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ARTICLE

Theoretical stiffness limits of 4D printed
self-folding metamaterials
Teunis van Manen 1✉, Vahid Moosabeiki Dehabadi 1, Mauricio Cruz Saldívar 1, Mohammad J. Mirzaali1 &

Amir A. Zadpoor 1

4D printing of flat sheets that self-fold into architected 3D structures is a powerful origami-

inspired approach for the fabrication of multi-functional devices and metamaterials. However,

the opposite stiffness requirements for the folding process and the subsequent loadbearing of

3D structures impose an intrinsic limitation in designing self-folding metamaterials: while a

low stiffness is required for the successful completion of the self-folding step, a high stiffness

is needed for utilizing the folded structure as a load-bearing mechanical metamaterial. Here,

we present a nonlinear analytical model of self-folding bilayer constructs composed of an

active and passive layer. This finite-deformation theoretical model predicts the curvature of

activated bilayers, establishes their stability limits, and estimates the stiffness of folded

bilayers, yielding the theoretical stiffness limits of self-folding bilayers. We use our model to

identify the optimal combinations of geometrical and mechanical properties that result in the

highest possible stiffness of folded constructs. We then compare the predictions of our

analytical model with computational results, and validate our theory with experimental rea-

lizations of 4D printed structures. Finally, we evaluate the theoretical stiffness limits of bilayer

constructs made using the most common types of stimuli-responsive materials. Our analysis

shows that a maximum effective modulus of ≈ 1.5 GPa can be achieved using the currently

available shape-memory polymers.
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Folding initially flat materials into 3D objects through
origami-inspired approaches is a highly promising approach
for the fabrication of functionalized metamaterials1. One

example is the production of 3D hollow polyhedral structures
with integrated electronics2. Other examples include optical
metamaterials made of porous polymer structures patterned with
metallic split-ring resonators3,4 or tissue engineering scaffolds
with different types of (nano)topographical features5,6. What all
these examples have in common is that those specific surface
features were applied to the surface of an initially flat construct.
In this way, planar fabrication techniques (e.g., nanolithography)
can be used for small-scale, highly precise ornamentation of the
construct surface or for the incorporation of other surface fea-
tures. Subsequently, self-folding techniques are used for the
transformation of the functionalized flat sheets into the desired,
complex 3D geometries. Using such an approach, multi-func-
tional, 3D-architected materials can be realized.

Various strategies have been developed for the self-folding of
flat sheets into 3D structures7–9. The vast majority of such stra-
tegies rely on the use of the so-called stimuli responsive
materials9,10 that exhibit dimensional change upon exposure to a
specific stimulus. Two well-known stimuli include temperature
that is used for the activation of shape-memory polymers and
humidity that induces swelling in hydrogels7,11. A wide range of
other responsive materials activated by a variety of different sti-
muli is reported in the literature11,12. To fabricate self-folding
elements, such active materials can be combined with other (i.e.,
passive) materials to design a specific shape-shifting behavior. A
widely applied strategy is to combine two layers of different
materials into a bilayer construct7,9,13. Upon activation, the
mismatch in the shape-shifting behaviors of both materials results
in the bending of the bilayer specimen. While the fabrication of
bilayer constructs can be performed manually, such manual
processes are often very laborious and time consuming. The
advent of 4D printing processes have made it possible to fabricate
bi- and multi-layer constructs fully automatically14–17. When
combined with rational geometrical design, 4D printing can yield
complex shape-shifting behaviors15,17 that are otherwise very
difficult, if not impossible, to achieve. Moreover, 4D printing can
nowadays be performed using inexpensive (i.e., hobbyist) printers
and widely available, off-the-shelf, inexpensive materials17,18. 4D
printing is, therefore, developing into the de facto technique for
the production of shape-shifting materials, such as bi-layer
constructs.

Depending on their ultimate application, self-folding materials
and devices need to satisfy various design requirements. One
particularly important requirement, particularly in the context of

mechanical metamaterials, is the stiffness of the folded construct.
For example, the desired shape of reconfigurable metamaterials
needs to be maintained under specific loading conditions to
guarantee performance19–22. Another example is meta-
biomaterials that need to match the mechanical properties of
the native bone5,6.

The limited stiffness of self-folded constructs is due to an
inherent contradiction between the design requirements of the
self-folding and load-bearing steps: while a thinner construct with
a lower stiffness is required in the self-folding step, a thicker
construct is essential for maximizing the load-bearing capacity of
the folded structure. One approach to circumvent this inherent
stiffness contradiction is the use of folding elements with tunable
stiffness. Upon the completion of the folding process, the hinges
are stiffened to enhance the load-bearing capacity of the folded
structure. One example of such a tunable stiffness element is a so-
called ‘layer-jamming’ mechanisms in which a stack of thin
folding elements is pressed together to increase its stiffness in the
bent configuration23,24. Yet another alternative is the use of
additional locking elements to increase the rigidity of the folded
structure25. However, both techniques highly increase the com-
plexity of the folding elements, thereby limiting the scalability of
the design. As far as pure self-folding materials (i.e., without
additional design complexity) are concerned, not much attention
has been paid to the described contradictory design requirements
and their implications for the stiffness of the resulting
metamaterial.

Here, we present a nonlinear (i.e., finite deformation hyper-
elastic) analytical model that can be used to establish the theo-
retical stiffness limits of self-folded structures and answer the
fundamental question: ‘given a specific geometrical design and
material selection, what is the maximum stiffness that bilayer self-
folded structures can achieve?’We demonstrate the validity of our
analytical model by comparing its results with those of our
dedicated computational models and experiments.

Results and discussion
The starting point of our analysis is a cubic lattice consisting of n
× n × n unit cells loaded under compression (Fig. 1a). Such
lattices can be fabricated from arrays of n × n × 1 unit cells that
are folded from initially flat constructs26 (Fig. 1b). The flat sheets
are made of an assembly of bilayer elements (red and blue
materials in Fig. 1) connected by square panels (gray). Driven by
the mismatch in the shape-shifting behaviors of the active and
passive elements, the panels fold into the programmed 3D geo-
metry upon activation. The initial length, L, of the bilayer

a
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passive material
active material

b c
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activation

Fig. 1 Self-folding cubic lattice. a A schematic illustration of the compression of a self-folding lattice. b Folding of a single array from a flat sheet
comprising self-folding bilayer elements (blue and red) and rigid panels (gray). c Two rigid panels (gray) connected by a self-folding bilayer element (blue
and red).
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elements are designed such that folding angles, θ, of 90° are
achieved (Fig. 1c). The other design parameters are the thick-
nesses of the active and passive layers as well as the material
selection for both layers. The width b of the folding elements can
be adjusted as well to change the size of the unit cell. The final
cubic lattice can be fabricated by stacking the folded arrays either
by connecting the individual slices with additional self-folding
elements or using other assembly techniques6,27–29.

Assuming the panels to be rigid as compared to the bilayer
element, the total stiffness of the cubic lattice only depends on the
stiffness, khinge, of the folding elements as well as the arrangement
of the bilayer elements within the lattice. Considering the lattice
depicted in Fig. 1a that is made of n × n × n unit cells and with
the outer dimensions a × a × a mm, the effective elastic modulus,
EL, of the structure can be determined as follows:

EL ¼
F
a2

a
Δx

¼ 1
a
ktotal ð1Þ

where ktotal is the total stiffness of the lattice in N.mm−1. The
total lattice structure depends on the number of bilayer hinges in
series and parallel and equals:

ktotal ¼
2n2

2n
khinge ¼ nkhinge ð2Þ

Assuming the hinge width b to equal a/n and by combining
Eqs. 1 and 2, the effective lattice modulus, EL, equals the hinge
stiffness normalized by the hinge width, khinge/b. In the remainder
of this article, we focus on determining the hinge stiffness of a
general bilayer element that folds into a curved beam with a 90°
folding angle. The results can, then, be applied to any type of self-
folding lattice (of the type shown in Fig. 1) using the presented
approach.

