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With the dynamic air traffic demand and the constrained capacity resources, accurately

predicting airport throughput is essential to ensure the efficiency and resilience of air traffic

operations. Many research efforts have been made to predict traffic throughputs or flight

delays at an airport or over a network. However, it is still a challenging problem due to

the complex spatiotemporal dynamics of the highly interacted air transportation systems.

To address this challenge, we propose a novel deep learning model, graph attention

neural network stacking with a Long short-term memory unit (GAT-LSTM), to predict the

short-term airport throughput over a national air traffic network. LSTM layers are included

to extract the temporal correlations in the data, while the graph attention mechanism

is used to capture the spatial dependencies. For the graph attention mechanism, two

graph modeling methods, airport-based graph and OD-pair graph are explored in this

study. We tested the proposed model using real-world air traffic data involving 65 major

airports in China over 3 months in 2017 and compared its performance with other

state-of-the-art models. Results showed that the temporal pattern was the dominate

factor, compared to the spatial pattern, in predicting airport throughputs over an air traffic

network. Among the prediction models that we compared, both the proposed model and

LSTM performedwell on prediction accuracy over the entire network. Better performance

of the proposed model was observed when focusing on airports with larger throughputs.

We also conducted an analysis on model interpretability. We found that spatiotemporal

correlations in the data were learned and shown via the model parameters, which helped

us to gain insights into the topology and the dynamics of the air traffic network.

Keywords: air traffic network, airport network, throughput prediction, deep learning, graph neural network,

complex network

1. INTRODUCTION

Faced with the mismatch between growing air traffic demand and constrained capacity resources,
the congestion problem in the air traffic network is expected to remain in a long term. Passenger
air travel maintained a year-on-year growth rate of 6–8% from 2010 to 2019 globally before the
COVID-19 outbreak (IATA, 2019), while for most of the major airports, there is little opportunity
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to expand capacity by constructing new infrastructures (Dray,
2020). In addition to capacity constriction, preferred schedule
resource is also limited, which may lead to the time displacement
(Belobaba et al., 2016; Jacquillat and Odoni, 2018). The
unparalleled gap between demand and capacity has caused the air
traffic system to be overloaded and leads to extreme flight delays.

Moreover, small deviations between schedules and actual
movements can have a disproportionate impact on flight delays,
especially during peak hours when the airport operates close
to capacity (Jacquillat and Odoni, 2015, 2018). In the empirical
study of operations performed on two benchmarking airports in
the US and Europe (Odoni et al., 2011), results show that the
difference in schedule patterns can affect the states of airport
delay. The Newark International airport (EWR) shows a higher
average delay and indicates its inability to keep up with the
aggressive demand. This inability leads to flight displacement and
long delays by being pushed to the later in the day.

The development of better predictions on airport throughput
would allow better management of airport operations and
alleviate air traffic network congestion. However, it is challenging
to accurately predict airport actual throughput due to the highly
interacted network effects and complex dynamic mechanisms
within the air traffic network. Other airports in the network
affect the local airport operations. The propagated influence of
upstream delays produced by the sequential flight itinerary, as
well as the reflection from downstream anticipated delays due to
the collaborative implementation of air traffic control such as the
Ground Delay Program, all these situations involve multi-airport
spatially in the air traffic system. Besides, dynamic condition
changes (e.g., adverse weather, facility limitation or runway
configuration in use, etc.), and subjective operation factors like
dispatchers or controllers may decide to enhance the arrival
throughput tomeet the expected arrival demand at the expense of
reducing departures, as well as temporal patterns from air traffic
characteristics (e.g., seasonal effects, weekly and hourly scheduled
properties) will affect the airport actual throughputs.

In this article, we focus on nationwide airport throughput
prediction. To address this problem, we propose a deep
learning framework named graph attention network stacking
with LSTM (GAT-LSTM) for airport departure and arrival
throughput prediction, respectively. The proposed model is
built and evaluated at the network level and can extract the
spatiotemporal correlations in the air traffic network while taking
into the topological structure of the airport network. Graph
attention network (GAT) is known as the representation of spatial
convolution graph neural networks (GNN), which can embed
graph-structured traffic features and learn the potential spatial
correlations. Then LSTM is adopted to enhance the temporal
dependencies extraction within the historical features. We tested
our proposed model GAT-LSTM performance on departure and
arrival throughput predictions on nationwide airports. Different
graph modeling methods are also compared and analyzed. We
then discussed the performance for each airport separately and
illustrated the model interpretability of the extracted spatial
correlations from the graph attention mechanism.

The rest of this article is organized as follows: Section 2
further expounds on the previous studies on the air traffic delays

problem. Section 3 introduces the proposed model framework
and improved loss function. Section 4 describes the experiment
and data. Section 5 further discussed the model performance
and illustrates the captured dynamic spatial correlations between
airports and the air traffic network. Conclusions and further work
are summarized in Section 6.

2. LITERATURE REVIEW

We review the relative works about airport traffic network
condition prediction and spatiotemporal forecasting methods for
road traffic prediction in this section.

2.1. Airport Traffic Prediction
Existing research on airport traffic prediction mainly has three
kinds of view on building model: microscopic, mesoscopic,
and macroscopic (Jacquillat and Odoni, 2015; Simaiakis and
Balakrishnan, 2016). Microscopic models consider aircraft
individually and adopt simulation tools to reproduce the physical
operations of the airport flight, e.g., the Airspace Concept
Evaluation System (ACES) of NASA (George et al., 2011) and
Future Air Traffic Management Conceptual Environment Tool
(FACET) of FAA (Bilimoria et al., 2001). These microscopic
models can simulate more realistic operational conditions
but are suffered from the computational time consuming
and excessive data preparations. Mesoscopic models focus on
modeling the runway process and predicting the taxi delay
with historical operational data (e.g., pushback time, runway
configuration, arrivals, and departures slots, etc.), which is
useful for surface operation optimizations (Pujet et al., 1999;
Simaiakis and Pyrgiotis, 2010; Simaiakis and Balakrishnan,
2016). While macroscopic models are built based on airport
level from the perspective of system planning to analyze
the interactions between airports, which coincides with our
objective. Macroscopic model methods can be divided into two
categories: traditional methods and machine learning or deep
learning methods.

