
 
 

Delft University of Technology

Millisecond speed deep learning based proton dose calculation with Monte Carlo
accuracy

Pastor-Serrano, Oscar; Perkó, Zoltán

DOI
10.1088/1361-6560/ac692e
Publication date
2022
Document Version
Final published version
Published in
Physics in Medicine and Biology

Citation (APA)
Pastor-Serrano, O., & Perkó, Z. (2022). Millisecond speed deep learning based proton dose calculation with
Monte Carlo accuracy. Physics in Medicine and Biology, 67(10), 18. Article 105006.
https://doi.org/10.1088/1361-6560/ac692e

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1361-6560/ac692e
https://doi.org/10.1088/1361-6560/ac692e


Physics in Medicine & Biology
     

PAPER • OPEN ACCESS

Millisecond speed deep learning based proton
dose calculation with Monte Carlo accuracy
To cite this article: Oscar Pastor-Serrano and Zoltán Perkó 2022 Phys. Med. Biol. 67 105006

 

View the article online for updates and enhancements.

You may also like
Cationic radionuclides and ligands for
targeted therapeutic radiopharmaceuticals
Bayirta V. Egorova, Olga A. Fedorova and
Stepan N. Kalmykov

-

Targeted nuclear medicine. Seek and
destroy
Vladimir M. Tolmachev, Vladimir I.
Chernov and Sergey M. Deyev

-

Engineering Gd-loaded nanoparticles to
enhance MRI sensitivity via T1 shortening
Michael A Bruckman, Xin Yu and Nicole F
Steinmetz

-

This content was downloaded from IP address 131.180.229.33 on 14/07/2022 at 12:22

https://doi.org/10.1088/1361-6560/ac692e
/article/10.1070/RCR4890
/article/10.1070/RCR4890
/article/10.1070/RCR5034
/article/10.1070/RCR5034
/article/10.1088/0957-4484/24/46/462001
/article/10.1088/0957-4484/24/46/462001
/article/10.1088/0957-4484/24/46/462001
/article/10.1088/0957-4484/24/46/462001
/article/10.1088/0957-4484/24/46/462001
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsspLid_03_uwd3w6p9RVytlE9avDvb7P0yO5VML3IiFuk9DB4ntXXdRHB8Coh6BXjFr6oVmEDfrntcfSY39rCOqBRGK-s36hnipjKuPRJKOSIJuoyKtKVoIae-H6eDBx_JeTsiOcdKLs5QC6OUDRUfxX3pTPk5_H0Wl04rWFjcqXUXit349b7Jbop_DOBITvz56kHmxFj41hwuM03JZq6Oo1QEtdJzrJTCPYntqRWlGCuwzwx6Mr0dfd5KOpuSduQ43AEEFWIjG_kt_rl1XklP7v_6JiniwedNXbLfLS5Ng8Q&sig=Cg0ArKJSzFbq6BEwSo90&fbs_aeid=[gw_fbsaeid]&adurl=https://iopscience.iop.org/bookListInfo/physics-engineering-medicine-biology-series%23series


Phys.Med. Biol. 67 (2022) 105006 https://doi.org/10.1088/1361-6560/ac692e

PAPER

Millisecond speed deep learning based proton dose calculation with
Monte Carlo accuracy

Oscar Pastor-Serrano∗ andZoltán Perkó
Delft University of Technology, Department of Radiation Science andTechnology, Delft, TheNetherlands
∗ Author towhomany correspondence should be addressed.

E-mail: o.pastorserrano@tudelft.nl and z.perko@tudelft.nl

Keywords: deep learning, dose calculation, online adaptation, proton therapy,Monte Carlo, pencil beam

Abstract
Objective.Next generationonline and real-time adaptive radiotherapyworkflows require precise particle
transport simulations in sub-second times,which is unfeasiblewith current analytical pencil beam
algorithms (PBA)orMonteCarlo (MC)methods.Wepresent adeep learningbasedmillisecond speeddose
calculation algorithm (DoTA) accurately predicting thedosedepositedbymono-energetic protonpencil
beams for arbitrary energies andpatient geometries.Approach.Given the forward-scatteringnatureof
protons,we frame3Dparticle transport asmodeling a sequenceof 2Dgeometries in thebeam’s eye view.
DoTAcombines convolutionalneural networks extracting spatial features (e.g. tissue anddensity contrasts)
with a transformer self-attentionbackbone that routes informationbetween the sequenceof geometry slices
anda vector representing thebeam’s energy, and is trained topredict lownoiseMCsimulationsofproton
beamlets using80000different head andneck, lung, andprostate geometries.Main results.Predicting
beamlet doses in 5± 4.9mswith averyhighgammapass rate of 99.37± 1.17% (1%,3mm) compared to
the ground truthMCcalculations,DoTAsignificantly improvesuponanalytical pencil beamalgorithms
both inprecision and speed.OfferingMCaccuracy 100 times faster thanPBAs forpencil beams, ourmodel
calculates full treatmentplandoses in10–15 sdependingon thenumberofbeamlets (800–2200 inour
plans), achieving a99.70± 0.14% (2%,2mm)gammapass rate across 9 test patients.Significance.
Outperforming all previous analytical pencil beamanddeep learningbased approaches,DoTArepresents a
newstateof the art indata-drivendose calculation andcandirectly competewith the speedof even
commercialGPUMCapproaches. Providing the sub-second speed required for adaptive treatments,
straightforward implementations couldoffer similar benefits toother stepsof the radiotherapyworkflowor
othermodalities such asheliumor carbon treatments.

1. Introduction

Radiotherapy (RT) treatments intimately rely on accurate particle transport calculations. In computed
tomography (CT) image acquisition (Pereira et al 2014) simulations of the interaction between photons, tissues
and detectors are used to obtain a detailed 3D image of the patient anatomy, which can be delineated to localize
target structures and organs-at-risk.Modern intensitymodulated treatments (Hussein et al 2018,Meyer et al
2018) require particle transport to compute the spatial distribution of physical dose delivered by thousands of
individual electron, photon, proton or other heavy ion beamlets (aimed at the patient from a few different beam
angles), based onwhich the beamlet intensities can be optimized. Treatment plans—especially sensitive proton
and ion treatments–must also be repeatedly evaluated under uncertainties (e.g. setup and range errors, tumor
motion or complex anatomical changes) to ensure sufficient plan robustness, requiring recalculating the dose
distribution inmany different scenarios (Perkó et al 2016, van der Voort et al 2016, Rojo-Santiago et al 2021).
With RTpractice steadilymoving towards adaptive treatments, accurate, fast and general purpose dose (and
particle transport) calculations represent an increasingly pressing, currently unmet need inmost clinical
settings.
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We focus our attention specifically to proton dose calculations due to theirmore challenging nature caused
by higher sensitivity and complexity compared to traditional photons. Current physics-based tools—by and
large falling into 2 categories: analytical pencil beam algorithms (PBAs) (Hong et al 1996, Schaffner et al 1999)
andMonte Carlo (MC) simulations—offer a trade-off between speed and precision.While PBAs yield results
without the computational burden ofMC engines, their accuracy is severely compromised in highly
heterogeneous or complex geometries,making slow and clinically often not affordableMCapproaches
necessary (Teoh et al 2020, Schuemann et al 2015, Taylor et al 2017, Grassberger et al 2014, Saini et al 2017). The
problem ismost acute for online (and ultimately real-time) adaptive proton therapy aiming at treatment
correction prior to (or even during) delivery to account for inter-fractional anatomical changes,motion due to
breathing, coughs or intestinalmovements. To become reality, such adaptive treatments require algorithms
yieldingMCaccuracywith sub-second speed.

