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Abstract: Trajectory optimization has been an active area of research for air transport studies for
several decades. But almost all flight optimizers proposed in the literature remain close-sourced,
which presents a major disadvantage for the advancement of scientific research. This optimization
depends on aircraft performance models, emission models, and operational constraints. In this paper,
I present a fully open trajectory optimizer, OpenAP.top, which offers researchers easy access to the
complex but efficient non-linear optimal control approach. Full flights can be generated without
specifying flight phases, and specific flight segments can also be independently created. The optimizer
adapts to meteorological conditions and includes conventional fuel and cost index objectives. Based
on global warming and temperature potentials, its climate objectives form the basis for climate
optimal air transport studies. The optimizer’s performance and uncertainties under different factors
like varying mass, cost index, and wind conditions are analyzed. Overall, this new optimizer
brings a high performance for optimal trajectory generations by providing four-dimensional and
wind-enabled full-phase optimal trajectories in a few seconds.

Keywords: trajectory optimization; optimal control; direct collocation; climate objective functions;
sustainable aviation

1. Introduction

Air transportation contributes between 3% and 5% of global greenhouse gas emissions.
Aviation emissions also create a greater impact due to the altitude of emissions. Research
focusing on the operation aspect of air transport often requires the knowledge of climate-
optimal trajectories.

Over the past decades, many studies have addressed the optimization of flight trajec-
tories [1]. Traditionally, the objective of flight trajectory optimization in transport studies
has been centered around the balance between fuel consumption and flight time, which
is modeled by the cost index [2,3]. The cost index describes the weight of fuel and time. A
flight with a lower cost index consumes less fuel and longer flight duration, whereas a
higher cost index leads to a shorter flight duration with higher fuel consumption.

More recent research in trajectory optimization also studies optimal flights that pro-
duce the minimum amount of climate impact caused by different emissions [4,5]. Several
climate-oriented objectives are derived from metrics like average temperature response,
global warming potential, and global temperature potential [6,7].

1.1. Short Overview of Flight Trajectory Optimizations

From the methodology perspective, flight trajectory optimization can be divided into
two main domains [8], which are the optimal control approach and the non-optimal control
approach. The non-optimal control is a general category that covers many different algo-
rithms, including genetic algorithms [9], simulated annealing [10], and A∗ algorithm [11].
The advantage of these optimization approaches is that they are simple to set up. However,
they often have to work with discretized state spaces, cannot take advantage of the system
dynamics of the flight, and require a long time for the (sub-)optimal solution to be found.
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The optimal control approaches take advantage of system dynamics, and they model
the generations of a flight trajectory as a system with control variables (e.g., speed, vertical
rate) and state variables (e.g., positions, altitude, mass). Generally speaking, the kinematic
model of the aircraft provides the state equation, while the dynamic model (e.g., force, fuel,
total energy) provides the constraint conditions.

Optimal control can be further divided into direct optimal control (first discretize then
optimize) or indirect optimal control (first optimize then discretize) [12]. From the trajectory
method perspective, it is also possible to perform optimal control using the shooting method
and collocation (simultaneous) method. The shooting method parametrizes the control
trajectory with a smooth piecewise approximation and includes states at certain shooting
nodes as decision variables in solving the non-linear programming problem. On the other
hand, the collocation method parametrizes the entire state trajectory as low-order piecewise
polynomial functions and adopts all states at collocation points as decision variables.
Figure 1 shows an overview of the aforementioned methods.

this paper

Other aprroach

genetic algorithm

simulated annealing

A∗ algorithm

more...

Optimal control

direct indirect

shooting

collocation

direct
shooting

indirect
shooting

direct
collocation n/a

Figure 1. A simplified overview of trajectory optimization approaches.

Overall, the direct collocation optimal control approach provides better performance
for finding the optimal solution over the shooting method. It has been adopted by recent
research studies [13,14]. However, of all previously mentioned optimization methods,
direct collocation is the one that is the most difficult to set up, given that the constraints are
closely linked with the underlying aircraft performance models. The challenge becomes
more complicated when dealing with different flight phases or full trajectories. This paper
addresses all these challenges.

1.2. Aircraft Performance Models and Optimization Scopes

At the center of flight trajectory optimization is the aircraft performance model, which
includes the kinematic model and dynamic model of the aircraft. The kinematic model
describes the motion of the trajectory, including parameters like position, altitude, speed,
and vertical rates. Commonly, a simplified point-mass model is used for the dynamic
model, which deals with different forces (thrust and drag), mass, and fuel burn.

Currently, the most used aircraft performance model for flight trajectory optimization
is the Base of aircraft data (BADA) developed by EUROCONTROL [15]. BADA is a com-
prehensive model with a large number of aircraft types. However, it is also a closed-source
model that requires a per-project-based license, and its utilization prevents many trajectory
optimizers from being openly shared, hence, hindering the comparability, reusability, and
reproducibility of follow-on research studies.