Traditional methods focus on using analytical tools to model
the mechanism of airport operation, including probabilistic
methods (Pathomsiri et al., 2008; Tu et al., 2008), queuing
theory methods (Malone, 1995; Hansen, 2002; Pyrgiotis et al.,
2013), Bayesian networks models (Xu et al., 2005; Laskey
et al., 2012; Rodríguez-Sanz et al., 2019). These models can
provide valuable insights into understanding the mechanism of
airport operations, however, since the multi-distribution and
complex spatiotemporal characteristics within the data (e.g.,
Long-term temporal repetitive patterns and spatial information
from other airports like the downstream airports or other
network interactions), these models suffer from poor model
performance and have limited capability of feature representation
by predefined formulas. Recently, with the development of
advanced learning algorithms and the abundant collection of
aviation data from multiple sources, machine learning, or deep
learning methods show potential for airport traffic prediction
problems. These non-parametric approaches do not have well-
defined formulas like the traditional analytical tools but can
learn samples with complex multi-distributions and have better
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model performance. A random forest algorithm was adopted
to characterize and predict the departure delays in 100 most-
delayed origin-destination links in NAS with 19% average test
error in classification and 21 min errors in regression (Rebollo
and Balakrishnan, 2014). Several machine learning algorithms
were applied to the flight on-time performance predictions and
compared their performance (Choi et al., 2016). A deep learning
methods like recurrent neural network (RNN) are further
adopted for flight delay predictions and airport delay predictions
(Kim et al., 2016; Zhu and Li, 2021). Deep belief network (DBN)
with support vector regression (SVR) was utilized to predict
and analyze Beijing International Airport (Yu et al., 2019). This
line of research is prevalent recently since machine learning
and deep learning models have better prediction accuracy and
show superior learning ability to capture useful spatiotemporal
correlations within high-dimensional features space, which this
study falls into. However, many machine learning and deep
learning models usually work as a black box and suffer from
model interpretability problems. This situation requires more
work to study and analyze the model mechanism where good
performance comes from.

2.2. Spatiotemporal Forecasting Methods
for Road Traffic Prediction
Road traffic prediction is always modeled as time-series
forecasting problems, where classical methods, machine learning,
and deep learning methods are three typical categories.

Classical methods such as Kalman Filter (Whittaker et al.,
1997; Xie et al., 2007), Nonparametric regression (Smith et al.,
2002; Clark, 2003), Historical average (Stephanedes et al., 1980),
Autoregressive integrated moving average (ARIMA), and its
variants (Hamed et al., 1995; Kirby et al., 1997; Williams et al.,
1998; Williams, 2001; Kamarianakis and Prastacos, 2005), are
developed for years and are mature to learn characteristics of the
trend in time series. However, these methods are limited by the
linear assumption and inadequate for capturing the large variants
by external network effects.

Machine learning methods such as support vector machine
(SVM) (Luo et al., 2005; Hong, 2011; Lippi et al., 2013),
LASSO (Polson and Sokolov, 2017; Hara et al., 2018), and K-
nearest neighbor models (Zhang et al., 2013; Habtemichael and
Cetin, 2016) are applied to further improve the performance
of traffic volume prediction, but these methods are still limited
in mining complex spatial-temporal patterns. Besides, these
models require prepared hand-crafted features engineering and
additional feature dimension decomposition in advance, which
may lose some data properties.

In recent years, deep learning methods achieve remarkable
improvement in many fields including traffic prediction, which
can extract useful spatiotemporal dependencies directly from raw
features. Recurrent neural network (RNN) and its variants long
short-term memory unit (LSTM) or gated recurrent unit (GRU)
are introduced to process sequential data and show their superior
ability in learning the long short-term temporal dependencies
(Zhao et al., 2017). Convolutional neural networks (CNN) are
first utilized in pattern recognition and image processing while

they have been applied in traffic prediction successfully to extract
spatial dependencies with Euclidean image-like traffic feature
inputs (Tran et al., 2015; Chai et al., 2018). Besides, to be adequate
in applying topological features, a Graph neural network (GNN)
is introduced (Scarselli et al., 2009), and graph convolutional
neural networks (GCN) are further designed (Kipf and Welling,
2016) and applied to traffic prediction problems successfully (Yu
et al., 2017; Zhang et al., 2020). As one of the representatives
of spatial-domain graph convolution, the Graph attention neural
network (GAT) is designed to further extract spatial correlations
with its learned attention weights of the links to its adjacent
nodes. GAT is proved its learning ability in traffic prediction
(Zhang et al., 2018; Guo et al., 2019). Furthermore, to better
learn and extract spatial-temporal dependencies within traffic
networks, many researchers work on road traffic prediction by
combining graph convolutional and recurrent-basedmethods (Li
et al., 2017; Bai et al., 2019; Cui et al., 2019; Guo et al., 2021).

Although there are many existing graph convolutional-based
methods applied in road traffic predictions, applications of graph
neural network methods are not well explored in air traffic.
One aspect is the graph modeling method. Compared to the
common sensor location-based road traffic network, how to
model the topological graph structure of the airport network is
still an open question. Another aspect is model structures, how
to build the framework to better capture and illustrate potential
spatiotemporal correlations of airport throughputs needs further
consideration. To this end, we investigate throughput prediction
for airport traffic data to do spatial-temporal modeling with
the proposed GAT-LSTM stacked framework to achieve better
performance and interpretability.

3. METHODOLOGY

We propose a novel model named graph attention recurrent
neural network (GAT-LSTM) to predict the actual airport
throughput (arrival and departure) of nationwide airports in
the Chinese air traffic network (ATN). This framework first
represents the raw ATN traffic data to graph-structured inputs by
graph modeling. The raw ATN traffic data include the records on
nationwide aircraft movements and flight schedules (departure
times and arrival times, origin and destination airports, aircraft
types, etc.), which are engineered from Automatic Dependent
Surveillance-Broadcast (ADS-B) data source. Then with the
timestamp features and weather indicator as exogenous inputs
to indicate the scheduled characteristics of air traffic and
airport weather condition, respectively, two kinds of ATN graph
modeling methods are utilized to build the Airport graph and
Origin-Destination graph. GAT is then adopted to extract the
dynamic spatial correlations among historical traffic data in ATN
airports. Afterward, LSTM is stacked to extract the long-short-
term temporal patterns within each airport. Then, a 3-layer
fully connected network (FCN) is adopted to do regression for
multioutput prediction. In order to better utilize the capability
of different layers in the stacked framework, different reshape
operations are applied in the training process. With the GAT-
LSTM prediction framework, as illustrated in Figure 1, the
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complex dynamic spatiotemporal correlations of system-wide
airports are captured.

Thus, our research problem is defined as learning a function
f(·) to map previous T timestep graph-based air traffic features,
weather features and timestamp features G1,G2, . . .GT gathering
with the future demand FDT+1 feature to predict the next
timestep actual airport throughputs (for departure and arrival,
respectively) for all airports in the ATN, which is formulated as

ŶT+1 = f({G1,G2, . . .GT}; FDT+1). (1)

where ŶT+1 represents the actual departure throughput or
arrival throughput of N airports at time T + 1, i.e., ŶT+1 =
{ŷ1, ŷ2, ..., ŷN}T+1 ∈ R

N , whose element ŷi denote the actual
number of aircraft departed from airport i or arrived at the
airport i within the T + 1 time interval.

