Delft University of Technology

Robust Output Regulation
 Optimization-Based Synthesis and Event-Triggered Implementation

Sarafraz, Mohammad Saeed; Proskurnikov, Anton V.; Tavazoei, Mohammad Saleh; Mohajerinesfahani, Peyman
DOI
10.1109/TAC.2021.3097285

Publication date
2022
Document Version
Final published version

Published in

IEEE Transactions on Automatic Control

Citation (APA)

Sarafraz, M. S., Proskurnikov, A. V., Tavazoei, M. S., \& Mohajerinesfahani, P. (2022). Robust Output Regulation: Optimization-Based Synthesis and Event-Triggered Implementation. IEEE Transactions on Automatic Control, 67(7), 3529-3536. https://doi.org/10.1109/TAC.2021.3097285

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyrigh

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Green Open Access added to TU Delft Institutional Repository
 'You share, we take care!' - Taverne project

https://www.openaccess.nI/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Robust Output Regulation: Optimization-Based Synthesis and Event-Triggered Implementation

Mohammad Saeed Sarafraz ${ }^{\bullet}$, Anton V. Proskurnikov ${ }^{\bullet}$, Senior Member, IEEE, Mohammad Saleh Tavazoei © , Member, IEEE, and Peyman Mohajerin Esfahani ©

Abstract

In this article, we investigate the problem of practical output regulation, i.e., to design a controller that brings the system output in the vicinity of a desired target value while keeping the other variables bounded. We consider uncertain systems that are possibly nonlinear and the uncertainty of their linear parts is modeled element wise through a parametric family of matrix boxes. An optimization-based design procedure is proposed that delivers a continuous-time control and estimates the maximal regulation error. We also analyze an event-triggered emulation of this controller, which can be implemented on a digital platform, along with an explicit estimate of the regulation error.

Index Terms-Event-triggered control, optimization-based synthesis, robust control, element-wise uncertainty.

I. Introduction

Output regulation of uncertain dynamic systems is a fundamental problem in the control literature that finds a wide range of real-world applications [1]. The problem has been studied in various settings depending on the system dynamics (e.g., linear [2] or nonlinear models [3]) and uncertainty nature (e.g., characterization in time [4] or frequency domains [5]). In the light of recent developments of digitalization, communication and computation limitations of the controllers' architecture have also become an important consideration, which also contributes to this variety of the setting. In particular, one of the distinct features of the controllers is the time scale under which the controller receives output measurements or updates the control efforts applied to the systems (e.g., continuous [2], periodic [6], or event-based interactions [7], [8]).

From a literature point of view, the uncertainty aspect is often the focus of robust control while the time-scale implementation of the controllers is the main theme of the event-triggered mechanism. The control synthesis tools of output regulation were first

[^0]developed in the robust control literature for the setting in which the uncertainty is characterized in the frequency domain [5], [9]. The setting of time-domain uncertainty, however, remains much less explored partly, due to the inherent provable computational difficulty [10]. Considering the current existing works briefly mentioned previously, we set the following as our main objective in this article:

> Given a nonlinear plant with element-wise time-domain uncertainty, we aim to develop a scalable computational framework, along with rigorous and explicit performance guarantees, to synthesize a robust output regulator and an event-triggered mechanism enabling its implementation on a digital platform.

A. Related Literature on Robust Control

A natural way for modeling of the uncertainty in the time domain is through the state-space representation of the dynamic systems. The stability of such systems can be cast as an optimization program, which unfortunately is often computationally intractable [11]. Conservative approximations in the form of linear matrix inequalities (LMIs) are proposed for particular subclasses of uncertainty including single ellipsoid [12] or polytopic systems with low number of vertices [2], [13], [14]. A richer modeling framework is element-wise or box uncertainty that allows to conveniently incorporate different sources of uncertainties. One approach to deal with this class of uncertainty is randomized algorithms [15]. Alternatively, one can leverage the recent developments in the robust optimization literature [16] to address the computational bottleneck. The optimization-based framework proposed in this article exploits the latter result in the context of output regulation.

B. Related Literature on Event-Triggered Control of Uncertain Systems

The second part of this study is concerned with event-triggered control, as a powerful technique to address the potential communication limitation on the measurement or actuation side. A recent approach toward event-triggered control of uncertain systems builds on an adaptive control perspective [7], [17]. The structure of an event triggering mechanism dictated by the necessity to maintain a positive dwell time between consecutive events usually makes it impossible to ensure asymptotic convergence. As such, the practical stability (i.e., convergence to a "tunable" invariant set) is aimed for. Such a notion is also adopted in other contexts like quantized control [18], and has been investigated in the presence of a common Lyapunov function [3], [4].

Focusing on uncertain linear systems, Tarbouriech et al. [12] consider norm-bounded uncertainties with continuous measurements, while the authors in [19] and [20] develop mechanism under the assumption that the system is minimum phase. Most recently, Liang and Huang [21] study the problem of output regulation together along with an event-triggering mechanism in which the robustness is guaranteed for an unstructured open uncertainty set. Concerning nonlinear
systems, the recent work [22] proposes an event-triggered mechanism under the assumption that the system is input-to-state stable. Unlike the existing literature mentioned previously in this article, we opt to introduce an event-triggering mechanism in which both monitoring the output measurement and implementing the actuation values operate on a discrete-time basis. To our best knowledge, none of the existing works considers this setting in control of uncertain nonlinear systems. The closest work in this spirit is [23], in which the class of a single-input single-output system is considered and the performance is guaranteed only for sufficiently large feedback gains and sufficiently small periodic sampled times.

C. Our Contributions

The particular emphasis of this article is on the computational aspect of the control design and the corresponding event-triggering mechanism, along with explicit performance guarantees. More specifically, the contributions of this article are summarized as follows.

1) Dynamic structure and inherent hardness: We propose a class of dynamic output controllers aiming to locate the closed-loop equilibrium in accordance with the desired regulation task (see Section III-A and Lemma III.1). We further show that from a computational viewpoint stability, analysis of the proposed controller is strongly NP-hard (see Proposition III.2).
2) Robust control under element-wise (box) uncertainties: We provide a sufficient condition along with an optimization framework to synthesize a dynamic output controller that enjoys a provable practical stability (see Theorem III.3). As a byproduct, we also show that given any fixed controller, the proposed optimization program reduces to a tractable convex optimization that can be viewed as a computational certification tool for the practical stability (see Corollary III.4).
3) Sampled-time event-triggered mechanism: We propose a unifying triggering mechanism together with easy-to-compute sufficient conditions under which the proposed output controller can be implemented through aperiodic measurements and event-based actuation (see Theorem IV.2). The proposed mechanism offers explicit computable maximal intersampling and regulation error bounds. The proposed result subsumes both the existing approaches [24], [25] as a special case (see Corollary IV. 5 and Remark IV.3).
In the rest of this article, we present a formal description of the problem along with some basic assumptions in Section II. The robust control method is developed in Section III, and the sampled-time eventtriggered mechanism is presented in Section IV. Section V presents a numerical example to validate the theoretical results.

Notation: The set of $n \times n$ symmetric matrices and the set of $n \times n$ positive-definite (semidefinite) symmetric ones are denoted by \mathbb{S}^{n} and $\mathbb{S}_{\succ 0}^{n}\left(\mathbb{S}_{\succ 0}^{n}\right)$, respectively. For two symmetric matrices A and B, we write $A \succ B$ (respectively, $A \succeq B$) if $A-B \in \mathbb{S}_{\succ 0}^{n}$ (respectively, $\mathbb{S}_{\succeq 0}^{n}$). For a square matrix A, we denote $[A]^{\dagger}=A+A^{\top}$. The symbol $\mathfrak{D i a g}\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ denotes the block diagonal matrix with blocks $A_{1}, A_{2}, \ldots, A_{n}$. For briefness in notations, the matrix $\left[\begin{array}{cc}A & B^{T} \\ B & C\end{array}\right]$ is shown by $\left[\begin{array}{cc}A & * \\ B & C\end{array}\right]$. We use e_{1}, \ldots, e_{m} to denote the standard coordinate basis of \mathbb{R}^{m}. Also, $\mathbb{1}_{m} \in \mathbb{R}^{m}$ denotes the vector whose elements are all equal to 1 .

II. Problem Statement

A. Problem Description

Consider the control system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A^{\star} x(t)+B^{\star} u(t)+k^{\star}(x(t)) \tag{1}\\
y(t)=C x(t)
\end{array}\right.
$$

where the vector $x(t) \in \mathbb{R}^{n_{x}}, u(t) \in \mathbb{R}^{n_{u}}$, and $y(t) \in \mathbb{R}^{n_{y}}$ are the state, the control, and the output vectors, respectively. The matrices A^{\star} and B^{\star} represent the linear part of the state dynamics, and the function $k^{\star}: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{x}}$ encapsulates the nonlinearity of the dynamics. Throughout this article, we assume that system (1) admits a unique solution $x(\cdot)$ for any $x(0)$. The controller to be designed in the next section has access only to the output $y(t)$. We allow the matrices A^{\star} and B^{\star} and the nonlinearity $k^{\star}: \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{x}}$ in the system (1) to be partially uncertain. Our main control objective is to stabilize (1) in the Lagrange sense (i.e., all solutions are bounded) and steer the output trajectory of (1) to an ε-neighborhood of a target value $y^{\mathrm{d}} \in \mathbb{R}^{n_{y}}$. Formally speaking, we aim to ensure that

$$
\begin{equation*}
\sup _{t \geq 0}\|x(t)\|<\infty, \quad \varlimsup_{t \rightarrow \infty}\left\|y(t)-y^{\mathrm{d}}\right\| \leq \varepsilon \quad \forall x(0) \in \mathbb{R}^{n_{x}} \tag{2}
\end{equation*}
$$

The special case of $\varepsilon=0$ corresponds to asymptotic output regulation and the relaxed condition with is known as " ε-practical output stability" [26]. Henceforth, the following assumptions are adopted.