The analytical model we present here consists of three ele-
ments: a finite deformation thick-beam analysis of the bending
behavior of bi-layers to relate the geometry, shape-shifting
response, and mechanical properties of both layers to the cur-
vature of the resulting self-folding construct, a stability model that
establishes the limits of stable shape-shifting behavior to avoid
wrinkling, and a stiffness prediction model that predicts the
stiffness of a self-folded construct given the design parameters of
the bilayer. A detailed treatment of all three models and the
relevant literature30–36 is presented in Section 4 (Materials and
Methods).

Bilayer bending. Studying the stiffness of self-folded elements
requires us to first consider the bending of a general bilayer
element. The starting point for our analysis is the plain strain
bending of a thick incompressible hyperelastic beam (Supple-
mentary Fig. 1). Following the Rivlin’s normality assumptions,
the following kinematic relations are imposed37:

r ¼ f xð Þ θ ¼ g y
� � ð3Þ

Because we are only interested in the final configuration of the
activated bilayer, the bending analysis can be decoupled into two
separate steps: (a) the free shape-shifting behaviors of the
individual layers (b) followed by the bending of the activated
layers while enforcing the tie condition at the interface of both
layers (Fig. 2a). Independent from the underlying shape-shifting
mechanism, the following dimensionless parameters can be
defined in the activated state:

α ¼ L2
L1

β ¼ h2
h1

γ ¼ G2

G1
ð4Þ

where Gi is the shear modulus of layer i. Following the imposed
kinematics, while adopting an incompressible Neo-Hookean
material model for both layers, the static balance equations can

be numerically solved. As a result, the normalized curvature of
the interface between both layers, κH, can be obtained, where H is
the combined thickness of the activated layers (i.e., H = h1+ h2).
The normalized bending curvature of the beam is, therefore, a
function of only three dimensionless parameters, α, β, and γ.

Stability analysis. We also performed a stability analysis, using
the method of incremental deformation, to determine how far the
bilayer element can bend before the appearance of wrinkles on
one of its surfaces. In the case of a bilayer assembled from a thin
stiff layer and a thick compliant layer, instabilities can occur for
small values of α38. The results of the bending analysis serve as an
input for the stability analysis (see Materials and methods) while
a numerical method is employed to detect the bifurcation point.

Stiffness analysis. Based on the described nonlinear bending
theory, the initial bilayer dimensions that are required to achieve
folding angles of 90° can be determined. The next step is to
evaluate the stiffness of the bilayer elements in their folded
configuration using the Castigliano’s second theorem according
to which the small enough displacements resulting from any
given force can be calculated as35,36:

δ ¼ ∂U
∂P

ð5Þ

where δ is the displacement of the point of application of force, P,
along its direction and U is the total strain energy of the elastic
system (Fig. 3a). The strain energy function of a thick curved
bilayer beams is given by the following relationship:

U thick beam ¼ 1
2

Z
Θ

M2

CM
dΘþ

Z
Θ

MN
CN

dΘþ 1
2

Z
Θ

N2CC

C2
N

dΘ

þ 1
2

Z
Θ

V2CS

C2
M

dΘ

ð6Þ

The constants CM, CN, CC, and CS are provided in the Materials
and Methods section. The reaction loads (i.e., normal force N,
shear force V, and momentM) at cross-section θ are a function of
the applied load P and centroid axis, rc, of the beam. Differ-
entiation of the strain energy with respect to the applied force P
gives the hinge deformation as a function of the applied force P,
the dimensions b, ri, rm, and ro, and the elastic moduli of both
layers, Ei. The deformation δ is a linear function of P, b, and Ei.
The normalized stiffness ekhinge can, therefore, be calculated asekhinge ¼ khingeb

�1E�1
2 where khinge is the hinge stiffness and equals

Pδ−1. Normalizing all dimensions with respect to the total
thickness of the curved beam Hc reveals that the normalized
stiffness ekhinge of a bi-layer quarter-circle beam remains
unchanged as the bilayer hinge is scaled and is only a function of
the parameters α, βc, and γ, where βc is the thickness ratio in the
curved configuration.

Computational models. To validate the described theories, a
series of finite element analyses (FEA) were performed. First, the
results of the plane-strain bending FEA simulations were com-
pared with the theoretical results for the different combinations of
β and γ (Fig. 2b). Only the FEA results without the presence of
wrinkles are plotted while the gray areas indicate the expansion
values for which wrinkling occurs according to the theory. The
bending theory is in excellent agreement with FEA while a good
agreement between the wrinkling analysis and FEA can be
observed as well (Fig. 2b). For reference, the predictions of the
well-known Timoshenko bilayer bending theory (a linear
model)39 are plotted as well (Fig. 2b). Especially for the higher
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Fig. 2 Bending and wrinkling analysis of self-folding bilayers. a A schematic illustration of the folding and wrinkling of a bilayer element. b Theoretical and
FEA results for bilayers with varying thickness ratio, β, and stiffness ratio, γ.
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values of α, large discrepancies are observed between the linear
Timoshenko theory and the nonlinear theory developed here,
indicating the need for the described nonlinear theories. Addi-
tional simulations were performed to compare the results of the
wrinkling analysis with those of the computational models for the
different combinations of β and γ. In general, the wrinkling
theory is capable of capturing both the onset of wrinkling and the
number of wrinkles appearing on the surface of the bilayer
(Supplementary Table 1).

Another series of FEA simulations were performed to compare
the theoretical stiffness values with the computational results. For
small ratios of the initial beam thickness to the radius of the
interface, the theories for both thin and thick beams are in good
agreement with the FEA results (Fig. 3b). While the linear model
exhibits very large discrepancies with the computational results
when the total beam thickness starts to approach the interface
radius, the finite deformation model continues to yield high-
fidelity predictions. The advantages of the finite deformation
model are particularly clear for the small values of βc where the
thin-beam approximation grossly overestimates the stiffness
(Fig. 3b). This effect is more significant for βc values « 1 because
the thickness of the inner layer (i.e., rm-ri) approaches the total
beam thickness, meaning that ri approaches zero for κHc values
close to 1. This is, however, an extreme case for which it is
expected that FEA results should deviate from a model that
assumes the bilayer elements to behave like a beam. There is,
however, a very good agreement between the computational
results and the results of the thick-beam model even when the
ratio of the initial thickness to the interface radius approaches 1
(Fig. 3b).

Experimental validation. As a final validation of both the
bending and stiffness theories, we performed several experiments.
We 4D printed bilayer bending elements from shape-memory
polymers17 (see Materials and Methods). The bilayers consist of
one shrinking layer on top of a semi-passive layer (i.e., a layer
with minimal deformation characteristics). For both layers, the
longitudinal expansion/shrinkage is coupled to some degree of
transverse and vertical deformation (see Supplementary Table 3).
Specimens with an expansion ratio α ranging between 1.1 and 2.0
and a thickness ratio ranging between ~1 and ~4 were produced.
For both sets of the specimens, β varied slightly which originates
from the fact that samples with fixed initial layer thicknesses were
produced resulting in a different layer thickness in the activated
states. In addition, polymer-metal bilayer samples were produced
to validate the bending model for large stiffness ratios. The spe-
cimens consisted of a thin metal layer adhesively bonded to a
thick heat-shrinking polymer layer (see Materials and Methods).
Similar to the 4D printed samples, the longitudinal shrinkage of
the polymer layer is coupled to some degree of vertical defor-
mation. Different expansion ratios were realized by activating the
samples at different temperatures (see Supplementary Table 4).
There was generally a very good agreement between the predic-
tion of the finite deformation model and the experimental results
(Fig. 4a, b), demonstrating the ability of the plane strain analytical
model to capture the 3D deformation characteristics of actual
self-folding specimens.