3.1. Model Inputs
Model inputs include four categories, weather indicators
engineered from exogenous sources to indicate whether
the airports are in adverse weather conditions or not,
timestamp features as external factors to indicate the scheduled
characteristics of air traffic, airport historical traffic features to
describe the system-wide flight operation patterns and airport
delay states, and future scheduled demand containing the
future information on scheduled departure or arrival demand at
each airport.

(1) Weather indicator
Weather influences the airport’s real-time throughput directly,

and in the airport practice, the operations of departure and arrival
will be adjusted according to regulations on different weather.
Thus, we include a featureWXt to indicate the weather condition
whether it is in visual meteorological conditions (VMC) or
instrument meteorological conditions (IMC).

WXt = {VMC or IMC}t . (2)

(2) Timestamp features
Since the air traffic is a kind of scheduled traffic, it has clear

timestamp related patterns, e.g., flights are scheduled to depart at
the same o’clock every day or every 2 days constantly; Weekdays
and weekends also show different repeat flights schedule patterns,
respectively. Timestamp features are adopted to indicate the
temporal characteristics of air traffic schedules, including “Time-
of-day” and “Day-of-Week.” Due to each timestep being defined
as a 15-min interval, the “Time-of-Day” feature is quarter-
hourly, i.e., its values range from 0 to 95 per day. As for the
Day-of-Week, its values range from 0 to 6. Additionally, to
incorporate the cyclical properties of timestamp features, we
transform the original values of both features into a sine and
cosine representation. At each timestep t, the timestamp feature
is indicated as

TSt = {sin(TimeOfDay), cos(TimeOfDay),

sin(DayOfWeek), cos(DayOfWeek)}t .
(3)

(3) Historical airport traffic states

Historical airport traffic states are adopted to describe the
nationwide air traffic. At each timestep t, it can be seen
as a snapshot of the air traffic network airport conditions,
including Departure delay states (DepDelay), Arrival delay states
(ArrDelay), Scheduled departure demand (SDep), Scheduled
arrival demand (SArr), Actual departures (ADep), and Actual
arrivals (AArr), denoting as

HTt = {DepDelay,ArrDelay, SDep, SArr,ADep,AArr}t . (4)

• DepDelay/ArrDelay DepDelay ∈ R
N denotes the average

departure delay minutes of each airport within per time
interval. Similarly, ArrDelay ∈ R

N is defined as the average
arrival delay minutes of each airport within each time interval.
These two features are adopted to describe historical flight
delay states of the entire ATN accumulated by airports.

• SDep/SArr SDep ∈ R
N refers to the number of scheduled

departure flights at each airport within one timestep.
SArr ∈ R

N refers to the number of scheduled arrival
flights correspondingly. They are accounted for by the
flight schedules, i.e., scheduled gate-in/gate-out time in the
flight itinerary.

• ADep/AArrWith similar definitions, ADep ∈ R
N refers to the

number of actual departure flights at each airport within one
timestep.AArr ∈ R

N refers to the number of scheduled arrival
flights correspondingly. They are engineered from ADS-B
data, recording the actual times of aircraft movements to
depart and arrive.

(4) Future airport demand
Future airport demand refers to the number of scheduled

flights for each airport within the timestep to be predicted T +
1. It has the same meaning as SDep or SArr. This feature is
adopted to eliminate the influence of schedule adjustments in air
traffic operations, which is engineered from the flight’s scheduled
departure and arrival information.

FDT+1 = {xFD1 , xFD2 , . . ., xFDN }T+1 ∈ R
N . (5)

3.2. ATN Graph Modeling
In theory, a graph is defined as the combinations of nodes
(vertices) and edges, wherein the nodes and edges may have
attributes, respectively. Air traffic network, similar to road traffic
network, has characteristics apart from other networks like
citation and social network, i.e., varied traffic states but confirmed
physical connectedness structure. Thus, to obey the consistency
of graph modeling, we model the ATN graph with a consistent
edge and process the traffic state features with nodes. Set V ,E
denotes the node set and edge set, with Xv

t and Xe
t as node

attributes and edge attributes at timestep t, respectively, i.e., Xv
t

includes the time-varied node attributes and Xe
t represent the

varied relationships between each node. Then for each timestep
t, the ATN graph is modeled as

Gt = (V ,E,Xv
t ,X

e
t ). (6)

The adjacency matrix is further defined to describe the
connectedness of nodes. In the ATN graph, the adjacency matrix
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FIGURE 1 | Model structure of GAT-LSTM.

is denoted as A, wherein its element Aij = 1 when node j is
connected to node i, otherwise Aij = 0. Note that the adjacency
matrix also includes self-loop connection, i.e.,Aii = 1. Therefore,
the series of graph-structured inputs with previous T timesteps
are modeled as

{G1,G2, . . .GT} = {V ,E, {Xv
1 ,X

v
2 , . . .,X

v
T}, {X

e
0,X

e
0, . . .,X

e
0}}. (7)

Note that the attributes of edge {Xe
0,X

e
0, . . .,X

e
0} ∈ R

T×N×N)

are initialized as undirected and unweighted Xe
0 ∈ R

(N×N)

with all the elements equal to 1 and the correlations within
these nodes will be further learned adaptively by the graph
attention mechanism of our proposed model. However, in ATN
graph modeling the definition of nodes and the edges are worth
discussing. In previous studies analyzing the ATN with complex
network theory (Cai et al., 2012; Zanin and Lillo, 2013), the
common setting of air traffic networks can be defined as two
kinds of point-to-point networks. The graph may define the
airports as nodes where the edges exist whenever there are flights
operated between the two airports, which is called as an Airport
graph (APG). While another setting of the ATN can be the
Origin-destination graph (ODG), where we set the OD-pairs as
the nodes and let edge exist when the two OD-pair involve the
same airport, whatever it is origin or destination airport.

Based on the APG definition, the adjacency matrix AAPG,
wherein its elementAAPG

ij = 1 if airport i and airport j have flights

operated between, otherwise AAPG
ij = 0, and AAPG

ii = 1. Besides,
at each timestep t the set of node attributes is denoted as

XAPGv

t = {HTv
t ,WXv

t ,TSt}. (8)

Based on the ODG definition, the element AODG
ij = 1 if OD-

pair i and OD-pair j involve the same airports in the adjacency
matrix AODG, otherwise AODG

ij = 0, and also AODG
ii = 1. Besides,

at each timestep t the node attributes are formulated as

XODGv

t = {HTO
t ,HT

D
t ,WXO

t ,WXD
t ,TSt}, (9)

where O refers to the node (i.e., OD-pair) its origin airport, and
D refers to the destination airport. Apart from the node attributes
and adjacency matrix, the other settings of these two graphs
keep the same. Figure 2 shows the network structure of the two
different graph modeling methods.