Assumption II.1: [Uncertainty characterization] System (1) and the desired value $y^{\mathrm{d}} \in \mathbb{R}^{n_{y}}$ satisfy the following assumptions.

1) (Box uncertainty) Matrices A^{\star} and B^{\star} obey inequalities

$$
\begin{equation*}
\left|A^{\star}-A\right| \leq A_{b}, \quad\left|B^{\star}-B\right| \leq B_{b} \tag{3}
\end{equation*}
$$

where A and B are known nominal matrices, the inequalities are understood element wise, and $A_{b}=\left[a_{b_{i j}}\right]$ and $B_{b}=\left[b_{b_{i j}}\right]$ are the respective uncertainty bounds.
2) (Bounded nonlinearity) The function k^{\star} satisfies

$$
\begin{equation*}
\left\|k^{\star}\left(x_{1}\right)-k^{\star}\left(x_{2}\right)\right\| \leq k_{b} \quad \forall x_{1}, x_{2} \in \mathbb{R}^{n_{x}} \tag{4}
\end{equation*}
$$

where $k_{b} \geq 0$ is a known constant.
3) (Existence of an equilibrium) There exists a pair $\left(x^{\mathrm{d}}, u^{\mathrm{d}}\right) \in \mathbb{R}^{n_{x}} \times$ $\mathbb{R}^{n_{u}}$ such that

$$
\begin{equation*}
y^{\mathrm{d}}=C x^{\mathrm{d}} \quad \text { and } \quad A^{\star} x^{\mathrm{d}}+k^{\star}\left(x^{\mathrm{d}}\right)=-B^{\star} u^{\mathrm{d}} \tag{5}
\end{equation*}
$$

Assumption II.1(ii) holds if and only if the nonlinearity of the dynamics is globally bounded. If $\left\|k^{\star}(x)\right\| \leq C$, then (4) holds with $k_{b}=2 C$. However, this estimate of k_{b} may be too conservative, e.g., if k^{\star} is an uncertain constant, one can actually choose $k_{b}=0$. The "incremental" condition (4) thus provides more flexbility. There are several classes of nonlinear dynamics for which the bound (4) is available: (i) Pendulum-like nonlinearity that represents periodicity of the dynamics such as phase-locked loops [27], [28], or swing equations in power systems [29]. (ii) Nonlinearity presented due to an underlying neural network architecture [30] or a lookup table [31].

Such nonlinearities may or may not be fully known, but regardless of this knowledge, it is often too complicated to be utilized in control synthesis algorithms. Furthermore, we emphasize that the bound k_{b} will not be required for control design and is only used in the final performance bounds.

Assumption II.1(iii) involves $\left(n_{y}+n_{x}\right)$ algebraic constraints with $\left(n_{x}+n_{u}\right)$ variables. Therefore, we typically expect that such equations have a solution $\left(x^{\mathrm{d}}, u^{\mathrm{d}}\right)$ when $n_{u} \geq n_{y}$, i.e., the number of control variables is not less than the number of outputs. When the dynamic system (1) is linear (i.e., k^{*} is constant), these equations reduce to a set of linear constraints, and that a sufficient condition for Assumption II.1(iii) is the matrix $\left[\begin{array}{cc}C & 0 \\ A^{\star} & B^{\star}\end{array}\right]$ of full column rank.

Problem II.2: Consider the system (1) under Assumption II.1, and let $y^{\mathrm{d}} \in \mathbb{R}^{n_{y}}$ and $\varepsilon \geq 0$ be a desired target and regulation precision, respectively.

1) Control synthesis: Synthesize an output control $y_{[0, t]} \mapsto u(t),{ }^{1} t \geq$ 0 , in order to ensure the ε-practical output regulation in the sense of (2).

[^1]2) Sampled-time event-based emulation: Given a prescribed series of measurement sampled times, design a triggering mechanism to update the control along with a guaranteed precision of the desired output regulation (2).
We start with designing a continuous-time controller (see Section III) whose sampled-time redesign, or emulation, is considered in Section IV. Note that the viability of the sampled-time emulation reflects a certain robustness level of the continuous-time controller.

III. Continuous-Time Control Design

The main focus of this section is Problem II.2(i). We first find a structure of the controller ensuring that the closed-loop system has an equilibrium $\left(x^{\mathrm{d}}, u^{\mathrm{d}}\right)$ such that $y^{\mathrm{d}}=C x^{\mathrm{d}}$, and then, provide sufficient conditions guaranteeing that this equilibrium is globally asymptotically stable. The existence of an equilibrium is natural, if one is interested in the ε-practical stability (2) with an arbitrarily small ε.

A possible control architecture, and perhaps the simplest form, is the static controller $u(t)=D_{c} y(t)+\eta$, where $D_{c} \in \mathbb{R}^{n_{u} \times n_{y}}$ and $\eta \in$ $\mathbb{R}^{n_{u}}$ are the control synthesis parameters. Unfortunately, to provide the existence of an equilibrium from Assumption II.1(iii), the parameter $\eta=u^{\mathrm{d}}-D_{c} y^{\mathrm{d}}$ should depend on u^{d}, which, in turn, depends on the uncertain matrices A^{\star} and B^{\star} and function k^{\star}. For this reason, we propose a dynamic controller, being a multidimensional counterpart of the classical proportional-integral control.

A. Dynamic Control and Equilibrium Existence

Consider now a more general dynamic controller

$$
\begin{align*}
\dot{w}(t) & =A_{c} w(t)+B_{c} y(t)+\xi \\
u(t) & =C_{c} w(t)+D_{c} y(t)+\eta \tag{6}
\end{align*}
$$

where matrices $A_{c}, C_{c} \in \mathbb{R}^{n_{u} \times n_{u}}, B_{c}, D_{c} \in \mathbb{R}^{n_{u} \times n_{y}}$, and $\xi, \eta \in$ $\mathbb{R}^{n_{u}}$ are the design parameters. These additional parameters in (6) enable one to make the equilibrium $\left(x^{*}, w^{*}\right)$ of the closed-loop system (1) and (6) compatible with the target value y^{d} in spite of the parametric uncertainty (3).

Lemma III. 1 (Closed-loop equilibrium): If Assumption II.1(iii) holds, the matrix C_{c} has full column rank, and the controller parameters are such that

$$
\begin{equation*}
A_{c}=0 \text { and } \xi=-B_{c} y^{\mathrm{d}} \tag{7}
\end{equation*}
$$

then the closed-loop system (1) and (6) has an equilibrium $\left(x^{\mathrm{d}}, w^{\mathrm{d}}\right)$, where x^{d} is introduced in Assumption II.1(iii).

Proof: Since the matrix C_{c} has full column rank, there exists $w^{\mathrm{d}} \in$ $\mathbb{R}^{n_{u}}$ such that $C_{c} w^{\mathrm{d}}+D_{c} y^{\mathrm{d}}+\eta=u^{\mathrm{d}}$, where u^{d} is given by (5). In view of Assumption II.1(iii) and (7), the point $\left(x^{d}, w^{d}\right) \in \mathbb{R}^{n_{x}+n_{u}}$ obeys the algebraic equations

$$
\left\{\begin{array}{c}
A^{\star} x^{\mathrm{d}}+B^{\star}\left(C_{c} w^{\mathrm{d}}+D_{c} C x^{\mathrm{d}}+\eta\right)+k^{\star}\left(x^{\mathrm{d}}\right)=0 \tag{8}\\
A_{c} w^{\mathrm{d}}+B_{c} C x^{\mathrm{d}}+\xi=B_{c}\left(y^{\mathrm{d}}-C x^{\mathrm{d}}\right)=0
\end{array}\right.
$$

Hence, it is an equilibrium for the closed-loop system.
Notice that the controller's parameters B_{c}, D_{c}, and η do not influence the existence of an equilibrium compatible with the desired output y^{d}. While B_{c} and D_{c} may influence the stability of the transient behavior of the closed-loop system, the vector η does not affect the stability and only determines w^{d}. Hence, without loss of generality, we set $\eta=-D_{c} y^{\mathrm{d}}$. Combining this with (7) and the controller (6) shapes into

$$
\left\{\begin{array}{c}
\dot{w}(t)=B_{c}\left(y(t)-y^{\mathrm{d}}\right) \tag{9}\\
u(t)=C_{c} w(t)+D_{c}\left(y(t)-y^{\mathrm{d}}\right) .
\end{array}\right.
$$

Note that the dynamic controller (9) may be considered as a (multidimensional) extension of the conventional proportional-integral controller.

B. Closed-Loop Stability of Transient Behavior

The goal of this section is to design the controller parameters B_{c}, C_{c}, and D_{c} such that the equilibrium from Lemma III. 1 is (practically)
stable. To this end, we introduce the augmented state vector of the closed-loop system as

$$
z(t):=\left[\begin{array}{c}
x(t)-x^{\mathrm{d}} \tag{10}\\
w(t)-w^{\mathrm{d}}
\end{array}\right]
$$

Based on the system dynamics in (1) together with the controller (9), it is obtained that

$$
\begin{array}{r}
\dot{z}=\left[\bar{A}+J^{\top} \Delta A J+\left(\bar{B}+J^{\top} \Delta B J\right) F \bar{C}\right] z \\
+J^{\top}\left(k^{\star}\left(J^{\top} z\right)-k^{\star}\left(x^{\star}\right)\right) \tag{11}
\end{array}
$$

where $\Delta A=A^{\star}-A$ and $\Delta B=B^{\star}-B$ represent the uncertainty in the linear part of the system dynamics, and matrices $\bar{A}, \bar{B}, \bar{C}, F$, and J are defined as follows:

$$
\begin{gather*}
\bar{A}:=\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right], \bar{B}:=\left[\begin{array}{cc}
B & 0 \\
0 & I
\end{array}\right] \\
\bar{C}:=\left[\begin{array}{cc}
C & 0 \\
0 & I
\end{array}\right], J:=\left[\begin{array}{ll}
I_{n_{x}} & 0_{n_{x} \times n_{u}}
\end{array}\right], F:=\left[\begin{array}{cc}
D_{c} & C_{c} \\
B_{c} & 0
\end{array}\right] . \tag{12}
\end{gather*}
$$

It should be noted that the matrix F collects all the design variables of the controller. The goal of the controller design is to guarantee the (practical) stability of the system (11) for all uncertainties $\Delta A, \Delta B$, and $k^{\star}(\cdot)$ that meet Assumption II.1. Unfortunately, it turns out that the exact characterization of such an F is provably intractable. In fact, checking the stability of the system (11) for a given F is also a difficult problem. This is formalized in the Proposition III.2.