Reducing dose calculation times is an active area of research, withmost works focusing on improving
existing physics-based algorithms or developing deep learning frameworks. Several studies benefit from the
parallelization capabilities of Graphics ProcessingUnits (GPUs) tomassively speed upMC simulations,
reducing calculations times down to the range of few seconds (Fracchiolla et al 2021,WanChanTseung et al
2015) tominutes (Ma et al 2014, Gajewski et al 2021, Pepin et al 2018,Wang et al 2016, Qin et al 2016), with
simulation speeds up to 107 protons s−1. Deep learningmethods have also improved dose calculation times in
several steps of the RTworkflow (Meyer et al 2018), although usually paying the price of limited versatility and
generalization capabilities. Some initial studies apply variants ofU-net (Ronneberger et al 2015) andGenerative
Adversarial Networks (Goodfellow et al 2014) to aid treatment planning by approximating dose distributions
from ‘optimal’ plans in very specific scenarios based on historical data. As input to these convolutional
architectures,most works use organ and tumormasks (Chen et al 2019, Fan et al 2019,Nguyen et al 2019,
Kajikawa et al 2019), CT images (Kearney et al 2018) ormanually encoded beam information (Nguyen et al 2019,
Barragán-Montero et al 2019) to directly predict full dose distributions, except for few papers predicting the
required beam intensities needed to deliver such doses (Lee et al 2019,Wang et al 2020).

Regarding pure dose calculation, practically all deep learning applications rely on using computationally
cheaper physics simulations as additional input apart fromCTs. For photons,most works predict lownoiseMC
dose distributions fromhigh noiseMCdoses (Peng et al 2019, 2019, Bai et al 2021, Neph et al 2021) or simple
analytical particle transport calculations (Xing et al 2020,Dong andXing 2020), with some approaches also
utilizing additionalmanually encoded beam/physics information such asfluencemaps (Fan et al 2020, Xing et al
2020, Zhu et al 2020, Kontaxis et al 2020, Tsekas et al 2021). For protons, we are only aware of 3 papers (Wu et al
2021, Javaid et al 2021, Nomura et al 2020) that compute proton dose distributions via deep learning, using
cheap physicsmodels (noisyMCandPBA) or pre-calculated Bragg peakmaps as input.While providing
significant speed-up compared to pure physics-based algorithms, some even reaching sub-second speeds, all
theseworks depend on secondary physicsmodels to produce their output or are trained to predict only full plan
orfield doses for specific treatment sites. As a result, thesemethods do not qualify as generic dose algorithms and
do not generalize to other steps of the RTworkflowoutside their original scope, e.g. to different plan orfield
configurations, treatment sites, or applications needing the individual dose distribution from each beamlet
separately (such as treatment adaptation).

Instead, our study focuses on learning particle transport physics to substitute generic proton dose engines,
providingmillisecond speed and high accuracy, and is in principle applicable to all RT steps requiring dose
calculations (e.g. dose-influencematrix calculation, dose accumulation, robustness evaluation). Our approach
builds upon a previous study (Neishabouri et al 2021) using long short-termmemory (LSTM)networks
(Hochreiter and Schmidhuber 1997) to sequentially calculate proton pencil beamdose distributions from
relative stopping power slices in sub-second times, butwith themajor disadvantage of requiring a separate
model per beam energy. As shown infigure 1, we frame proton transport asmodeling a sequence of 2D geometry
slices in the beam’s eye view, introducing an attention-based transformer backbone (Vaswani et al 2017) that
dynamically routes information between elements of the sequence along beamdepth.We extend on our
previouswork only focusing on lung cancer (Pastor-Serrano and Perkó 2021), trainingwith a larger set of
patients and treatment sites, and evaluating performance both for individual pencil beams and full treatment
plans. The presentedDose Transformer algorithm (DoTA)—able to learn the physics of energy dependence in
proton transport via a singlemodel—can predict lownoiseMCproton pencil beamdose distributions purely
frombeamlet energy andCTdata in≈5ms. Based on our experiments and available literature data, in terms of
accuracy and overall speedDoTA significantly outperforms pencil beam algorithms and all other deep learning
approaches (e.g. LSTMmodels (Neishabouri et al 2021) and ‘denoising’networks (Wu et al 2021, Javaid et al
2021,Nomura et al 2020)), representing the current state-of-the-art in data-driven proton dose calculations and
directly competingwith (and even improving on)GPUMonteCarlo approaches.
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2.Methods andmaterials

The problemof dose calculation is common tomany steps of RTworkflow and ultimately involves estimating
the spatial distribution of physical dose from thousands of pencil beams. A generic deep learning dose engine
must be capable of calculating 3Ddose distributions for arbitrary patient geometries purely from a list of beam
directions and energies for a given beammodel, without being conditioned on the type of treatment or task
being solved. Therefore, our objective is to accurately predict dose distributions y from individual proton
beamlets in sub-second speed, given patient geometries x and beam energies ε.We introduceDoTA, a
parametricmodel that implicitly captures particle transport physics fromdata and learns the function y=
fθ(x, ε) via a series of artificial neural networkswith parametersθ.

In particular, DoTA learns amapping between a 3DCT input voxel grid Î ´ ´x L H W and output dose
distribution Î ´ ´y L H W conditioned on the energy e Î + , where L is the depth (in the direction of beam
propagation),H is the height andW is thewidth of the grid.While traditional physics-based calculation tools
process the entire geometry, we crop and interpolate theCT to the reduced sub-volume seen by protons as they
travel through the patient, with afixed 2mm× 2mm× 2mm resolution and L×H×W size. Framing proton
transport as sequencemodeling, DoTAprocesses the input volume as a series of L 2D slices in the forward beam
direction. Ideally, the exchange of information between the different elements in the sequence should be
dynamic, i.e. the contribution or impact of each 2D slice to the sequence depends on both its position and
material composition. Unlike other types of artificial neural networks, the Transformer architecture (Vaswani
et al 2017)—and specifically the self-attentionmechanism—is notably well suited for this.