To validate the stiffness predictions of the model, various
specimens were produced using a multi-material 3D printer
working on the basis of UV-curing of multiple types of jetted
polymers (the Polyjet technology, see Materials and Methods). To
perform compressive mechanical testing without a need for
additional clamps, the specimens included two parallel sets of
bilayer quarter-circle beams in series and two rigid clamps
(Fig. 4c). Because of this arrangement of the beams, the overall

sample stiffness equals the stiffness of a single quarter-circle
beam. Specimens with different combinations of layer thickness
(i.e., βc) and stiffness ratios were fabricated. The ratio of the
interface radius to the total beam thickness was varied between
0.2 and 1.0. Once more, there was a very good agreement between
the stiffness values predicted by the finite deformation analytical
model and our experimental observations (Fig. 4c).

Combined analysis. Combining the three aspects of the analytical
model developed here allows for estimating the normalized
stiffness of the folded hinges as a function of the three dimen-
sionless parameters α, β, and γ (see Supplementary Fig. 4). For the
different values of α, the theoretical normalized stiffness can be
plotted against the layer thickness ratio, β, and the stiffness ratio,
γ (Fig. 5a). The results indicate that the stiffness of bilayer hinges
can be greatly improved through a proper selection of β and γ.
Using β and γ equal to 1 as the starting point, at least a three-fold
increase in the stiffness could be realized by selecting the opti-
mum values of β and γ (Fig. 5a).

Depending on the expansion ratio, α, the results of our analysis
suggest that the maximum stiffness is achieved for β values
between 1 and 103 and γ values between 10−6 and 10−3. In
practice, however, it is challenging to realize bilayer specimens
with such a large difference in the layer thickness or stiffness. We,
therefore, conducted an analysis to search for the maximum
stiffness that can be reached while upholding the different bounds
limiting the choice of β and γ values. The upper and lower limits
of both β and γ are defined as 1/C ≤ x ≤ C where x is β or γ and
the boundary C ≥ 1, respectively. For the different values of α, we
plotted the maximum stiffness as a function of the limit C
(Fig. 5b) and found that limiting the maximum stiffness ratio to
102 will be sufficient for realizing at least 80% of the theoretical
maximum stiffness (Fig. 5c, d). Therefore, β values between 2 and
10 (depending on α) and a stiffness ratio γ of 0.01 would often be
a practical choice for the fabrication of bilayer hinges with a near-
maximum stiffness.

For small expansion ratios, wrinkling occurs in the bilayers
with optimized stiffness (Fig. 5a, b). Limiting the feasible values of
β and γ to the stable region only slightly decreases the theoretical
maximum stiffness (Fig. 5d). It can, therefore, be concluded that
optimizing the bilayer design is not significantly hampered by the
onset of instabilities.

The stiffness of bilayers with optimized designs were validated
using FEA simulations as well. For large values of α, the analytical
model underestimates the stiffness as compared with FEA
(Fig. 5b). For stiffness ratios below 0.01, the observed discre-
pancies are particularly high. It is important to notice that for
such a large α, the total beam thickness to the interface radius
ratio exceeds 1.5, which is beyond the validity limits of a beam-
based model. Combined with the effects of a stiffness ratio below
10−3, the differences between the theoretical model and FEA
predictions may even reach 70% (Fig. 5b). That said, both theory
and FEA exhibit the same overall trends. Moreover, limiting the
stiffness ratio to 10−2 reduces the discrepancies between both
models to a maximum of 40%.

Practical implications. In the previous section, the bending and
stiffness theories were combined to search for the theoretical
maximum stiffness of bilayer hinges. For different amounts of
expansion, the optimized combinations of β and γ values were
determined. The optimized stiffness of folded bilayer elements
only depends on the expansion coefficient, α, and the elastic
modulus, E2. While it is clear that the combination of a high
elastic modulus and a large expansion ratio would result in a high
stiffness of folded bilayers, the selection of stimuli-responsive
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materials is, in practice, a trade-off between the amount of
expansion and the material stiffness. Active materials with a high
elastic modulus often have small expansion values while the
opposite holds true for materials with large expansion coeffi-
cients. To estimate the maximum achievable stiffness of bilayer

hinges, we need to identify both the elastic modulus and
expansion coefficients of the different types of stimuli-responsive
materials. Towards that end, we performed a literature study to
identify the active materials that are most commonly used for the
fabrication of shape-shifting structures. Only studies that
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reported the fabrication of bilayer folding elements as well as the
stiffness and expansion coefficients of the applied materials were
included. Four classes of stimuli-responsive materials were
identified: (i) semiconductor materials with engineered residual
stresses (SERS)40–45, (ii) hydrogels46–54, (iii) shape-memory
polymers (SMP)17,55–62, and (iv) liquid crystal elastomers
(LCE)63–69. The material properties we found for each of those
classes of materials are presented in Fig. 6a. Assuming that these
active materials can be combined with any desired layer of a
passive material, the optimized hinge stiffness normalized by the
hinge width can be calculated as khinge=b ¼ ekhingeE2. The black
dashed lines in Fig. 6a indicate the constant values of the opti-
mized stiffness khinge=b.

Comparing the theoretical maximum stiffness values calculated
for the different classes of active materials clearly indicates that
SMP outperform the other material types (Fig. 6b). The
combination of moderate expansion coefficients (i.e, α ~ 2.0)
and elastic moduli up to 2.5 GPa results in a maximum hinge
stiffness of ≈ 1.5 GPa (Fig. 6b). Even for β and γ values equal to 1,
the maximum stiffness of SMP bilayer hinges is at least one order

of magnitude higher than that of any other optimized bilayer
hinge. The bilayers made from SERS or hydrogels display a
maximum theoretical stiffness of up to 10MPa while a somewhat
larger stiffness could be achieved using LCE.

Although these estimated values give a good indication of the
achievable hinge stiffness values, some other practical considera-
tions need to be taken into account. First of all, it is assumed that
these common types of stimuli-responsive materials could be
combined with any sort of passive materials with any desired
properties. In the case of SERS materials, however, it is
challenging to find a material with a much higher stiffness value.
Hence, the optimized stiffness ratios can hardly be realized in
practice. One concern regarding SMP is a dramatic drop in their
stiffness during their activation70. The passive layer should
exhibit a similar drop in its stiffness in order to maintain the
desired stiffness ratio and realize the theoretically predicted
curvature. In practice, this could be achieved by combining the
SMP layer with another SMP material. This approach, however,
also limits the feasible stiffness ratio. A similar effect can be
observed for LCE materials63,65,69. On the other hand, different
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types of stimuli-responsive materials could be combined into a
bilayer structure to increase the bending curvature. For example,
an expanding and a shrinking layer could be combined to create a
bilayer with a larger effective expansion ratio, α. The combined
effects of these practical considerations are highly dependent on
the limitations of the specific materials and production
techniques and are, thus, difficult to predict.