Proposition III. 2 (Intractability): Consider the system (1) under Assumption II.1, and let the control signal follow the dynamics (9). Then, for a given set of the control parameters (i.e., matrix F in (12)), the problem of checking whether the output target stability (2) holds for some $\varepsilon \geq 0$ is strongly NP hard and equivalent to

$$
\begin{align*}
& \forall \Delta A, \Delta B:|\Delta A| \leq A_{b},|\Delta B| \leq B_{b} \quad \exists P \in S_{\succ 0}^{n_{x}+n_{u}}: \\
& {\left[P\left(\bar{A}+J^{\top} \Delta A J+\left(\bar{B}+J^{\top} \Delta B J\right) F \bar{C}\right)\right]^{\dagger} \preceq 0 .} \tag{13}
\end{align*}
$$

Proof: Recall that the nonlinear term in the dynamics (11) is uniformly bounded due to Assumption II.1(ii). Therefore, thanks to the classical result of [32, Theorem 9.1], the stability of the system (11) is equivalent to the stability of the linear part described as

$$
\begin{equation*}
\dot{z}=\left[\bar{A}+J^{\top} \Delta A J+\left(\bar{B}+J^{\top} \Delta B J\right) F \bar{C}\right] z \tag{14}
\end{equation*}
$$

From the classical linear system theory, we know that the stability of (14) is equivalent to the existence of a quadratic Lyapunov function $V(z)=z^{\top} P z$, where the symmetric positive definite matrix P may in general depend on the uncertainty in the dynamics. This assertion can be mathematically translated to checking whether the given controller parameter F satisfies (13). Note that the order of the quantifies implies that the matrix P may depend on the uncertain parameters ΔA and ΔB. The assertion (13) is indeed a special case of the problem of an interval matrix's stability [10], which is proven to be strongly NP-hard [33, Corollary 2.6].

A useful technique to deal with the assertion similar to (13) is to choose a so-called common Lyapunov function [34]. Namely, we aim to find a positive-definite matrix P for all possible model parameters, i.e., the assertion (13) is replaced with a more conservative requirement as follows:

$$
\begin{align*}
& \exists P \in S_{\succ 0}^{n_{x}+n_{u}} \quad \forall \Delta A, \Delta B:|\Delta A| \leq A_{b},|\Delta B| \leq B_{b} \\
& {\left[P\left(\bar{A}+J^{\top} \Delta A J+\left(\bar{B}+J^{\top} \Delta B J\right) F \bar{C}\right)\right]^{\dagger} \preceq 0} \tag{15}
\end{align*}
$$

Note that the only difference between (13) and the conservative assertion in (15) is the order of quantifiers between the Lyapunov matrix P and the linear dynamics uncertainties ΔA and ΔB. The argument (15) is a special subclass of problems known as the "matrix cube problems" [35]. While this class of problems is also provably hard [35, Proposition 4.1], the state-of-the-art in the convex optimization literature offers an attractive sufficient condition where the resulting conservatism is bounded independently of the size of the problem [16]. Building on these developments, we will provide an
optimization framework to design the controller parameters along with a corresponding common Lyapunov function.

Theorem III. 3 (Robust control and common Lyapunov function): Consider the system (1), satisfying Assumption II.1, and the controller (9). Also, consider the optimization program

$$
\begin{align*}
& \left(\begin{array}{ll}
\max & \alpha \zeta^{-1} \\
\text { s.t. } & \alpha \in \mathbb{R}, \quad \zeta, \kappa_{i j}, \mu_{i k} \in \mathbb{R}_{>0}
\end{array}\right. \\
& P \in \mathbb{S}_{\succ 0}^{n_{x}+n_{u}}, C_{c} \in \mathbb{R}^{n_{u} \times n_{u}}, B_{c}, D_{c} \in \mathbb{R}^{n_{u} \times n_{y}} \\
& F=\left[\begin{array}{cc}
D_{c} & C_{c} \\
B_{c} & 0
\end{array}\right], M=[P \bar{A}+P \bar{B} F \bar{C}]^{\dagger}+\alpha I \\
& G_{1}=\mathfrak{D i a g}\left\{-\kappa_{i j} a_{b_{i j}}^{-2}\right\}_{i, j}, G_{2}=\mathfrak{D i a g}\left\{-\mu_{i k} b_{b_{i k}}^{-2}\right\}_{i, k} \\
& G_{3}=\mathfrak{D i a g}\left\{-\mu_{i k}^{-1}\right\}_{i, k}, H_{1}=P J^{\top}\left(\mathbb{1}_{n_{x}} \otimes I_{n_{x}}\right) \\
& H_{2}=\bar{C}^{\top} F^{\top} J^{\top}\left[\mathbb{1}_{n_{u}} \otimes e_{1} \quad \ldots \quad \mathbb{1}_{n_{u}} \otimes e_{n_{x}}\right] \\
& {\left[\begin{array}{ccccc}
M+\sum_{i, j} \kappa_{i j} J^{\top} e_{j}^{\top} e_{j} J & * & * & * & * \\
H_{1}^{\top} & G_{1} & * & * & * \\
H_{1}^{\top} & 0 & G_{2} & * & * \\
H_{2}^{\top} & 0 & 0 & G_{3} & * \\
J P & 0 & 0 & 0 & -\zeta I,
\end{array}\right] \preceq 0} \tag{16}
\end{align*}
$$

where α_{*}, ζ_{*}, and P_{*} denote the optimal solutions of corresponding decision variables. If $\alpha_{*}>0$, then the controller provides ε_{c}-practical output regulation (2), where

$$
\begin{equation*}
\varepsilon_{\mathrm{c}}=k_{b}\|\bar{C}\| \sqrt{\frac{\lambda_{\max }\left(P_{*}\right)}{\alpha_{*} \zeta_{*}^{-1} \lambda_{\min }\left(P_{*}\right)}} \tag{17}
\end{equation*}
$$

In particular, if $k_{b}=0$ (i.e., the nonlinear term vanishes to a constant) and $\alpha_{*}>0$, then the closed-loop system is exponentially stable and $\lim _{t \rightarrow \infty} y(t)=y^{\mathrm{d}}$.

Proof: Consider a quadratic Lyapunov function $V(z)=z^{\top} P z$. The time derivative of V along the trajectories of (11) is

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} V(z)= & z^{\top} P(\bar{A}+\bar{B} F \bar{C}) z \\
& +z^{\top} P\left(J^{\top} \Delta A J+J^{\top} \Delta B J F \bar{C}\right) z \\
& +z^{\top} P J^{\top}\left(k^{\star}\left(J^{\top} z\right)-k^{\star}\left(x^{\star}\right)\right)
\end{aligned}
$$

where the last term involving the nonlinear term can be estimated by invoking the Young's inequality as follows.

$$
\begin{gathered}
2 z^{\top} P J^{\top}\left(k^{\star}\left(J^{\top} z\right)-k^{\star}\left(x^{\star}\right)\right) \leq \zeta^{-1} z^{\top} P J^{\top} J P z+ \\
\left.+\zeta \| k^{\star}\left(J^{\top} z\right)-k^{\star}\left(x^{\star}\right)\right) \|^{2} \leq \zeta^{-1} z^{\top} P J^{\top} J P z+\zeta k_{b}^{2}
\end{gathered}
$$

Notice that the parameter $\zeta \in \mathbb{R}_{>0}$ is a positive scalar, and the last inequality is an immediate consequence of (4). In the light of the latter estimate, one can observe that if the inequality

$$
\begin{align*}
{\left[P(\bar{A}+\bar{B} F \bar{C})+P\left(J^{\top} \Delta A J+\right.\right.} & \left.J^{\top} \Delta B J F \bar{C}\right) \\
& \left.+\frac{\zeta^{-1}}{2} P J^{\top} J P\right]^{\dagger} \preceq-\alpha I \tag{18}
\end{align*}
$$

holds for some $\alpha \in \mathbb{R}_{>0}$, then the dynamics of the Lyapunov function value along with system trajectories satisfy

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} V(z) \leq-\alpha\|z\|^{2}+\zeta k_{b}^{2} \leq \frac{-\alpha}{\lambda_{\max }\left(P_{*}\right)} V(z)+\zeta k_{b}^{2} \tag{19}
\end{equation*}
$$