As shown in Figure 2, it can be found that APG is a
typical small-world network that contains many leaf nodes that
only connect to its main airport. It is called a “Hub-and-
spoke” structure. As shown in Figure 2, the ZWWW, ZPPP,
and ZBHH are three typical regional Hub airports, which
are connected to their leaf-airport frequently and have high
betweenness centrality.

3.3. Prediction Module
The proposed model GAT-LSTM for airport throughput
predictions is constructed by a GAT layer with a multi-
head mechanism to extract the spatiotemporal correlated
dependencies among the network airports. A vanilla LSTM layer
is then stacked to extract the temporal patterns within the traffic
throughputs series. Then a 3-layer FCN is then utilized to get the
final output.

3.3.1. GAT Module
Set the input of graph attentional layer is ht = {ht1, h

t
2, . . ., h

t
N},

hti ∈ R
F , where N is the number of nodes and F is the
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FIGURE 2 | The network structure of two kinds of ATN graph modelings. (A) Airport graph (APG). (B) OD-pair graph (ODG).

FIGURE 3 | Demonstration of graph attention. Only the first order neighborhood is considered. Note that the learned attributes of edges are bidirectional-weighted.

feature dimension of each node. At the first layer ht = Xv
t ,

as node attributes in 7. The output of this layer is set as

ĥt = {ĥt1, ĥ
t
2, . . ., ĥ

t
N},ĥ

t
i ∈ R

F , with a new set of node

features dimensioned as F̂. Then graph attention mechanism is
formulated as

ĥti = σ (
∑

j∈Ni

αt
ijzj) (10)

zj = Wth
t
j , (11)

where σ is the nonlinear activation function and Wt ∈ R
F

is a learnable weight matrix for each timestep t, as a linear
transformation to obtain a more sufficient and higher expression
level than original input features. The shared weights are applied
to each node. αt

ij denotes the learned attention coefficient of node
i to node j. Here, j ∈ Ni represents that j belongs to the first-
order neighborhood of i (including i), which is predefined by the
adjacency matrix. This self-attention mechanism is formulated as

αt
ij =

exp(σ (Ea[zi||zj]))
∑

j∈Ni
exp(σ (Ea[zi||zj])

, (12)

where αij denotes an alignment function parametrized by
a weight vector Ea ∈ R

2F . σ denotes nonlinear function,
where applying the LeakyReLU (with slope α = 0.2) in the
experiment. ·⊤ denotes the matrix transpose and ·||· denotes the
concatenation operation. Figure 3 illustrates the demonstration
of the graph attention.

Furthermore, to stabilize the learning process of self-attention,
the multi-head mechanism (Veličković et al., 2018) is employed.
In the experiment, 2 GAT layers are used. These two layers are
aggregated. The learned attention weights from these two layers
are averaged to obtain the final attention weights.

α̂t
ij =

1

l

2
∑

l=1

αt
ij
(l)
. (13)

In GAT, only the first-order neighborhood is considered in the
adjacency matrix, which refers to the set of nearest nodes around
linked to it, which is suitable for short-term airport throughput
prediction in our problem.

3.3.2. Other Regression Modules
After extracting spatial correlations by GAT, a vanilla LSTM is
adopted to extract the temporal patterns within its historical air
traffic throughput features. LSTM has been widely utilized and
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FIGURE 4 | The selected (A) 65 airports and (B) 580 OD-pair having more than 6 flights per day on average per Chinese aviation network in Quarter 3, 2017. Top:

Airports are colored by the total number of flights operations per day including departures and arrivals; Bottom: OD pairs with clockwise directions are colored by the

average number of flights operated per day.

shows the superior performance on its long short-term temporal
correlation extraction. Its mechanism can be executed via the
input gate, the output gate, and the forget gates as introduced by
Hochreiter and Schmidhuber (1997), which was further refined
by many following application works.

Afterward, the output of LSTM is fed into the following
module to predict, where we utilize a 3-layer fully connected
network (FCN) to get the final multioutput prediction. Then
the future airport demand feature is incorporated to improve
the predictions.

ŶT+1 = FCN(OLSTM)+ FDT+1. (14)

3.3.3. Training Process
After the input features are reconstructed by the GAT module,
the graph-structured output is formulated as

{Ĝ1, Ĝ2, . . .ĜT} = {V ,E, {X̂v
1 , X̂

v
2 , . . ., X̂

v
T}, {X̂

e
1, X̂

e
2, . . ., X̂

e
T}},
(15)

where the reconstructed node set and edge set are indicated

as {X̂v
1 , X̂

v
2 , . . ., X̂

v
T} ∈ R

(T×N×F̂) and {X̂e
1, X̂

e
2, . . ., X̂

e
T} ∈

R
(T×N×N×2), respectively.
For node set, as illustrated in the Figure 1, at the training

to extract the spatial nodewise correlations, we shape the

{X̂v
1 , X̂

v
2 , . . ., X̂

v
T} ∈ R

(T×N×F̂) to R
(N×T×F̂), while at the training
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TABLE 1 | Model performance for departure and arrival throughput predictions.

Input timesteps 1 4 8 12 24

Metrics RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

(A) DEPARTURE THROUGHPUT (EVALUATE ON 65 AIRPORTS AVERAGE)

Schedule 0.99 0.62 - - - - - - - -

LR 0.99 0.69 0.99 0.69 0.98 0.69 0.98 0.69 0.97 0.69

RF 0.96 0.65 0.93 0.63 0.93 0.63 0.93 0.63 0.92 0.63

FNN 0.82 0.59 0.84 0.60 0.87 0.61 0.88 0.61 0.87 0.61

LSTM 0.81 0.58 0.80 0.56 0.80 0.56 0.80 0.56 0.80 0.56

GAT∗ 0.82 0.59 0.83 0.59 0.84 0.60 0.87 0.61 0.87 0.62

GAT-LSTM∗ 0.81 0.58 0.79 0.56 0.78 0.56 0.79 0.56 0.79 0.56

GAT† 1.17 0.67 1.19 0.70 1.14 0.67 1.07 0.65 1.08 0.64

GAT-LSTM† 1.17 0.67 1.12 0.67 1.10 0.63 1.10 0.65 1.12 0.66

(B) ARRIVAL THROUGHPUT (EVALUATE ON 65 AIRPORTS AVERAGE)

Schedule 0.93 0.59 - - - - - - - -

LR 0.83 0.61 0.93 0.69 0.96 0.72 1.37 1.04 1.05 0.84

RF 0.82 0.57 0.81 0.56 0.88 0.65 0.88 0.65 0.88 0.65

FNN 0.80 0.58 0.83 0.59 0.84 0.60 0.88 0.64 0.84 0.60

LSTM 0.80 0.57 0.78 0.56 0.78 0.56 0.78 0.56 0.77 0.56

GAT∗ 0.81 0.58 0.83 0.59 0.84 0.59 0.84 0.59 0.84 0.60

GAT-LSTM∗ 0.81 0.58 0.79 0.57 0.78 0.56 0.78 0.56 0.78 0.56

GAT† 1.15 0.66 1.10 0.66 1.09 0.68 1.07 0.65 1.09 0.64

GAT-LSTM† 1.16 0.65 1.06 0.62 1.04 0.61 1.01 0.60 1.01 0.59

*APG, Airport Graph.
†ODG, Origin-Destination Graph.