Another aircraft performance model, ECAC Doc 29, developed by the European Civil
Aviation Conference, is an open model, with a focus on the impact of aircraft noise [16].
However, the ECAC Doc 29 has a low fidelity and only focuses on the noise model. External
models, like BADA, are required to perform other types of optimizations.
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Over the recent year, a fully open and academic aircraft performance model, OpenAP [17],
has been developed as an alternative model for BADA. I have welcomed contributions
from the aviation research community, and thanks to its open-source license, any parties,
including academics and industries, can use this model freely. It includes the complete
kinematic [18] and dynamic models required for flight trajectory optimization. Hence,
OpenAP forms the basis of this paper.

Existing research studies on trajectory optimizations often have different preferences
in terms of flight phases. For example, studies aiming at minimizing fuel consumption
and emission often focus on the cruise segments of the flight [19,20], while others aim
at the climb or descent phase of the flight [13,21,22]. Depending on the method used
for optimization, lateral and vertical optimization may be performed separately, leading
to a less optimal trajectory. Other factors, like wind field, can also be considered in the
optimization process.

Overall, there is a lack of a generalized optimizer capable of handling all flight phases
to provide a four-dimensional optimal trajectory, consider wind conditions, and uses the
efficient direct collocation approach. This is the challenge set out to be solved by this paper.

1.3. Contributions of This Paper

Due to the lack of openness in the existing flight trajectory optimization libraries and
their underlying aircraft performance models, reproducibility and comparability of studies
remain challenges for researchers. This paper describes a fully open 4D flight trajectory
optimizer, both in terms of underlying aircraft performance and emission models, as well
as the implementation of optimization algorithms.

Several types of objective functions are designed and built-in with OpenAp.top. These
objective models include fuel and cost index, as well as global warming potential and
global temperature potential, both with 20-, 50-, and 100-year horizons. The proposed
OpenAP.top [23] is one of the only open-source trajectory optimizers to date (Source code
from: https://github.com/junzis/openap-top, accessed on 20 June 2022). The optimizer
also provides simple interface for future research studies. Optimal trajectories can be
generated with a couple of lines of code in a few seconds.

The remainder of this paper is structured as follows. Section 2 explains the aircraft per-
formance and emission models from OpenAP, as well as the adaptions of these models for
trajectory optimization from a non-linear optimal control approach. Section 3 describes the
fundamentals of non-linear optimal control for general trajectory optimization. Section 4
dives into the details of designing the optimization constraints for flight trajectory op-
timization in the context of air traffic studies. Section 5 explains the design of different
categories of objective functions. Section 6 focuses on the optimization experiments con-
ducted under different considerations, such as with flight phase and different objectives.
It also provides insightful analyses of the optimization performance under uncertainties,
such as aircraft mass, cost-index setting, and wind conditions. Finally, Sections 7 and 8
present the discussion and conclusions of this paper.

2. Aircraft Fuel and Emission Models

OpenAP is the underlying model used in this paper to calculate aircraft performance,
fuel consumption, and emissions. In this section, I briefly describe the fuel and emission
models, which are slightly different from the original OpenAP models.

The fuel flow model is built upon the openly available ICAO aircraft engine emission
databank [24]. The ICAO data provides engine fuel flow at different thrust settings at sea-
level ambient conditions. Four thrust ratios are 100%, 85%, 30%, and 7% of the maximum
thrust, representing takeoff, climb out, cruise, and idle flight conditions respectively.

Based on these four testing data points, a second-order polynomial model is con-
structed to represent the fuel flow for different power ratios. The original third-order
polynomial model from OpenAP is adapted to prevent the occurrence of negative fuel flow

https://github.com/junzis/openap-top
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during optimization by the numerical solver. The model for calculating fuel flow at sea
level (ffsl) can be described as:

ffsl = a(γ + b)2

γt =
T

Tmax

(1)

where T is the actual thrust, Tmax is the maximum thrust, and γ is the thrust ratio at time
t, and coefficients a and b are obtained from the least-squares regression using the four
testing conditions. During the flight, the data from the ICAO engine emission databank at
sea-level conditions are no longer valid. In OpenAP, a correction factor is introduced to
correct the altitude effect on engine flue flow. The final fuel flow model can be expressed as:

ff = a(γ + b)2 + Ch T h (2)

where h is the altitude of the aircraft, and Cch is the correction coefficient that is dependent
on engine types [17]. T are calculated based on the aircraft drag polar as:

T = D =
1
2

ρvS2CD

=
1
2

ρvS2(CD0 + kC2
L)

=
1
2

ρvS2

[
CD0 + k

(
2mg0

ρvS2

)2
] (3)

where m, ρ, v are aircraft mass, air density, and speed. Aircraft wing area (S) and drag polar
coefficients (CD0 and k) are both parts of the OpenAP aircraft performance model.

