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Multi-level damage diagnosis on stiffened
composite panels based on a
damage-uninformative digital twin

Dimitrios Milanoski1, Georgios Galanopoulos1, Dimitrios Zarouchas2,3 and
Theodoros Loutas1

Abstract
In this study, a multi-level Structural Health Monitoring methodology for stiffened composite panels is introduced. A digital
twin (DT), that is, a three-dimensional finite element (FE) model, representing the pristine state baseline of the test article, is
developed and verified for compressive loading in the post-buckling regime. The detailed FE model is utilized to train a
surrogate model with respect to exogenous input, that is, axial load magnitude. The surrogate assists the DT concept that
would allow prediction of the load acting on the structure based on an influx of strain data, acquired from fiber Bragg grating
sensors permanently attached along the stringer feet. For this purpose, we leverage on the observation that remote from the
damage, the strain field remains virtually unaltered with regard to the pristine state. The load is estimated by a sensor placed
far from the damage whilst the diagnostic actions are performed by exploiting measurements from the remaining sensing
locations. A health indicator, which compares the experimentally received strains with those from the surrogate representing
the pristine state, is utilized to (1) detect, (2) localize, and (3) characterize the damage. As damage, we consider either skin-to-
stringer disbond or initial impact damage propagation as well as overall stiffness degradation during thousands or millions of
fatigue cycles. The sensors that have detected a disbond are dedicated to evaluating the potential propagation of it, while the
remaining sensors evaluate the overall stiffness degradation. The proposedmethodology is tested for one artificially disbonded
and two impacted single-stringer panels subjected to block loading compression-compression fatigue.

Keywords
Structural health monitoring, damage diagnosis, digital twin, surrogate modeling, composite stiffened panels, fiber Bragg
grating, fatigue

Introduction

The fast-evolving digital twin (DT) concept is constantly
receiving a growing interest over the last years.1–3 The initial
vision was oriented towards an alternative structural life
prediction tool for predictive maintenance practices of aircraft
vehicles.4,5 The conventional, and still ongoing, maintenance
tasks of aircraft involve scheduled ground inspections after
having operated a predefined number of duty cycles. The DT
paradigm aims to reduce the extensive costs related to the
scheduled ground inspections by providing diagnostic and
prognostic forecasts onboard the flying vehicle.

Generally, we can define the DT as a digital replica of a
real-world physical asset, that is, the physical twin (PT),
capable of replicating the PT’s behavior within a context of
interest.6–8 The DT should be enriched with the best
available physics-based models in order to mirror the
performance of the PT.9 To achieve this scope, permanently

installed sensors will be transferring data to the DT in real-
time communication between the twins. A fully integrated
framework that enables this simultaneous update of the DT
is also stated as “Digital Thread.”10
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The recent advancements on computational efficiency
allowed the utilization of high-fidelity numerical models,
for example, finite element (FE) models, in response to the
increased complexity of modern aerospace structures.11

Conventional metallic aerostructures are perpetually
substituted by inhomogeneous composite materials, for
example, carbon-fiber reinforced polymers (CFRP), in favor
of their unique specific mechanical properties. Yet, they are
prone to unpredictable events resulting barely visible impact
damages (BVID), which in turn may jeopardize their
structural integrity, if not detected at an early stage.
Aerospace structures are well-known for their damage-
tolerant design which essentially means that damage is
potentially present and allowed to grow slowly.12,13

However, it is vital to detect and monitor the develop-
ment of such damage events in order to ensure a safe
structural operation. Structural Health Monitoring (SHM)
methodologies have been developed towards this demand.
These methodologies may be further divided into two major
categories, namely, (1) diagnostics and (2) prognostics.
Actions related to the first category aim to provide insight
about the presence, location, type as well as extent of the
damage.14 Prognostics in turn perform predictions regard-
ing the remaining useful life of the monitored structure.15

The DT concept is a promising approach for SHM that
combines sensor data with a numerical model, for example,
FEmodel, in order to interpret the underlying phenomena of
damage evolution in the structure.

Moreover, the advent of machine learning brings new
opportunities via surrogate, or so-called black-box, model-
ing.16 Currently, it is common to leverage on physics-based
models (or white-boxmodels8,17), either in a theoretical18 or a
numerical framework,19 to train a black-boxmodel. The latter
is fed by pairs of input-output (I/O) data, generated by the
white-box models, mapping the output quantity of interest
in a multidimensional feature manifold. Thus, operational,
for example, boundary conditions, or state, for example,
damage characteristics, information about the structure is
embedded within a surrogate model, promptly available
for predictions when an influx of input data is extracted
from the PT. Hence, such a trained model maps the input
variables to the observed output as well as generalizes its
response to non-observed data. The learning stage of the
black-box models is frequently conducted offline while
only the evaluation of the model predictions is occurring
during the online stage.20–22 This is important as the nature
of the DT concept is closer to real-time SHM and thus,
information must be rapidly processed.

Among the articles found in the literature about DT, we
refer to some recent articles in the fields of structural
analysis and SHM. Plenty of surrogate models are utilized,
for example, artificial neural networks,23,24 convolutional
neural networks,25 Gaussian processes,26,27 generative
adversarial networks,17,28 or others.

Significant effort has been given to fatigue damage di-
agnosis and/or prognosis of metallic or composite
structures.19,21,23,24,26,29–31 The DT concept has been also
used for diagnostic purposes on impact damage identifi-
cation,32 while applications are also found in the field of
wind energy structures subjected to fatigue loading.33 A
probabilistic DT framework of an offshore wind sub-
structure was proposed by Augustyn et al.34 The structural
reliability of the substructure was assessed based on
modeling the fatigue damage accumulation including var-
ious sources of uncertainty. The concept of DT is also
finding applications in the field of marine engineering.35,36

Strain-based SHM methodologies

As previously clarified, the data collected from a sensorized
structure play a significant role for SHM applications.
However, it is clear that sensors do not directly measure
damage—Axiom IVa of SHM.37

Several sensor types exist for a variety of SHM purposes.
Fiber-optic sensors (FOS) are widely preferred for structural
monitoring, both in research as well as industrial
applications.38,39 FOS with engraved Bragg gratings40

(FBGs) have several advantages, for example, extremely
lightweight, low-power consumption, and immunity to
electromagnetic interference. They can also measure dy-
namic strains apart from static ones. Moreover, FOS can be
embedded in composite materials41 or directly affixed upon
the surface of the host structure.42 Application at various
structural complexities may be found in the literature,
spanning from coupon level,24,43,44 or components with
assembly details45–48 to more representative structures.49–54

Strain-based methodologies can also be divided in accor-
dance with the nature of the interrogated strains, that is,
dynamic55,56 or static.57 In each case, proper post-
processing of the multivariate uninformative raw strain
data is required. For example, normalizing indicators may
be used to reduce the dependency of strains on boundary
conditions.20,45 However, if the boundary conditions are
prescribed or estimated, direct strain comparison, between a
reference (undamaged state-if available) and a potentially
damaged one, may be used as a damage-sensitive
indicator.46,52,58–60 Also, model-independent methodolo-
gies are followed where solely experimental data are
utilized.61–65 Methods for damage identifications based on
strains recorded from zero-strain trajectories are also
employed.35,66,67 Lately, strain-based SHM methodologies
utilizing the inverse FE method are emerging.68–70

As previously mentioned, aerospace structures are de-
signed under the principles of damage tolerance, operating
under the existence and development of damage, intrinsic or
induced, within their volume. However, it is of great im-
portance to meticulously monitor the propagation of such
damage as they may lead to catastrophic failure of the
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structure. In the literature, model-based methods that in-
versely estimate the fatigue crack growth have been de-
veloped, but in most of the cases for unidimensional crack
geometries. Similar damage morphologies seem to be
idealized and not representative in more complex structural
geometries, with multiple interfaces, like stiffened com-
posite panels. Moreover, impact-induced damages produce
a network of delaminations through the thickness of the
impacted zone accompanied by other local damage types,
for example, matrix cracking or fiber breakage, instead of
unique delamination in the skin/stringer interface. Thus, it is
common to observe planar (two-dimensional) delaminated
areas with strong mixed-mode conditions along their
fronts,13 especially under compression in the post-buckling
regime. Stiffened panels are designed to sustain elevated
loads71,72 and in some special cases the buckling instability
is being deliberately exploited for morphing of composite
wings.73 Therefore, it is crucial to monitor these structural
elements in order to mitigate sudden failure.