The aforementioned observation implies that $\lim \sup _{t \rightarrow \infty} V(z(t)) \leq$ $\lambda_{\max }\left(P_{*}\right) \zeta k_{b}^{2} / \alpha$, which together with the simple bound $\lambda_{\min }\left(P_{*}\right)\|z\|^{2} \leq V(z)$, leads to

$$
\begin{aligned}
\limsup _{t \rightarrow \infty}\left\|y(t)-y^{\mathrm{d}}\right\| & \leq \limsup _{t \rightarrow \infty}\|\bar{C}\|\|z(t)\| \\
& \leq \limsup _{t \rightarrow \infty}\|\bar{C}\| \sqrt{\frac{V(z(t))}{\lambda_{\min }\left(P_{*}\right)}} \leq \varepsilon_{\mathrm{c}}
\end{aligned}
$$

where ε_{c} is defined as in (17). Hence, the aforementioned observation indicates that under the requirement (18) for some $\alpha>0$, the desired assertion holds. Next, we aim to replace the robust inequality (18) by a more conservative criterion, which in turn can be verified efficiently. This procedure consists of several steps. Introducing the variable $M:=$ $[P \bar{A}+P \bar{B} F \bar{C}]^{\dagger}+\alpha I$, the inequality (18) is rewritten as

$$
\begin{align*}
& -M-\zeta^{-1} P J^{\top} J P+\left[P J^{\top} \sum_{i=1}^{n_{x}}\left(\sum_{j=1}^{n_{x}}\left(\delta a_{i j}\right) e_{i}^{\top} e_{j}\right) J\right. \\
& \left.+P J^{\top} \sum_{i=1}^{n_{x}}\left(\sum_{k=1}^{n_{u}}\left(\delta b_{i k}\right) e_{i}^{\top} e_{k}\right) J F \bar{C}\right]^{\dagger} \succeq 0 \tag{20}
\end{align*}
$$

where the uncertainty parameters are described element wise as $\Delta A=$ [$\left.\delta a_{i j}\right]$ and $\Delta B=\left[\delta b_{i j}\right]$. Recall that the condition (20) has to hold for all uncertain parameters, i.e., it is a robust constraint. Thanks to [16, Theorem 3.1], the constraint (20) holds if there exist parameters $D_{i j}$, $E_{i k}, \lambda_{i j}, \gamma_{i k}$, where $i, j \in\left\{1, \ldots, n_{x}\right\}$ and $k \in\left\{1, \ldots, n_{u}\right\}$, such that

$$
\begin{gather*}
{\left[\begin{array}{cc}
D_{i j}-\lambda_{i j} a_{b_{i j}}^{2} z^{\top} P J^{\top} e_{i}^{\top} e_{i} J P z & * \\
e_{j} J z & \lambda_{i j} I
\end{array}\right] \succeq 0} \tag{21}\\
{\left[\begin{array}{cc}
E_{i k}-\gamma_{i k} b_{b_{i k}}^{2} z^{\top} P J^{\top} e_{i}^{\top} e_{i} J P z & * \\
e_{k} J F \bar{C} z & \gamma_{i k} I
\end{array}\right] \succeq 0} \\
-z^{\top}\left(M+\zeta^{-1} P J^{\top} J P\right) z \geq \sum_{i, j} D_{i j}+\sum_{i, k} E_{i k}
\end{gather*}
$$

By deploying the standard Schur complement in the first two inequalities of (21), we arrive at

$$
\begin{align*}
& \lambda_{i j}, \gamma_{i k}>0 \\
& \begin{aligned}
& D_{i j}-\lambda_{i j} a_{b_{i j}}^{2} z^{\top} P J^{\top} e_{i}^{\top} e_{i} J P z \\
& \quad-\lambda_{i j}^{-1} z^{\top} J^{\top} e_{j}^{\top} e_{j} J z \geq 0 \\
& E_{i k}-\gamma_{i k} b_{b_{i j}}^{2} z^{\top} P J^{\top} e_{i}^{\top} e_{i} J P z \quad-\gamma_{i k}^{-1} z^{\top} \bar{C}^{\top} F^{\top} J^{\top} e_{k}^{\top} e_{k} J F \bar{C} z \geq 0 \\
&-z^{\top}\left(M+\zeta^{-1} P J^{\top} J P\right) z \geq \sum_{i, j} D_{i j}+\sum_{i, k} E_{i k}
\end{aligned}
\end{align*}
$$

Eliminating $\left\{D_{i j}\right\}_{i, j}$ and $\left\{E_{i k}\right\}_{i, k}$ and doing some straightforward computations, the aforementioned inequalities reduces to

$$
\begin{align*}
& \lambda_{i j}, \gamma_{i k}>0 \\
& M+\zeta^{-1} P J^{\top} J P+\sum_{i, j} \kappa_{i j} J^{\top} e_{j}^{\top} e_{j} J \\
& \quad-H_{1} G_{1}^{-1} H_{1}^{\top}-H_{1} G_{2}^{-1} H_{1}^{\top}-H_{2} G_{3}^{-1} H_{2}^{\top} \preceq 0 \tag{23}
\end{align*}
$$

where the matrices $G_{1}, G_{2}, G_{3}, H_{1}$, and H_{2} are defined as in (16). The proof is then concluded by applying yet again the Schur complement to the inequality (23) and replace the variables $\kappa_{i j}=\lambda_{i j}^{-1}$ and $\mu_{i k}=\gamma_{i k}^{-1}$. We note that since $\zeta>0$, then $\alpha \geq 0$ if and only the objective function $\alpha \zeta^{-1} \geq 0$.

Therefore, the explicit positivity constraint over the variable α can be discarded without any impact on the assertion of the theorem. In fact, the elimination of this constraint allows the program (16) being always feasible. Finally, we also note that the second part of the assertion is a straightforward consequence of the bound (17) and the fact that asymptotic stability and exponential stability in linear system coincide.

The optimization program (16) in Theorem III. 3 is, in general, nonconvex. We however highlight the following two important features of this program.

1) It is a tool enabling codesign of a controller and a Lyapunov function for the closed-loop system.
2) When the control parameters are fixed, the resulting program reduces to an LMI, which is amenable to the off-the-shelves convex optimization solvers as shown by the following corollary.

Corollary III. 4 (Controller certification via convex optimization): Consider system (1) satisfying Assumption II. 1 that is closed through the feedback (9) with some fixed coefficients (12). Consider the optimization program

$$
\left\{\begin{align*}
\max & \alpha \zeta^{-1} \tag{24}\\
\text { s.t. } & \alpha \in \mathbb{R}, \zeta, \kappa_{i j}, \mu_{i k} \in \mathbb{R}_{>0}, P \in \mathbb{S}_{\succ 0}^{n_{x}+n_{u}} \\
& M^{\prime}=M+\sum_{i, j} \kappa_{i j} J^{\top} e_{j}^{\top} e_{j} J-H_{2} G_{3}^{-1} H_{2}^{\top} \\
& {\left[\begin{array}{cccc}
M^{\prime} & * & * & * \\
H_{1}^{\top} & G_{1} & * & * \\
H_{1}^{\top} & 0 & G_{2} & * \\
J P & 0 & 0 & -\zeta I
\end{array}\right] \preceq 0 }
\end{align*}\right.
$$

where the matrices $C, F, G_{1}, G_{2}, G_{3}, H_{1}$, and H_{2} are defined on the basis of the system and control parameters. ${ }^{2}$ Let α_{*}, ζ_{*}, and P_{*} denote an optimizer of the program (24). Then, if $\alpha_{*}>0$, then the output target control (2) is fulfilled for all $\varepsilon \geq \varepsilon_{\mathrm{c}}$ as defined in (24). Moreover, if $\alpha_{*} \leq 0$, then there exist matrices A^{\star} and B^{\star} such that

$$
\left|A^{\star}-A\right| \leq \frac{\pi}{2} A_{b}, \quad\left|B^{\star}-B\right| \leq \frac{\pi}{2} B_{b}
$$

and the closed-loop system is unstable.
Proof: Considering the optimization program (16) with fixed matrix F, the matrix H_{2} is also fixed. The first statement is obtained by applying the standard Schur complement as in (23). The second statement follows from [16, Theorem 3.1] stating that the convex characterization of (15) [i.e., the step from (20) to (21)] is tight up to multiplier $\pi / 2$.

We close this section by a remark on the different sources of conservatism in the proposed approach. It is needless to say that any numerical progress at the frontier of each of these sources will lead to an improvement of the solution method in this article.

Remark III. 5 (Conservatism of the proposed approach): The path from the output target control (2) to the numerical solution of the optimization program (16) constitutes the following three steps that are only sufficient conditions and may contribute to the level of conservatism:
(i) to restrict to a common Lyapunov function, i.e., the transition from (13) to (15);
(ii) to apply the state-of-the-art matrix cube problem from (20) to (21);
(iii) to numerically solve the finite, but possibly nonconvex, optimization program (16).
As detailed in Corollary III.4, the conservatism introduced by step (ii) is actually tight up to a constant independently of the dimension of the problem. With regards to the nonconvexity issue raised in step (iii), we refer interested readers to [Section $\mathrm{V}, 39$] where a tailored algorithm is proposed to deal with the bilinearity of the program in Theorem III. 3.

iV. Aperiodic Event-Triggered Robust Control

In this section, we address Problem II.2(ii) aiming to synthesize a sampled-time counterpart of the controller, which can access the system output $y(\cdot)$ only at sampled instants $\left\{t_{s}\right\}_{s \in \mathbb{N}}$. The sequence t_{s} is predefined by, for instance, an external message scheduler. Throughout this study, we require that $t_{s}<t_{s+1}$ and t_{s} tends to infinity when s increases. The latter is a sufficient condition to ensure a "Zeno-free" control design, a necessary requirement to avoid possible infinite switches in a finite-time period. We note that the intersampling intervals $t_{s+1}-t_{s}$ need not be constant, i.e., we allow an arbitrary aperiodic time sampling. The continuous-time controller (9) is then naturally replaced by its sampled-time emulation where the output signal $y(t)$ fed to (9) within each interval $\left[t_{s}, t_{s+1}\right)$ is replaced by its latest measurement $y\left(t_{s}\right)$

$$
\begin{equation*}
w(t)=w\left(t_{s}\right)+\left(t-t_{s}\right) B_{c}\left(y\left(t_{s}\right)-y^{\mathrm{d}}\right), t \in\left[t_{s}, t_{s+1}\right) . \tag{25}
\end{equation*}
$$