Recently, Transformer-based architectures have replaced their recurrent counterparts inmany natural
language processing (Devlin et al 2019, Brown et al 2020) and computer vision tasks (Ramachandran et al 2019,
Dosovitskiy et al 2020, Touvron et al 2020,D’Ascoli et al 2021). Formodeling the sequentiality in proton
transport physics, the advantage of Transformers with respect to LSTM frameworks is two-fold. First, every
element can directly access information at any point in the sequence without requiring an internal hidden state,
which is crucial to include beam energy dependence. The routing of information—referred to as self-attention
—is different for every element, allowing each geometry slice to be independently transformed based on the
information it selectively gathers fromother slices in the sequence. Second, Transformers allowmanually
encoding themostly forward scattering nature of proton transport by restricting interaction to only previous
slices via causal attention. Transformers typically runmultiple self-attention operations in parallel (known as
attention heads), with each head focusing onmodeling separate features of the sequence.We provide a detailed
description of the fundamentals of self-attention and the Transformermodule in appendix A.

2.1.Model architecture and training
Figure 2 showsDoTA’s architecture, which first applies the same series of convolutions to each 2D slice of the
input sequence Î " =´ ´x x i L, 1 ,...,i i

H W1{ ∣ } separately. This convolutional encoder contains two blocks—
bothwith a convolution, aGroupNormalization (GN) (WuandHe 2020) and a pooling layer, followed by a
Rectified LinearUnit (ReLU) activation—which extract important features from the input, e.g.material
contrasts and tissue boundaries. After the second block, the outputs of afinal convolutionwithKfilters are
flattened into a vector of embedding dimension = ¢ ´ ¢ ´D H W K , where ¢H and ¢W are the reduced height
andwidth of the images after the pooling operations. The convolutional encoder applies the same operation to

Figure 1.Dose transformer algorithm (DoTA).Adata-drivenmodel learns amapping y = fθ(x, ε) between inputCT cubes x and
energies ε and output dose distributions y. CT and dose distribution 3D volumes are both treated as a sequence of 2D slices in the
beam’s eye view. An encoder and a decoder individually transform each 2D slice into a feature vector and vice versa, whereas a
transformer backbone routes information between different vectors along beamdepth.
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every element xi, resulting in a sequence of L vectors Î " =z z i L, 1 ,...,i i
D{ ∣ } referred to as tokens in the

remainder of the paper.
ATransformer encodermodels the interaction between tokens zi via causal self-attention, resulting in an

output sequence ¢ Îz D . Since Transformers operate on sets and by default do not account for the relative
position of the slices in the sequence, we add a learnable positional encoding Îri

D to each token zi, e.g. r1 is
always added to the token z1 from thefirst slice seen by the proton beam. The energy dependence is included via
a 0th token e= Îz W D

0 0  at the beginning of the sequence, where Î ´W D
0

1 is a learned linear projection of
the beam energy ε.We use the standard pre-LayerNormalization (LN) (Ba et al 2016)Transformer block (Xiong
et al 2020), alternating LN and residual connectionswith a self-attention operation and a feed-forward block
with two fully-connected layers, Dropout (Srivastava et al 2014) and aGaussian Error LinearUnit activation
(Hendrycks andGimpel 2016).

Finally, a convolutional decoder independently transforms every output token to a 2D slice of the same size
as the input Î " =´ ´y y i L, 1 ,...,i i

H W1{ ∣ } . The decoder’s structure is identical to that of its encoder
counterpart, but substituting the down-sampling convolution+ pooling operation in thewith an up-sampling
convolutional transpose layer.

DatasetWe trainDoTA to predict lownoiseMCdose distributions calculatedwithMCsquare (Souris et al
2016), obtained using a set of 30CT scans fromprostate, lung and head and neck (H&N) cancer patients (Aerts
et al 2014, 2015, Clark et al 2013)with 2mm isotropic grid resolution. Given that proton beams have
approximately 25 mmdiameter and travel up to 300mm through a small sub-volume of theCT, we crop blocks
Î ´ ´x 150 24 24 covering a volume of approximately 48× 48× 300mm3. From each patient CT, we

obtain≈ 2500 of such blocks—corresponding to beamlets being shot at different angles and positions—by
effectively rotating and linearly interpolating theCT scan in steps of 10° and by applying 10 mm lateral shifts.

For each block, we calculate 2 different dose distributions using 107 primary particles to ensureMCnoise
values around 0.3% and always below 0.5%, zeroing out dose values belownoise levels. Both dose distributions
correspond to a randomly sampled beam energy between 70 and 220MeV,with a 140MeV cap in lung and
H&Ngeometries given the potential to overshoot the patient. As a result, we obtain≈80,000 individual CT
block–dose distribution input–output pairs. This amount is further quadrupled by rotating theCT and dose
blocks in steps of 90° around the beamdirection axis, yielding afinal training dataset consisting of≈320 000
samples, 10%ofwhich are used as a validation set to prevent overfitting.

Our evaluation is based on an independent test set of 18 additional patients unseen during training, equally
split into prostate, H&Nand lung.Half of these patients (3 prostate, 3H&Nand 3 lung) are used to obtain 3888
test beamlet dose distributions (1386 lung, 1512H&Nand 990 prostate samples), with the other half serving to
evaluateDoTA’s performance in full plans.

Training detailsThemodel is trained end-to-end using Tensorflow (Abadi et al ), with the LAMBoptimizer
(You et al 2019) and 8 samples permini-batch, limited by themaximum internalmemory of theNvidia Tesla
T4®GPUused during our experiments.We use amean squared error loss function and a scheduled learning rate
starting at 10−3 that is halved every 4 epochs, with a restart after 28 epochs. In total, we train themodel for 56
epochs, saving theweights resulting in the lowest validationmean squared error. The best performingmodel
consists of one transformer blockwith 16 heads and 12 convolutional filters in the last encoder layer, as obtained

Figure 2.DoTA architecture.We treat the input and output 3D volumes as a sequence of 2D slices. A convolutional encoder extracts
important geometrical from each slice into a feature vector. The particle energy is added at the beginning of the resulting sequence. A
transformer encoder with causal self-attention subsequently combines information from the different elements of the sequence.
Finally, a convolutional decoder individually transforms the low-dimensional vectors into output 2Ddose slices.
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from a hyperparameter grid search evaluating the lowest validation loss across all possible combinations of
transformer layersNä {1, 2, 4}, convolutional filtersKä {8, 10, 12, 16} and attention headsNh ä {8, 12, 16}.
Given the two down-sampling pooling operations, the transformer processes tokens of dimensionD=H/
4×W/4× K, which in our casewith initial heightH= 24, widthW= 24, andK= 12 kernels results
inD= 432.

2.2.Model evaluation
Using the ground truthMCdose distributions in the test set, we compareDoTA to several data-driven dose
engines, including LSTMmodels (Neishabouri et al 2021), and deep learning frameworks using noisyMC
(Javaid et al 2021) and PBA (Wu et al 2021) doses as additional input. Since PBA is the analytical dose calculation
method commonly used in the clinic and one ofDoTA’s competitors in terms of speed and accuracy, we include
the PBAbaseline from the open-source treatment planning softwarematRad (Wieser et al 2017) (https://e0404.
github.io/matRad/).