Methodology outlook

The present work introduces a multi-level diagnostic meth-
odology for aeronautical composite single-stringer panels
(SSPs) subjected to quasi-static (QS) as well as cyclic com-
pressive loading conditions. Namely, three levels of SHM are
envisaged: (i) damage detection, (ii) damage localization, and
(iii) damage type classification. Artificial and impact-induced
damage is considered for the current study. Leveraging on the
modification of skin-to-stringer disbonds to the strain field, we
develop a strain-based SHMmethodology assisted by a DTof
the pristine state of the structure. As the strains are highly
affected in the vicinity of the damage, strains acquired far from
damage remain virtually equivalent to those of the healthy
structure. On this premise, we utilize the strain readings of one
reference sensor in order to estimate the load acting on the
structure via the DT, which is crucial for the subsequent feature
extraction at every sensing location.

The first two SHM Levels are essentially implemented
simultaneously, that is, damage is detected when the Health
Indicator (HI) of a sensor exceeds a statistically-determined
threshold; thus, damage localization is determined in the
vicinity of the specific sensor. Next, based on the evolution
of the HI, an extra effort is given to characterize the type of
occurring damage. Hence, the third SHM Level is enabled
via a sliding window algorithm which yields binary indi-
cations about

(a) propagation of a detected disbond with respect to its
nominal size,

(b) overall (post-buckling) stiffness degradation.

The implementation of the DT-assisted methodology is
realized using a computationally cheap surrogate model

which automates the load prediction, and thereupon the
feature extraction. Load identification of highly-loaded
structures is a usual SHM action.74 The strength of the
proposed methodology lies in the sole usage of simulated
strains belonging to the pristine state, which in turn sig-
nificantly reduces the computational demands associated
with the numerical modeling campaign. However, the
concept is not capable of quantifying the damage extent due
to the lack of relevant training data. On the contrary, the
diagnostic levels performed contain physical interpretation
details that categorize two, different in nature, damage
types. In-situ non-destructive testing (NDT) with an ul-
trasonic DolphiCam is performed to capture the propagation
of the induced damage whilst data directly received from the
test machine estimate the stiffness degradation. The limited
cases of detached sensors are physically observed by
eyesight in conjunction with the negligible strain readings
recorded. The final agreement of the algorithm’s perfor-
mance with the experimental findings corroborates the
potential of the proposed methodology. The conceptual
methodology is schematically illustrated in Figure 1.

In the first section of the article, we present the exper-
imental procedure followed. Then, the development of the
DT is presented, incorporating the FE model and the
training of the surrogate black-box model. The third section
provides insight regarding the proposed DT-based damage
diagnosis. The diagnostic levels are thoroughly discussed in
the same section. The final section summarizes the findings
of the proposed methodology and general conclusions are
drawn.

In the present work, the crucial task of SHM on highly-
loaded composite components is introduced based on the
DTconcept. The findings coming from three damaged SSPs
empower the proposed methodology by efficiently detect-
ing and localizing skin-to-stringer disbonds, as well as
predicting further propagation of the disbonds in addition to
overall stiffness degradation due to fatigue loading
conditions.

Experimental campaign

Test articles

The SSP test articles are composed of three individual
members, that is, skin, stringer, and cast-tabs. At first, the
flat composite skin was co-cured with the T-section stringer.
Then, two rectangular epoxy cast-tabs have been placed and
cured at room temperature facilitating the compressive load
introduction to the specimen. The cured panel was encased
in the cast-tabs in a manner that the centroid of the skin/
stringer cross-section coincides with the centroid of the tabs.
A sensorized panel is shown in Figure 2(a) accompanied by
the relevant dimensions in Figure 2(b). A graphite/epoxy
material system IM7/8552 was used for both skin and stringer
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with ply properties as shown in Table 1. The skin consists of
14 unidirectional continuum fiber-reinforced plies with a
stacking sequence [45/�45/0/45/90/�45/0]s whilst the
stringer flange is composed by a 10-layer formation [45/
�45/0/�45/45]s. The cast-tabs were made by an epoxy
resin AXSON®EPO 5019 with properties given in Table 2.

The composite panels were manufactured by OPTIMAL

STRUCTURALSOLUTIONS LDA (Alcabideche, Portugal). In total,
two pristine specimens have been used for catastrophic QS
tests whilst another three damaged specimens were tested in
block loading compression-compression (C-C) fatigue, as
described in the following sections.

Figure 1. Schematic representation of the proposed methodology.

Figure 2. (a) Sensorized preview of the single-stringer panels (under buckling) and (b) its relevant dimensions expressed in mm.
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Quasi-static tests

Before conducting the fatigue tests, it is critical to estimate
the failure load of the SSPs under compression. The total
load that the panels withstood will dictate the operational
limits of the subsequent fatigue loading. Two specimens,
that is, QS-1 and QS-2, are subjected to QS compression
upon failure with a constant displacement rate of 0.5 mm/
min. All of the specimens were tested in the facilities of the
Applied Mechanics Laboratory, University of Patras. A
servohydraulic INSTRON 8802 test machine with load capacity
±250 kN was utilized. The actual shortening between the
two tabs is measured via a linear variable differential
transformer which was properly fixed upon the tabs. The
load-shortening curves of the two panels are presented in
Figure 3. Initially, a linear relation between the load and the
panel’s shortening is developed upon the buckling load,
approximately at 20 kN. After this point, a nonlinear regime
follows along a path with reduced stiffness compared to the
initial linear slope. The nonlinear behavior on the structural
response is associated with a geometric nonlinearity source,
as the out-of-plane displacements become significantly
large when the bifurcation point is reached. The collapse
load for QS-1 and QS-2 was found 95.6 and 99.3 kN, re-
spectively. The response of the SSPs is in accordance with
the findings of the numerical elastic solution. In Section
“Digital twin development,” the FE model is developed and
further discussed.

Block loading C-C fatigue

The concept of the proposed methodology is implemented
via a block loading C-C fatigue test, with constant ampli-
tude (CA) per block, for the case of three damaged SSPs.
The maximum limits of the fatigue blocks were selected

according to the collapse load to avoid instant failure of the
specimen. The panels are subjected to sinusoidal cycling
load between a range [Pmin, Pmax], stress ratio R = 10, and a
frequency f = 2 Hz. Throughout the test campaign, the load
limits have been judiciously increased on occasions when
no further propagation of the damage was observed. Details
about the fatigue block limits, the number of fatigue cycles
until total failure as well as the damage characteristics on
each specimen are summarized in Table 3. Cyclic-load
excitation was imposed for 500 consecutive cycles until
a QS test was intervened; the test intervals are vital for the
current methodology as strain data acquisition via FBGs
was made during that period. Each QS test, besides the first
one, initiates from a minimum load, P0 = �5 kN, upon the
maximum limit of fatigue at the relevant period, Pmax, with a
constant displacement rate of 0.5 mm/min. The test plan is
schematically presented in Figure 4.

Specimen CA-1 contains an artificial disbond in the skin/
stringer interface using a Teflon insert. CA-2 and CA-3
specimens were impacted in the facilities of the laboratory
with an in-house drop tower apparatus. BVID damage
occurred in both specimens; the one with impact energy
7.4 J left no trace of damage in the impact zone whilst the
specimen hit with 10 J revealed a small dent. Further
specifications about impact damages are presented in the
section “In-situ non-destructive evaluation.” The tests are
concluded with the collapse of the SSPs.