The bold values indicate the lowest prediction errors in each column, for easier comparison.

TABLE 2 | Model performance of ZBAA departure and arrival throughput predictions.

Input timesteps 1 4 8 12 24

Metrics RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

(A) DEPARTURE THROUGHPUT

Schedule 3.35 2.50 0.21 - - - - - - - - - - - -

LR 3.30 2.50 0.24 3.19 2.44 0.29 3.09 2.38 0.33 3.04 2.35 0.35 2.97 2.29 0.38

RF 3.27 2.48 0.05 2.96 2.28 0.22 2.91 2.19 0.25 3.00 2.30 0.20 2.83 2.18 0.29

FNN 2.35 1.79 0.61 2.41 1.84 0.59 2.35 1.80 0.61 2.38 1.82 0.60 2.33 1.76 0.62

LSTM 2.32 1.78 0.62 2.22 1.69 0.65 2.20 1.67 0.66 2.20 1.68 0.66 2.18 1.67 0.67

GAT 2.31 1.78 0.63 2.27 1.75 0.64 2.27 1.73 0.64 2.58 1.96 0.53 2.45 1.87 0.58

GAT-LSTM 2.26 1.72 0.64 2.20 1.68 0.66 2.17 1.66 0.67 2.19 1.66 0.66 2.17 1.66 0.67

(B) ARRIVAL THROUGHPUT

Schedule 3.16 2.32 0.20 - - - - - - - - - - - -

LR 2.60 1.99 0.32 2.68 2.04 0.28 3.08 2.44 0.21 3.11 2.60 0.19 2.32 1.78 0.39

RF 2.35 1.83 0.44 2.30 1.78 0.47 2.30 1.78 0.47 2.27 1.75 0.48 2.27 1.75 0.48

FNN 2.28 1.76 0.82 2.21 1.68 0.83 2.21 1.67 0.83 2.12 1.64 0.84 2.16 1.64 0.84

LSTM 2.22 1.69 0.83 2.12 1.61 0.84 2.08 1.58 0.85 2.11 1.59 0.85 2.06 1.57 0.85

GAT 2.23 1.70 0.83 2.25 1.69 0.82 2.24 1.71 0.83 2.20 1.68 0.83 2.33 1.77 0.81

GAT-LSTM 2.17 1.66 0.84 2.12 1.62 0.84 2.08 1.59 0.85 2.13 1.62 0.84 2.07 1.57 0.85

The bold values indicate the lowest prediction errors in each column, for easier comparison.
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FIGURE 5 | Distributions of predicted errors. (A) Departure throughput. (B) Arrival throughput.

to extract temporal dependencies, it is reshaped toR(1×T×(N×F̂)).
The idea to separate the training process for different layers
aims to better utilize the leaning ability of different modules.
In the layer stacking structures, it is difficult to let the different
layers perform its specific extraction ability in a one-time united
training process. Thus, at the weights training of LSTM, we
treated all the nodes not separately in the following temporal

extraction with reshaping to R
(N×T×F̂) in order to better extract

the spatial correlations nodewisely. Then at the temporal features
extraction training, we still obey the temporal patterns and
concatenate all the nodes together to let LSTM and following
layers have a full sight to do the final predictions. Compared
to the untied end-to-end training, superior performance and
better interpretability are obtained, as shown and discussed
in Section 5.3.

For edge set, the responding adjacency matrix with learned
attention weights of GAT layers are bidirectional-weighted,
indicated as{X̂e

1, X̂
e
2, . . ., X̂

e
T} ∈ R

(T×N×N×2) with each element

X̂e
t = {{α̂t

1j, α̂
t
j1}, {α̂

t
2j, α̂

t
j2}, . . ., {α̂

t
Nj, α̂

t
jN}} ∈ R

(N×N×2) at each
timestep, where for each node i the inflow and outflow weighted
from its first-order neighborhood nodes are {α̂t

ij, α̂
t
ji}.

The loss function is the standard mean squared error (MSE)
between the predicted ŷi and the ground truth yi ∈ R.

Loss(θ) =
∥

∥ŷi − yi
∥

∥

2
. (16)

where θ denotes all the corresponding learnable parameters in
the proposed model. At the training process to extract the spatial
correlations, θ refers to parameters of GAT layers, and at the
training process to extract temporal correlations, θ refers to
parameters of other regression modules including LSTM and
FCN. The adopted optimization algorithm is Adam (Kingma and
Ba, 2015).

4. EXPERIMENTS

4.1. Datasets
We collected the raw data from ADS-B data sources. Due to
the seasonal a1 July to 30 September, i.e., Quarter 3 in 2017.
Therefore, the dataset contains 8,837 timestep samples, that are
counted every 15 min to describe the nationwide traffic states. It
is noted that only domestic flights are included in the dataset.

Besides, to eliminate the impact of temporary flights and
get a stable flight operational network for domestic air traffic,
only OD-pairs with more than 6 flights per day on average are
included. After data filtering, approximately 73% of flights are
included, involving 580 OD-pair and 65 airports. Figure 4 show
the simplified Chinese airport network, where the busiest airport
Beijing Capital International Airport ZBAA has 1,376 flight
operated per day on average while the idlest one is Burqin Kanas
Airport ZWKN with 13 flights operated per day on average.

Afterward, training-validation-test sets are split with the
sample ratio of around 60%:20%:20% according to time order,
i.e., the first 56 days with 56*96 timesteps from 1 July to 25 August
is for training, the next 18 days with 18*96 timesteps from 26
August to 12 September is for validation and the rest of 18 days
with 18*96 timesteps are used to do testing. Then, all the input
features are scaled to get the normal distribution as input with
mean and SD of its corresponding values of training data.

4.2. Evaluation
4.2.1. Compared Methods
• Schedule: Airport scheduled throughputs are counted from

the flight scheduled departure time (for departure throughput)
and flight scheduled arrival time (for arrival throughput),
which works as the baseline.