Once the fuel flow is know, different emissions are calculated. Among different
emission types, H2O , CO2 , SOX , and soot are considered to be proportional [25] to the
fuel flow regardless of the atmosphere conditions:

fCO2
= 3.149× ff (4)

fH2O
= 1.230× ff (5)

fSOX
= 0.00084× ff (6)

fsoot = 0.00003× ff (7)

Other emissions, including NOX , CO, and HC, are first estimated based on the sea-
level atmospheric conditions based on data from the ICAO engine emission databank. To
simplify the model, piecewise linear interpolation models are designed to approximate
emissions under different thrust conditions. After that, the Fuel Flow Method 2 developed
by Boeing [26] is used to correct the emission values based on the flight altitude.

3. Non-Linear Optimal Control for Trajectory Optimization Problems

The non-linear optimal control approach applies to many trajectory optimization
problems in different research areas, including robotics, unmanned vehicles, and spacecraft.
In this section, I give a brief overview of how such a system is formulated for flight trajectory
optimization and how to solve it numerically.

3.1. System Equations

In the point-mass aircraft performance model, the following flight states are considered:

xt = [xt, yt, ht, mt] (8)

where (x, y), h, and m are the position, altitude, and mass of the aircraft. The 2D positions
can be conveniently converted from and to latitudes and longitudes based on map projec-



Aerospace 2022, 9, 383 5 of 24

tions [27]. In the framework of OpenAP.top, the Lambert Conformal Conic projection and
World Geodetic System (WGS) 1984 [28] is used for such conversions.

For this point-mass system, the control states includes:

ut = [Mt, vst, ψt] (9)

where M, vs, and ψ are Mach number, vertical rate, and heading of the aircraft. These
states correspond to the parameters that can be set by the flight management system of
the aircraft.

The dynamic, or evolution, of the states can be expressed by a set of ordinary differen-
tial equations:

dx
dt

= vt sin(ψt) cos(γt) + wx,t (10)

dy
dt

= vt cos(ψt) cos(γt) + wy,t (11)

dh
dt

= vst (12)

dm
dt

= −ff t(m, v, h) (13)

where v is the true airspeed, γ is the flight path angle, and ff is the fuel flow model that is
dependent on the aircraft mass, speed, and altitude. wx and wy are wind speed components.
Other intermediate variables such as flight path angle and true airspeed are calculated based
on Mach number and altitude under the international standard atmosphere conditions:

γ = tan−1
(vs

v

)
(14)

v = Ma0
√

ΓRTh (15)

where a0 is the speed of sound constant at sea level, Γ is the ratio of specific heat, R is the
gas constant for air, and Th is the air temperature at altitude h.

3.2. Non-Linear Optimal Control

Knowing states, controls, and the dynamic of an optimal control system, the next task
is to formulate it in a way that can be solved by non-linear programming that consists of a
set of constraints and an objective function. The generalized form of an objective function
(J) can be expressed as:

J(x, u, t0, t f ) := E(t0, t f , xt0 , xt f ) +
∫ t f

t0

L(xt, ut, t)dt (16)

where E(·) and L(·) are the Mayer term and Lagrangian terms. They correspond to the cost
at the endpoints, as well as cost along the trajectory, respectively. The minimization of the
objective function

Min
xt ,ut

J(x, u, t0, t f ); t0 < t < t f (17)

is subject to the following constraints:

ẋt = f(xt, ut) (18)

h(xt, ut) < 0 (19)

e(t0, t f , xt0 , ut0 , xt f , ut f ) = 0 (20)

where ẋ is the first-order dynamic constraint represented by the earlier system equations,
h(·) represents the path constraints, and e(·) represents the conditions at endpoints.



Aerospace 2022, 9, 383 6 of 24

3.3. Numerical Approximations

The solution for such an optimal control problem can be computed numerically. The
direct collocation approach adopted in this paper discretizes the continuous problem into
segments that consist of K number of time intervals. Within each interval, the states are
approximated using polynomials at collocation points C in each time interval. Such a
discretized system has the following form of objective objectives:

Min
xk ,uk

[
∑

c∈Cend,k∈K
Ec(xk) + ∑

c∈C,k∈K
Lc(xk, uk, ∆τc)

]
(21)

where Cend refers to the set that contains the last collocation points of each interval. ∆τc
is the time between collocation points. The minimization of the objective is subject to the
following conditions:

xk+1 = xk + f(xk, uk)∆τc; ∀c ∈ C, ∀k ∈ K (22)

hc(xk, uk, ∆τc) < 0; ∀c ∈ C, ∀k ∈ K (23)

e(t0, t f , x0, x f ) = 0 (24)

The final cost is obtained by integrating the cost at all collocation points for all intervals:

Lc(xk, uk, ∆τc) = Lc(xk, uk)∆τc; ∀c ∈ C, ∀k ∈ K (25)

With in each time interval, states at these collocation points are also evaluated with the
following constraint:

ẋc − f(xc, uc) = 0; ∀c ∈ C (26)

where ẋ is the state dynamic approximated by the lagrange polynomial (fp):

ẋc = fp(xc) =
P

∑
p=0

Cpxp
c (27)

Figure 2 illustrates the constraint of Equation (26), where the polynomial approximates
the system states at an example collocation point.

t1 tk tk+1 tK tk
t0

c1 c2 c3

tk+1

f(xc, uc)
ẋc = fp(xc)

x

Figure 2. Illustration of collocation points for a time interval.

3.4. Solver

Since the trajectory optimization problem is formulated as a discretized non-linear pro-
gramming problem, a numeric solver can be employed to derive the optimal control states
(and related flight states). The numerical solver used in this paper is implemented by an
open-source library CasADi [12], which is a symbolic framework for numeric optimization
and automatic differentiation. CasADi further utilizes the lower-level C code that invokes
the Interior Point Optimizer (IPOPT) [29] to solve the non-linear programming problem.
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4. Flight Trajectory Optimization Constraints

One of the most challenging tasks is to identify correct constraint models at different
stages of the flight and link the aircraft performance constraints with all control nodes and
collocation points. This section dives into the details of how the constraints are crafted for
different scopes of the flight, including complete trajectory, multiphase trajectory, cruise
trajectory, climb trajectory, and descent trajectory.

4.1. Complete Flight Trajectory

The goal of a single optimal complete trajectory is to generate the global 4D flight
from the initial climb to the final approach. Flight phases are not explicitly expressed,
which implies that the optimizer needs to generate the optimal climb, cruise, and descent
automatically from the origin to the destination, considering the performance limit of the
aircraft and wind conditions at different locations and altitudes.

4.1.1. Endpoint Constrains

The endpoint constraints of Equation (24) consist of:

(x0, y0, h0, m0) = (xorig, yorig, hmin, mto) (28)

(x f , y f , h f ) = (xdest, ydest, hmin) (29)

moew <m f < mmlw (30)

which stipulates that starting and ending positions are the locations of the departure and
arrival airport. The initial mass is specified as the aircraft takeoff mass (mto). The landing
weight is between the operational empty weight and the maximum landing weight. The
minimum altitude (hmin) is 3000 feet in OpenAP.

4.1.2. Path Constrains for States

The path constraints of Equation (23) includes the following constraints on state
variables and control variables:

min(x0, x f )− 10 < xk < max(x0, x f ) + 10 (km) (31)

min(y0, y f )− 10 < yk < max(y0, y f ) + 10 (km) (32)

hmin < hk < hceiling (33)

moew < mk < m0 (34)

0.1 < Mk < Mmax (35)

−2500 < vsk < 2500 (ft/min) (36)

−π < ψk < 3π (37)

It is worth noting that an additional 10 km is added to the lateral boundaries for handling
the case where the origin and destination have the same latitude or longitude. Otherwise,
the boundary becomes a line instead of a square.

4.1.3. Path Constraints for Aircraft Performance

The first performance constraint represents the relationship between thrust and drag.
At each interval, the maximum thrust available must be greater than the total drag of the
aircraft. This constraint can be expressed as:

Tmax,k − Dk > 0 (38)

Dk =

(
CD0 + k

2mkg
ρkv2

kS

)
1
2

ρkv2
kS (39)
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where Tmax(·) represents the maximum thrust model of the aircraft at different altitude
and speed conditions. CD0 and k are drag polar coefficients, S is the wing area, and ρ is the
air density under ISA conditions.

The second performance constraint is to prevent stalls of the aircraft. Hence, the
maximum lift should always be higher than the weight of the aircraft. These constraints are:

Lmax,k −mkg > 0 (40)

Lmax,k = CL,max ·
1
2

ρkv2
kS (41)

where CL,max is the maximum lift coefficient.
The third performance constraint defines the total energy changes. This is to ensure

the available excess power of the engine can cope with the required increase of the aircraft’s
kinetic and potential energy. This constraint can be formulated as:

Tmax,k − Dk

mk
− g

vk

dhk
dt
− dvk

dt
> 0 (42)

All model coefficients for thrust, drag polar, and aircraft properties are part of the
underlying OpenAP, and, in addition, the default value for the maximum lift coefficients is
empirically set to 1.4.