Finally, we searched for the optimal combination of the
parameters α, β, and γ to reach the highest possible stiffness of the
bilayer hinges. However, other design restrictions imposed by the
problem at hand may require the selection of another set of
design parameters. Examples of such restrictions are the need for
folding elements with different folding angles or a requirement
regarding the time-dependent behavior of the individual folding
elements and their synchronization to achieve a certain overall
deformation of the self-folding array. These aspects are highly
dependent on the specific design of the self-folding array.

Conclusions
In summary, we presented a finite deformation theory for pre-
dicting the bending behavior of bilayer elements, establishing
their stability limits, and determining their stiffness. The inputs
for the bending analysis are the normalized dimensions of both
layers of the composite beam in the activated state that are
described by the length ratio α, thickness ratio β, and stiffness
ratio γ. As a result, the normalized radius of the curved bilayer
can be calculated, which serves as an input to the stiffness model.
For bilayer beams with a 90° folding angle, the normalized stiff-
ness, ekhinge, can be obtained as a function of α, β, and γ. The
design of self-folding elements could be optimized in terms of
their load-bearing capacity by combining all three aspects of the
analytical model. In general, the selection of a thickness ratio β
between 2 and 10 and a stiffness ratio γ of ≈ 10−2 resulted in a
three-fold increase in the hinge stiffness as compared with the
default (and naïve) choice of β and γ values equal to 1. As a final
step, the optimized bilayer stiffness values were determined for
four types of commonly used stimuli-responsive materials.

The presented theoretical analysis is based on several under-
lying assumptions. First of all, we performed the analysis based on
a cubic self-folding origami-inspired lattice (e.g., similar to the
ones presented in26). The effective lattice stiffness was found to be
equal to the hinge stiffness normalized by the hinge width, b. The

width b is assumed to be equal to the average width of a unit cell
a/n. In practice, both the radius and thickness of the folding
elements have finite dimensions and the actual hinge width will
be smaller than the average unit cell size. A more realistic esti-
mate for the hinge width, b, would be possible by subtracting the
hinge radius (i.e., b = a/n-ri). The effective modulus of a cubic
lattice (Fig. 1a) then equals:

EL ¼ 1� n
a
ri

� �ekhingeE2 ð7Þ

The presented analysis on self-folding bilayers indicates that
the stiffness of the bilayer folding elements remains unchanged
when all the hinge dimensions are uniformly scaled. A small
hinge thickness can, therefore, be selected to reduce the hinge
radius, thereby approaching EL � ekhingeE2. It is important to
note that for any other arrangements of shape-shifting elements
within the self-folding structures, a different relationship
between the effective stiffness of the lattice structure and the
hinge stiffness may be applicable. In addition to the design of
self-folding elements, the arrangement of these elements can be
also used as a tool to tune the overall stiffness of self-folding
lattices. One example is the use of rectangular elements instead
of cubic unit cells to enlarge the effective lattice modulus along
one direction.

The finite deformation bending model we presented is based
upon several assumption. First, a Neo-Hookean material model
was used. Given that the Neo-Hookean material model is only
accurate for moderate strain levels, additional FEA simulations
were performed using different materials models. A Mooney-
Rivlin model, a 2nd order Ogden model, and a Yeoh material
model were implemented. Comparing the results of those
additional models with the theoretical analysis performed using
a Neo-Hookean material model indicates that the effects of the
selected material model on the predicted response is very lim-
ited (Supplementary Fig. 2). In addition, the development of a
second curvature in the width direction are not captured by our
analytical model. Several studies have shown that isotopically
expanding bilayers prefer to roll along their longitudinal axis
than to develop a double-curved shape71,72. For increasing
amounts of expansion (i.e., α > 1.2) and large aspect ratios (i.e.,
b/L0 » 1), the dominant curvature is found to approach the
curvature predicted using the plane-strain theory72. This can be
explained based on energy considerations as bending is
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energetically more favorable than the in-plane stretching
required for the development of a double curvature. When
combined with the effects of clamping, no significant curvature
in the width direction is expected.

The performed bifurcation analysis does not predict the
wrinkling amplitude but only the onset of wrinkling. The effects
of wrinkling on the amount of bending cannot, thus, be deter-
mined using the model presented here. While limiting the design
space of self-folding bilayers to ensure wrinkling is avoided may,
in theory, exclude some high stiffness configurations, the results
presented in Fig. 5 indicate that the actual drop in the maximum
achievable stiffness is in practice quite limited. In addition, this
effect is limited to low-expansion values (Fig. 5d).

The stiffness of curved bilayer elements was predicted using a
model based on a beam theory. In general, however, such models
are only accurate for slender structures (i.e., κH«1). Comparing
the FEA results with the predictions of the stiffness model indi-
cates that, indeed, larger discrepancies are observed for the larger
values of the normalized curvature (Fig. 3b). Especially for
hydrogels with large expansion coefficients (i.e., α~3.0), the
normalized curvature κH may even exceed 1 and the beam
stiffness will be significantly underestimated (Fig. 5b). For the
other types of active materials with smaller amounts of expansion
(i.e., α < 2.0), the discrepancies between the stiffness model and
the computational results are <20% (Fig. 5b). A comparison of
the stiffness limits for the various types of different active mate-
rials shows that the stiffness of hydrogel-based bilayer elements is
at least 2 orders of magnitude lower than that of SMP bilayers.
Therefore, the underestimation of the stiffness of self-folding
hydrogel elements does not affect the overall theoretical stiffness
limit of ≈ 1.5 GPa.

Finally, the theoretical stiffness limit of bilayer elements
highly depends on the specific properties of the selected
stimuli-responsive materials. Here, we have only included the
properties of active materials that have been used in the lit-
erature for the fabrication of self-folding bilayers. However,
other types of stimuli-responsive materials with superior
mechanical properties may have been reported in the literature
for other applications. Even though the presented list of active
materials is not exhaustive, it clearly shows that the application
of SMP-based self-folding elements results in significantly
higher stiffness values as compared to the other types of activate
materials included here.

In conclusion, we developed an analytical model for evaluating
the stiffness of bilayer self-folding elements. We then used the
developed models to establish the theoretical stiffness limits of
self-folding bilayers. Considering the usual materials used for that
purpose, the maximum stiffness reached in practice is estimated
to be around 1.5 GPa for SMP-based self-folding elements. The
stiffness of SMP bilayers is significantly higher than the stiffness
of any other bilayer element based on the other types of active
materials. The presented models could be also used for opti-
mizing the stiffness of self-folding bilayers. In general, a thickness
ratio between 2 and 10 and a stiffness ratio of around 10−2 would
result in a near-optimal stiffness of the bilayer construct. Given
the fact that these results are length scale-independent, they could
be applied to various types of self-folding origami lattices.