[^2]```
Algorithm 1: Aperiodic Event-Triggered Control (AETC).
 1: Initialization: Consider sample instants \(\left\{t_{s}\right\}_{s \in \mathbb{N}}\), initial
 measurement \(y_{0}\), and initial control state \(w_{0}=0\). Set \(j=0\),
 compute \(u_{0}\) from (26), and send it to the system (1).
 2: Upon receiving \(y\left(t_{s}\right)\), find \(w\left(t_{s}\right)\) from (25)
 - If (27) holds, then set \(j \leftarrow s\), compute \(u\left(t_{j}\right)=u\left(t_{s}\right)\)
 from (26) and send it to the system (1);
 - otherwise, keep \(u\left(t_{s}\right)=u\left(t_{j}\right)\) for \(t \in\left[t_{s}, t_{s+1}\right)\), i.e.,
 nothing is required to be communicated to (1).
 5: Set \(s \leftarrow s+1\) and go to step 2 .
```

On the actuation side, the simplest scenario is to compute the new control input upon receiving measurement $y\left(t_{s}\right)$, which remains constant till the next measurement $y\left(t_{s+1}\right)$ arrives

$$
\begin{equation*}
u(t)=C_{c} w\left(t_{s}\right)+D_{c}\left(y\left(t_{s}\right)-y^{\mathrm{d}}\right), \quad t \in\left[t_{s}, t_{s+1}\right) \tag{26}
\end{equation*}
$$

Note that $u(t)$ takes a constant value within the time interval $t \in$ $\left[t_{s}, t_{s+1}\right)$. More generally, one may consider an event-triggered strategy: Upon arrival of the new measurement $y\left(t_{s}\right)$, the control input is updated only if a triggering condition is fulfilled. This criteria may reflect how far the plant's output or the controller's state have visibly changed since the last time that the control signal was updated.

Formally, assume that the control input has been updated for the last time at $t=t_{j}$. Upon the arrival of the new measurement $y\left(t_{s}\right)$, where $t_{s}>t_{j}$, the triggering condition is validated that involves the vector $v\left(t_{j}, t_{s}\right):=\left[w\left(t_{j}\right)^{\top}, y\left(t_{j}\right)^{\top}, w\left(t_{s}\right)^{\top}, y\left(t_{s}\right)^{\top}\right]^{\top}$.

Inspired by [25], we consider a triggering condition as follows:

$$
\left[\begin{array}{c}
v\left(t_{j}, t_{s}\right)  \tag{27}\\
1
\end{array}\right]^{\top} \mathcal{Q}\left[\begin{array}{c}
v\left(t_{j}, t_{s}\right) \\
1
\end{array}\right] \geq 0
$$

The condition (27) is slightly more generalized than the one proposed in [25] in a way that it also supports constant thresholds. Note that the information vector $v\left(t_{j}, t_{s}\right)$ is augmented by a constant 1 . If (27) holds, the control input is updated: we set $j=s$ and find $u\left(t_{j}\right)=u\left(t_{s}\right)$ from (26). In the case that (27) does not hold, the control input remains unchanged till at least time $t_{s+1}$. This procedure is summarized in Algorithm 1.

Remark IV. 1 (Special triggering mechanisms): If in (27) $\mathcal{Q}=0$, the control strategy reduces to the usual aperiodic sampled-time (or digital) control. As pointed out in [25], the quadratic form (27) subsumes the relative event-triggered mechanism [24]. The mechanism (27) includes the absolute event-triggered mechanism [36] and mixed event-triggered mechanism [37] as its special cases. More specifically, when

$$
\mathcal{Q}=\widetilde{\mathcal{Q}}\left(q_{0}, q_{1}\right):=\left[\begin{array}{ccccc}
I & * & * & * & *  \tag{28}\\
0 & I & * & * & * \\
-I & 0 & I-q_{1} I & * & * \\
0 & -I & 0 & I-q_{1} I & * \\
0 & 0 & 0 & 0 & -q_{0}
\end{array}\right]
$$

the triggering mechanism (27) is translated into the condition

$$
\left\|\left[\begin{array}{c}
w\left(t_{s}\right)-w\left(t_{j}\right)  \tag{29}\\
y\left(t_{s}\right)-y\left(t_{j}\right)
\end{array}\right]\right\|^{2} \geq q_{0}+q_{1}\left\|\left[\begin{array}{c}
w\left(t_{s}\right) \\
y\left(t_{s}\right)
\end{array}\right]\right\|^{2}
$$

In summary, the aperiodic event-triggered control (AETC) mechanism introduced previously entails two key components: the time instants $\left\{t_{s}\right\}_{s \in \mathbb{N}}$, and the triggering mechanism (27) characterized by the matrix $\mathcal{Q}$. By definition, we know that $t_{s} \rightarrow \infty$, and as such, all solutions of the closed-loop system are forward complete, i.e., no Zeno trajectories may exist. In the rest of this section, we analyze the sampled-time event-triggered emulation of the dynamic controller from Section III and provide sufficient conditions ensuring (2).

Let us fix the controller parameters to a feasible solution $\left(B_{c_{*}}, C_{c_{*}}, D_{c *}\right)$ of the optimization program (16) along with the Lyapunov matrix $P_{*}$. For the brevity of the exposition, we also introduce
the following notation:

$$
\begin{align*}
\hat{F}_{*} & :=\left[\begin{array}{cc}
D_{c} * & C_{c} * \\
0 & 0
\end{array}\right], \quad \beta:=\left\|P_{*}\right\|\left\|B_{c} * \bar{C}\right\| \\
\varrho_{B} & :=\left(\|\bar{B}\|+\left\|B_{b}\right\|\right)^{2}\left\|\hat{F}_{*}\right\|^{2} \\
\varrho_{A B} & :=\varrho_{B}\|\bar{C}\|^{2}+\left(\|\bar{A}\|+\left\|A_{b}\right\|\right)^{2} \\
\vartheta_{B} & :=\max _{|\Delta B| \leq B_{b}}\left\|P_{*}\left(\bar{B}+J^{\top} \Delta B J\right) \hat{F}_{*}\right\| \\
\vartheta_{A B} & :=\max _{|\Delta A| \leq A_{b},|\Delta B| \leq B_{b}} \| \bar{A}+J^{\top} \Delta A J \\
& \quad+\left(\bar{B}+J^{\top} \Delta B J-I\right)\left(F_{*}-\hat{F}_{*}\right) \| \\
\mathfrak{e}(h) & :=\vartheta_{A B}^{-1}\left(e^{\vartheta}{ }_{A B} h-1\right) . \tag{30}
\end{align*}
$$

Now we want to proceed with the main result of this section.
Theorem IV. 2 (Certified robust regulation under AETC): Consider the system (1) obeying Assumption II.1. Let the matrices $\left(B_{c} *, C_{c} *, D_{c} *, P_{*}, \alpha_{*}, \zeta_{*}\right)$ be a feasible solution to optimization problem (16) where $\alpha_{*}>0$. Consider the AETC in Algorithm 1, where the sequence $\left\{t_{s}\right\}_{s \in \mathbb{N}}$ and matrix $\mathcal{Q}$ are such that

$$
\bar{h}:=\sup _{s \in \mathbb{N}}\left(t_{s+1}-t_{s}\right) \leq h_{\max } \quad \text { and } \quad \mathcal{Q} \preceq \widetilde{\mathcal{Q}}\left(q_{0}, q_{1}\right)
$$

Here, $\widetilde{\mathcal{Q}}\left(q_{0}, q_{1}\right)$ is given by (28) with some constants $q_{0}, q_{1} \geq 0$ and

$$
\begin{align*}
& h_{\max }:=\vartheta_{A B}^{-1} \ln \left(1+\vartheta_{A B} \sqrt{\mathbb{K}}\right) \\
& \mathbb{h}:=\frac{\alpha_{*}^{2} \sqrt{q_{1}} \lambda_{\min }\left(P_{*}\right)\left[\left(1+2 \sqrt{q_{1}}\right)^{2} \lambda_{\max }\left(P_{*}\right)\right]^{-1}-2 \vartheta_{B}^{2} q_{1}\|\bar{C}\|^{2}}{6 \vartheta_{B}^{2}\left(q_{1} \varrho_{B}\|\bar{C}\|^{4}+6 \varrho_{A B}\|\bar{C}\|^{2}\right)+3 \beta^{2}\left(\varrho_{B} q_{1}\|\bar{C}\|^{2}+\varrho_{A B}\right)^{2}} \tag{31}
\end{align*}
$$

Then, the closed-loop system under AETC is $\varepsilon_{\mathrm{d}}$-practical output stable in the sense of (2) where

$$
\begin{equation*}
\varepsilon_{\mathrm{d}}^{2}=\mathfrak{f}_{1}\left(\bar{h}, q_{1}\right) q_{0}+\mathfrak{f}_{2}\left(\bar{h}, q_{1}\right) k_{b}^{2} \tag{32}
\end{equation*}
$$

in which the constants $\mathfrak{f}_{1}$ and $\mathfrak{f}_{2}$ can be explicitly expressed in form (42), depending only on $\bar{h}, q_{1}, P_{\star}, \bar{C}$, and parameters (30).

Proof: Suppose $t \in\left[t_{s}, t_{s+1}\right)$ and let $t_{j} \leq t_{s}$ be the last time instant when the control input was computed. Let $z \overline{(t)}$ be the state of the closed system defined in (10), and denote

$$
e(t):=\left[\begin{array}{c}
y\left(t_{j}\right)-y(t) \\
w\left(t_{j}\right)-w(t)
\end{array}\right]=\bar{C}\left(z\left(t_{j}\right)-z(t)\right), \bar{z}(t):=z(t)-z\left(t_{s}\right)
$$

where the matrix $\bar{C}$ is defined in (12). Since (25) holds and $u(t) \equiv u\left(t_{j}\right)$ for $t \in\left[t_{s}, t_{s+1}\right]$, the closed-loop system's state evolves as

$$
\begin{align*}