4.1.4. Path Constrains for Smooth Control Variable Changes

In addition to the previous constraints, I consider a set of additional constraints to
ensure limited variabilities in control variables. The following equations describe the
allowed variations among a sequence of control variables

−0.2 < Mk+1 −Mk < 0.2 (43)

−2500 < vsk+1 − vsk < 2500 (ft/min) (44)

−15 < ψk+1 − ψk < 15 (deg) (45)

Previously, vertical rate covers the entire performance envelope. To further eliminate
possible corner cases of large en-route vertical rate changes, the following constraint is
applied to the intervals that are (presumably) part of the cruise flight:

− 500 < vsk+1 − vsk < 500 (ft/min); ∀k ∈ Kcruise (46)

where Kcruise is determined by the OpenAP kinematic model. The set includes the points
beyond the maximum climb range and before the start of the maximum descent range.

4.2. Cruise-Only Flight Trajectory

For optimization focused only on the cruise phase of the flight, several adaptions to
constraints are proposed. First of all, the endpoint constraints for the flights at the cruise
phase are:

(x0, y0) = (xtoc, ytoc) (47)

(x f , y f ) = (xtod, ytod) (48)

m0 = mtoc (49)

indicating that the starting and ending positions are the top of the climb and the top of
descent. Additionally, the initial mass is the aircraft mass at the top of the climb.
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The following adaptation is made to the path constraints for state and control variables,
including altitude, Mach number, and vertical rate:

15,000 < hk < hceiling (ft) (50)

0.5 < Mk < Mmax (51)

0 < vsk < 500 (ft/min) (52)

−0.02 < Mk+1 −Mk < 0.02 (53)

4.2.1. Additional (Optional) Constrains for Cruise Flight

Several optional constraints are made available for cruise flights, for example, to limit
the flight with a constant altitude, fly at a constant Mach number, or allow the execution of
descent during the cruise. The constant altitude imposes the following constraint:

hk+1 − hk = 0 (54)

Similarly, the constant Mach number imposes the following constraint:

Mk+1 −Mk = 0 (55)

When descent is allowed during cruise, the constrain in Equation (36) is changed to:

− 1000 < vsk < 1000 (56)

which enables aircraft to seek a lower altitude during the cruise for flying at more optimal
conditions. Note that this type of maneuver is not used in current flight operations.
However, such a relaxation of the constraints allows the optimizer to seek, for example, a
lower altitude with more optimal wind or contrail conditions.

4.3. Climb-Only Flight Trajectory

When a specific study focuses on the climb phase of the flight, adaptions can also be
made to the constraints to provide more accurate climbing trajectories.

The endpoint constraints for climbing flights are:

(x0, y0) = (xorig, yorig) (57)

m0 = mto (58)

which specifies that starting as the origin airport. The initial mass is the aircraft’s takeoff mass.
The challenge in optimizing the climbing trajectory is that one cannot know the

endpoint before the optimization. For example, both the optimal cruise altitude and the
range of climbing are not known in advance. Hence, the cruise optimizer is performed first
to obtain a pseudo-optimal cruise altitude. A fixed flight range (larger than the maximum
climbing range) is chosen to provide the same basis for evaluating the fuel and time cost.
The endpoint constraints are defined as:

h f = htoc (59)√
(x f − x0)2 + (x f − x0)2 = 1.2 dcl,max (60)

x f − xtoc
y f − ytoc

=
xtoc+1 − xtoc
ytoc+1 − ytoc

(61)

where dcl,max is the maximum climb distance based on the OpenAP kinematic model. htoc
is the optimal cruise altitude obtained with a pre-run of the cruise optimizer. Equation (61)
ensures that the final position is aligned with the optimal cruise trajectory, where (xtoc+1,
ytoc+1) represents the second interval point in the cruise phase.
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For other state and control variables, the following adaptations to path constraints are
applied to the optimizer:

hmin <hk < htoc (62)

moew <mk < m0 (63)

0.1 <Mk < Mtoc (64)

0 <vsk < 2500 (ft/min) (65)

4.4. Descent-Only Flight Trajectory

Similarly, as for climbing flights, specific constraints can also be designed to generate
descent-only trajectories. The same pseudo-optimal cruise trajectory is used since the top
of the descent is generally not known before the optimization. The endpoint constraints for
descent flights are:

(x f , y f ) = (xdest, ydest) (66)

m0 = mcr,end (67)

which specifies the end of the trajectory at the destination airport. The initial mass is
approximately the aircraft mass at the end of the cruise. Similar to the previous climbing
optimization, the determination of the top of the descent can be a challenge. Hence,
additional constraints are designed for identifying the top of the descent.

h0 = hcr,end (68)
x0 − xcr,end
y0 − ycr,end

=
xcr,end − xcr,end−1
ycr,end − ycr,end−1

(69)

where hcr,end is the end of the psuedo-optimal cruise altitude. Equation (69) ensures the
starting position is align with the optimal cruise trajectory, where (xcr,end−1, ycr,end−1) is
the second last interval point of the cruise trajectory.