Strain sensing

Every SSP is equipped with two commercial FOS
SMARTAPETM, with five FBGs per tape, provided by
SMARTEC S.A. (Switzerland). The 10-mm gratings were made
along the fibers with a spacing approximately equal to
30 mm. Two thin glass-epoxy layers accommodate the
optical fibers, protecting the sensors from the ambient

Table 1. Elastic properties of IM7/8552.75

Property Value Units

Longitudinal Young modulus, E11 161,000 MPa
Transverse Young modulus, E22 = E33 11,380 MPa
Poisson ratio, ν12 = ν13 0.32 �
Poisson ratio, ν23 0.45 �
Shear modulus, G12 = G13 5200 MPa
Shear modulus, G23 3900 MPa

Table 2. Material properties of EPO 5019.

Property Value Units

Young modulus, E 6000 MPa
Poisson ratio, ν 0.3 �
Compressive yield strength, Scy 110 MPa

Figure 3. Load-shortening curves.

Milanoski et al. 5



environment as well as easing the handling of the tape upon
the host material without danger of fiber rupture. The sensor
tapes were mounted on the stringer feet along the longi-
tudinal direction via a secondary bonding technique. A
copolyamide GRILTEX® flexible adhesive was utilized to
adhere the tapes to the panels. The locations of every FBG
along the feet of the panels are displayed in Figure 5. The
central sensor per tape was approximately placed at the
midspan of each foot. Only for the case of CA-1, the sensor
tape was deliberately mounted on the foot in a manner that
FBG-1 and FBG-2 lie above the fronts of the disbond, as
shown in Figure 5. This action assists the assessment of the
modified strain field along the disbond, as it will be pre-
sented in the section “Effect of skin-to-stringer disbond.”

The experimental longitudinal strains were acquired
using a 2-channel MICRON OPTICS INC. SM130 dynamic

interrogator with recording capabilities up to 1 kHz. The
interrogator receives the reflected spectrum by the inscribed
gratings of each sensor. The reflected light travels with the
Bragg wavelength based on the Bragg equation

λB ¼ 2neffΛB (1)

where neff is the effective refractive index and ΛB is the
grating period. As the optical fiber is properly affixed upon a
host material, the optical fiber follows the deflection of the
host material. Thus, the fiber is dilated or compressed,
which in turn, modifies the effective refractive index and the
Bragg period, leading to a shift on the wavelength according
to the next relation:

ΔλB
λB

¼ ð1� pÞε110ε11 ¼ ΔλB
λB

� fg (2)

Table 3. Details of the block loading fatigue tests and damage specifications per panel.

SSP Damage type*
Damage location**
[x,z] (mm)

Initial damage
area(mm)2

Pmin

(kN)
Pmax

(kN)
Consecutive
cycles

Failure
cycles

CA � 1 D �
30×30 mm2

[15,210] 901.5 �3.5 �35.0 10,000 345,000
�3.9 �39.0 10,000
�4.5 �45.0 10,000
�5.0 �50.0 170,000
�5.5 �55.0 85,000
�6.0 �60.0 60,000

CA � 2 I � 10 J [22.5200] 1397.9 �4.0 �40.0 10,000 217,000
�4.5 �45.0 177,000
�5.0 �50.0 30,000

CA � 3 I � 7.4 J [32.5105] 232.5 �4.0 �40.0 10,000 243,000
�4.5 �45.0 80,000
�5.0 �50.0 90,000
�5.5 �55.0 63,000

* I: impact
damage

D: artificial
disbond

**with respect to the coordinate
system shown in Figure 7

Note: SSP: single-stringer panels.

Figure 4. Test plan definition.
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with p representing the photoelastic coefficient and ε11 is the
axial strain along the fiber. The induced fiber strain is also
affected by temperature variations that cause thermal
elongation of the fiber, and therefore modify the Bragg
period as well as the refractive index. However, the test
conditions remained constant at room temperature, and thus,
we neglect the temperature contribution. For the FOS used,
the manufacturer provided a gauge factor fg = 1.2 which
transforms the relevant wavelength shift to strain.

In-situ non-destructive evaluation

In order to evaluate the effectiveness of the methodology, it
is important to inspect the SSPs via NDT techniques. A
phased-array ultrasound system, that is, DolphiCam, ded-
icated to inspection on CFRP, was used. DolphiCam in-
corporates a variety of inspection techniques, for example,
A-, B-, and C-Scan.

In the current framework, C-Scan inspections were
conducted in several occasions during pauses of the testing
operation. The amplitude of the reflected pulse was selected
to illustrate the measurements from the phased-array
camera. The scanning region of the camera is a
30×30 mm2 rectangle area. Measurements have been taken
by the side of the flat skin in the proximity of the damaged
area. For the two impacted panels, it was found that the
impacts caused skin-to-stringer delamination as well as
delaminations among the plies of the skin. This can be
identified via the color variations based on the inspection
images presented in Figure 5. For the case of CA-3, we are
only concerned with the induced delaminated area beneath
the skin/stringer interface, as the impact also affected the

skin region outside the latter interface. Figure 6 summarizes
the disbonded area as measured for all the specimens during
the test campaign. The initial measurement of the nominal
damage extent is reported in Table 3.

Digital twin development

In the section herein the DT development, as well as its key
role, are introduced. As mentioned before, we consider a FE
model representing the healthy structure with the absence of
any initial or developing damage. After verifying the FE
model, we proceed to its substitution by a surrogate model,
which is trained with I/O pairs generated by the FE model.

Finite element model

For the needs of the numerical modeling, the commercial76

FE package ABAQUS/CAE 2021TM was utilized. The FE
model of the SSP is shown in Figure 7. The geometry of the
specimen is explicitly designed apart from the small filler
(resin rich) region in the root of the stringer. Four separate
members are created, that is, the flat skin, the stringer flange,
the stringer web, and the two epoxy tabs. Kinematic re-
straints were imposed in terms of tie constraints, in the
regions where two parts were fixed to each other, as
highlighted in Figure 7. The composite skin and stringer
parts are modeled using 8-node hexahedron continuum shell
elements with reduced integration (SC8R). Each part was
discretized with an approximate global mesh size of
1.25 mm. The two cast-tabs were modeled using general-
purpose three-dimensional brick elements, with eight nodes,
a reduced integration scheme (C3D8R), and 4.00 mm global

Figure 5. Initial artificial and impact damage configurations as evidenced with phased-array ultrasound. Blue plus signs (+) represent the
Fiber-optic sensors with engraved Bragg gratings positions. Contour plot indicates the intensity of the maximum value of the reflected
pulse.
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mesh size. A total mesh size of 158,400 and 19,984 SC8R
and C3D8R elements, respectively, was generated. The
boundary conditions have been imposed to the outer sur-
faces of the two cast-tabs as shown in Figure 7. The con-
stitutive model of the composite plies was modeled as
elastic with transversely isotropic material properties as
presented in Table 1. As previously stated, initiation or

progression of inter- and intra-laminar damage is not in-
cluded in the analysis. The cast-tab material was also de-
fined as elastic isotropic with respect to the properties of
Table 2. The induced compressive stresses in the tabs were
significantly lower than the compressive yield strength
given by the material datasheet, and thus, elastic consid-
eration of the tab material is valid. Namely, for a 70 kN
imposed compressive load, maximum compressive stress
equal to 16.3 MPa was obtained from the loading tab.

The numerical analysis is divided into two steps. Ini-
tially, the first step performs a linear perturbation analysis in
order to estimate the buckling eigenvalues and their cor-
responding mode shapes. Generally, the mode shapes,
expressed as a normalized nodal displacement field along
the surfaces of the geometry, are used as initial imperfec-
tions that facilitate the nonlinear buckling analysis. This
method prevents the analysis from numerical instabilities as
the structure approaches the bifurcation point, and fre-
quently, a sensitivity analysis is conducted to deduce how
many modes should be incorporated. In the considered
panel, verified also by the initial QS tests, the most dominant

Figure 6. Propagation of skin-to-stringer disbond throughout the test span as estimated from phased-array ultrasound measurements
for (a) CA-1, (b) CA-2, and (c) CA-3 specimens.