\dot{z}(t)= & {\left[\bar{A}+J^{\top} \Delta A J+\left(\bar{B}+J^{\top} \Delta B J\right) F_{*} \bar{C}\right] z(t) } \\
& +J^{\top}\left(k^{\star}\left(J^{\top} z(t)\right)-k^{\star}\left(x^{\star}\right)\right)+\left(\hat{F}_{*}-F_{*}\right) \bar{C} \bar{z}(t) \\
& +\left(\bar{B}+J^{\top} \Delta B J\right) \hat{F}_{*} e(t), \quad t \in\left[t_{s}, t_{s+1}\right) \tag{33}
\end{align*}
$$

where the matrices $\bar{A}, \bar{B}$, and $J$ are defined in (12). Consider the same Lyapunov function as in the continuous-time case $V(z)=z^{\top} P_{*} z$ whose time derivative along a trajectory of (33) can be computed by

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t} V(z(t))= & z^{\top}(t) P_{*}\left(\left(\bar{B}+J^{\top} \Delta B J\right) \hat{F}_{*} e(t)\right. \\
& +\left(\bar{A}+J^{\top} \Delta A J+\left(\bar{B}+J^{\top} \Delta B J\right) F_{*} \bar{C}\right) z(t) \\
& \left.+\left(\hat{F}_{*}-F_{*}\right) \bar{C} \bar{z}(t)+J^{\top}\left(k^{\star}\left(J^{\top} z\right)-k^{\star}\left(x^{\star}\right)\right)\right) \tag{34}
\end{align*}
$$

By assumption, we know that the objective function of the program (16) is positive, i.e., $\alpha_{*} \zeta_{*}^{-1}>0$. Due to Young's inequality

$$
2 z^{\top}(t) P_{*}\left(\bar{B}+J^{\top} \Delta B J\right) \hat{F}_{*} e(t) \leq \psi_{1} \vartheta_{B}^{2}\|z(t)\|^{2}+\psi_{1}^{-1}\|e(t)\|^{2}
$$

$$
2 z^{\top}(t) P_{*}\left(\hat{F}_{*}-F_{*}\right) \bar{C} \bar{z}(t) \leq \psi_{2} \beta^{2}\|z(t)\|^{2}+\psi_{2}^{-1}\|\bar{z}(t)\|^{2}
$$

where $\psi_{1}$ and $\psi_{2}$ are two positive scalars to be specified later. Thus, the derivative $\dot{V}$ from (34) can be estimated by

$$
\begin{align*}
\frac{d}{d t} V(z(t)) \leq & -\left(\alpha_{*}-\psi_{1} \vartheta_{B}^{2}-\psi_{2} \beta^{2}\right)\|z(t)\|^{2} \\
& +\zeta_{*} k_{b}^{2}+\psi_{1}^{-1}\|e(t)\|^{2}+\psi_{2}^{-1}\|\bar{z}(t)\|^{2} \tag{35}
\end{align*}
$$

One may also notice that since $\dot{\bar{z}}(t)=\dot{z}(t)$ and $e(t)=\bar{C}\left(z\left(t_{j}\right)-\right.$ $\left.z\left(t_{s}\right)\right)-\bar{C} \bar{z}(t),(33)$ is rewritten as

$$
\begin{align*}
& \dot{\bar{z}}(t)=\left[\bar{A}+J^{\top} \Delta A J+\left(\bar{B}+J^{\top} \Delta B J\right) F_{*} \bar{C}\right] z\left(t_{s}\right) \\
& +\left[\bar{A}+J^{\top} \Delta A J+\left(\bar{B}+J^{\top} \Delta B J-I\right)\left(F_{*}-\hat{F}_{*}\right)\right] \bar{C} \bar{z}(t) \\
& +J^{\top}\left(k^{\star}\left(J^{\top} z\right)-k^{\star}\left(x^{\star}\right)\right)+\left(\bar{B}+J^{\top} \Delta B J\right) \hat{F}_{*} \bar{C}\left(z\left(t_{j}\right)-z\left(t_{s}\right)\right) \tag{36}
\end{align*}
$$

Recall that we have assumed $\bar{h} \leq h_{\text {max }}$. Leveraging similar techniques as in [38, Lemma 3], the solution of (36) is estimated as

$$
\begin{align*}
& \|\bar{z}(t)\| \leq\left[\left(\|\bar{B}\|+\left\|B_{b}\right\|\right)\left\|\hat{F}_{*}\right\|\left\|e\left(t_{s}\right)\right\|+k_{b}\right. \\
& \left.\quad+\left(\|\bar{A}\|+\left\|A_{b}\right\|+\left(\|\bar{B}\|+\left\|B_{b}\right\|\right)\left\|F_{*} \bar{C}\right\|\right)\left\|z\left(t_{s}\right)\right\|\right] \mathfrak{e}(\bar{h}) \tag{37}
\end{align*}
$$

where the constant $\mathfrak{e}(h)$ is defined in (30). Notice now that if $\mathcal{Q} \preceq$ $\widetilde{\mathcal{Q}}\left(q_{0}, q_{1}\right)$, we can conclude that $\left\|e\left(t_{s}\right)\right\|^{2} \leq q_{0}+q_{1}\|\bar{C}\|^{2}\left\|z\left(t_{s}\right)\right\|^{2}$. This inequality automatically holds if $t_{s}=\bar{t}_{j}$ (and $e\left(t_{s}\right)=0$ ). Otherwise, the triggering condition (27) is violated, whence

$$
\begin{align*}
\|e(t)\|^{2} & \leq\left(\left\|e\left(t_{s}\right)\right\|+\left\|e(t)-e\left(t_{s}\right)\right\|\right)^{2} \\
& \leq 2 q_{0}+2 q_{1}\|\bar{C}\|^{2}\left\|z\left(t_{s}\right)\right\|^{2}+2\|\bar{C}\|^{2}\|\bar{z}(t)\|^{2} \tag{38}
\end{align*}
$$

for $t \in\left[t_{s}, t_{s+1}\right]$. Denote

$$
\begin{equation*}
\psi_{1}:=\sigma \vartheta_{B}^{-2} \alpha_{*}, \psi_{2}:=\sigma \beta^{-2} \alpha_{*}, \sigma:=\sqrt{q_{1}}\left(1+2 \sqrt{q_{1}}\right)^{-1} \tag{39}
\end{equation*}
$$

Equations (35) together with (37)-(39) lead to

$$
\begin{equation*}
\dot{V}(z(t)) \leq-\alpha_{*}(1-2 \sigma)\|z\|^{2}+\mathfrak{g}_{1}\left\|z\left(t_{s}\right)\right\|^{2}+\mathfrak{g}_{2} \tag{40}
\end{equation*}
$$

where the constants $\mathfrak{g}_{1}$ and $\mathfrak{g}_{2}$ are defined as

$$
\begin{align*}
& \mathfrak{g}_{1}= \sigma^{-1} \vartheta_{B}^{2} \alpha_{*}^{-1}\left(2 q_{1}\|\bar{C}\|^{2}\right.  \tag{41a}\\
&\left.+6 q_{1} \varrho_{B}\|\bar{C}\|^{4} \mathfrak{e}^{2}(\bar{h})+6 \varrho_{A B}\|\bar{C}\|^{2} \mathfrak{e}^{2}(\bar{h})\right) \\
&+3 \sigma^{-1} \beta^{2} \alpha_{*}^{-1}\left(\varrho_{B} q_{1}\|\bar{C}\|^{2}+\varrho_{A B}\right)^{2} \mathfrak{e}^{2}(\bar{h}) \\
& \mathfrak{g}_{2}=\sigma^{-1} \vartheta_{B}^{2} \alpha_{*}^{-1}\left(2 q_{0}+6 q_{0} \varrho_{B}\|\bar{C}\|^{2} \mathfrak{e}^{2}(\bar{h})\right. \\
&\left.+6\|\bar{C}\|^{2} \mathfrak{e}^{2}(\bar{h}) k_{b}^{2}\right) \\
&+3 \sigma^{-1} \beta^{2} \alpha_{*}^{-1}\left(\varrho_{B} q_{0}+k_{b}^{2}\right) \mathfrak{e}^{2}(\bar{h})+\zeta_{*} k_{b}^{2} \tag{41b}
\end{align*}
$$

Recalling that $V(z) \leq\|z\|^{2} \lambda_{\max }\left(P_{*}\right)$ and denoting $h_{s}:=t_{s+1}-t_{s}$ and $\mathfrak{g}_{3}:=-\alpha_{*}(1-2 \sigma)$, the inequality (40) entails that

$$
\begin{aligned}
V & \left(t_{s+1}\right) \leq\left(e^{\mathfrak{g}_{3} \lambda_{\max }^{-1}\left(P_{*}\right) h_{s}}-1\right) \mathfrak{g}_{3}^{-1} \mathfrak{g}_{2} \\
& +\left[e^{\mathfrak{g}_{3} \lambda_{\max }^{-1}\left(P_{*}\right) h_{s}}+\left(e^{\mathfrak{g}_{3} \lambda_{\max }^{-1}\left(P_{*}\right) h_{s}}-1\right) \mathfrak{g}_{3}^{-1} \mathfrak{g}_{1} \frac{\lambda_{\max }\left(P_{*}\right)}{\lambda_{\min }\left(P_{*}\right)}\right] V\left(t_{s}\right)
\end{aligned}
$$

It can be shown that the expression in brackets [...] is less than 1 if $h_{s} \leq \bar{h}<h_{\max }$. Furthermore, if $\bar{h}<h_{\max }$, then

$$
\begin{aligned}
\varlimsup_{t \rightarrow \infty}\|y(t)\|^{2} & \leq\|\bar{C}\|^{2} \varlimsup_{t \rightarrow \infty}\|z(t)\|^{2} \leq\|\bar{C}\|^{2} \lambda_{\min }^{-1}\left(P_{*}\right) \varlimsup_{t \rightarrow \infty} V(t) \\
& \leq\|\bar{C}\|^{2} \frac{\mathfrak{g}_{2} \lambda_{\max }\left(P_{*}\right)}{-\mathfrak{g}_{1} \lambda_{\max }\left(P_{*}\right)-\mathfrak{g}_{3} \lambda_{\min }\left(P_{*}\right)}=\varepsilon_{\mathrm{d}}^{2}
\end{aligned}
$$

This implies that the system (1) is $\varepsilon_{\mathrm{d}}$-practical stable and also $y(t)$ converges to a ball with center $y^{\mathrm{d}}$ and radius $\varepsilon_{\mathrm{d}}$.

RemarkIV.3(Explicit intersampling bound): Theorem IV. 2 offers an AETC with a more general framework including absolute and relative thresholds whose maximal intersampling time $h_{\max }$ can be found from (31) (cf., [25, Assumption III.1]).

The setting in Theorem IV. 2 is clearly more stringent than the continuous measurements and actuation framework in Theorem III.3. Therefore, it is no longer surprising that the corresponding practical stability levels in (17) and (32) satisfy $\varepsilon_{\mathrm{c}} \leq \varepsilon_{\mathrm{d}}$. The latter is essentially quantified based on three parameters: maximum intersampling bound $h_{\text {max }}$, and the absolute and relative triggering thresholds $q_{0}$ and $q_{1}$ (cf. Remark IV.1). When $h_{\max }$ tends to 0 , our setting effectively moves from the aperiodic sampled measurement framework to the continuous domain, and when the thresholds $q_{0}$ and $q_{1}$ tend to 0 , the event-triggered control mechanism transfers to the continuous-time implementation. It can be shown that the gap between $\varepsilon_{\mathrm{c}}$ and $\varepsilon_{\mathrm{d}}$ in this case vanishes.