Test set accuracymetrics In our evaluation, themainmechanism to compare predictions to ground truth
3Ddose distributions from the test set is the gamma analysis (Low et al 1998), further explained in appendix B.
To reduce the gamma evaluation to a single number per sample, we report the gammapass rate as the fraction of
passed voxels over the total number of voxels. All calculations are based on the PyMedPhys gamma evaluation
functions (available at https://docs.pymedphys.com).

Additionally, the average relative error ρ is used to explicitly compare dose differences between two beamlet
dose distributions. Given the predicted output y and the ground truth dose distribution ŷ with nv= L×H×W
voxels, the average relative error can be calculated as

r =
-

´
y y

yn

1

max
100. 1

v

L1ˆ
ˆ

( ) 

Since themodels are trained using amean squared error (MSE) cost function, we also compute the root
mean squared error (RMSE) between ground truth and predicted beamlet dose distributions, defined as

å= = -
=n

y yRMSE MSE
1

. . 2
v i

n

i i
1

2
v

( ˆ ) ( )

Finally, as an alternativemetric to the gammapass rate for comparing full dose distributions, we calculate the
relative dose error (RDE) (Nomura et al 2020) between the ground truth and predictedD95,D90,D50 andD20

values, whereDv is the dose received by v%of the tumor volume. The RDE is computed relative to the planned
doseDpr as

=
-

´
D D

D
RDE 100. 3v

v v

pr

ˆ
( )

ExperimentsAgeneric data-driven dose enginemust yield accurate predictions for both single beamlet and
full plan dose distributions. To ensureDoTA’s suitability for replacing conventional particle transport tools in
dose prediction tasks, we assess its performance in two different settings:

• Individual beamlets. First, we evaluate the speed and accuracy in predicting single beamlet doses for 9 patients
in the test set and compare gammapass rate distributions and inference times ofDoTA, the LSTMmodels and
the PBAbaseline. Given the 2mm× 2mm× 2mmgrid resolution, a gamma evaluationΓ(3mm, 1%)using a
distance-to-agreement criterion δ= 3mmensures a neighborhood search of at least one voxel, while a dose
criterionΔ= 1%disregards any uncertainty due toMCnoise. SinceDoTA’s outputs are hardly ever 0 due to
numerical inaccuracies of the last convolutional linear layer, and to disregard voxels not receiving any dose,
we exclude voxels with doses below 0.1%of themaximumdose for the gammapass rate calculations, resulting
in a strictermetric (as themany voxels with near 0 dose could artificially increase the passing rate).
Additionally, we compute the relative error ρ andRMSE between PBA/DoTApredictions andMCdose
distributions. For both ρ and the gammapass rate, we compare probability densities across all test samples.

• Full plans. A treatment planwith 2fields is obtained for the remaining 9 test set patients usingmatRad. Given
the list of beam intensities and energies in the plan, we recalculate dose distributions using PBA,MCsquare
(Souris et al 2016) andDoTA, and evaluate their performance via the gammapass rate,masking voxels
receiving a dose lower than 10%of themaximumdose. For eachfield angle in the treatment plan, we rotate
the original CT, calculate the dose from each beamlet and rotate back the entire field dose its original angle for
dose accumulation. To allow for a fair comparisonwith other data-drivenmodels—referred to as baselines B1
(Javaid et al 2021) andB2 (Wu et al 2021)—we compute three gamma evaluationsΓ(1mm, 1%),Γ(2mm, 2%)
andΓ(3mm, 3%) and compare the pass rate results to the available values in these baseline studies. Since the
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third baseline B3 (Nomura et al 2020) does not report a gammapass rate, we compare RDEswith the values
reported in the paper. Formore information about the experiments, table 1 contains a description of the
metrics and evaluation settings.

3. Results

In this section, DoTA’s performance and speed is compared to state-of-the-artmodels and clinically used
methods. The analysis is three-fold: we assess the accuracy in predicting beamlet dose distributions and full dose
distributions from treatment plans, and exploreDoTAs’ potential as a fast dose engine by evaluating its
calculation runtimes.

3.1. Individual beamlets
For each individual beamlet in the test set, DoTA’s predictions are compared toMCground truth dose
distributions using aΓ(3mm, 1%) gamma analysis. In table 2, we report the average, standard deviation,
minimumandmaximumof the distribution of gamma pass rates across test samples. By disregarding voxels
whose dose is below 0.1%of themaximumdose, our gamma evaluation approach is stricter than that of
previous state-of-the-art studies (Neishabouri et al 2021), where only voxels with a gamma value of 0—which
typically correspond to voxels not receiving any dose—are excluded from the pass rate calculation. Evenwith the
stricter setting and including energy dependence, DoTAoutperforms both the LSTMandPBAdose engines in
all aspects: the average pass rates are higher, the standard deviation is lower, and theminimum is at least 5.5%
higher. Similar results are observed for stricter gamma evaluation settings in appendix C. The left plot infigure 3
further demonstrates DoTA’s superiority, showing a gammapass rate distribution that ismore concentrated
towards higher values.We subsequently divide each beamdose distribution into 4 fragments of equal size
between the entrance and the Bragg peak, where each fragment is referred to as beam section in the remainder of
the paper. The right plot infigure 3 shows the proportion of voxels failing the gamma evaluation in each beam
section, out of the total number of failed voxels, indicating for both PBA andDoTA thatmost of the failing

Figure 3. Gammapass rate distribution. (Left)Distribution of the gammapass ratesΓ(3mm, 1%) of the test samples for the pencil
beam algorithm (PBA) and the presentedDoTAmodel. (Right)Distribution of the failed voxels along the beam,where each bin is an
equally-sized fragment (referred to as section) of the beam fromdose entrance (1st) to Bragg peak and dose falloff (4th). Each bin
shows the ratio of the number of test set voxels that fail the gamma evaluationwithin a section divided by the total number of failed
voxels.

Table 1.Overview of experiments. Summary of the experiments,metrics and baselines used to evaluate
DoTA’s accuracy. Dmax refers to themaximumdose value in a dose distribution and only voxels receiving
dose above the cutoff level are included in theΓ calculations.

Experiment Test data Metric Dose cutoff (Gy) Baseline

Individual beamlets 3888 beamlets Γ(3mm, 1%) 0 LSTM

1386 lung, 0.1%of Dmax PBA

990 prostate, Error ρ 0 PBA

1512H&N RMSE 0 PBA

Full plans 9 treatment plans Γ(1mm, 1%) 10%of Dmax PBA, B2

Γ(2mm, 2%) 10%of Dmax B1

ÎRDEv 20,50,90,95{ } Tumor doses B3
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voxels belong to the 4th section, i.e. the high dose region around the Bragg peakwhere the effect of tissue
heterogeneity ismost evident.