Figure 7. Digital twin - 3D FE model of the test article.
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mode shape during buckling is the first one, forming a half-
wave along both sides of the skin, as shown in Figure 3. Thus,
only the first buckling mode shape is selected as a scaled (5%
of skin thickness) imperfection field. The solution of the
nonlinear analysis is enabled with the Newton-Raphson
solver incorporating large displacements formulations.

The load-shortening curve of the elastic numerical
analysis is presented in Figure 3, along with the experi-
mental evidence. Longitudinal strains are extracted from the
top surface of the stringer feet by discrete element sets at the
corresponding regions where real FBGs are installed. For
that purpose, a Python script was utilized; each set consisted
of three elements and the average strain of the elements was
obtained. Verification on the strain readings is made uti-
lizing data from early test intervals of CA-1 during the first
63 QS tests, that is, 21 from �35 kN, 21 from �39 kN, and
21 from �45 kN. More specifically, strains from the five
FBGs along the bonded foot are compared to the simulated
strains of the healthy model yielding average (absolute)
errors of 4.96%, 0.63%, 5.39%, 1.81%, and 2.09% for FBG-
6, FBG-7, FBG-8, FBG-9, and FBG-10, respectively. The
agreement between experimental and numerical strains
supports the assumption that remote from damaged regions,
the strains remain unaltered. Further insight is provided in
the section “Effect of skin-to-stringer disbond.”

Surrogate modeling

The numerical model created in the previous section is used
to produce a baseline for the pristine state of the structure.
Leveraging this baseline, the multi-level damage diagnosis
will be implemented with experimental strain data acquired
from the PTof the SSP. The response of the DT is embedded
in a surrogate black-box model which maps the output
strains of the DT, y, in the multidimensional space of the
state vector X. Hence, X ¼ fxðiÞ, zðiÞ,PðiÞgNi¼1, where x

(i), z(i)

refer to the FBGs coordinates at their relevant locations and
P refers to the load magnitude. It is clear that the damage-
free baseline is illustrated with the latter state vector, which
only contains details about the load. A supervised learning
approach based on Radial Basis Function (RBF) models is
followed. The sensing locations were slightly varying
among the panels as the SMARTAPETM were manually
placed. Thus, three different surrogates are utilized here, one
for each panel based on the corresponding locations of the
sensors x, z. Each surrogate is fed with a total array of N =
1040 strain values, expressed as fX ðiÞ; yðiÞgNi¼1 combinations
that correspond to 104 load subdivisions within the range [0,
70] kN, acquired from Ns=10 FBGs. The input variables
have been normalized in the space of a unit cube [0, 1]3 to
avoid scale effects on the data. The RBF surrogate is being
developed and available in MATLAB environment.16 The
approximation of the DT model, M∼ , obeys the following

interpolation conditions, for a parametric or fixed basis
function ψ:

M∼ ðX ðjÞÞ ¼ wuψ ¼
XNc

i¼1

wiψðkX ðjÞ � cðiÞkÞ ¼ yðjÞ (3)

where j = 1, ..., N and Nc are the number of the basis
functions centers c(i). The RBF formulation resembles a
linear single-layer neural network with input X , hidden
units ψ, weights w, and output y. The weight estimation is
conveniently simplified when the centers coincide with the
data points, that is, cðiÞ ¼ X ðiÞ, yielding:

Ψw ¼ y5w ¼ Ψ�1y (4)

where, Ψi, j ¼ ψð��X ðjÞ � X ðiÞ��Þ, is the Gram square matrix.
A fixed basis function, that is, thin plate spline ψ(ρ) = ρ2lnρ,
is utilized. Half of the data were used as test set, leading to
root mean square error RMSE between the predictions and
the target strains equal to 1.21 με, indicatively for CA-1.

Digital twin-assisted
diagnostic methodology

Having trained the surrogate models that substitute the FE
numerical model, the way is paved for the DT-assisted
damage diagnosis. Hereinafter, the surrogate model repre-
sents the DT whilst the PT is being monitored during
service/loading.

Effect of skin-to-stringer disbond

The main concept behind the proposed methodology is based
on the premise that a discontinuity alters the strain field in its
proximity. Indeed, the new surfaces created around a dis-
continuity, for example, skin/stringer disbond, redistribute
the stresses/strains which are intensified in its adjacent region.
To illustrate the strain modification around a disbond, we
utilize the verified numerical model, incorporating now a
30×30 mm2 skin/stringer disbond along Path 2. The disbond
is modeled as a surface where no relative restrictions are
applied in the kissing nodes. Also, the “Hard contact” def-
inition was introduced to avoid interpenetration between the
disbonded surfaces. Then, the top surface longitudinal strains
are extracted from the highlighted region, which represents
the region where the SMARTAPETM was placed, as shown in
Figure 8. To quantify the divergence between the pristine and
the damaged case, a HI is utilized as:

HI ¼
����εp � εd

εp

���� (5)

where εp (Figure 8(a)) and εd (Figure 8(b)) denote the strains
from pristine and damaged states, respectively. Moreover,
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the strain modification is severely affected by the load
magnitude and rises when the latter does. Generally, we can
observe that the strain modification is mainly developed in
the disbond fronts as well as in the middle of its length.
More specifically, the strain along the longitudinal direction
of the disbonds presents a peak-valley-peak profile,57,63 as
shown in Figures 8(c) and (d). Figures 8(e) and (f) present
the numerical strain distributions along Path 1 and Path 2, as
previewed in Figure 5, accompanied by the strain mea-
surements recorded during the first 63 QS tests from CA-1.
The solid and dashed lines represent the strain distributions
of the pristine and the disbonded model, respectively. Along
Path 1, the numerical strain distribution of the pristine as
well as of the disbonded model is roughly identical, as the
disbond is placed along Path 2. The agreement among the
observations and the simulated (healthy) strains has been
previously quantified, in the “Finite element model” section.
The good agreement between the FBG measurements along
Path 2 with those of the disbonded FE model supports the
premise of localized strain disturbance solely in the vicinity
of the damage. The dependence of the HI to load is realized
by gathering the maximum observed HI values along the
highlighted region, at various loads. The relevant values are
depicted in Figure 8(g), in conjunction with the detection
threshold defined in section “Diagnostic levels.” It is ob-
vious that the methodology is able to detect the presence of a

disbond when the panel is subjected to compressive loads
greater than the buckling load. Below the buckling load,
approximately, the strains differences between pristine and
damaged state become significantly lower. However, the
detection limit also depends on the disbond size; here, we
have indicatively illustrated the case of a 30×30 mm2

rectangle disbond.

Stiffness degradation

As the fatigue loading progresses, the material properties are
decreasing and overall stiffness degradation of the panel is
observed.77 As this mechanism occurs, the strains are af-
fected if compared to the nominal condition. Thus, it is
expected to observe strain field modification, in a much
lower extent compared to the disbond effect, though. In
cases that the two damage types, that is, skin/stringer dis-
bond and stiffness degradation, co-exist, it is hard to dis-
tinguish the partial contribution of each one. In order to
visualize the global effect of stiffness degradation to the
strain field, we perform the same buckling analysis for the
case of the pristine model having longitudinal Young
modulus decreased by an exemplary 7% with respect to its
nominal value. In Figure 9, the ratio of the two strain fields,

rεðx, zÞ ¼ εnðx, zÞ
εsdðx, zÞ, is presented, with εn denoting the strains

with the initial E11 whilst εsd the strains for the case of a

Figure 8. Simulated strain field at (a) pristine and (b) disbonded state, (c) strain difference between the two states and (d) HI field, at
�50 kN compressive load. Numerically estimated strain distributions along (e) Path 1 and (f) Path 2 as highlighted in Figure 5, versus
actual FBG measurements at �35 kN (◦), �39 kN (*), and �45 kN (×). (g) Max. value of HI with respect to load.
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modified modulus as 0.93E11. The deviation between the
two states can be clearly noticed in the total area of the
stringer foot.

