e., in the form of eHMIs, as discussed in this work.  

• Left bottom: It is also possible to conceive anthropomorphic implicit 
communication, for example, an AV that crawls forward as a human 
would do to indicate that it wants to go first (Bazilinskyy et al., 2021; 
Niedermeyer, 2019), an AV that stops before the stop line like a 
human would (cf. Domeyer et al., 2019; Risto et al., 2017; Schmitt 
et al., 2022), or an AV that keeps a human-like safety margin from 
objects and road users (Kolekar et al., 2021). In fact, an AV could be 
designed so that its driving behavior is indistinguishable from 
manual driving, where the AV passes the Turing test of automated 
driving (Emuna et al., 2020; Li et al., 2018; Stanton et al., 2020).  

• Right bottom: Finally, one may consider explicit anthropomorphic 
communication, such as eHMIs in the form of a smile/smiling face 
(Deb et al., 2018; Dou et al., 2021; Joisten et al., 2021; Löcken et al., 
2019; Pratticò et al., 2021), artificial eyes (Chang et al., 2017; Löcken 
et al., 2019; Morales Alvarez et al., 2020; Verstegen et al., 2021), an 
animated face (Bai et al., 2021; Mahadevan et al., 2018), a robotic 
hand (Mahadevan et al., 2018; Zhang et al., in press), visual em-
bodiments of a driver (Furuya et al., 2021), or a humanoid steering 
robot (Mirnig et al., 2017). 

Although implicit communication may be a dominant cue in traffic, 
it too can be a source of confusion and error. The literature contains 
many examples where pedestrians over- or underestimate vehicle speed 
and time gaps (Lobjois and Cavallo, 2007; Papić et al., 2020; Sun et al., 
2015). In fact, it can be argued that in current traffic, accidents often 
happen because vehicle communication is unclear, i.e., a failure to 
anticipate what the car will do. In a study analyzing accidents across 
Europe, Habibovic and Davidsson (2012) found that in 36 out of the 56 
crashes with vulnerable road users (20 pedestrians and 36 cyclists) at 

intersections, the vulnerable road user did see the vehicle but misjudged 
the situation. For example, they erroneously thought that the driver had 
seen them and would adjust to their presence, or they misjudged the 
timing of their crossing (for similar findings on cyclists, see Räsänen and 
Summala, 1998). A possible solution to these incidences in the case of 
automated driving would be to develop AVs capable of detecting 
vulnerable road users reliably (so that the AV slows down) or to ensure 
that the AV indicates its turning intentions early via an eHMI. 

AV researchers are now attempting to create AVs that drive like 
humans (e.g., Fu et al., 2019; Wang et al., 2020; Zhu et al., 2018) (Fig. 6, 
left bottom). The assumption here is that such communication is most 
clear and transparent to the AV occupants and outside VRUs (Hecker 
et al., 2019). However, whether AVs should attempt to drive like 
humans is still an open question. In this context, it is useful to highlight 
the findings of a study in which pedestrians rated an AV that drove past 
(Bazilinskyy et al., 2021). The AV drove in different ways: ‘playback 
manual’, but also ‘stereotype automated driving’ in the form of driving 
closer to the lane center, and ‘stereotype manual driving’ in the form of 
an AV that cut curves. The results showed that driving more towards the 
center, i.e., ‘stereotype automated driving’, yielded likeability ratings of 
pedestrians on par or slightly higher than playback manual driving. 
From this study, it was concluded that AVs do not have to drive like a 
human in order to be liked. It was also found that particular vehicle 
behaviors, such as crawling forward, can be prone to misinterpretation. 
Pedestrians may attribute such behavior to human failure (did the driver 
make an error?) or computer intelligence (is the AV programmed to 
drive like a human?). 

The previous paragraph was about anthropomorphic implicit 
communication. Research has also been performed on non- 
anthropomorphic implicit communication (Fig. 6, left top). Recently, 
Sripada et al. (2021) presented participants with animated video clips of 
a car that showed a lateral deviation in the lane to indicate stopping 
intention, a study done with 1104 participants. Different left–right 
mappings and degrees of lateral deviation were investigated. Overall, it 
was found that when the car moved towards the participant (pedes-
trian), this made participants think that the car would stop for them. 
However, the effects compared to no lateral deviation were rather small. 
A noteworthy finding was that only a small portion of the participants 
appeared to understand the lateral motion. Many participants thought 
that the approaching vehicle reacted to their presence, i.e., pedestrian 
avoidance, or believed that the lateral deviation occurred because of an 
error by either a human driver or a hardware failure of the AV. 