As an additionalmeasure ofmodel performance, table 3 shows themean and standard deviation of the
relative error ρ andRMSEbetween predictions and ground truthMCdose distributions in the test set. The
results confirmDoTA’s improvement, withmean,maximumerror and standard deviation less than half of
PBA’s. The left plot infigure 4 displays the distribution of ρ across all test samples, showing that values are
smaller and closer to 0 forDoTA. Aswith the gammapass rate, the beam is divided in 4 sections from entrance
(1st) to the Bragg peak (4th), and the average relative error per section is shown in the right plot infigure 4.
Although bothmodels show a similar trendwith errors increasing towards the beam’s end, DoTA is on average
twice better than PBA.

Finally, figure 5(b) showsDoTA’s test samplewith the lowest gammapass rate, togetherwith PBA’s
prediction of the same sample (figure 5(a)). Likewise, figures 5(d) and (c) show the predictions of theworst PBA
sample frombothmodels. In both cases, PBA results in errors as high as 80%of themaximumdose, severely
overdosing parts of the geometry, while forDoTA errors are below 20%of themaximumdose.

Figure 4. Average relative error ρdistribution. (Left)Distribution of the average relative error across the test samples for the pencil
beam algorithm (PBA) and the presentedDoTAmodel. (Right)Average relative error per beam section, where each bin is a section (4
equally-sized fragments) of the beam fromdose entrance (1st) to Bragg Peak and dose falloff (4th). Each bin shows the average of the
relative error values recordedwithin a section of the beam.

Table 3. Error of beamlet dose distributions.The reported values include themean, standard deviation (Std),
minimum (Min) andmaximum (Max) values of the relative error ρ and rootmean squared error (RMSE)
between 3888 test predictions and referenceMCdose distributions, for both the pencil beam algorithm (PBA)
frommatRad (Wieser et al 2017) andDoTA.

Model
Relative error ρ (%) RMSE (Gy)

Mean Std Min Max Mean Std Min Max

DoTA (ours) 0.126 0.109 0.025 1.258 0.083 0.041 0.024 0.277

PBA (matRad) 0.306 0.309 0.059 4.077 0.294 0.126 0.057 1.293

Table 2. Gammapass rate of beamlet dose distributions.Gamma analysis resultsΓ(3mm, 1%) for the presentedDoTA, the
pencil beam algorithm (PBA) frommatRad (Wieser et al 2017) and the LSTMmodels are listed. Gammapass rates are calculated
using all test samples, with LSTM rates directly obtained from (Neishabouri et al 2021). The reported values include themean,
standard deviation (Std), minimum (Min) andmaximum (Max) across the test set for different sites, and ‘Multi-site’ refers to
computing statistics using all sites.

Model Site Energy (MeV) Mean (%) Std (%) Min (%) Max (%)

LSTM (Neishabouri et al 2021) Lung 67.85 98.56 1.3 95.35 99.79

104.25 97.74 1.48 92.57 99.74

134.68 94.51 2.99 85.37 99.02

DoTA (ours) Lung [70, 140] 99.46 0.81 93.19 100

H&N [70, 140] 99.21 1.23 93.49 100

Prostate [70, 220] 99.51 1.46 94.06 100

DoTA (ours) Multi-site [70, 220] 99.37 1.17 93.19 100

PBA (matRad) Multi-site [70, 220] 98.68 3.14 87.53 100
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3.2. Full dose recalculation
To assess the feasibility of usingDoTA as a dose engine in real clinical settings, we recalculate full dose
distributions from treatment plans and compare them toMC reference doses via 3 different gamma analysis:Γ(1
mm, 1%),Γ(2mm, 2%) andΓ(3mm, 3%), in decreasing order of strictness. The resulting gamma pass rates for
each of the 9 test patients are shown in table 4, showing values that are consistently high and similar across
treatment sites, always at least 10%higher than PBA.We additionally compareDoTA to recently published

Figure 5.Worst performingDoTAandPBA test sample. (a)Worst performing test sample in the gamma evaluation forDoTA,with
gammapass rate of 93.19%, and (b) the pencil beam algorithm (PBA) prediction for the same sample. (d)Worst performing
prediction in the gamma evaluation across the test set for PBA,with gammapass rate of 87.53%, and (c)DoTA’s prediction of the
same sample. In descending order, all 4 subplots show: the central slice of the 3D inputCT grid, theMC ground truth dose
distribution, themodel’s prediction and the dose difference between the predicted andMCbeams.
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state-of-the-art deep learning approaches: aMC-denoisingU-net (Javaid et al 2021) (B1), and aU-net correcting
PBA (Wu et al 2021) (B2). Except for the prostate plans, DoTAoutperforms both approaches, evenwithout
requiring the additional physics-based input.

Figure 6 shows the RDEofDoTA and the B3 baseline (a convolutional neural network predicting dose
distributions fromBragg peak positionmaps). B3 results are taken directly from the paperNomura et al 2020.
Reproduced fromNomura et al 2020, © 2020 Institute of Physics and Engineering inMedicine. All rights
reserved, while DoTA values are computed using all test set dose distributions.With a significantly lower spread
and valuesmuch closer to 0%, the results further confirmDoTA’s superiority and accuracy gains.

3.3. Runtime
Apart fromhigh prediction accuracy, fast inference is critically important for clinical applications. Table 5
displays themean and standard deviation runtime taken by eachmodel to predict a single beamlet. Being
particularly well-suited forGPUs, DoTA is on average faster than LSTMandphysics-based engines, offering
more than 100 times speed-upwith respect to PBA. Additionally, although dependent on hardware, DoTA
approximates doses four orders ofmagnitude faster thanMC, providingmillisecond dose calculation times
without requiring any extra computations for real-time adaptive treatments.

Regarding full dose recalculation from treatment plans, figure 7 shows total runtimes forDoTAusing both
GPU andCPUhardware, including all steps from loadingCT and beamlet weights fromplan data files, necessary
CT rotations and interpolations, DoTAdose inference time and reverse rotations and interpolation to assign
dose on the original CT grid. Being optimized forGPU acceleration, DoTA is the fastest alternative, needing less
than 15 s to calculate full dose distributions. For the baselines in this paper, wefind that PBA runtimes oscillate
between 100 and 150 s, while B1 andB2 report needing only few seconds to correct/denoise their inputs, but

Figure 6. Relative dose errors. Error between the ground truth and predictedD95,D90,D50 andD20 for (a) the B3 baseline
(Reproduced fromNomura et al 2020. © 2020 Institute of Physics and Engineering inMedicine. All rights reserved.) and (b) the
proposedDoTAmodel, relative to planned doses. Red crosses are outliers, red lines represent themedian, and box boundaries denote
the 25th and 75th percentiles.