For other state and control variables, the following adaptations to path constraints are
applied to the optimizer:

hmin <hk < hcr,end (70)

moew <mk < mcr,end (71)

0.1 <Mk < Mcr,end (72)

−2000 <vsk < 0 (ft/min) (73)

In addition, the following constraints represent the forces acting on aircraft and ensure
the equilibrium among weight, idle thrust, and drag:

Tidle −mkg sin(γ)− Dk = 0 (74)

γ = arctan
vs

v
(75)

where γ is the flight path angle, which is a negative value during the descent. Idle thrust
can be calculated based on the OpenAP model, which is assumed to be approximately 7%
of the maximum thrust at the given altitude and speed.

4.5. Multiphase Complete Trajectory

The approach in Section 4.1 can generate a globally optimized complete flight trajectory.
Since the nodes are designed to be equally distributed along the time dimension, for longer
flights, we need to use a large number of nodes to sufficiently cover the climb and descent
phases in detail. This can add unnecessary computational time for the long cruise phase.
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In this case, a multiphase complete trajectory can be generated by combining previous
optimal climb, cruise, and descent trajectories separately.

The main challenge is to have a consistent top of climb between climb trajectory and
cruise trajectory, as well as a consistent top of descent between cruise and descent trajectory,
considering the same objective functions for all separate flight phases. In Figure 3, the steps
for constructing the entire multiphase optimal trajectory are shown.

m, x, yhtoc
mtod

optimal cruiseoptimal climb

x, y, h

optimal descent

1 2 3

4 5

pseudo-optimal
cruise

multi-phased
optimal flight

Figure 3. Steps to obtain the multiphase optimal flight (flight phases not to scale).

First, the top of climb altitude is found based on the pseudo-optimal cruise trajectory.
The optimal climb is generated based on this final altitude. After that, the actual optimal
cruise trajectory is obtained based on the final location and mass of the climbing trajectory.
The optional descent trajectory is also found based on the altitude and position at the
end of the cruise. Finally, the complete trajectory is obtained from the intersection of all
phase segments.

It is worth noting that in the multiphase approach, the top of climb altitude may
differ from the actual optimal top of climb altitude, which should be higher due to fuel
consumption during the climb. However, the flight continues to climb during the follow-on
cruise phase and to search for optimal altitude.

5. Objective Functions

The second main area of research in the paper is objective function models. Conven-
tional objectives are designed to optimize flights for fuel and time. In addition, objectives
reflecting the environmental impact of flights are also implemented.

5.1. Optimizing for Fuel Consumption

The default optimal trajectory is the one that is optimized for the total fuel consumption.
The Lagrangian term in Equation (21) is the fuel consumption between collocation points:

∑
c∈C,k∈K

ff(c)∆τc (76)

where ff(c) is the fuel flow estimated at the collocation points.

5.2. Optimizing for Flight Time

It is also possible to optimize the trajectory to minimize the total flight time. The
Lagrangian term is then simply:

∑
c∈C,k∈K

∆τc (77)
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5.3. Optimizing for Cost Index

In current flight operations, trade-offs are made between fuel and time. Aircraft opera-
tors can optimize the trajectory that has a specific balance between the fuel consumption
and flight time, which is modeled as cost index [2,3]. The cost index model is comprised of
a range of numbers, where a lower number considers fuel cost more importantly, while a
higher cost index number values more the flight time. Different aircraft manufacturers use
different ranges of cost indexes.

In OpenAP, the cost index range is between 0 and 100. The objective term for the
trajectory Optimizer is formulated as:

L = ∑
c∈C,k∈K

[
CI

100
· ∆τc

60
· Ctime +

(
1− CI

100

)
· ff(c) · ∆τc · Cfuel

]
(78)

where CI is the cost index, and Ctime and Cfuel are costs for time and fuel, which can the
specified as input parameters. The default costs used in OpenAP are:

Ctime = 20 (Euro/minute) (79)

Cfuel = 1 (Euro/kg) (80)

where the default time cost is similar to [2], while the fuel cost is approximately the price
during the year 2021 in Europe. Note that these coefficients are simplifications and can
be adapted.

5.4. Minizing Global Warming and Temperature Potential

Aviation sustainability research deals with flight emissions and their climate impacts.
Different emissions have distinct impacts on the climate due to their ability to absorb energy
(radiative efficiency) and the lifetime of these gases [30].

In this paper, two sets of models, global warming potential (GWP) and global tem-
perature potential (GTP), is used for the optimization of the trajectories based on research
in [30]. GWP models energy absorbed by different gases compared to the energy absorbed
by the same amount of CO2 at different time horizons (20, 50, and 100 years), while GTP
models the temperature change at the end of these different periods.

The general form of the objective model can be described by the following Equation:

L = CCO2
fCO2

(t) + CH2O
fH2O

(t) + CNOX
fNOX

(t) + CSOX
fSOX

(t) + Csoot fsoot(t) (81)

where the coefficients are defined in Tables 1 and 2 for GWP and GTP objectives, respectively.