The bottom line is that implicit communication is not a panacea. 
Implicit communication can be misperceived and misinterpreted, and 
attempts to let AVs drive like a human or perform non-human-like 
maneuvers may confuse pedestrians. These observations suggest that 
implicit communication by AVs may require standardization and 
training to be understood, just like eHMIs need to. 

4. Discussion 

In this work, we presented common lines of reasoning for and against 
eHMIs. In short, arguments against eHMIs are that (1) there is no social 
interaction void to be filled because vehicle movement is dominant, (2) 
there is a wide variety of eHMI concepts and unresolvable dilemmas 
about how to meaningfully proceed, (3) eHMIs can have various nega-
tive effects as they have to compete for pedestrians’ limited visual 
attention. Negative effects also include confusion and overreliance. 

Arguments for eHMIs are that (1) eHMIs can complement implicit 
communication, resulting in ‘superhuman performance’, (2) eHMIs are 
something that road users seem to want and accept, (3) eHMIs are not 
limited to communication of stop-and-go intentions/instructions; an 
eHMI can also indicate whether the AV’s sensors are functioning 
correctly and whether the automated driving systems are currently 
active, (4) eye contact does play an important role in current traffic, 
which suggests that eHMIs need to fill the social interaction void that 

Fig. 6. Four types of communication that AVs could use when interacting with 
pedestrians. 
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arises in driverless vehicles, (5) implicit communication can be mis-
perceived and cause confusion, suggesting that pedestrians may benefit 
from explicit communication by eHMIs. 

This work aimed to advance the discussion on the need for eHMIs by 
forwarding several common and novel arguments. However, this work 
does not provide the final answer regarding whether eHMIs should or 
will be used in future traffic. Although this paper discussed a multitude 
of arguments, some factors were not considered. One of them concerns 
the effect of the recognizability of the AV, i.e., how external sensors (e. 
g., lidar on the roof), ‘self-driving’ stickers, and the presence/visibility of 
a driver affect pedestrian-AV interaction, and how these vehicle features 
interact with the eHMI (e.g., Vlakveld et al., 2020). Furthermore, the 
issue of liability was not discussed. It can be imagined that manufac-
turers would like to install eHMIs on their AVs to ensure a transparent 
interaction. Another factor is that the field of automated driving con-
tinues to evolve. The capability of the AV, such as whether the AV travels 
on a segregated road or can enter more complex environments, is un-
doubtedly important for the type of eHMI communication required. In 
that sense, the field of Human Factors and eHMIs can be expected to 
evolve along with technology. It is hoped that the present paper will help 
advance the discussion on the need for eHMIs in future traffic. 

CRediT authorship contribution statement 

Joost de Winter: Conceptualization, Writing – original draft, 
Funding acquisition. Dimitra Dodou: Resources, Writing – review & 
editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

This research is supported by grant 016.Vidi.178.047 (“How should 
automated vehicles communicate with other road users?”), which is 
financed by the Netherlands Organisation for Scientific Research 
(NWO). 

References 

Ackermann, C., Beggiato, M., Schubert, S., Krems, J.F., 2019. An experimental study to 
investigate design and assessment criteria: What is important for communication 
between pedestrians and automated vehicles? Appl. Ergon. 75, 272–282. https:// 
doi.org/10.1016/j.apergo.2018.11.002. 

Ackermans, S., Dey, D., Ruijten, P., Cuijpers, R.H., Pfleging, B., 2020. The effects of 
explicit intention communication, conspicuous sensors, and pedestrian attitude in 
interactions with automated vehicles. In: Proceedings of the 2020 CHI Conference on 
Human Factors in Computing Systems. https://doi.org/10.1145/3313831.3376197. 