• Linear regression: Linear regression, which is conducted
by the one fully connected layer with linear activation
function, which indicates the linear mapping between inputs
and outputs.
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FIGURE 6 | (A,B) Throughput visualizations of ZBAA from 14 September to 16 September. ZBAA on 16 September had bad weather in the morning, resulting in actual

departure throughput having a big disturbance than schedule from 6:00 to 12:00. Our proposed model GAT-LSTM has better predictions on the situation change.

• Random forest: Multioutput random forest regression,
which is a widely adopted machine learning method in a
regression problem.

• Fully connected network: Fully connected neural network,
which has the same structures as the FCNmodule in Figure 1.

• Long Short-Term Memory: Long Short-Term Memory
Network, which has the same structures as in Figure 1 except
for the graph attention module. This method focuses on
extracting temporal correlations of the inputs, which can be
seen as the variant of GAT-LSTM.

• Graph attention neural network: Graph attention neural
network, which has the same structures in Figure 1 except
the LSTM module, which focuses on extracting the spatial
correlations of the inputs, which can be seen as the variant
of GAT-LSTM.

• Graph attention neural network stacking with Long

short-term memory unit: Proposed model framework as

in Figure 1, stacking GAT and LSTM to extract the
spatiotemporal correlations.

4.2.2. Metrics
Two mostly used metrics for multioutput regression are
adopted to evaluate model performance, including average Mean
Absolute Error (MAE) and average Root Mean Square Error

(RMSE). Let y(m)
i and ŷ

(m)
i represent the actual and predicted

throughput of airport i, respectively. Ntest is the number of
samples in the test set andN is the number of output dimensions,
indicating the N airports. The definitions of the two metrics are
formulated as:

MAE =
1

N

N
∑

i=1

MAE =
1

N

N
∑

(i=1)

1

Ntest

Ntest
∑

m=1

|y
(m)
i − ŷ

(m)
i | (17)
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FIGURE 7 | Model performance at each airport. (A,C) RMSE of Schedule baseline and GAT-LSTM, respectively. (B,D) Reduced RMSE by GAT-LSTM. Airports are

sorted by the number of operations including departures and arrivals in Quarter 3, 2017. GATLSTM is with 8 timesteps input

FIGURE 8 | Spatial correlations captured by GAT-LSTM between a hub airport (ZWWW) and one of its spoke airports (ZWAK).

RMSE =
1

N

N
∑

i=1

RMSE =
1

N

N
∑

i=1

√

√

√

√

1

Ntest

Ntest
∑

m=1

(y(m)
i − ŷ

(m)
i )2.

(18)

4.3. Model Performance Over the Network
We compare our proposed model performance with other
methods for nationwide 65 airports throughput predictions.
We build and train separate models for departure throughput

prediction and arrival throughput prediction, respectively. For
both departure throughput and arrival throughput predictions,
we test the model performances with different lengths of timestep
inputs, as shown in Table 1.

Table 1A summarizes the model performance comparison
for departure throughput predictions. Results show that GAT-
LSTM illustrates the best performance for all the timesteps,
followed by the LSTM. Compared to the baseline Schedule,
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FIGURE 9 | Example of dynamic spatial dependency captured by changes of attention weights: ZBAA. (A) ZBAA had bad weather on 16 September morning and (B)

15 September is for comparison.

FIGURE 10 | Comparisons of captured spatial correlations between ZBAA and other airports in the different training processes. The attention weights are averaged

based on September data. (A) With separate training. (B) Without separate training.

the best performance of GAT-LSTM with 8 timesteps input
has about 24.2% improvements in RMSE and 9.7% in MAE.
Compared to machine learning methods LR and RF, deep
learningmethods including FCN, LSTM,GAT, GAT-LSTM, show
larger improvements reducing around 21.2%∼5.1% RMSE and
21.1%∼1.6% MAE. With more timesteps as input, the recurrent
based method LSTM shows performance improvements, while
for the graph-based method, GAT has worse performance
with longer timesteps as inputs increasing from 0.82 to 0.87
RMSE which shows its incapability to capture temporal feature
dependency. GAT-LSTM combines the recurrent-based LSTM

and graph-based GAT together and has the best performance for
all the timesteps, which indicates its capability in capturing the
spatiotemporal correlations within features.

For the arrival throughput predictions, as shown in Table 1B,
LSTM has the best performance overall with 0.77∼0.80 RMSE
and 0.56∼0.57 MAE while GAT-LSTM shows slightly worse
performance with 0.78∼0.81 RMSE and 0.56∼0.58 MAE, which
indicates the importance of temporal features compared with
the contribution of topological information to arrival throughput
predictions. Compared to Table 1A, results also illustrate that the
spatial relations of arrival throughput have smaller dependencies
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than departure throughputs reflecting the limited or worse
improvement in prediction accuracy. This can be interpreted
by domain knowledge: Airport arrival operations indeed are
less influenced by other airport influences since the dispatchers
and pilots’ “serve arrival first” style in practice. Thus, arrival
throughputs are difficult to be affected by the other airports but
are mainly affected by their own temporal pattern. However,
local departure operation has more factors that can be reflected
by the other airports such as the implementation of a ground
delay program as well as the situations of delay propagation by
late-arriving flights.

On graph modeling comparisons, it can be shown that for
both arrival and departure throughput predictions, the ODG
model performance is not good, which indicates the OD graph
modeling is not suitable for extracting the spatial correlations for
throughput predictions. The reason is from the number of nodes
of ODG (580 nodes) is larger than APG (65 nodes) resulting in
more computation costs and data consumption. With the limited
around 4,800 samples to train, the model by ODG modeling is
too big to be trained. Thus, the following results only focus on
GAT-LSTM with APG modeling without further notification.

4.4. Model Performance in a Single Airport
In the case study, we select the ZBAA as the target airport and
evaluate the model performance since it is the busiest airport in
the Chinese aviation system. It is noted that the models keep
the same with Section 4.4, built and trained for departure and
arrival throughput prediction, respectively. Table 2A shows that
for departure throughput prediction at ZBAA only, GAT-LSTM
has the best performance for all timesteps with around 2.2 RMSE,
1.68 MAE, and 0.66 R2, which indicates the spatiotemporal
correlations prevalent the input features. However, for arrival
throughput predictions as shown in Table 2B, LSTM shows
better performance, especially with longer timestep inputs i.e.,
decreasing from 2.22 to 2.06 in RMSE, from 1.69 to 1.57 in
MAE, and from 0.83 to 0.85 in R2. Besides, as shown in Figure 5,
compared to the Schedule throughput, the predicted throughput
of GAT-LSTM for departure and arrival has a lower variance, as
well as more normal distributions with a zero-mean value.