Methods
Finite-deformation bending model. We start our analysis by considering the
plane strain bending of a thick incompressible beam. The following kinematic
relations (normality conditions37) are imposed (Supplementary Fig. 1):

r ¼ f y
� � ð1:1aÞ

θ ¼ g xð Þ ð1:1bÞ

Based on this assumption, the deformation gradient F can be written as follows32:

F ¼ df y
� �
dy

er
O

ey þ f y
� � dg xð Þ

dx
eθ
O

ex ð1:2Þ

Applying the incompressibility condition (i.e., J = |F| = 1) gives:

df y
� �
dy

f y
� � dg xð Þ

dx
¼ 1 ð1:3Þ

To solve Eq. 1.3, the following boundary conditions can be applied:

f y ¼ � h
2

� �
¼ ri ð1:4aÞ

f y ¼ h
2

� �
¼ ro ð1:4bÞ

g x ¼ � L
2

� �
¼ ��θ ð1:4cÞ

g x ¼ L
2

� �
¼ �θ ð1:4dÞ

where ri is the inner radius and ro is the outer radius (Supplementary Fig. 1). By
solving Eq. 1.3, the principle stretches in the deformed configuration are obtained
as37:

λr ¼
dr
dy

¼ df y
� �
dy

¼ L0
2�θr

ð1:5aÞ

λΘ ¼ r
dθ
dx

¼ f y
� � dg xð Þ

dx
¼ 2�θr

L0
ð1:5bÞ

As a next step, the balance equations need to be derived. Assuming that the
hyperelastic behavior of the involved materials can be described using an
incompressible Neo-Hookean material model, the strain energy density functionW
can be written as:

W ¼ G
2

I1 � 3
� � ð1:6Þ

where G is the shear modulus and I1 is the first invariant of the left Cauchy-Green
strain tensor, B= FFT. The transversal and radial stresses as a function of the
principal stretches can be calculated from σ ¼ 1

J
∂W
∂F F

T:

σr ¼ �pþ Gλr
2 ð1:7aÞ

σθ ¼ �pþ Gλ2θ ð1:7bÞ
The pressure field p(r) can be obtained up to an integration constant C by

substituting Equation 1.7 in the static balance equation (∇ · σ = 0)32:

p rð Þ ¼ G
2

λ2r � λ2θ
� �þ C ð1:8Þ

Finally, we consider a bilayer constituting of two layers of an incompressible
Neo-Hookean material. The volumetric constraint equations (J = 1) for both layers
yields the following:

L1h ¼ �θ r2m � r2i
� � ð1:9aÞ

αL1βh ¼ �θ r2o � r2m
� � ð1:9bÞ

where ri is the inner radius, rm is the interface radius, and ro is the outer radius.
Enforcing the zero radial stress condition at the inner and outer radii of the
bilayer beam yields the integration constants Ci of both layers. For finding the
equilibrium configuration, the net forces and moments must vanish at both ends
of the beam:

N θ ¼ ± �θ
� � ¼ Z σθdr ¼

Z r2

r1

σ1θdr þ
Z r3

r2

σ2θdr ¼ 0 ð1:10aÞ

M θ ¼ ± �θ
� � ¼ Z rσθdr ¼

Z r2

r1

σ1θrdr þ
Z r3

r2

σ2θrdr ¼ 0 ð1:10bÞ

Equations 1.9 and 1.10 form a set of 4 equations that can be solved numerically
to calculate the normalized unknowns ri/H, rm/H, ro/H, and the ratio �θ=L0. The
normalized results are independent from the initial total thickness, H.

Stability model. Using a bending analysis, we derived the static equilibrium shape
of a particular self-folding bilayer element. We now aim to find the onset of
instability by applying the method of incremental deformations73. This method
involves the superposition of an incremental displacement field on the bended
configuration and calculating the corresponding incremental stresses using74:

Σ ¼ �δpIþ pLT þ GLB ð2:1Þ
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where Σ is the first Piola Kirckhoff stress tensor, δp is the pressure increment, L is
the gradient of the incremental displacement field, u (L = ∇.u), and B = FFT.
Following Roccabianca et al.33,34, we propose the following incremental displace-
ment fields:

ur ¼ f rð Þcos nθð Þ ð2:2aÞ

uθ ¼ g rð Þsin nθð Þ ð2:2bÞ

δp ¼ k rð Þcos nθð Þ ð2:2cÞ
The incompressibility conditions (i.e., tr(L) = 0) allows us to write the

unknown function g(r) as a function f(r):

g ¼ f þ f 0r
n

ð2:3Þ
By combining Eqs. 2.1 and 2.2, the incremental equilibrium equations (i.e., ∇.Σ= 0)

can be solved to derive the unknown function k(r) as a function of both f(r) and g(r).
The subsequent substitution of Eq. 2.3 yields the two following equations33:

k0 ¼ a2 1� n2
� �� 	

f þ a2r � 2
a2r3


 �
f 0 þ 1

a2r2


 �
f 00 ð2:4aÞ

k ¼ �1
a2r3

1� 1
n2

� �
 �
f � a2r2 þ 1

n2a2r2


 �
f 0 þ 2

n2a2r


 �
f 00 þ 1

a2n2


 �
f 000 ð2:4bÞ

where a ¼ 2�θ=L0. The differentiation of Eq. 2.4b with respect to r and its
subsequent substitution into Eq. 2.4a results in a single differential equation
for the function f(r):

f 0000 þ 2
r


 �
f 000 � n2a4r2 þ 3� n2

r2


 �
f 00 þ 3� n2

r3
þ 3n2a4r


 �
f 0 þ 3

r4
þ n2a4

� �
n2 � 1
� �
 �

f ¼ 0

ð2:5Þ
The function f within each layer can be obtained by enforcing the continuity

conditions at the interface of both layers:

Σ 1ð Þ
rr r ¼ rm
� � ¼ Σ 2ð Þ

rr r ¼ rm
� � ð2:6aÞ

Σ 1ð Þ
θr r ¼ rm
� � ¼ Σ 2ð Þ

θr r ¼ rm
� � ð2:6bÞ

u 1ð Þ
r r ¼ rm
� � ¼ u 2ð Þ

r r ¼ rm
� � ð2:6cÞ

u 1ð Þ
θ r ¼ rm
� � ¼ u 2ð Þ

θ r ¼ rm
� � ð2:6dÞ

as well as imposing zero force condition at the inner and outer radii:

Σ 1ð Þ
rr r ¼ ri
� � ¼ 0 ð2:7aÞ

Σ 2ð Þ
rr r ¼ ro
� � ¼ 0 ð2:7bÞ

Σ 1ð Þ
θr r ¼ ri
� � ¼ 0 ð2:7cÞ

Σ 2ð Þ
θr r ¼ ro
� � ¼ 0 ð2:7dÞ

The incremental shear forces and normal displacements should also vanish at
both ends of the beam:

Σ 1ð Þ
θr θ ¼ ± �θ
� � ¼ 0 ð2:8aÞ

Σ 2ð Þ
θr θ ¼ ± �θ
� � ¼ 0 ð2:8bÞ

u 1ð Þ
θ ¼ 0 ð2:8cÞ

u 2ð Þ
θ ¼ 0 ð2:8dÞ

Finally, to avoid numerical ill-conditioning in the cases where large
differences between the properties (mechanical, geometrical) of both layers exist,
we used the compound matrix method to search for an expansion value α that
results in a non-trivial solution of f(i), given the thickness ratio, β, and stiffness
ratio, γ33.