Ahn, S., Lim, D., Kim, B., 2021. Comparative study on differences in user reaction by 
visual and auditory signals for multimodal eHMI design. In: Stephanidis, C., 
Antona, M., Ntoa, S. (Eds.), HCI International. Springer, Cham, pp. 217–223. https:// 
doi.org/10.1007/978-3-030-78645-8_27. 

AlAdawy, D., Glazer, M., Terwilliger, J., Schmidt, H., Domeyer, J., Mehler, B., Reimer, B., 
Fridman, L., 2019. Eye contact between pedestrians and drivers. In: Proceedings of 
the Tenth International Driving Symposium on Human Factors in Driver Assessment, 
Training and Vehicle Design, pp. 301–307. 

Anderson, M., 2020. The road ahead for self-driving cars. Spectr. 57 (5), 8–9. https://doi. 
org/10.1109/MSPEC.2020.9078402. 

Avsar, H., Utesch, F., Wilbrink, M., Oehl, M., & Schießl, C., 2021. Efficient 
communication of automated vehicles and manually driven vehicles through an 
external Human-Machine Interface (eHMI): Evaluation at T-junctions. In: 
Stephanidis, C., Antona, M., Ntoa, S. (Eds.), HCI International 2021 - Posters. HCII 
2021. Springer, Cham, pp. 224–232. https://doi.org/10.1007/978-3-030-7 
8645-8_28. 

Ayoub, J., Zhou, F., Bao, S., Yang, X.J., 2019. From manual driving to automated driving: 
A review of 10 years of AutoUI. In: Proceedings of the 11th International Conference 
on Automotive User Interfaces and Interactive Vehicular Applications, Utrecht, The 
Netherlands, pp. 70–90. 

Bai, S., Legge, D.D., Young, A., Bao, S., Zhou, F., 2021. Investigating external interaction 
modality and design between automated vehicles and pedestrians at crossings. arXiv. 
https://arxiv.org/abs/2107.10249. 

Banks, V.A., Eriksson, A., O’Donoghue, J., Stanton, N.A., 2018. Is partially automated 
driving a bad idea? Observations from an on-road study. Appl. Ergon. 68, 138–145. 
https://doi.org/10.1016/j.apergo.2017.11.010. 

Barendse, M., 2019. External human-machine interfaces on autonomous vehicles: the 
effects of information type on pedestrian crossing decisions. Delft University of 
Technology. Master’s thesis.  

Bazilinskyy, P., Dodou, D., De Winter, J., 2019. Survey on eHMI concepts: the effect of 
text, color, and perspective. Transp. Res. Part F: Traffic Psychol. Behav. 67, 175–194. 
https://doi.org/10.1016/j.trf.2019.10.013. 

Bazilinskyy, P., Dodou, D., De Winter, J.C.F., 2020. External Human-Machine Interfaces: 
Which of 729 colors is best for signaling ‘Please (do not) cross’? In: Proceedings of 
the IEEE International Conference on Systems, Man and Cybernetics, Toronto, 
Canada, pp. 3721–3728. https://doi.org/10.1109/SMC42975.2020.9282998. 

Bazilinskyy, P., Kooijman, L., Mallant, K.P.T., Roosens, V.E.R., Middelweerd, M.D.L.M., 
Overbeek, L.D., Dodou, D., De Winter, J.C.F., 2022. Get out of the way! Examining 
eHMIs in critical driver-pedestrian encounters in a coupled simulator. Manuscript 
submitted for publication. 

Bazilinskyy, P., Sakuma, T., De Winter, J.C.F., 2021. What driving style makes 
pedestrians think a passing vehicle is driving automatically? Appl. Ergon. 95, 
103428 https://doi.org/10.1016/j.apergo.2021.103428. 

Berge, S.H., Hagenzieker, M., Farah, H., De Winter, J.C.F., 2022. Do cyclists need HMIs in 
future automated traffic? An interview study. Transp. Res. Part F: Traffic Psychol. 
Behav. 84, 33–52. https://doi.org/10.1016/j.trf.2021.11.013. 

Blankenbach, K., Nowak, N., Reichel, S., 2022. Exterior displays for autonomous cars: 
Techniques, challenges and solutions. In: Proceedings Volume 12024. Advances in 
Display Technologies XII, San Francisco, CA, pp. 24–32. https://doi.org/10.1117/1 
2.2606887. 
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