Table 4. Gammapass rate of planned dose distributions.Treatment plans of 9 test patients are recalculated using the presentedDoTA
model, and compared to ground truthMCdose distributions via 3 different gamma analysis:Γ(1mm, 1%),Γ(2mm, 2%) andΓ(3mm, 3%).
We additionally include theΓ(1mm, 1%) pass rate for dose distributions recalculatedwith the pencil beam algorithm (PBA) frommatRad
(Wieser et al 2017). The baseline B1 corresponds to aMC-denoisingU-net (Javaid et al 2021), while B2 is aU-net correcting PBA (Wu et al
2021), whose values are directly taken for their corresponding papers.

Site Patient Number of spots DoTA (ours) PBA B1 (Javaid et al 2021) B2 (Wu et al 2021)

Γ(1, 1%) Γ(2, 2%) Γ(3, 3%) Γ(1, 1%) Γ(2, 2%) Γ(1, 1%)
Lung 1 954 95.86 99.73 99.99 80.38 84.1 89.7±3.8

2 2245 96.31 99.72 99.98 79.83

3 1646 95.63 99.64 99.97 78.92

H&N 4 1554 95.02 99.39 99.81 68.32 76.5 92.8±2.9

5 1064 94.71 99.62 99.97 76.63

6 708 96.93 99.88 99.99 83.02

Prostate 7 1598 96.38 99.81 99.99 87.34 — 99.6±0.3

8 2281 95.78 99.82 99.99 77.12

9 1518 96.18 99.71 99.98 83.64
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must add the runtime necessary to generate their respective PBA (123–303 s inWu et al (2021)) orMC (≈10 s in
Javaid et al (2021)) input doses, as well as data transfer times between the physics engine and the deep learning
framework. Furthermore, B2 is a per beamnetwork, hence its runtime scales linearly with the number of beams,
in practicemeaning 2–4 times higher total calculation times.

4.Discussion

In this study, we present a data-driven dose engine predicting dose distributions with high accuracy. The
presentedDoTAmodel builds upon previouswork learning proton transport as sequencemodeling task via
LSTMnetworks (Neishabouri et al 2021), by introducing energy dependence and significantly improving its
performance in a varied set of treatment sites. DoTA greatly outperforms analytical physics-based PBA
algorithms in predicting dose distributions from individual proton pencil beams, achieving high accuracy even
in themost heterogeneous patient geometries, demonstrated by the 6% improvement in theminimumgamma
pass rate.Withmillisecond inference times, DoTAprovides at least a factor 100 reduction in calculation time
compared to the clinically still predominant analytical PBAs.

The drastic reduction in spot dose prediction times translates into the ability to calculate full dose
distributions in 12 s on average and less than 15 s even for the planwithmore than 2200 pencil beams, which
times include the required time for all steps from loadingCT and pencil beamweights fromplan data (≈1 s on
average), CT interpolation and beamlet geometry extraction (≈1 s), DoTAmodel andweights loading (≈2 s),

Table 5. Beamlet prediction runtime. The reported values
include themean inference time and standard deviation (Std)
taken by eachmodel to predict individual beamlet dose
distributions. Both theDoTA and LSTMmodels run onGPU
hardware, while the pencil beam algorithm (PBA) (Wieser et al
2017) andMonteCarlo (MC)dose engine useCPUswith
multiple threads. LSTM inference times are taken directly from
(Neishabouri et al 2021).

Model

Mean

(ms) Std (ms)

LSTMa(Neishabouri et al 2021) 6.0 1.5

DoTAb (ours) 5.0 4.9

PBAc (matRad) 728.3 30.9

MCc (Souris et al 2016) 43 636.9 12 291.6

a Nvidia®QuadroRTX 6000 64GbRAM.
b Debian 10 4 vCPUs—Nvidia® A100 40GbRAM.
c CentOS 7 8CPUs intel Xeon® E5-2620 16GbRAM.

Figure 7. Full dose recalculation runtime. Time needed to recalculate planned dose distributions withDoTAusing (top) aNvidia®

A100GPUor (bottom) an intel Xeon®CPU. Estimates include time for loadingCT and beamweights fromplan data, for dose
inference byDoTA and for the necessary CT and dose interpolations. Shaded areas denote the 95% confidence interval.
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dose inference byDoTA (≈7.5 s) and interpolating the final dose distribution back to the original CT grid (≈1 s).
Although publicly available deep learning frameworks are optimized forGPU architectures andmay offer an
advantagewith respect to adaptingMCandPBA toGPUhardware, we achieve this 10–15 s speed on a single
GPU card, evenwithout any optimization ofGPU settings for inference, which can reportedly yield up to 9 times
speed-ups depending on the task1.Without sacrificing accuracy, DoTA represents at least a factor 10 speed-up
with respect to PBAs and a 33% speed-up (and≈80% considering the difference inMCnoise levels)with respect
to the fastest GPUMCcompetitor we could find in the literature—clinically usedGPUMC software Raystation®

(Fracchiolla et al 2021), typically running in clusters or workstationswithmultiple GPUs andCPU cores.
Moreover, DoTAoffers a 10%–25% increase in theΓ(1mm, 1%) gammapass rate compared to PBA, andwith a
Γ(2mm, 2%) gammapass rate<99% itmatches (Wang et al 2016) or outperforms (WanChanTseung et al
2015,Qin et al 2016) the accuracy ofGPUMCapproaches. DoTA’s accuracy is also on parwith the agreement
between commercialMC engines (Raystation®) and experimentalmeasurements (Schreuder et al 2019, 2019).
While theGPU-based PBA algorithm reported in da Silva et al (2015) calculates a full distribution in 0.22 s and is
faster thanDoTA, it was tested only on a single patient showingworse accuracywith a 3% lowerΓ(2mm, 2%)
pass rate.

Ourmethod is also substantially superior to the only 3 published deep learning approaches for proton full
plan dose calculations (Javaid et al 2021,Wu et al 2021,Nomura et al 2020).We achieve 15% and 25%higherΓ(2
mm, 2%) pass rates compared to theMC-denoisingU-net of Javaid et al (2021), and 6%and 2%higherΓ(1mm,
1%) pass rates compared to the PBA correctingU-net ofWu et al (2021) in lung andH&Npatients, respectively.
With lower RDE valuesmuchmore concentrated around 0, DoTA also improves upon the dose prediction
U-net based onBragg peak positionmaps (Nomura et al 2020). DoTA shows a slight inferiority in prostate
patients, with a≈3% lowerΓ(1mm, 1%)pass rates than (Wu et al 2021). However, this direct comparison is
somewhat unfair toDoTA. In ourworkwe evaluate performance on IntensityModulated ProtonTherapy plans
with a small, 3–5 mmspot size, while inWu et al (2021)double scattering proton therapy planswere used, which
in general are less conformal and smoother, and therefore are expected to be easier to predict with data-driven
approaches.We also use afiner voxel resolution of 2mm× 2mm× 2mmcompared to the 2mm× 2mm×
2.5 mmused inWu et al (2021). Furthermore,Wu et al (2021) also reports site specificfine-tuning of their deep
learning approach, unlike ourmethod. Last,Wu et al (2021) has the further disadvantage of using per beamPBA
calculations as input, thus the reported 2–3 s dose correction times easily translate to full treatment plan
calculation times in the 5–10 min range depending on the number of beams (taking into account the>2 min
PBA run times), evenwithout accounting for the additional time for the necessary CT rotations and
interpolations.