Derivation of the thick-beam stiffness model. Consider a segment of a curved
beam loaded in pure bending (Supplementary Fig. 3a). We assume that a plane
cross-section remains plain after bending. Based on geometrical considerations, the
tangential strain at a distance r − rn from the neutral axis is given by:

ϵθðr; θÞ ¼
ðr � rnÞdθ

rθ
ð3:1Þ

Neglecting the radial stresses, the tangential stress for a linear elastic material is:

σθðr; θÞ ¼ Eϵθ ¼ E
ðr � rnÞdθ

rθ
ð3:2Þ

In the case of pure bending, the total tangential stress across a specific cross-
section equals zero (

R
AσθdA ¼ 0, where A is the cross-section area). As a result, the

neutral axis of a curved beam can be derived as a function from the cross-section
geometry and material properties as:

rn ¼ E1A1 þ E2A2

E1

R
A1

1
r dAþ E2

R
A2

1
r dA

ð3:3Þ

where subscripts 1 and 2 refer to the different layers of the beam. The applied
moment M is defined to be positive for increasing curvatures. Combined with
Eq. 3.2, the moment resulting from the tangential stress is given by:

MðθÞ ¼
Z
A
ðr � rnÞσθdA ¼ dθ

θ
½ðrc;1 � rnÞE1A1 þ ðrc;2 � rnÞE2A2� ¼

dθ
θ
CM

ð3:4Þ
Combining Eq. 3.4 with Eq. 3.2 and adding a term related to the normal

force N, the tangential stress in layer i can be written as a function of the
applied loads as:

σθ;iðr; θÞ ¼
r � rn

r

� �MEi

CM
þ NEi

CN
ð3:5Þ

where CN = E1A1 + E2A2. The next step is to consider the average transverse
shear stress along the width of the beam due to an applied bending moment.
Writing the net force in the tangential direction of a beam element with the
length rc dθ from height r till the outer radius r0 gives (see Supplementary
Fig. 3b):

τ2ðr; θÞ ¼
VE2

CM
r0 � r þ rn ln

r
r0

� �
 �
ð3:6Þ

for r > rm. The shear stress in the bottom layer can be obtained in a similar way
but by integrating from the inner radius ri till height r. Neglecting the radial
stresses, the total internal energy is then obtained as:

U ¼ 1
2

Z
V

σ2θ
E
dV þ 1

2

Z
V

τ2

G
dV ð3:7Þ

Substituting Eqs. 3.5 and 3.6 into Eq. 3.7 gives the strain energy as a function of
the applied loads:

U ¼ 1
2

Z
θ

M2

CM
dθ þ

Z
θ

MN
CN

dθ þ 1
2

Z
θ

N2CC

C2
N

dθ þ 1
2

Z
θ

V2CS

C2
M

dθ ð3:8Þ

where CC = rc,1E1A1 + rc,2E2A2 and Cs = E1(1 + ν)CS1 + E2(1 + ν)CS2. The
constants CS1 and CS2 are as follows:

Cs1 ¼ � r4i
6
þ 5rnr

3
i

9
� r2nr

2
i

2
þ r2i r

2
m � 4rir

3
m

3
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2
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2
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4rm
3

� ���

ln
rm
ri

� �
þ ri �

4rm
9

�
þ r2nr

2
m ln

rm
ri

� �2

� ln
rm
ri

� �
þ 1

2

 !!

ð3:9aÞ
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r40
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� 5rnr

3
o

9
þ r2nr

2
o

2
� r20r

2
m � 4r0r

3
m

3
þ r4m

2
� rnr

2
m �2r0 þ

4rm
3

� ���

ln
rm
ro

� �
þ r0 �

4rm
9

�
þ r2nr

2
m ln

rm
ro
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ð3:9bÞ
where the results of the bending analysis are used to derive explicit relationships for
CM, CN, CC and CS.

For the curved beam shown in Fig. 3, the relationships between the applied
force P and the cross-sectional loads can be established as:

MðθÞ ¼ PrC 1� cos θð Þð Þ ð3:10aÞ

N θð Þ ¼ Pcos θð Þ ð3:10bÞ

V θð Þ ¼ �Psin θð Þ ð3:10cÞ
where rC is the centroid of the composite bilayer beam. The substitution of
Equation 3.9 into the strain energy function (Eq. 3.8) and subsequent
differentiation with respect to the force P (δ ¼ ∂U

∂P , Castigliano’s second theorem)
yields the displacement δ as a linear function of P. The initial stiffness k of the
curved bilayer can, therefore, be calculated as:

k ¼ P
δ

ð3:11Þ

Finite element analysis. FEA was performed using the commercial software
package Abaqus (Abaqus 6.14, Simulia, US). Static plane strain analyses were
performed for both the bending and stiffness steps using an implicit nonlinear
solver (Abaqus Standard, full Newton integration). Full-integration hybrid plane
strain elements (i.e., CPE4H) were used for modeling the incompressible behavior
of the materials. The constitutive behavior of the bilayer during the bending

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00265-z

10 COMMUNICATIONS MATERIALS |            (2022) 3:43 | https://doi.org/10.1038/s43246-022-00265-z | www.nature.com/commsmat

www.nature.com/commsmat


analysis was captured using an incompressible Neo-Hookean material model. The
Neo-Hookean material constant C10 was calculated based on the selected Young’s
modulus as:

C ið Þ
10 ¼

Gi

2
¼ Ei

6
ð4:1Þ

In order to allow for instabilities to be triggered, imperfections were introduced
through the perturbation of the elastic properties of few elements at the interface of
both layers75,76 (see Supplementary Table 2). The expansion of the active layer was
modeled through the inclusion of a predefined stress field. The individual stress
components were calculated as:

σx ¼ 2Cð2Þ
10

1
α2

� α2
� �

ð4:2aÞ

σy ¼ 0 ð4:2bÞ

σz ¼ 2C 2ð Þ
10 1� α2
� � ð4:2cÞ

σxy ¼ 0 ð4:2dÞ
For the stiffness analysis, an incompressible linear elastic material model was

used. One side of the curved beam was clamped while a small compressive
displacement of 0.1% of the beam radius was applied at the centroid axis of the
beam. The resulting reaction force was divided by the applied displacement to
calculate the stiffness of the bilayer element.

Bilayer bending experiments. The polymer bilayer samples were fabricated from
polylactic acid (PLA) filaments using a fused deposition modeling (FDM) 3D
printer (Ultimaker 2+, Ultimaker, The Netherlands). During the process of fila-
ment extrusion and the subsequent cooling of the printed material, pre-stresses are
stored as memory inside the structure of the printed material17. Upon exposure to
high temperatures, the printed filament shrinks along the length direction
accompanied with expansion in the other directions. Bilayers were produced by
printing several layers with filaments aligned in the longitudinal direction on top of
a series of layers with filaments perpendicular to the length direction. A nozzle
diameter of 0.25 mm and a printing speed of 50 mm/s was used while the layer
thickness and extrusion temperature were varied to program the different amounts
of longitudinal shrinkage.

The polymer-metal bilayers samples were fabricated from polyolefin (G. Apex,
Taiwan Yun Lin Electronic Co. Taiwan) with a nominal thickness of 1.0 mm. The
stiffness of the polyolefin layer was obtained from the literature77,78. The bilayer
samples were produced through adhesive bonding (Loctite 401, Henkel, Ireland) of
the polyolefin layer to a thin stainless steel foil (AISI 316, annealed, Goodfellow,
UK) with a thickness of 50 µm. The specimens were cured for at least 24 h at room
temperature.

All the specimens were activated through submersion in a transparent container
filled with hot water for at least 60 s to ensure the completeness of the shape-
shifting process. The 4D printed samples were activated at a temperature of 90 °C
while the activation temperature for the polymer-metal bilayer samples was varied
to achieve different amounts of longitudinal shrinkage (see Supplementary
Table 4). The temperature was controlled by a heating immersion circulator
(CORIO CD, Julabo, Germany). The deformed configuration of the activated
bilayers was captured using digital cameras. A custom MATLAB (Mathworks,
version R2020b, US) code was used for image processing. A circle was fit to the
detected interface radius to obtain the curvature of the specimens.