Load identification

In the current section, the monitoring feature, which will be
used throughout the test campaign, is introduced. The HI
defined in equation (5) is selected for this purpose. This
indicator quantifies the deviation from the pristine baseline,
εp, which in this framework is given by the DT. The term εd
represents the experimentally acquired strains. However, it
is noted that utilization of this indicator should be wisely
made only under the knowledge of the boundary conditions,
otherwise, irrelevant strains will be compared, leading to
erroneous interpretations. In this study, the compressive
load is the only variable boundary condition. Based on the
findings from the previous subsections, the negligible strain
modification, developed remote from the damage, is ex-
ploited for the needs of load identification. Figure 10
presents a solid body with arbitrary geometry, which
helps to perceive the DT concept.

We can abstractly say that strains in a close domain near
to the discontinuity,Vd, will be disturbed, if compared to the
equivalent domain in the absence of the discontinuity. In
contrast, the strains outside this domain can be considered as
practically equal, ε(xr) ≈ ε(xp), with, xr 2 Vr and xp 2 Vp

\Vr and position vector for the ith point defined as xi =

fxðiÞ1 , xðiÞ2 , xðiÞ3 gT . Concretely, we can support that in the
domain Vp \Vr, the body without the discontinuity mirrors
the behavior of the body with discontinuity, enclosed inVd,
and thus, it can be treated as a twin.

In this condition, a reference sensor, placed at (x(r), z(r))
with respect to the Cartesian system shown in Figure 8,
would be dedicated to estimate the load based on the ex-
perimental strain measured. Hence, the DT adapts its be-
havior to the strain reading coming from the PT. The load
will be determined by minimizing the following squaredl2-
norm objective function F:

P ¼ argmin
P

8><>:
���MeðxðrÞ, zðrÞ,PÞ � ym

���2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡FðxðrÞ , zðrÞ , PÞ

9>=>; (6)

where ym is an experimentally measured strain whilst
M∼ ðxðrÞ, zðrÞ,PÞ≡M∼r is the DT’s deterministic strain pre-
diction, at load P. The load is iteratively predicted utilizing
the steepest (gradient) descent method:

Pnþ1 ¼ Pn � γ
∂F
∂P

(7)

with step size γ. The derivative term of the objective
function is numerically computed using central differences:

∂F
∂P

¼ 1

ϵ
½M∼ ðx, z,PÞ � ym� � ½M∼ ðx, z,P þ ϵÞ �M∼ ðx, z,P � ϵÞ�

(8)

where ϵ is a small perturbation. So, each time the load is
determined by sacrificing the reference sensor, the HI is
predicted for the remaining FBGs, as shown in the meth-
odology flowchart in Figure 1.

Diagnostic levels

Level 1: Damage/anomaly detection. In the first level, the
identification of a skin/stringer, or general delaminated
region, will be evaluated using the HI. In section “Effect of
skin-to-stringer disbond,” the behavior of this indicator was
proved to be sensitive to the existence of such a type of
damage. However, the definition of a threshold is crucial to
efficiently classify the damage presence, in cases that the HI
values exceed the threshold. As the HI (see equation (5))
correlates the DT’s strains, that is, εp, with those of the PT,
that is, εd, the threshold should encompass the intrinsic
deviation between the calibrated numerical model and the
experiment. This action incorporates the epistemic error as
well as the aleatoric uncertainty related to the experimental

Figure 9. (a) Longitudinal strain field ratio rε at the top surface of the stringer flange.
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measurements. The DT predictions are deterministic; in
order to account for the aleatoric uncertainty of the strain
measurements, the simulated strains are contaminated with
Gaussian noise, with zero mean and a variance,
εGN ¼ εFEM þNð0, σ2mÞ. To properly determine the
threshold value, we form a HI database that corresponds to
the pristine conditions.78,79 Strains acquired from the FBGs
located along Path 1 (see Figure 5), that is, FBG 6–10, of
CA-1 are considered. Even if CA-1 includes a disbond
along the Path 2, the strains along Path 1 were found to
resemble the pristine state as they were unaffected by the
presence of the disbond (Figure 8(e)). The global threshold
definition steps are presented below:

1. Experimental strains are recorded from CA-1 during
the initial 63 QS tests. The 63 tests are split into three
groups containing load limits from �5 up
to �35, �39, and �45 kN, respectively.

2. The static strains at maximum compressive load are
stored per FBG sensor → ½ym�63×5 (the first 21 re-
cordings are shown in Figure 11 with red marks).

3. From the total population of the received strains the
variance, σ2m, per FBG is calculated.

4. Noisy samples of the simulated strains, are formed
per FBG location based on the previously estimated
variance, for each load limit → ½εGN �1000×5 (see blue
signal in Figure 11).

5. HI samples are constructed per FBG, based on the
noisy numerical samples and the experimental
strains → [HI]63,000×5.

6. All values of the HI samples, from every FBG, are
used to estimate the empirical cumulative distribu-
tion function (ecdf).

7. By setting 98% confidence intervals (CI) to the
predefined ecdf, the threshold is set equal to its top
bound.

The threshold value was found to be 0.089, derived
from the ecdf shown in Figure 11(a). Also, steps 1–5 are
depicted in Figure 11(b), indicatively for strain data com-
ing from the first 21 QS tests. The confidence level

approximately guarantees that from 100 independent ex-
periments, two of them may produce a false positive. The
described approach specifies the threshold value, which is
essential to diagnose the presence of damage. Strains uti-
lized from an a priori damaged specimen, though, acquired
from a damage-unaffected region, are exploited to estimate
the inherent discrepancy between the simulated and the
experimental strains. Hence, the need for experimentally
testing a pristine structure, here, is eliminated. Moreover,
the SSP during the period that the strains were received,
experienced 30,000 cycles of fatigue, with no significant
stiffness degradation as will be presented in the “Results
and discussion” section. Also, no evidence of disbond
propagation was found from non-destructive inspections,
something which is necessary, as it may have produced
biased data.

One more source of anomaly, besides skin/stringer
disbond, is the potential detachment of a sensor from the
host material. The urge of detecting this type of anomaly
was mainly developed after observing the evidence of the
experimental campaign. Some regions along the tape were
revealed to be vulnerable. That is at the end of the bonding
length, as there, the tape is bent due to the presence of the
loading tabs. Some limited cases were observed by eyesight
when a color deviation was noticed in the region where the
tape was disbonded. This is feasible as the sensor tape is
made of two thin glass-epoxy layers, which are virtually
transparent. If a sensor’s bonding is compromised, the tape
loses its ability to stretch/compress in accordance with the
host material, and thus, the strains are not properly trans-
mitted from the latter to the tape. Hence, it is expected that
such a case would yield insignificant strain readings, and
subsequently elevated values of HIs. So, the concept behind
detecting potential detachment is oriented towards sensors
producing large HI values, and remains unaltered for a
sustained period of time. A fixed threshold for the large
values of HI was judiciously specified equal to 0.75, as it is
not expected to observe that large HIs solely attributed to
disbond presence, especially within the operational con-
dition tested in the current analysis. For instance, recall from
Figure 8(g) that the maximum observable HI is equal to 0.75

Figure 10. Prismatic solid body (a) w/o and (b) with the presence of a discontinuity, subjected to body forces F, surface tractions T
n
, and

boundary conditions ui.
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at load level �63 kN. The last condition was realized as
10,000 consecutive fatigue cycles. If these three conditions
are fulfilled, the sensor is declared as detached and no
further data post-processing is conducted for this sensor.