Figure 6 illustrates three typical days of throughput
predictions in the test set. On the third day 16 September,
the weather condition is adverse in the morning, which directly
influenced the operation of departure flights at ZBAA. Our
proposed model GAT-LSTM shows better predictions on this
situation change compared to the schedule. Further analysis of
captured dynamic spatiotemporal correlations for these days
from the perspective of model interpretability is discussed
in Section 5.2.2.

5. DISCUSSION

5.1. Relations Between Performance
Improvements With the Airport Scale
To further analyze model performance for each individual
airport, it is found that busier airports are generally more
difficult to be predicted accurately compared to less busy airports,
however, the proposed model GAT-LSTM can achieve more

accuracy improvement (more reduced errors) for busier airports
in the network. As shown in Figure 7, we compare the RMSE and
reduced RMSE of every single airport for departure throughput
and arrival throughput predictions respectively, where airports
are sorted from busier to less busy (defined by the total number of
flight operations including departures and arrivals in the dataset).
For departure throughput prediction and arrival throughput
prediction, shown in Figures 7A,C, the prediction RMSE of
busier airports is larger than less busy ones in general, which
indicates that busier airports are more incapable to operate
under schedule, and they are more difficult to be predicted by
GAT-LSTM model because of larger operation uncertainties.
However, in Figures 7B,D, reduced errors show a decreasing
trend from busier airports to less busy airports, indicating
busier airports can obtain more accuracy improvement with
GAT-LSTM because busier airports have more connections with
other airports in the network and they benefit more from the
introduced spatiotemporal correlation extraction by GAT-LSTM.

5.2. Model Interpretability With APG
Modeling
Meaningful topological information and dynamic
spatiotemporal correlations can be captured automatically
by the proposed GAT-LSTM, which can be reflected by the
learned attention weights in the GAT layer. The extracted
attention weights X̂e

t = {{α̂t
1j, α̂

t
j1}, {α̂

t
2j, α̂

t
j2}, . . ., {α̂

t
Nj, α̂

t
jN}} by

GAT layer with APG modeling shows the spatial correlations of
different nodes at t timestep, indicating the degree of interaction
of airports in APG. In the learned weight pair {α̂t

ij, α̂
t
ji}, α̂t

ij,
indicate the importance of airport i to airport j at the timestep
t, and α̂t

ji, indicate the importance of airport j to the airport i
at the timestep t. To better illustrate the model interpretability,
we select the model GAT-LSTM of departure throughput
prediction with input timestep T = 8 to show the extracted
attention weights.

5.2.1. Spatial Correlations Corresponding to Typical

Hub-Spoke Structured Airports
The proposed model GAT-LSTM can capture the specific
topological correlations in airport networks. As shown in
Figure 2, there is a typical Hub-spoke structured sub-networks in
China ATN, which is based on the Urumqi Diwopu International
Airport (ZWWW) as the hub. We illustrated the extracted
attention weights by the GAT layer of the corresponding hub
airport and one of its leaf airports as shown in Figure 8.

As shown in Figure 8, the hub airport ZWWW shows a
significant influence on their leaf airports while having a relatively
negligible influence on other airports. Besides, the hub airport
ZWWW is most influenced by the ZBAA airport who acts a
vital role in the entire China ATN. Regarding the temporal
correlations during the day, the most influential hours are the
morning from 6 a.m. to 9 a.m., while the hour of 7 a.m. shows the
biggest influence of ZBAA to ZWWW . For their corresponding
spoke airports ZWAK , ZWAK can only influence itself and was
greatly impacted by the ZWWW airport most time of the day.
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5.2.2. Dynamic Spatial Correlations Corresponding to

Typical Days
The dynamic spatial dependency can be captured by
corresponding attentions weights of the proposed GAT-
LSTM. As illustrated in Figure 6A, ZBAA airport on 16
September had bad weather in the morning resulting in abrupt
disturbances on actual departures, and 15 September has
a relatively normal operation condition. Compared spatial
correlations of ZBAA captured by the proposed model between
the day of 16 September and the day of the 15th, the spatial
dependencies reflected by attention weights show a different
pattern as illustrated in Figure 9. On 15 September, the attention
weights are more sparse, while the 16 September, the learned
weights indicate a more extensive influence on the network-wide
airport. This situation also confirms the interacted and dynamic
network effect of China ATN.

5.3. Separate Training for Different
Extraction Modules
We adopted separate training processes in the spatial feature
extraction by GAT and temporal pattern extraction by LSTM
to better utilize their specific learning ability in our proposed
layer stacking structures. To extract the corresponding spatial
correlations from the graph consisting of various nodes,
the normal end-to-end training without obeying the node
correlations in the following LSTM and FCN layers was found
that the learned attention weights of the GAT layer will be
quite smooth and not meaningful, as the comparisons shown in
Figure 10. This situation indicates the ineffectiveness of GAT in
extracting spatial correlations via the layer stacking structures.
The spatial and temporal correlations are extracted by the
following layers after GAT layers.

6. CONCLUSION

In this article, we proposed a novel deep learning model
framework called GAT-LSTM to predict nationwide 65 airports,
actual departure and arrival throughput. Results showed that
the proposed model had better performance than baselines
methods in departure throughput predictions. While for arrival
throughput predictions, the proposed model had a similar model
performance as a recurrent-based baseline model LSTM. The
results illustrated that temporal dependencies were vital in the
predictions, while the departure throughput prediction was
more influenced by spatial relations than the arrival throughput
predictions. We further explored the model performance by

the airport and found that the model had better prediction
performance on busier airports than on idler airports.

In the discussion, we illustrated the capability of the graph
attention mechanism in revealing spatial correlations in the
airport network. The learned attention weights confirmed the
effectiveness of the GAT layer in learning the graph-structured
spatial correlations. Finally, we explored the impact of training
procedures on model performance. Experiments showed that
model performance was significantly improved with separate
training for each layer. A one-time united training process could
not let the different layers perform their specific extraction ability
in a layer stacking framework. Future research is needed to
develop a training strategy to allow adopted layers to perform
their extraction ability.
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Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero, A., and Bengio,
Y. (2018). “Graph attention networks,” in 6th International Conference on

Learning Representations, ICLR 2018-Conference Track Proceedings (Vancouver,
BC), 1–12. Available online at: https://arxiv.org/abs/1710.10903.