Table 1. GWP cost function coefficients.

CCO2 CH2O CNOX CSOX Csoot

GWP20 1 0.22 619 −832 4288
GWP50 1 0.1 205 −392 2018
GWP100 1 0.06 114 −226 1166

Table 2. GTP cost function coefficients.

CCO2 CH2O CNOX CSOX Csoot

GTP20 1 0.07 −222 −241 1245
GTP50 1 0.01 −69 −38 195
GTP100 1 0.008 13 −31 161

6. Experiments

In this section, I conducted several sets of experiments to demonstrate the capability
of the proposed trajectory optimizer. First of all, example trajectories are generated to
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showcase the generation of full and partial 4D trajectories under realistic wind scenarios.
Then, I focus on the analysis of how different objectives affect the different climate metrics
of the flight, aiming at quantifying the relationships among different climate objectives.
The final set of experiments focuses on understanding the differences in optimal trajectories
that are linked to uncertainties in aircraft performance parameters, such as different initial
mass, selection of cost index, engine differences, and varying wind conditions.

6.1. Single Trajectory and Flight Phases Optimizations

The demonstration of single optimal trajectory generation creates a set of trajectories
between Amsterdam Airport Schiphol (EHAM) and Athens International Airport (LGAV).
At first, the optimal complete trajectories including all flight phases are created using
the two different approaches (complete and multiphase) proposed earlier. Then, optimal
trajectories at each flight phase are generated.

For all trajectories in this set of experiments, the objectives are total fuel consumption.
Airbus A320 is chosen as the aircraft type carrying the flights, and all flights are all initialized
with 85% of maximum takeoff mass (approximately 66 metric tons). For most of the tests,
wind data of 08:00 on 1 May 2021 from the ERA5 reanalysis dataset are used, which was
obtained from the European Centre for Medium-Range Weather Forecasts datasets.

6.1.1. Optimization of the Entire Trajectory

In Figure 4, the complete and multiphase optimal trajectories are shown. Overall, the
two trajectories have similar flight profiles and lateral trajectories. The main difference is
the varying resolution at different flight phases in the latter approach, which provides more
accurate climb and descent trajectories.

However, the multiphase approach does not always yield the optimal complete tra-
jectory. This can be seen by inspecting the top of the descent for both trajectories. The
multiphase trajectory shows a discontinuity in speed, with indicates that a lower final
speed (hence higher altitude and earlier top of descent) would be more optimal. This is
what the complete optimal trajectory can provide, as shown in the first set of plots.

6.1.2. Optimization of Different Flight Phases

Figure 5 illustrates the climb, cruise, and descent trajectories. Essentially, these are
the base segments that constructed the earlier multiphase full trajectory with the method
described in Section 4.5.

For the cruise trajectory in Figure 5a, the selected optimal altitude is at approximately
33,000 ft, and the speed is determined to be around Mach 0.78. The optimized trajectory
deviates from the great circle flight path at the start and takes advantage of tailwind
(components) during the later stages of the flight. It is worth noting that the origin and
destination are set at departure and arrival airports. However, the positions can be any
coordinate in the OpenAP.top cruise optimizer.

The climb trajectory first identifies the altitude and bearing at the top of the climb,
based on the earlier pseudo-optimal cruise trajectory. The climb optimization aims at the
most fuel-efficient 4D path (considering the wind) that reaches the desired altitude and
final bearing. Since the wind dynamic can be quite different at a lower altitude, a small
discrepancy may occur between positions of the actual top of climb and cruise, which is
shown in the final point of Figure 5b. Due to the formulation of the climb optimizer that
employs an aircraft type code-specific range parameter, the generated trajectory usually
consists of both climb and a small segment of the cruise. To obtain only the climb phase,
one can simply remove the final segment where the vertical rates are close to zero.

Figure 5c illustrates the descent trajectory to LGAV. The optimal vertical phase follows
a continuous descent approach, where the top of descent altitude and bearing is obtained
for the final segment of the cruise. It is worth noting that the point mass model and the
quadratic drag polar, commonly used in air transport studies, are quite limited in modeling
the dynamics of the descent. The descent segment suffers the largest uncertainties due to
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the inaccurate idle thrust models, as well as the lack of pitch angle-dependent lift and drag
coefficient models.
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Figure 4. Optimization of complete flight trajectory including climb, cruise, and descent phases. The
example flight leaves EHAM, arrives at LGAV, and considers the real 3D wind conditions. Only the
wind field at a specific altitude is shown for illustration purposes. (a) Complete 4D trajectory and
(b) Multiphase 4D trajectory, both optimized for fuel consumption.
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Figure 5. Cont.
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Figure 5. Optimization of different flight phases for minimizing fuel consumption. The example
flight leaves EHAM, arrives at LGAV, and considers the real 3D wind conditions. Only the wind field
at a specific altitude is shown for illustration purposes. (a) Optimal cruise trajectory, (b) Optimal
climb trajectory, and (c) Optimal descent trajectory.