Stiffness experiments. The specimens were produced using a multi-material
polyjet 3D printer (Object500 Connex3, Stratasys). Different combinations of
hard (VeroCyanTM) and soft (Agilus30TM Clear) photo polymeric materials were
used for the fabrication of bilayer beams with various stiffness ratios (see Sup-
plementary Table 5 and 6). The beams were fabricated with a beam thickness
varying between 2.0 and 10.0 mm. The specimens were then mechanically tested
under compression (maximum displacement = 2.0 mm and compression rate =
5 mm/min, see Supplementary Fig. 5) using a Lloyd LR5K mechanical testing
machine equipped with a 100 N load cell. For all the experiments, a linear
relationship between the load and displacement could be observed. A MATLAB
code was used to fit a line to the experimental data, thereby obtaining the stiffness
of the specimens.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Received: 21 October 2021; Accepted: 15 June 2022;

References
1. Meloni, M. et al. Engineering origami: a comprehensive review of recent

applications, design methods, and tools. Advanced. Science 8, 2000636 (2021).
2. Gracias, D. H. et al. Forming electrical networks in three dimensions by self-

assembly. Science 289, 1170–1172 (2000).
3. Cho, J.-H. et al. Nanoscale origami for 3D optics. Small 7, 1943–1948 (2011).
4. Jamal, M., Zarafshar, A. M. & Gracias, D. H. Differentially photo-crosslinked

polymers enable self-assembling microfluidics. Nat. Commun. 2, 1–6 (2011).
5. Jamal, M. et al. Directed growth of fibroblasts into three dimensional

micropatterned geometries via self-assembling scaffolds. Biomaterials 31,
1683–1690 (2010).

6. Janbaz, S. et al. Origami lattices with free-form surface ornaments. Sci. Adv. 3,
eaao1595 (2017).

7. Ionov, L. Polymeric actuators. Langmuir 31, 5015–5024 (2015).
8. Liu, Y., Genzer, J. & Dickey, M. D. “2D or not 2D”: Shape-programming

polymer sheets. Prog. Polym. Sci. 52, 79–106 (2016).
9. van Manen, T., Janbaz, S. & Zadpoor, A. A. Programming the shape-shifting

of flat soft matter. Mater. Today 21, 144–163 (2018).
10. Zhang, Y. et al. Printing, folding and assembly methods for forming 3D

mesostructures in advanced materials. Nat. Rev. Mater. 2, 1–17 (2017).
11. Wei, M. et al. Stimuli-responsive polymers and their applications. Polym.

Chem. 8, 127–143 (2017).
12. Liu, F. & Urban, M. W. Recent advances and challenges in designing stimuli-

responsive polymers. Prog. Polym. Sci. 35, 3–23 (2010).
13. Gracias, D. H. Stimuli responsive self-folding using thin polymer films. Curr.

Opin. Chem. Eng. 2, 112–119 (2013).
14. Ding, Z. et al. Direct 4D printing via active composite materials. Sci. Adv. 3,

e1602890 (2017).
15. Gladman, A. S. et al. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).
16. Kim, Y. et al. Printing ferromagnetic domains for untethered fast-

transforming soft materials. Nature 558, 274–279 (2018).
17. Van Manen, T., Janbaz, S. & Zadpoor, A. A. Programming 2D/3D shape-

shifting with hobbyist 3D printers. Mater. Horizons 4, 1064–1069 (2017).
18. van Manen, T. et al. 4D printing of reconfigurable metamaterials and devices.

Commun. Mater. 2, 1–8 (2021).
19. Filipov, E. T., Tachi, T. & Paulino, G. H. Origami tubes assembled into stiff,

yet reconfigurable structures and metamaterials. Proc. Natl Acad. Sci. 112,
12321–12326 (2015).

20. Overvelde, J. T. et al. Rational design of reconfigurable prismatic architected
materials. Nature 541, 347–352 (2017).

21. Zhai, Z., Wang, Y. & Jiang, H. Origami-inspired, on-demand deployable and
collapsible mechanical metamaterials with tunable stiffness. Proc. Natl Acad.
Sci. 115, 2032–2037 (2018).

22. Bertoldi, K. et al. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 1–11
(2017).

23. Kim, Y.-J. et al. A novel layer jamming mechanism with tunable stiffness
capability for minimally invasive surgery. IEEE Trans. Robotics 29, 1031–1042
(2013).

24. Ou, J. et al. jamSheets: thin interfaces with tunable stiffness enabled by layer
jamming. In Proceedings of the 8th International Conference on Tangible,
Embedded and Embodied Interaction. (2014).

25. Kim, S.-J. et al. An origami-inspired, self-locking robotic arm that can be
folded flat. Sci. Robotics 3, eaar2915 (2018).

26. Nojima, T. & Saito, K. Development of newly designed ultra-light core
structures. JSME Int. 49, 38–42 (2006).

27. van Manen, T. et al. Kirigami-enabled self-folding origami. Mater. Today 32,
59–67 (2020).

28. Randhawa, J. S. et al. Importance of surface patterns for defect mitigation in
three-dimensional self-assembly. Langmuir 26, 12534–12539 (2010).

29. Tien, J., Breen, T. L. & Whitesides, G. M. Crystallization of millimeter-scale
objects with use of capillary forces. J. Am. Chem. Soc. 120, 12670–12671
(1998).

30. Abdolahi, J. et al. Analytical and numerical analysis of swelling-induced large
bending of thermally-activated hydrogel bilayers. Int. J. Solids Struct. 99, 1–11
(2016).

31. Morimoto, T. & Ashida, F. Temperature-responsive bending of a bilayer gel.
Int. J. Solids Struct. 56, 20–28 (2015).

32. Nardinocchi, P. & Puntel, E. Finite bending solutions for layered gel beams.
Int. J. Solids Struct. 90, 228–235 (2016).

33. Roccabianca, S., Bigoni, D. & Gei, M. Long wavelength bifurcations and
multiple neutral axes of elastic layered structures subject to finite bending. J.
Mech. Mater. Struct. 6, 511–527 (2011).

34. Roccabianca, S., Gei, M. & Bigoni, D. Plane strain bifurcations of elastic
layered structures subject to finite bending: theory versus experiments. IMA J.
Appl. Math. 75, 525–548 (2010).

35. Budynas, R. G. Advanced strength and applied stress analysis. (McGraw-Hill,
1999).

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00265-z ARTICLE

COMMUNICATIONS MATERIALS |            (2022) 3:43 | https://doi.org/10.1038/s43246-022-00265-z | www.nature.com/commsmat 11

www.nature.com/commsmat
www.nature.com/commsmat


36. Budynas, R. G., Nisbett, J. K. & Tangchaichit, K. Shigley’s mechanical
engineering design. (McGraw Hill, New York, 2005).

37. Rivlin, R. Large elastic deformations of isotropic materials. V. The problem of
flexure. Proc. R. Soc. London Ser. A 195, 463–473 (1949).

38. Cendula, P. et al. Bending and wrinkling as competing relaxation pathways for
strained free-hanging films. Phys. Rev. B 79, 085429 (2009).

39. Timoshenko, S. Analysis of bi-metal thermostats. Josa 11, 233–255 (1925).
40. Bassik, N. et al. Patterning thin film mechanical properties to drive assembly

of complex 3D structures. Adv. Mater. 20, 4760–4764 (2008).
41. Arora, W. J. et al. Membrane folding to achieve three-dimensional

nanostructures: nanopatterned silicon nitride folded with stressed chromium
hinges. Appl. Phys. Lett. 88, 053108 (2006).

42. Pinto, R. M., Chu, V. & Conde, J. P. Amorphous silicon self‐rolling micro
electromechanical systems: from residual stress control to complex 3D
structures. Adv. Eng. Mater. 21, 1900663 (2019).