Remark IV. 4 (From discrete to continuous implementation): Let $\varepsilon_{\mathrm{c}}$ be defined as in (17) and $\varepsilon_{\mathrm{d}}\left(\bar{h}, q_{0}, q_{1}\right)$ in (32) as a function of the relevant parameters $\bar{h}, q_{0}$, and $q_{1}$. With a straightforward computation, one can inspect that

$$
\lim _{q_{0}, q_{1} \rightarrow 0} \lim _{\bar{h} \rightarrow 0} \varepsilon_{\mathrm{d}}\left(\bar{h}, q_{0}, q_{1}\right)=\varepsilon_{\mathrm{c}}
$$

We note that the practical stability certificate $\varepsilon_{\mathrm{d}}$ of the proposed AETC in (32) may take 0 values when $k_{b}=q_{0}=0$. This implies that even if the system is uncertain and we have an AETC in place, we may still be able to steer the output of the system to the desired target $y^{\mathrm{d}}$. This interesting outcome, however, comes at the price of a bound on the absolute threshold $q_{1}$. We close this section with the following result in this regard.

Corollary IV. 5 (Relative AETC threshold for perfect tracking): Suppose that the system (1) is linear (i.e., $k_{b}=0$ in Assumption II.1(ii)), the program (16) is feasible with $\alpha_{*}>0$, and the absolute threshold in Theorem IV. 2 is $q_{0}=0$. If

$$
\sqrt{q_{1}}\left(2 \sqrt{q_{1}}+1\right)^{2}<\frac{\alpha_{*}^{2} \lambda_{\min }\left(P_{*}\right)}{2\|\bar{L}\|^{2} \vartheta_{B}^{2} \lambda_{\max }\left(P_{*}\right)}
$$

then the regulation performance in (32) is $\varepsilon_{d}=0$, i.e., the controller (9) implemented via the AETC scheme in Algorithm 1 steers the output of the system to the desired target $y^{\mathrm{d}}$.

Proof: The proof is an immediate consequence of Theorem IV.2. It only suffices to check for which values of $q_{1}$ the maximal intersampling $h_{\max }$ in (31) is still well-defined.


Fig. 1. Impact of the nonlinearity amplitude on the actual regulation error, and the theoretical bound (17) proposed in Theorem III.3.

## V. Numerical Example

Since optimization problem (16) is nonconvex, special numerical techniques discussed in $[39$, Sec. 5$]$ are utilized in the following example to validate the main results of this article.

Example 1: Consider system (1) with the nominal matrices ${ }^{3}$

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
1.40 & -0.21 & 6.71 & -5.68 \\
-0.58 & -4.29 & 0 & 0.67 \\
1.07 & 4.27 & -6.65 & 5.89 \\
0.05 & 4.27 & 1.34 & -2.10
\end{array}\right] \\
B & =\left[\begin{array}{cccc}
0 & 5.68 & 1.14 & 1.14 \\
0 & 0 & -3.15 & 0
\end{array}\right]^{\top}, C=\left[\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The uncertainty bounds are $A_{b}=0.1\left(\mathbb{1}_{4}^{\top} \otimes \mathbb{1}_{4}\right)$ and $B_{b}=0.1\left(\mathbb{1}_{2}^{\top} \otimes\right.$ $\mathbb{1}_{4}$ ). Matrices $B_{c}, C_{c}$, and $D_{c}$ are found from (16) by means of the aforementioned technique. In this example, we consider the desired output value as $y^{\mathrm{d}}=\left[\begin{array}{ll}9 & 10\end{array}\right]$. We first examine the result of Theorem III.3. For this purpose, we consider a nonlinear term in the form $k^{\star}(x)=k_{b} / 2\left[\sin \left(x_{1}(t)\right) \quad \ldots \quad \sin \left(x_{4}(t)\right)\right]$ in the dynamic (1) and inspect the influence of the amplitude $k_{b}$ on the desired regulation performance. Fig. 1 compares the actual regulation error (i.e., deviation between the output and its desired value) in solid black line, and the predicted error by (17) in dashed red line.

Next, we introduce a simulation setting to validate the theoretical bound (31) in Theorem IV.2. While (31) anticipates that $\bar{h} \leq 0.0286$ ensures the stability of the system under AETC, the numerical investigation shows that in this example the stability is guaranteed for higher values up to $\bar{h} \leq 0.105$. It is, however, worth mentioning that the regulation error is not much influenced by $\bar{h}$ as long as $\bar{h} \leq 0.105$. This observation is also qualitatively aligned with the assertion of Theorem IV. 2 [cf. (32) and its dependence on $\bar{h}$ as defined in (42)].

With regards to the triggering mechanism and its impact on the regulation error in Theorem IV.2, we vary the threshold level in the inequality (29) in the form $q_{0}=q_{1}=\xi$. The solid black line in Fig. 2 shows the impact of this variation of the pair $\left(q_{0}, q_{1}\right)$ through the

[^3]\[

$$
\begin{align*}
\mathfrak{f}_{1}\left(\bar{h}, q_{1}\right):=\frac{\vartheta_{B}^{2}\left(2+6 \varrho_{B}\|\bar{C}\|^{2} \mathfrak{e}^{2}(\bar{h})\right)\|\bar{C}\|^{4}+3 \beta^{2} \varrho_{B}\|\bar{C}\|^{4} \mathfrak{e}^{2}(\bar{h})}{-\vartheta_{B}^{2}\left(2 q_{1}\|\bar{C}\|^{2}+6 q_{1} \varrho_{B}\|\bar{C}\|^{4} \mathfrak{e}^{2}(\bar{h})+6 \varrho_{A B}\|\bar{C}\|^{2} \mathfrak{e}^{2}(\bar{h})\right)-3 \beta^{2}\left(\varrho_{B} q_{1}\|\bar{C}\|^{2}+\varrho_{A B}\right)^{2} \mathfrak{e}^{2}(\bar{h})+\alpha_{*}^{2} \frac{\sqrt{q_{1}} \lambda_{\min }\left(P_{*}\right)}{\left(1+2 \sqrt{q_{1}}\right)^{2} \lambda_{\max }\left(P_{*}\right)}} \\
\mathfrak{f}_{2}\left(\bar{h}, q_{1}\right):=\frac{6 \vartheta_{B}^{2}\|\bar{C}\|^{6} \mathfrak{e}^{2}(\bar{h})+3 \beta^{2}\|\bar{C}\|^{4} \mathfrak{e}^{2}(\bar{h})+\alpha_{*} \zeta_{*}\|\bar{C}\|^{2} \sqrt{q_{1}}\left(1+2 \sqrt{q_{1}}\right)^{-1}}{-\vartheta_{B}^{2}\left(2 q_{1}\|\bar{C}\|^{2}+6 q_{1} \varrho_{B}\|\bar{C}\|^{4} \mathfrak{e}^{2}(\bar{h})+6 \varrho_{A B}\|\bar{C}\|^{2} \mathfrak{e}^{2}(\bar{h})\right)-3 \beta^{2}\left(\varrho_{B} q_{1}\|\bar{C}\|^{2}+\varrho_{A B}\right)^{2} \mathfrak{e}^{2}(\bar{h})+\alpha_{*}^{2} \frac{\sqrt{q_{1}} \lambda_{\min }\left(P_{*}\right)}{\left(1+2 \sqrt{q_{1}}\right)^{2} \lambda_{\max }\left(P_{*}\right)}} . \tag{42}
\end{align*}
$$
\]



Fig. 2. Impact of the threshold level in (29) on the actual regulation error, the theoretical bound (32), and the frequency of the triggered events.
variable $\xi$ on the actual the regulation error. As anticipated by Theorem IV.2, the degradation of the regulation performance is dominated by the theoretical bound (32) (red dashed line). Besides these error bounds, we also inspect the relation between the relative frequency of triggered events (in proportion to the total number of sampling instants) and the threshold level. This observation is depicted in blue dotted curve with the axis on the right-hand side of Fig. 2. As expected, the increase of the threshold monotonically reduces the frequency of the triggering events.

## References

[1] R. Naldi, M. Furci, R. G. Sanfelice, and L. Marconi, "Robust global trajectory tracking for underactuated VTOL aerial vehicles using innerouter loop control paradigms," IEEE Trans. Autom. Control, vol. 62, no. 1, pp. 97-112, Jan. 2017.
[2] S. Kanev, C. Scherer, M. Verhaegen, and B. De Schutter, "Robust outputfeedback controller design via local BMI optimization," Automatica, vol. 40, no. 7, pp. 1115-1127, 2004.
[3] W. Liu and J. Huang, "Event-triggered global robust output regulation for a class of nonlinear systems," IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5923-5930, Nov. 2017.
[4] W. Liu and J. Huang, "Event-triggered cooperative robust practical output regulation for a class of linear multi-agent systems," Automatica, vol. 85, pp. 158-164, 2017.
[5] J. Doyle, "Analysis of feedback systems with structured uncertainties," Proc. Inst. Electr. Eng. D-Control Theory Appl., vol. 129, pp. 242-250, 1982.
[6] G. F. Franklin et al., Digital Control of Dynamic Systems, vol. 3. Menlo Park, CA, USA: Addison-Wesley, 1998.
[7] L. Xing, C. Wen, Z. Liu, H. Su, and J. Cai, "Event-triggered output feedback control for a class of uncertain nonlinear systems," IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 290-297, Jan. 2019.
[8] A. Proskurnikov and M. Mazo Jr., "Lyapunov event-triggered stabilization with a known convergence rate," IEEE Trans. Autom. Control, vol. 65, no. 2, pp. 507-521, Feb. 2020.