Whittaker, J., Garside, S., and Lindveld, K. (1997). Tracking and
predicting a network traffic process. Int. J. Forecast 13, 51–61.
doi: 10.1016/S0169-2070(96)00700-5

Williams, B. M. (2001). Multivariate vehicular traffic flow prediction: evaluation of
ARIMAX modeling. Transp. Res. Record. 1776, 194–200. doi: 10.3141/1776-25

Williams, B. M., Durvasula, P. K., and Brown, D. E. (1998). Urban freeway
traffic flow prediction: application of seasonal autoregressive integratedmoving

Frontiers in Artificial Intelligence | www.frontiersin.org 15 June 2022 | Volume 5 | Article 884485

https://doi.org/10.1145/3274895.3274896
https://doi.org/10.1109/DASC.2016.7777956
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:2(161)
https://doi.org/10.1109/TITS.2019.2950416
https://doi.org/10.1016/j.jairtraman.2020.101850
https://doi.org/10.2514/6.2011-6373
https://doi.org/10.1109/TITS.2019.2963722
https://doi.org/10.1609/aaai.v33i01.3301922
https://doi.org/10.1016/j.trc.2015.08.017
https://doi.org/10.1061/(ASCE)0733-947X(1995)121:3(249)
https://doi.org/10.1016/S0969-6997(01)00045-X
https://doi.org/10.1016/j.trc.2017.12.007
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.neucom.2010.12.032
https://doi.org/10.1016/j.tre.2014.10.014
https://doi.org/10.1016/j.tra.2017.09.027
https://doi.org/10.1016/j.cageo.2004.05.012
https://doi.org/10.1109/DASC.2016.7778092
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1016/S0169-2070(96)00699-1
https://doi.org/10.48550/arXiv.1206.6859
https://arxiv.org/abs/1707.01926
https://doi.org/10.1109/TITS.2013.2247040
https://doi.org/10.1109/ICMLC.2005.1527686
https://doi.org/10.1016/j.tre.2007.07.002
https://doi.org/10.1016/j.trc.2017.02.024
https://doi.org/10.2514/atcq.8.1.1
https://doi.org/10.1016/j.trc.2011.05.017
https://doi.org/10.1016/j.trc.2014.04.007
https://doi.org/10.1016/j.trc.2018.11.015
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1287/trsc.2015.0603
https://doi.org/10.2514/6.2010-9148
https://doi.org/10.1016/S0968-090X(02)00009-8
https://doi.org/10.1198/016214507000000257
https://arxiv.org/abs/1710.10903
https://doi.org/10.1016/S0169-2070(96)00700-5
https://doi.org/10.3141/1776-25
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Zhu et al. Nationwide Airport Throughput Prediction

average and exponential smoothing models. Transp. Res. Record. 1644,
132–141. doi: 10.3141/1644-14

Xie, Y., Zhang, Y., and Ye, Z. (2007). Short-term traffic volume forecasting
using Kalman filter with discrete wavelet decomposition. Comput. Aided

Civil Infrastruct. Eng. 22, 326–334. doi: 10.1111/j.1467-8667.2007.00
489.x

Xu, N., Donohue, G., Laskey, K. B., and Chen, C. H. (2005). “Estimation of
delay propagation in the national aviation system using Bayesian networks,”
in Proceedings of the 6th USA/Europe Air Traffic Management Research and

Development Seminar, ATM 2005, 353–363.
Yu, B., Guo, Z., Asian, S., Wang, H., and Chen, G. (2019). Flight delay prediction

for commercial air transport: a deep learning approach. Transp. Res. E Logist.

Transp. Rev. 125, 203–221. doi: 10.1016/j.tre.2019.03.013
Yu, B., Yin, H., and Zhu, Z. (2017). “Spatio-temporal graph convolutional

networks: a deep learning framework for traffic forecasting,” in Proceedings

of the Twenty-Seventh International Joint Conference on Artificial

Intelligence, IJCAI 2018 (Stockholm), 3634–3640. doi: 10.24963/ijcai.2
018/505

Zanin, M., and Lillo, F. (2013). Modelling the air transport with complex
networks: a short review. Eur. Phys. J. Special Top. 215, 5–21.
doi: 10.1140/epjst/e2013-01711-9

Zhang, L., Liu, Q., Yang, W., Wei, N., and Dong, D. (2013). An improved
k-nearest neighbor model for short-term traffic flow prediction.
Procedia Soc. Behav. Sci. 96, 653–662. doi: 10.1016/j.sbspro.2013.
08.076

Zhang, Q., Chang, J., Meng, G., Xiang, S., and Pan, C. (2020). Spatio-
temporal graph structure learning for traffic forecasting. Proc.

AAAI Conf. Artif. Intell. 34, 1177–1185. doi: 10.1609/aaai.v34i0
1.5470

Zhang, T., Ding, M., Zuo, H., Chen, J., Weiszer, M., Qian, X., et al.
(2018). An online speed profile generation approach for efficient
airport ground movement. Transp. Res. C Emerg. Technol. 93, 256–272.
doi: 10.1016/j.trc.2018.05.030

Zhao, Z., Chen, W., Wu, X., Chen, P. C., and Liu, J. (2017). LSTM network: a deep
learning approach for short-term traffic forecast. IET Image Process. 11, 68–75.
doi: 10.1049/iet-its.2016.0208

Zhu, X., and Li, L. (2021). Flight time prediction for fuel loading decisions
with a deep learning approach. Transp. Res. C Emerg. Technol. 128, 103179.
doi: 10.1016/j.trc.2021.103179

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhu, Lin, He, Tsui, Chan and Li. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 16 June 2022 | Volume 5 | Article 884485

https://doi.org/10.3141/1644-14
https://doi.org/10.1111/j.1467-8667.2007.00489.x
https://doi.org/10.1016/j.tre.2019.03.013
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.1140/epjst/e2013-01711-9
https://doi.org/10.1016/j.sbspro.2013.08.076
https://doi.org/10.1609/aaai.v34i01.5470
https://doi.org/10.1016/j.trc.2018.05.030
https://doi.org/10.1049/iet-its.2016.0208
https://doi.org/10.1016/j.trc.2021.103179
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Short-Term Nationwide Airport Throughput Prediction With Graph Attention Recurrent Neural Network
	1. Introduction
	2. Literature Review
	2.1. Airport Traffic Prediction
	2.2. Spatiotemporal Forecasting Methods for Road Traffic Prediction

	3. Methodology
	3.1. Model InputsOutputs and inputs
	3.2. ATN Graph Modeling
	3.3. Prediction Module
	3.3.1. GAT Module
	3.3.2. Other Regression Modules
	3.3.3. Training Process


	4. Experiments
	4.1. Datasets
	4.2. Evaluation
	4.2.1. Compared Methods
	4.2.2. Metrics

	4.3. Model Performance Over the Network
	4.4. Model Performance in a Single Airport

	5. Discussion
	5.1. Relations Between Performance Improvements With the Airport Scale
	5.2. Model Interpretability With APG Modeling
	5.2.1. Spatial Correlations Corresponding to Typical Hub-Spoke Structured Airports
	5.2.2. Dynamic Spatial Correlations Corresponding to Typical Days

	5.3. Separate Training for Different Extraction Modules

	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