DoTA’s accuracymay further be increased by trainingwith larger datasets, as demonstrated by the
improvement achievedwhen increasing training data from4 lung patients in our earlier work (Pastor-Serrano
and Perkó 2021) to 30 patients with varied anatomies in the current study. Using dose distributions with lower
MCnoise could further improve performance. Convincingly outperforming all recent works learning
corrections for ‘cheap’ physics-based predictions (Wu et al 2021, Javaid et al 2021) both in terms of accuracy and
speed, DoTAhas the flexibility to be used in a great variety of treatment sites and clinical settings.

ApplicationDoTA’s accuracy and speed improvements outperform existing approaches and represent a
new state-of-the-art that could benefit current RTpractice in numerous aspects. The small number of potential
geometries currently used to evaluate treatment plan robustness—whose size is limited by the speed of the dose
calculation algorithm—can be extendedwithmany additional samples, capturing amore diverse and realistic
set of inter- and intra-fraction (Pastor-Serrano and Perkó 2021) geometrical variations. DoTA’s capability to
quickly and accurately estimate fraction dose distributions based on pre-treatment daily CT images could
transformdosimetric quality assurance protocols, enabling direct comparison between the planned and
estimated doses or even online adaptation of plans (Jagt et al 2017, 2018, Albertini et al 2020).Most crucially, by
pre-computing the input volumes and updating their CT values in real time, themillisecond speed for individual
pencil beamdose calculationmakes ourmodel well suited for real-time correction during radiation delivery.

LimitationsThe current version ofDoTA is trained to predictMCground truth dose distributions from a
specificmachinewith unique settings and beamprofiles, necessitating a specificmodel permachine. Likewise,
range shifters—which are often dependent on treatment location and site—affect the dose delivered by some
spots while inserted, therebymodifying thefinal dose distribution. Both problems could in principle be
addressed by constructing amodel that takes extra shape and range shifter specifications as input in the formof
tokens at the beginning of the sequence, similar to our approach for treating the energy dependence.

DoTA is trained for a specific voxel grid resolution, requiring either an individualmodel per resolution level
or an additional interpolation step that will likely negatively interfere with the gammapass rate results, especially
for gamma evaluationsΓ(1, 1%)with a distance-to-agreement criterion lower than the voxel resolution level.

1
Discussed in the non-peer-reviewed study in https://huggingface.co/transformers/v2.10.0/benchmarks.html.
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WhileDoTA alsoworks forfiner nominal CT grids (Pastor-Serrano and Perkó 2021), an additional study testing
the dose recalculation performancewithmore patients and finer grid resolution should confirm its suitability
for direct clinical application needing such resolutions.MCnoisemay also affect the results of the gamma
evaluation, as demonstrated in previous work (Cohilis et al 2020) showing that even 1%MCnoise levels
introduce significant under-estimation in the gammapass rate. In our evaluation, we expect this detrimental
effect to be limited given our lower noise levels of 0.3% in the ground truthMCdoses (which level is considered
as reference ‘denoised’ in Cohilis et al (2020)).

One of themain problems of deep learning algorithms is their limited generalization or extrapolation
capability outside the domain of the used training dataset. In our evaluation, performed in an independent test
set of patients with varied geometries unseen during training, DoTA is clearly superior to all othermethods in all
evaluated scenarios, showing strong evidence of high level of generalization.Nevertheless, just like any deep
learning approach, DoTAmay also yield unrealistic predictions for data that vastly differs from the training data
(e.g. in the presence ofmetallic implants), contrarily toMCengines, which—when using enough particles—are
certain to provide valid results.Whether or not ‘more physics-based’PBAs performbetter thanDoTA in such
cases is less straightforward. First, PBA clearly performedworse thanDoTA in all our tests, and in particular
showedworse performance in the examples offigure 5 exhibiting high heterogeneity (figures 5(a)–(b)) and the
Bragg peak position coincidingwith a sharp change in density (figures 5(c)–(d), further highlighted on the
coronal views infigure 9 in appendix C). Second, the impact of approximations inherent to PBA approaches on
the predicted dose in cases of unusual geometries (e.g. implants) is not easy to foresee without detailed analysis.
The same holds for the error due toDoTA’s potential generalization limitations in such cases.While we do not
have direct evidence for it, physics-based approaches (even approximative ones)maymaintain a higher level of
accuracywhen going far beyond the training dataset domain. For the specific case of radiotherapy however, to a
large extent these problems could bemitigated by including geometries withmetallic implants in the training
data set and teachingDoTA to accurately predict dose distributions in such scenarios too and by limiting use to
(the vastmajority of)patients who do not have implants until such improvedmodel is available.

FutureworkBesides the possibility to include shape,machine and beam characteristics as additional input
tokens in the transformer, several extensions canwiden its spectrumof applications, such as predicting
additional quantities, e.g. particle flux, or estimating radiobiological weighted dose—potentially including
simulating evenDNAdamage—typically significantly slower than pureMCdose calculation. A clinically highly
relevant follow-up study is to include geometries withmetallic implants in the training dataset and ensuring
prediction accuracy in such challenging geometries too. Alternatively, future work adaptingDoTA to learn
photon physics would facilitate its use in conventional radiotherapy applications or provideCT/CBCT imaging
reconstruction techniqueswith the necessary speed for real-time adaptation.Most importantly, DoTAoffers
great potential to speed up dose calculation times in heavy ion treatments with particles such as carbon and
helium sharing similar,mostly forward scatter physics, whoseMCdose calculation often takemuch longer to
simulate all secondary particles generated as the beam travels through the patient.