[9] A. Lanzon and I. R. Petersen, "Stability robustness of a feedback interconnection of systems with negative imaginary frequency response," IEEE Trans. Autom. Control, vol. 53, no. 4, pp. 1042-1046, May 2008.
[10] A. Nemirovskii, "Several NP-hard problems arising in robust stability analysis," Math. Control, Signals Syst., vol. 6, no. 2, pp. 99-105, 1993.
[11] P. Gahinet, P. Apkarian, and M. Chilali, "Affine parameter-dependent Lyapunov functions and real parametric uncertainty," IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 436-442, Mar. 1996.
[12] S. Tarbouriech, A. Seuret, C. Prieur, and L. Zaccarian, "Insights on eventtriggered control for linear systems subject to norm-bounded uncertainty," in Control Subject to Computational and Communication Constraints. Cham, Switzerland: Springer, 2018, pp. 181-196.
[13] A. Karimi, H. Khatibi, and R. Longchamp, "Robust control of polytopic systems by convex optimization," Automatica, vol. 43, no. 8, pp. 1395-1402, 2007.
[14] C. M. Agulhari, R. C. Oliveira, and P. L. Peres, "LMI relaxations for reduced-order robust $\mathrm{H}_{\infty}$ control of continuous-time uncertain linear systems," IEEE Trans. Autom. Control, vol. 57, no. 6, pp. 1532-1537, Jun. 2012.
[15] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for Analysis and Control of Uncertain Systems: With Applications. New York, NY, USA: Springer, 2012.
[16] A. Ben-Tal, A. Nemirovski, and C. Roos, "Extended matrix cube theorems with applications to $\mu$-theory in control," Math. Oper. Res., vol. 28, no. 3, pp. 497-523, 2003.
[17] C. Wang, C. Wen, and Q. Hu, "Event-triggered adaptive control for a class of nonlinear systems with unknown control direction and sensor faults," IEEE Trans. Autom. Control, vol. 65, no. 2, pp. 763-770, Feb. 2020.
[18] B. Demirel, E. Ghadimi, D. E. Quevedo, and M. Johansson, "Optimal control of linear systems with limited control actions: Threshold-based eventtriggered control," IEEE Control Netw. Syst., vol. 5, no. 3, pp. 1275-1286, Sep. 2018.
[19] W. Liu and J. Huang, "Robust practical output regulation for a class of uncertain linear minimum-phase systems by output-based event-triggered control," Int. J. Robust Nonlinear Control, vol. 27, no. 18, pp. 4574-4590, 2017.
[20] Y.-Y. Qian, L. Liu, and G. Feng, "Event-triggered robust output regulation of uncertain linear systems with unknown exosystems," IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 7, pp. 4139-4148, Jul. 2021.
[21] D. Liang and J. Huang, "Robust output regulation of linear systems by event-triggered dynamic output feedback control," IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 2415-2422, May 2020.
[22] G. D. Khan, Z. Chen, and L. Zhu, "A new approach for event-triggered stabilization and output regulation of nonlinear systems," IEEE Trans. Autom. Control, vol. 65, no. 8, pp. 3592-3599, Aug. 2019.
[23] J. Yang, J. Sun, W. X. Zheng, and S. Li, "Periodic event-triggered robust output feedback control for nonlinear uncertain systems with time-varying disturbance," Automatica, vol. 94, pp. 324-333, 2018.
[24] P. Tabuada, "Event-triggered real-time scheduling of stabilizing control tasks," IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680-1685, Sep. 2007.
[25] W. H. Heemels, M. Donkers, and A. R. Teel, "Periodic event-triggered control for linear systems," IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 847-861, Apr. 2013.
[26] L. Moreau and D. Aeyels, "Practical stability and stabilization," IEEE Trans. Autom. Control, vol. 45, no. 8, pp. 1554-1558, Aug. 2000.
[27] V. Yakubovich, G. Leonov, and A. Gelig, Stability of Stationary Sets in Control Systems With Discontinuous Nonlinearities. River Edge, NJ, USA: World Scientific, 2004.
[28] V. B. Smirnova and A. V. Proskurnikov, "Volterra equations with periodic nonlinearities: Multistability, oscillations and cycle slipping," Int. J. Bifurcation Chaos, vol. 29, no. 5, 2019, Art. no. 1950068.
[29] P. M. Esfahani and J. Lygeros, "A tractable fault detection and isolation approach for nonlinear systems with probabilistic performance," IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 633-647, Mar. 2016.
[30] M. Fazlyab, M. Morari, and G. J. Pappas, "Safety verification and robustness analysis of neural networks via quadratic constraints and semidefinite programming," IEEE Trans. Autom. Control, to be published, doi: 10.1109/TAC.2020.3046193.
[31] B. Gao, H. Chen, H. Zhao, and K. Sanada, "A reduced-order nonlinear clutch pressure observer for automatic transmission," IEEE Trans. Control Syst. Technol., vol. 18, no. 2, pp. 446-453, Mar. 2010.
[32] H. K. Khalil and J. W. Grizzle, Nonlinear System, vol. 3.Upper Saddle River, NJ, USA: Prentice-Hall, 2002.
[33] A. A. Ahmadi and G. Hall, "On the complexity of detecting convexity over a box," Math. Program., vol. 182, pp. 429-443, 2019.
[34] T. Ooba and Y. Funahashi, "On a common quadratic Lyapunov function for widely distant systems," IEEE Trans. Autom. Control, vol. 42, no. 12, pp. 1697-1699, Dec. 1997.
[35] A. Ben-Tal and A. Nemirovski, "On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty," SIAM J. Optim., vol. 12, no. 3, pp. 811-833, 2002.
[36] Y. Zhou, D. Li, Y. Xi, and Z. Gan, "Periodic event-triggered control for distributed networked multiagents with asynchronous communication: A predictive control approach," Int. J. Robust Nonlinear Control, vol. 29, no. 1, pp. 43-66, 2019.
[37] M. Donkers and W. Heemels, "Output-based event-triggered control with guaranteed $\mathcal{L}_{\infty}$-gain and improved and decentralized event-triggering," IEEE Trans. Autom. Control, vol. 57, no. 6, pp. 1362-1376, Jun. 2012.
[38] M. Kishida, M. Kögel, and R. Findeisen, "Combined event-and selftriggered control approach with guaranteed finite-gain $\mathcal{L}_{2}$ stability for uncertain linear systems," IET Control Theory Appl., vol. 11, no. 11, pp. 1674-1683, 2017.
[39] M. S. Sarafraz, A. V. Proskurnikov, M. S. Tavazoei, and P. Mohajerin Esfahani, "Robust output regulation: Optimization-based synthesis and event-triggered implementation," 2020, arXiv:2003.12786.


[^0]:    Manuscript received December 23, 2020; revised June 15, 2021; accepted July 10, 2021. Date of publication July 14, 2021; date of current version June 30, 2022. This work was supported by the Ministry of Science and Higher Education of the Russian Federation under Project 075-15-2021-573, and in part by the European Research Council under Grant TRUST-949796. Recommended by Associate Editor S. Tarbouriech. (Corresponding author: Peyman Mohajerin Esfahani.)
    Mohammad Saeed Sarafraz and Mohammad Saleh Tavazoei are with the Electrical Engineering Department, Sharif University of Technology, 14731 Tehran, Iran (e-mail: saeed.sarafraz@gmail.com; tavazoei@sharif.edu).
    Anton V. Proskurnikov is with the Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy, and also with the Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, 199178, Russia (e-mail: anton.p.1982@ieee.org).
    Peyman Mohajerin Esfahani is with the Delft Center for Systems and Control, TU Delft, Delft 2628, The Netherlands (e-mail: P.MohajerinEsfahani@tudelft.nl).

    Color versions of one or more figures in this article are available at https://doi.org/10.1109/TAC.2021.3097285.
    Digital Object Identifier 10.1109/TAC.2021.3097285

[^1]:    ${ }^{1}$ The notation $y_{[0, t]}$ is the restriction of the function $y$ to the set $[0, t]$, that is, $\{y(s): s \in[0, t]\}$.

[^2]:    ${ }^{2}$ Formally speaking, the objective function in (24) is not convex. However, since the only source of nonconvexity is the scalar variable $\zeta$, a straightforward approach is to select this variable through a grid-search or bisection.

[^3]:    ${ }^{3}$ These nominal matrices are chosen from Compl $_{e} i b$ library of MATLAB ([Online]. Available: http://www.complib.de/)