Level 2: Damage localization. The localization of damage in
the current study is implemented using the HI at every
sensing location. Hence, when the HI exceeds the pre-
defined threshold, a binary damage index (DI) is generated:

DIi ¼
(
1, if HIi > 0:089
0, if HIi ≤ 0:089

(9)

with i = 1, …, Ns denoting the relevant FBG sensor.
Whenever the DI is equal to 1, damage/anomaly is detected,
and at the same time localized, based on the sensor that
satisfies this condition.

Level 3: Damage type identification. The last stage of the
present damage diagnosis concept deals with damage type
identification. Namely, two types are investigated: (i)
propagation of a previously detected disbond and (ii) post-
buckling stiffness degradation. Different techniques are
used to estimate which type of damage is developing
throughout the test span. Based on the observations made in
the previous sections, it is expected that an increase on the
boundaries of a disbond would, in turn, affect the behavior
of the HI. This is attributed to the modified strain field (see
“Effect of skin-to-stringer disbond”); a strain signature
characterizes the damage morphology, and any time the
damage propagates, the morphology modifies its

boundaries, and in turn, the HI alters its values, especially
when a sensor is placed in the proximity of the damage. The
level of damage complexity, though, does not guarantee a
monotonic behavior, as the strain modification entails both
increases and drops with respect to the pristine strain field
(see Figures 8(c) and (d)).

(i) Thus, for the case of disbond propagation, the HI
behavior was exploited, only for the sensors labeled as
damage affected, that is, DI = 1. This is quite straightfor-
ward, as it is more likely that sensors already close to
damage will be affected by an imminent propagation of the
nominal damage. Next, a sliding window methodology, in
accordance with Broer et al.,63 was followed to detect
changepoints on the HI. As the test continues, each of the
damage-affected HIs is monitored and its data processed
based on the sliding window approach, as shown in
Figure 12(a). More specifically, a reference window stores
the HI values and estimates the boxplot statistics, namely,
median, μR, first quartile, Q1, and third quartile, Q3. The
reference window contains data acquired from 2500 cycles,
or equivalently five intervals, at instances t0,...,tR. An
evaluation window is then formed, with data coming from
the six upcoming tests, that is, measurements at tR+1,...,tE,
with a mean value of the sample, μE. The algorithm
progresses by adding the upcoming measurement point,
tE+1, to the evaluation window. However, the windows sizes
remain constant, which means that the reference window is
updated by losing t0 for the observation made at tR+1, and so
on. This technique is made to tackle the non-monotonic
behavior of the HI. A disbond propagation index, PI, is
flagged with “1”-propagation or “0”-no propagation,

Figure 11. (a) ecdf of HI and (b) experimental strains, simulated strains with Gaussian noise and calculated HI samples at�35 kN. FBG-6
(◦), FBG-7 (*), FBG-8 (□), FBG-9 (×), FBG-10 (4). Note: FBG: Fiber-optic sensors with engraved Bragg gratings.
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leveraging on boxplot outlier detection as presented in
equation (10). The first condition generally expresses outlier
detection, based on the boxplot metrics, and is independent
of the nature of the reference window data. If any of the
relevant data, both in reference and evaluation window, is
not labeled with DI = 1, the algorithm does not perform
disbond propagation check and proceeds to data updating
until this requirement is met. Finally, the procedure is re-
peated for a second consecutive window, which is compared
once again to the reference window. If the first condition of
equation (10) is again fulfilled, the algorithm yields a final
propagation incident at the measurement instance tE of the
second evaluation window. Conclusively, the disbond
propagation approach is built in a manner to treat real-time
data, with the sole demand the possession of the proper
number of data to form the two windows. The length of the
windows as well as the number of consecutive evaluations
was investigated via trial-and-error checks in order to re-
duce false positives. However, false positives cannot be
precisely measured as we do not have disbond propagation
groundtruth throughout the whole test span.

(ii) Regarding stiffness degradation, a similar approach is
followed. Now, one difference is that the reference window
is constantly increasing by adding new data. Besides this,
the greater difference lies in the fact that stiffness degra-
dation is only investigated at sensors which are flagged with
DI = 0. Essentially, this means that if no local damage is
observed, that is, DI = 0, a potential global stiffness deg-
radation may be investigated, in the relevant location, as it
will alter the strains, as described in “Stiffness degradation”
section. By doing this, we avoid the intersection of the two
damage types that would have confused the current
methodology. Moreover, one more constraint is imposed,
namely, a sensing location may be assessed for potential
stiffness degradation if the neighboring sensors, along the
same foot, fulfill DI = 0 for the relevant strain data. The
stiffness degradation is predicted based on equation (10). A

stiffness degradation index, SDI, is now used to store the
instances whenever degradation of stiffness is estimated,
that is, first condition of equation (10), labeling with “1.” In
contrary to the disbond propagation, the stiffness degra-
dation is inevitably monotonic. Here lies the reason why the
reference window is constantly increasing, as schematically
represented in Figure 12(b); we seek to observe changes
based on the history of data, as the monotonic decrease of
the stiffness progresses. Eventually, the windowing tech-
nique, is now implemented for a different window size
scheme, namely, initial reference size of 5000 cycles and a
constant evaluation size of 5000 cycles, that is, 10 QS tests.
As new data are observed, one by one, the reference window
increases while the evaluation window propagates with
constant size. Similar to the disbond propagation, two
consecutive evaluation windows should satisfy the first
condition of equation (10) before flagging a stiffness
degradation occurrence:

PIiðtEÞ ¼
or

SDIiðtEÞ ¼

8>><>>:
1, if μE >Q3 þ 1:5ðQ3 � Q1Þ

or μE <Q1 � 1:5ðQ3 � Q1Þ
0, otherwise

(10)

Results and discussion

The diagnostic evidence is presented in the current section.
The three levels developed previously are coded in MATLAB

environment. The conceptual methodology (see Figure 1) is
conducted in an automated mode, that is, at first, strains are
received from the PT; then, load predictions are made in the
DT stage and subsequently features are extracted, which in
turn, are post-processed to perform the overall damage
diagnosis.

Load predictions

The load predictions for each specimen are presented. The
load identification algorithm is evaluated for static strains
received per test interval. Namely, one strain value is fed to
the algorithm, which corresponds to the maximum load
during each QS test.

Several sensors that predict the load have been tested as
reference candidates. The performance of the gradient de-
scent is displayed in Figure 13 for all specimens. The
groundtruth load is depicted against the deterministic load
predictions. The shaded area in the graphs represents the
limits of the load predictions, based on which sensor was
selected as load evaluator. The scatter points denote the load
predictions of the sensor with minimum discordance in
comparison to the groundtruth, at every QS test. The pre-
dicted load for all cases is in accordance with the actual.
Small deviations arise during the last cycles as the stiffness

Figure 12. Sliding window technique for the (a) disbond
propagation and (b) overall (post-buckling) stiffness degradation
identification.
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degradation becomes considerable. The gradient descent
robustly performed load prediction and generally needed
less than 20 iterations to converge. Random initialization
was incorporated within a load range [0, 70] kN. A relative
absolute error between two consecutive predictions, was
chosen to stop the iterative procedure when it was dropped
below a tolerance of 10�3. Moreover, the parameters γ and ϵ
were set equal to 10�8 and 10�4, respectively. These two
parameters should be judiciously selected in order to avoid
overshooting of the iterative solution, for example, in cases
that γ is significantly large. One more spot worth noting, is
the selection of the squared Euclidean norm for objective
function in equation (6), F, due to its convex behavior, as
shown in Figure 13(a). The load predictions on specimens
CA-1, CA-2, and CA-3 are presented in Figure 13(b)–(d),
respectively.