5. Conclusion

WepresentDoTA: a generic, fast and accurate dose engine that implicitly learns proton particle transport
physics and can be applied to speed up several steps of the radiotherapyworkflow. Framing particle transport as
sequencemodeling of 2D geometry slices in the proton’s beam travel direction, we use the power of transformers
to predict individual beamlets withmillisecond speed and close toMCprecision. Our evaluation shows that
DoTAhas the right attributes to potentially replace the proton dose calculation tools currently used in the clinics
for applications that critically depend on runtime. Predicting dose distributions from single pencil beams in
milliseconds, DoTAoffers 100 times faster inference times thanwidely used PBAs, yielding close toMCaccuracy
as indicated by the very high gammapass rateΓ(3mm, 1%) of 99.37± 1.17, thus has the potential to enable next
generation online and real-time adaptive radiotherapy cancer treatments. The presentedmodel predictsMC
quality full plan dose distributionswith at least a 10% improvement in gamma pass rateΓ(1mm, 1%)with
respect to current analytical approaches and reduces dose calculation times of planned doses to less than 15 s,
representing a tool that can directly benefit current clinical practice too.
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AppendixA. Transformer and self-attention

TransformerDoTA’s backbone is the Transformer (Vaswani et al 2017), based on the self-attentionmechanism.
Though originally introduced for sequentialmodeling applications in natural language processing such as
machine translation, Transformers have recently achieved state-of-the-art performance across awide variety of
tasks, with large language (Devlin et al 2019, Brown et al 2020) or computer vision (Dosovitskiy et al 2020)
models replacing and outperforming recurrent or convolutional architectures. One of themain reasons behind
the success of attention-basedmodels is the ability tomodel interactions between a large sequence of elements
without needing an internalmemory state. In Transformers, each sequence element is transformed based on the
information it selectively gathers fromothermembers of the sequence based on its content or position. In
practice, however, the computationalmemory requirements scale quadratically with the length of the sequence,
and training such large Transformers often requires a pre-training stage with a large amount of data.

Self-attentionGiven a sequence Î ´z L D with L tokens, the self-attention (SA)mechanism (Vaswani et al
2017) is based on the interaction between a series of queries Î ´Q L Dh , keys Î ´K L Dh , and values Î ´V L Dh
of dimensionalityDh obtained through a learned linear transformation of the input tokens withweights

Î ´WQKV
D D3 h as

=Q K V zW, , . 4QKV[ ] ( )

Each token is transformer into a query, key and value vector. Intuitively, for an ith token Î ´zi
D1 , the

query Î ´qi
D1 h represents the information to be gathered fromother elements of the sequence, while the key

Î ´ki
D1 h contains token’s information to be sharedwith other sequencemembers. The token zi is then

transformed into ¢zi via a weighted sumof all values in the sequence Î ´vj
D1 h as
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where eachweight is based on a the similarity between the ith query and the other keys in the sequence,measured
as the dot product = q kwj i

T
j. The output sequence of transformed tokens Î ´z L D is the result of the SA

operation applied to all sequence elements, defined by the attentionmatrix containing all weights Î ´A L L and
the operations
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Avariant of SA calledmulti-head self-attention (MSA) runsNh parallel SA operations focusing on different
features or inter-dependencies of the data. SettingDh=D, the outputs of the different SA operations, called
heads, arefirst concatenated and then linearly projectedwith learnedweights Î ´Wh

N D Dh h as
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h h
h
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{ }

By definition, every token can attend to all previous and future tokens. Causal SA is a variant of SA applied to
sequencemodeling tasks restricting access to future information, where all elements above the diagonal in the
attentionmatrixA aremasked to 0. Additionally, since SA is invariant to the relative order of elements in the
sequence, afixed (Vaswani et al 2017) or learned (Dosovitskiy et al 2020) positional embedding Î ´r L D is
usually added or concatenated to the input tokens, where is element in the positional embedding sequence
contains unique information about its position.

Transformer encoderThe causalMSATransformer backbone inDoTA is responsible of routing
information between the geometry slices and the energy token. A learnable positional embedding r is added to
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the sequence of tokens produced by the convolutional encoder, while we add the first 0th position embedding r0
in the sequence to the energy token. The transformer encoder is formed by alternatingMSA andMulti-layer
Perceptron (MLP) layers with residual connections, and applying LayerNormalization (LN) applied before
every layer (Ba et al 2016). Therefore, the Transformer encoder blocks computes the operations

= +z z z r; , 9e[ ] ( )
= +s z zMSA LN , 10n ( ( )) ( )

¢ = +z s sMLP LN , 11n n( ( )) ( )

whereMLPdenotes a two layer feed-forward networkwithDropout (Srivastava et al 2014) andGaussian Error
LinearUnit (GELU) activations (Hendrycks andGimpel 2016).

Appendix B.Gamma analysis

The gamma analysis is based on the notion that doses delivered in neighboring voxels have similar biological
effects. Intuitively, for a set reference points—the voxel centers in the ground truth 3D volume—and their
corresponding dose values, thismethod searches for similar predicted doses within small spheres around each
point. The sphere’s radius is referred to as distance-to-agreement criterion, while the dose similarity is usually
quantified as a percentage of the reference dose, e.g. dose values are accepted similar if within 1%of the reference
dose. Each voxel with coordinates a in the reference grid is compared to points b of the predicted dose grid and
assigned a gamma value γ(a) according to

g d= G Da min , , 12
b

a b,( ) { ( )} ( )

d
d

G D =
-

+
-

D
a b y y

, , 13a b
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where yâ is the reference dose at point a, δ is the distance-to-agreement, andΔ is the dose difference criterion. A
voxel passes the gamma analysis if γ(a)< 1.

AppendixC. Additional results

Table C1 shows additional results for the accuracy of the beamlet dose predictions, using stricter gamma
evaluation settings. DoTA’s superiority over PBA is clearly demonstrated under these stricter conditions too,
with significantly highermean andminimumpassing rates, as well as smaller standard deviation values. Figure 8
displays the beam eye’s view of theworst PBA test sample (corresponding to the sample shown figure 5(d))
around the Bragg peak, showing the transition from lung tissue to air that results in an erroneous predicted dose
distribution. The coronal view infigure 9 further confirms that denser bone tissue from the ribs near the lung air
boundary is likely to exacerbate prediction errors.

Figure 8. Beam eye’s view of theworst PBAprediction.A fragment of the worst PBAprediction around the Bragg peak is shown
(between 80 and 90 cm from entrance). From left to right, the displayed 2D slices are perpendicular to the beamalong beamdepth.
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TableC1. Gammapass rate of beamlet dose distributions.Gamma analysisΓ(1mm, 1%) andΓ(2mm, 1%) for
DoTA and the pencil beam algorithm (PBA) frommatRad (Wieser et al 2017) are listed. The reported values include
themean, standard deviation (Std), minimum (Min) andmaximum (Max) across all test samples.

Model Energy (MeV) Settings Mean (%) Std (%) Min (%) Max (%)

DoTA (ours) [70, 220] Γ(1mm, 1%) 96.58 3.83 82.31 100

Γ(2mm, 1%) 98.67 2.04 89.69 100

PBA (matRad) [70, 220] Γ(1mm, 1%) 92.54 6.07 65.21 99.41

Γ(2mm, 1%) 97.20 4.27 76.49 100

Figure 9. Coronal view of theworst PBAprediction.The coronal plane view of the doseworst PBA sample is shown for (a)PBA and
(b)DoTApredictions. From top to bottom, each row corresponds to a 2millimeter step, where the column ‘Difference’ displays
absolute dose differences between predictions and the ‘Target’ ground truthMCdose distribution.
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