43. Schmidt, O. et al. Self-assembled nanoholes, lateral quantum-dot molecules,
and rolled-up nanotubes. IEEE J. Select. Topics Quant. Electron. 8, 1025–1034
(2002).

44. Vaccaro, P. O., Kubota, K. & Aida, T. Strain-driven self-positioning of
micromachined structures. Appl. Phys. Lett. 78, 2852–2854 (2001).

45. Pi, C.-H. & Turner, K. T. Design, analysis, and characterization of stress-
engineered 3D microstructures comprised of PECVD silicon oxide and
nitride. J. Micromech. Microeng. 26, 065010 (2016).

46. Cheng, X. et al. Surface chemical and mechanical properties of plasma-
polymerized N-isopropylacrylamide. Langmuir 21, 7833–7841 (2005).

47. Bassik, N. et al. Photolithographically patterned smart hydrogel based bilayer
actuators. Polymer 51, 6093–6098 (2010).

48. Kim, J. et al. Reversible self-bending soft hydrogel microstructures with
mechanically optimized designs. Chem. Eng. J. 321, 384–393 (2017).

49. Naficy, S. et al. 4D printing of reversible shape morphing hydrogel structures.
Macromol. Mater. Eng. 302, 1600212 (2017).

50. Na, J. H. et al. Programming reversibly self‐folding origami with
micropatterned photo‐crosslinkable polymer trilayers. Adv. Mater. 27, 79–85
(2015).

51. Hu, Z., Zhang, X. & Li, Y. Synthesis and application of modulated polymer
gels. Science 269, 525–527 (1995).

52. Morales, D. et al. Ionoprinted multi-responsive hydrogel actuators.
Micromachines 7, 98 (2016).

53. Wang, X. et al. Multi‐responsive bilayer hydrogel actuators with
programmable and precisely tunable motions. Macromol. Chem. Phys. 220,
1800562 (2019).

54. Jamal, M. et al. Bio‐origami hydrogel scaffolds composed of photocrosslinked
PEG bilayers. Adv. Healthcare Mater. 2, 1142–1150 (2013).

55. Janbaz, S., Hedayati, R. & Zadpoor, A. Programming the shape-shifting of flat
soft matter: from self-rolling/self-twisting materials to self-folding origami.
Mater. Horizons 3, 536–547 (2016).

56. Felton, S. M. et al. Self-folding with shape memory composites. Soft Matter 9,
7688–7694 (2013).

57. Ge, Q., Qi, H. J. & Dunn, M. L. Active materials by four-dimension printing.
Appl. Phys. Lett. 103, 131901 (2013).

58. Ge, Q. et al. Active origami by 4D printing. Smart Mater. Struct. 23, 094007
(2014).

59. Liu, Y. et al. Self-folding of polymer sheets using local light absorption. Soft
Matter 8, 1764–1769 (2012).

60. Mailen, R. W. et al. Modelling of shape memory polymer sheets that self-fold
in response to localized heating. Soft Matter 11, 7827–7834 (2015).

61. Wang, H. et al. Shape‐controlled, self‐wrapped carbon nanotube 3D
electronics. Adv. Sci. 2, 1500103 (2015).

62. Liu, Y. et al. Sequential self-folding of polymer sheets. Sci. Adv. 3, e1602417
(2017).

63. Shaha, R. K., Torbati, A. H. & Frick, C. P. Body‐temperature s hape‐shifting
liquid crystal elastomers. J. Appl. Polym. Sci. 138, 50136 (2021).

64. An, N., Li, M. & Zhou, J. Instability of liquid crystal elastomers. Smart Mater.
Struct. 25, 015016 (2015).

65. Kim, H. et al. Tough, shape-changing materials: crystallized liquid crystal
elastomers. Macromolecules 50, 4267–4275 (2017).

66. Agrawal, A. et al. Shape-responsive liquid crystal elastomer bilayers. Soft
Matter 10, 1411–1415 (2014).

67. Barnes, M. & Verduzco, R. Direct shape programming of liquid crystal
elastomers. Soft Matter 15, 870–879 (2019).

68. Boothby, J. & Ware, T. Dual-responsive, shape-switching bilayers enabled by
liquid crystal elastomers. Soft Matter 13, 4349–4356 (2017).

69. Yuan, C. et al. 3D printed reversible shape changing soft actuators assisted by
liquid crystal elastomers. Soft Matter 13, 5558–5568 (2017).

70. Meng, H. & Li, G. A review of stimuli-responsive shape memory polymer
composites. Polymer 54, 2199–2221 (2013).

71. Alben, S., Balakrisnan, B. & Smela, E. Edge effects determine the direction of
bilayer bending. Nano Letters 11, 2280–2285 (2011).

72. Finot, M. & Suresh, S. Small and large deformation of thick and thin-film
multi-layers: effects of layer geometry, plasticity and compositional gradients.
J. Mech. Phys. Solids 44, 683–721 (1996).

73. Ogden, R. W. Non-linear elastic deformations. (Courier Corporation, 1997).
74. Su, Y. et al. Pattern evolution in bending dielectric-elastomeric bilayers. J.

Mech. Phys. Solids 136, 103670 (2020).
75. Nikravesh, S., Ryu, D. & Shen, Y.-L. Direct numerical simulation of buckling

instability of thin films on a compliant substrate. Adv. Mech. Eng. 11,
1687814019840470 (2019).

76. Nikravesh, S., Ryu, D. & Shen, Y.-L. instabilities of thin films on a compliant
substrate: direct numerical simulations from surface wrinkling to global
buckling. Sci. Rep. 10, 1–19 (2020).

77. Baatti, A. et al. DMA analysis, thermal study and morphology of
polymethylsilsesquioxane nanoparticles-reinforced HDPE nanocomposite. J.
Thermal Anal. Calorimetry 139, 789–797 (2020).

78. Morshedian, J. et al. Preparation and properties of heat‐shrinkable cross‐
linked low‐density polyethylene. Adv. Polym. Technol. 22, 112–119 (2003).

Acknowledgements
The research leading to these results has received funding from the European Research
Council under the ERC grant agreement no. [677575].

Author contributions
T.M. and A.A.Z. conceived the study. T.M. developed the analytical models and per-
formed the computational analysis. T.M., V.M.D., M.C.S. and M.J.M. designed and
fabricated the specimens and conducted the experiments. T.M. and A.A.Z. wrote the
manuscript. A.A.Z. supervised the project. All authors contributed to the analysis of the
results, the reading and editing of the manuscript, and the approval of the final version.

Competing interests
A.A.Z. is a Guest Editor for Communications Materials and was not involved in the
editorial review of, or the decision to publish, this Article. The remaining authors declare
no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43246-022-00265-z.

Correspondence and requests for materials should be addressed to Teunis van Manen.

Peer review information Communications Materials thanks Jianguo Cai and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Primary
Handling Editor: Aldo Isidori. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00265-z

12 COMMUNICATIONS MATERIALS |            (2022) 3:43 | https://doi.org/10.1038/s43246-022-00265-z | www.nature.com/commsmat

https://doi.org/10.1038/s43246-022-00265-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsmat

	Theoretical stiffness limits of 4D printed self-�folding metamaterials
	Results and discussion
	Bilayer bending
	Stability analysis
	Stiffness analysis
	Computational models
	Experimental validation
	Combined analysis
	Practical implications

	Conclusions
	Methods
	Finite-deformation bending model
	Stability model
	Derivation of the thick-beam stiffness model
	Finite element analysis
	Bilayer bending experiments
	Stiffness experiments

	Data availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