Multi-level diagnostics

SSP CA-1. Specimen CA-1 contains an artificially-induced
skin/stringer disbond between FBG-1 and FBG-2. Its exact
location is reported in Table 3. We recall here that two of the
sensors, namely, FBG-1 and FBG-2, had been deliberately
placed on the disbond fronts (see Figure 5). Thus, their
readings were proved to be too sensitive in any propagation
event of the nominal disbond. The disbond presence is
successfully detected by the algorithm from the beginning
and throughout the test span. More specifically, for the
current specimen three sensors exceed the threshold, that is,
FBG-1, FBG-2, and FBG-5. The disbond clearly affects
only FBG-1 and FBG-2; the last sensor in the disbonded

foot, that is, FBG-5, was diagnosed as detached at an early
time and no further actions were made with its strains. On
the contrary, the HIs on FBG-6 presented a gradual increase,
as it will be shown in the next level of diagnosis.

Regarding the third diagnostic level, it can be seen that
the algorithm is concentrated for potential damage propa-
gation type, in the first two sensors, as these are the only
sensors labeled with DI = 1. More specifically, the first
indication regarding propagation is coming from FBG-2,
after 10,000 fatigue cycles. However, no observable dis-
bond propagation, obtained via NDT measurements, was
estimated during the first 30,000 cycles. The first verifi-
cation of disbond propagation was made after the first
80,000 fatigue cycles, with an increase in the damaged area
from 901.5 mm2 to 1023.1 mm2. When the maximum load
of fatigue was increased to �50 kN, it is the most probable
moment that disbond actually propagated. This also ex-
plains the abrupt drop in the HI behavior of FBG-1 from that
moment, which continues until further disbond is verified to
has been propagated. So, in a time between 10,000 up to
30,000 cycles, we observe only 10 false indications about
propagation of damage from FBG-1 whilst FBG-2 produced
21, as a sudden drop on its HI was observed after 10,500
cycles that inevitably triggered the propagation condition,
that is, equation (10). Besides this small number of false
alarms, the HI of this sensor produced propagation indi-
cations that correspond to actual events, as verified by the
NDT evaluation. Here, the fact that the HIs of these two
sensors are not monotonic, reveals the complexity of the
modified strain field as well as the importance of the
windowing technique as followed. As fatigue progresses,

Figure 13. (a) Performance of Euclidean norm and squared norm objective functions, with respect to the normalized load and an
observation example ym. Verification of load predictions made for specimens: (b) CA-1, (c) CA-2, and (d) CA-3.
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the disbond propagates in the longitudinal directions, which
in turn, affects FBG-3 as well as FBG-4. The final evidence
of the disbonded area was 2413.9 mm2, that is, 62.7%
increase, after 341,000 fatigue cycles. Along the bonded
foot, all the HIs remained silenced, that is, below the
threshold, during the test, besides FBG-6 that after some
time presented an increase trend to its HI. Inspections with
DolphiCam did not reveal a damage propagation toward the
other foot, and thus FBG-6, so, the HI behavior should not
be attributed to the propagation of the disbond. However, it
was not declared as detached, and thus, we support that
potentially is periodically losing its bonding, which may
also explain the increased variance observed in the sensor’s
readings. Finally, stiffness degradation was captured from
FBG-10, FBG-8, FBG-7, and FBG-6 (in the early period
with DI = 0). For the case of FBG-6, though, the imminent
increase on its HI misinterprets the stiffness degradation
algorithm, leading to degradation predictions that, in reality,

should not be attributed to actual stiffness degradation. The
monotonic reduction in the stiffness is experimentally
monitored, leading to an overall 9.4% drop, with respect to
the initial value. The aggregated performance of multi-level
damage diagnosis concept for CA-1 is presented in Figure 14.

SSP CA-2. Specimen CA-2 was impacted at an energy level
of 10 J. The nominal disbond area, measured with the
DolphiCam, was 1397.9 mm2, which spans beneath the
region where FBG-6 and FBG-7 are installed. Impact damage
presence is detected successfully from the very onset of the
test and localization of the damage is realized in the proximity
of FBG-6, FBG-7, and FBG-8, as can be seen from Figure 15.
From the NDT evidence (see Figure 6) it can be noticed that
the disbond never reaches exactly beneath FBG-8. However,
the severity of the damage justifies that FBG-8 presents higher
values than the threshold. CA-2 was the only specimen with
no observable, or classified, sensor detachment.

Figure 14. Overall multi-level damage diagnosis for specimen CA-1. Red plus signs (+) indicate the moments when the algorithm
produces propagation predictions whereas orange diamonds (>) indicate stiffness degradation incidents. Experimentally measured
stiffness (K) degradation and disbond area (Ad) are plotted with respect to fatigue cycles. Red dotted vertical lines indicate the moment
that the limits of maximum fatigue load are increased. (+): Fiber-optic sensors with engraved Bragg gratings, (⬚): Teflon insert.
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From the non-destructive inspections, no disbond
propagation was observed prior to the first 10,000 cycles.
The first measurement that indicated a 19.5% increase in the
disbonded area was made at 85,000 cycles. Before the first
10,000 fatigue cycles, the damage type identification al-
gorithm did not produce any predictions of propagation. As
the disbond propagation evolved, scatter predictions were
produced from the aforementioned damage-affected sen-
sors. This is intensified especially after the last increase in
the fatigue maximum load, that is, 187,000 cycles. Once
again, sensors lying within the disbonded area, that is, FBGs
6, 7, and 8, develop non-monotonic behaviors, which are
attributed to the induced strain modification in the damaged
region, as detailed in “Effect of skin-to-stringer disband.”
FBG-9 also produced a limited number of disbond prop-
agation events, namely, the first indication coming from this
sensor is made at 207,500 cycles. The last inspection was
made at 206,000 cycles deriving a disbond area size equal to

2871.8 mm2, that is, 51.3% total growth if compared to the
nominal area. From stiffness degradation perspective, only a
very limited number of indications were produced by the
algorithm. However, the overall reduction in stiffness is
only 2.6%, small enough to produce large deviation in the
HIs labeled with DI = 0. The total findings of the algorithm’s
performance are depicted in Figure 15.

SSP CA-3. The second impacted specimen was hit with
energy 7.4 J in the skin/stringer border (from the flat skin
side), as displayed in Figure 5. The delaminated region at
the skin/stringer interface was approximately estimated
232.5 mm2 spanning between FBG-1 and FBG-2. Level 1
diagnosis was efficiently achieved again upon failure of the
specimen. In Level 2, FBG-1, FBG-6, and a part of FBG-2
indications, presented HIs larger than the threshold. The
nominal damage extent does not seem to largely affect the
sensor readings until further propagation of the damage was

Figure 15. Overall multi-level damage diagnosis for specimen CA-2. Red plus signs (+) indicate the moments when the algorithm
produces propagation predictions whereas orange diamonds (>) indicate stiffness degradation incidents. Experimentally measured
stiffness (K) degradation and disbond area (Ad) are plotted with respect to fatigue cycles. Red dotted vertical lines indicate the moment
that the limits of maximum fatigue load are increased. (+): FBGs, (x): Impact location.
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observed. FBG-1 and FBG-6 were subsequently charac-
terized as detached and any disbond propagation indications
coming from these two sensors have not been considered as
representative, as discussed in the next diagnostic level.

The induced impact damage was growing relatively
slow, until the final increase of the fatigue maximum load.
Besides the detached sensors, the only sensors that further
detected damage, were FBG-2, FBG-3, and FBG-4 after a
certain amount of cycles. First, FBG-2, which was closer to
the damage source than the rest of the two sensors, indicated
presence as well as propagation of the disbond. The first
information related to the existence of damage in FBG-2
was received after 65,000 cycles while the first propagation
event was predicted after 108,000 fatigue cycles. The
previous estimation of the disbonded area was acquired with
a DolpiCam measurement which revealed a 26.1% increase,
after 95,000 experienced cycles. Moreover, at some mo-
ment, the HI values of this sensor dropped below the

predefined threshold. This can be attributed to the non-
monotonic strain field that is developed along the disbonded
area, in accordance with the distributions shown in Figure 8.
In addition, for FBG-3 and FBG-4 damage is firstly detected
after 121,500 and 126,000 cycles, respectively. Finally, after
the final increase on the load, further growth was observed
in the disbonded area that yielded a monotonic, in that case,
trend on the HIs of FBGs 2, 3, and 4. The finally measured
area was found 747.8 mm2, that is, 68.9% larger than the
nominal value. It should be noted here that this measure-
ment was made 30,000 cycles prior to collapse, which
means that further growth of the disbond potentially took
place. Stiffness degradation was captured from two sensors
in the bonded foot, that is, FBG-8 and FBG-9. Two indi-
cations of degradation are also produced from FBG-3 in the
early stage of testing. The major identification of the
stiffness degradation is occurring after 211,500 cycles based
on FBG-9 and after 213,500 cycles for readings of FBG-8.

Figure 16. Overall multi-level damage diagnosis for specimen CA-3. Red plus signs (+) indicate the moments when the algorithm
produces propagation predictions whereas orange diamonds (>) indicate stiffness degradation incidents. Experimentally measured
stiffness (K) degradation and disbond area (Ad) are plotted with respect to fatigue cycles. Red dotted vertical lines indicate the moment
that the limits of maximum fatigue load are increased. (+): FBGs, (x): Impact location.
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By the time that degradation is firstly captured from FBG-9,
the overall drop on the stiffness was approximately 3.9%
whilst the final reduction of the post-buckling stiffness was
found to be 10.1%. The performance of the overall diag-
nosis is presented in Figure 16, for specimen CA-3.

Robustness of the methodology against
random loads

The multi-level damage diagnosis results previously pre-
sented, were limited in a case of a single strain value received
from each sensor, per QS test interval. This strain reflects to
the maximum load per test. To check the robustness of the
proposed methodology in random loading condition now, we
consider a random sample of strains recorded per test.
Namely, 100 strains are randomly received per test interval, at
various loads lower, but close to the maximum one. This
action adds stochasticity on the strain measurements and tests
the robustness of the proposed diagnosis concept. After
sampling, the following steps remain the same; first, the load
is iteratively found, and then, the HIs are calculated based on
the predicted load. Figure 17 depicts indicatively the algo-
rithm predictions, per specimen, including the load predic-
tions in accordance with the behavior of the HIs that
produced disbond propagation events. Black scatter points
represent the HIs’ behavior on the case when we have
considered only one strain reading (at maximum load) per
test. It can be clearly noticed that the trend of the HIs follows
the one with the black scatter points even at random loads in
the post-buckling regime. Finally, the mean values of the HIs

are estimated, per QS test, and the cumulative propagation
and stiffness degradation indications are gathered throughout
the test span.

Conclusively, in order to assess the predictions related
to disbond propagation as well as (overall) stiffness
degradation, the relevant indicators are gathered, per
specimen, and expressed as cumulative indications. By
doing so, we evaluate the sensitivity of the algorithm’s
predictions in accordance with the inspection evidence. A
vector named cPI, contains the cumulative disbond
propagation indications, per cycle. At some instance, if
the algorithm predicts propagation in more than one
sensor, we consider this as one single indication, stored in
a vector oPI, in order to neglect superfluous values. The
same procedure is implemented for the overall stiffness
degradation with data stored in a vector named oSDI. The
overall values are obtained as:

oPIðtÞ ¼
8>>>>><>>>>>:
1, if

XNs

i¼1
PIiðtÞ> 0

0, if
XNs

i¼1
PIiðtÞ ¼ 0

oSDIðtÞ ¼
8>>>>><>>>>>:
1, if

XNs

i¼1
SDIiðtÞ> 0

0, if
XNs

i¼1
SDIiðtÞ ¼ 0

(11)

Finally, the cumulative indices are expressed as:

cPIðtÞ ¼
Xt

t0
oPIðtÞ

cSDIðtÞ ¼
Xt

t0
oSDIðtÞ

(12)

Figure 17. HI samples based on randomly received strains, per test interval, for specimens: (a) CA-1, (b) CA-2, and (c) CA-3. Black
scatter points represent the HIs considering strains received from the maximum load per quasi-static test. Note: HI: Health Indicator.
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Figure 18(a) depicts the cumulative indications, which
are plotted against the relevant phased-array ultrasound
measurements of delaminated area, Ad. Both random strains
as well as strains received from the maximum load per QS
test are considered. Cumulative disbond propagation presents
very good agreement with the experimental evidence. The
behavior of the cPI is sensitive to the disbond propagation.
For specimens CA-2 and CA-3, the detectability is slightly
higher when we consider only the maximum strains per QS
test. However, for the case of CA-1, a redundancy of
propagation indications is predicted in the beginning of the
test, for the case of random strains. Figure 18(b) shows the
cumulative predictions of stiffness degradation per SSP.
Specimen CA-2 is not capable of efficiently capturing the
phenomenon, as previously mentioned in “Level 3 diag-
nostics.” The second impacted specimen, that is, CA-3, is
deemed as successful with a sudden increase in the cumu-
lative indications after 207,500 cycles. Specimen CA-1 also
provided adequate number of stiffness degradation events
until the end of life. The detectability is intensified after
312,000 fatigue cycles and generally higher for the case of
strains acquired from the maximum load per test interval.

Conclusion

The proposed SHM methodology introduces a multi-level
damage diagnosis approach, applied on aerospace stiffened
composite panels. A FE model was developed to represent
the pristine baseline of a composite single-stringer panel,
which was verified for extensive compressive loading
conditions that result in buckling of the panel.

The methodology exploits the premise of strain modi-
fication around delaminations with respect to the healthy
strain field. The latter is provided in terms of numerically
simulated strains acquired from the developed FE model.
The longitudinal strains, induced in the locations where real
FBGs are installed, are embedded in a RBF surrogate model
trained with simulated strains from the FE model. This
enhances the feasibility of the methodology, in terms of
performing rapid predictions during the period that the
algorithm is fed by experimentally received strains.

Prior to feature extraction that enables the damage di-
agnosis, a properly selected, damage-unaffected, reference
sensor was used to predict the load acting on the structure.
The reference sensor serves the DT concept, and essentially
adapts the behavior of the FE model to the strain data
coming from the test. The rest of the sensing locations will
be evaluating a HI that assists the diagnostic levels. The
damage diagnosis algorithm receives strains from the PT,
and evaluates the three diagnostic levels, that is, damage
presence, location, and type. For that purpose, three dam-
aged specimens, have been utilized to assess the proposed
methodology. Static strains have been periodically acquired
from QS test intervals among block loading C-C fatigue
cycles. Disbond propagation as well as post-buckling
stiffness degradation is monitored during the test.

The first two levels have successfully detected and lo-
calized the sources of damage in every panel. Besides that,
an extra effort was given to monitor the propagation of the
induced skin-to-stringer disbond as well as the stiffness
degradation. The evidence of the first type is promising and
empowers the proposed methodology. In contrast, stiffness

Figure 18. (a) Cumulative disbond propagation and (b) cumulative stiffness degradation predictions, per specimen, accompanied by the
measured disbonded area (Ad) and stiffness (K), respectively.
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degradation is not totally captured, especially in cases where
minor reduction was observed, for example, specimen CA-
2, or unexpected events that may produce false alarms as in
specimen CA-1. A limitation of the methodology lies in the
fact that the strain modification becomes severe in the post-
buckling regime and essentially is not possible to reveal the
damage when the structure operates in the linear regime.
However, as we have mentioned in the “Introduction”
section, these structures are designed to operate and sustain
elevated loads that lead to buckling. The authors are cur-
rently dedicated to enhancing the present methodology with
an additional level, that is, damage quantification, based on
an augmented version of the surrogate model incorporating
strains from discrete skin/stringer disbond scenarios.
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