6.2. Objective Metric

In Section 5, I have formulated various objective functions that can be used to produce
optimal trajectories. They include fuel, time, and cost index-based conventional objectives,
as well as objective models based on climate metrics like global warming potential and
global temperature potential. Relationships between these objectives exist, including ones
that are negatively correlated, like fuel and time, and ones that are positively correlated,
like fuel and global warming potential.

To form a clear and simple comparison of the differences between various objective
functions, I design the following set of experiments, which generates multiple optimal
cruising flights under all objectives, including fuel, time, GWP, GTP, and various cost
indexes. Different costs (of the objectives) are also calculated for each trajectory. Each cost
is normalized among all trajectories to the range of [0, 1], where 1 indicates two objectives
are almost identical in cost, and 0 indicates the two objectives generate trajectories with the
largest difference in cost.

The calculation of the normalized cost is:

cnorm = 1− c−min(C)
max(C)−min(C)

(82)

where C is the set of costs from all trajectories on a specific objective (such as fuel, time,
or GWP). For example, if one wants to evaluate how similar the GWP50 optimality is to
fuel optimality. The trajectory optimized for GWP50 consumes 6.05 tons of fuel, the other
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flights, optimized for different objective functions, have the highest fuel consumption of
10 tons (optimized for GTP20) and the lowest of 6 tons (optimized for fuel). The score is:

1− 6.05− 6
10− 6

= 0.9875 (83)

which is very close to 1, meaning that optimizing for GWP50 is almost equivalent to
optimizing for fuel.

Figure 6 shows the overview of these experiments. All trajectories are optimized
using the same aircraft type (A320), the same initial mass (90% maximum takeoff mass,
approximately 70 metric tons), the same origin and destination, and without considering
the wind.
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Figure 6. Optimality metric using different objectives. A higher value indicates two objectives are
more similar, and lower value indicates larger differences.

Based on Figure 6, we can see that optimizing the trajectory for all GWP metrics (20,
50, 100) and two of the GTP metrics (50 and 100) is essentially the same as optimizing for
fuel consumption. This is because these metrics are dominated by the large prepositional of
CO2 compared to other emissions. Since CO2 has a linear correlation to fuel consumption,
these objectives are essentially the same as minimizing fuel consumption.

The only discrepancy is between the objectives of fuel and GTP20. Based on Table 2,
NOX and SOX have a very large negative effect when contributing to the temperature
potential at 20-year horizon. When minimizing GTP20, the optimizer yields trajectories that
produce as much NOX and SOX as possible, which translates to greater fuel consumption.

6.3. Uncertainties

The following sets of experiments focus on understanding the variation of optimal
trajectories under different uncertainties, specifically, considering the initial mass, engine,
cost index, and wind.

6.3.1. The Influences of Takeoff Mass

It is well known that the takeoff mass of the aircraft has a significant effect on the
optimal trajectory under the same optimization objectives. This experiment aims at gen-
erating the most fuel-optimal complete trajectories under different takeoff masses of the
A320 aircraft. Figure 7 shows the vertical profile.
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Figure 7. Fuel optimal trajectories under different takeoff weight (A320, optimized for fuel consumption).

It is possible to observe that the lighter initial mass leads to a higher altitude. The cruise
altitude also increases during the flight with the decreasing mass due to flow consumption
during the cruise. Such change is more apparent for heavier aircraft, where step climbs
occur during the cruise.

6.3.2. Effects of Engine Configurations

Naturally, the engine performance also affects the optimal trajectories, specifically, in
terms of performance limit and fuel consumption. OpenAP.top allows for the convenient
reconfiguration of engine types before the generation of an optimal trajectory. Figure 8
shows the different resulting trajectories.
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Figure 8. Optimal trajectory with different engine types (A320, optimized for fuel consumption, with
90% of takeoff mass).

Upon close inspection, a slight decrease in altitude can be observed at the start of the
cruise trajectories for V2527 engines. This is likely caused by the uncertainty or inaccuracy
of the maximum thrust model for these engines in the OpenAP model.
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6.3.3. Simple Analysis of Cost Index

Earlier, Figure 6 shows the relationship between different metrics. The cost index
changes cause the most variations. Figure 9 shows the different trajectories under the
objective of varying the cost index from 10 to 90.
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Figure 9. Trajectory optimized for different cost index (A320, with 85% of maximum takeoff mass).

The experiment resulted in different fuel consumption shown in the second plot. The
decrease in flight duration can be seen by the total flight time of each trajectory, with an
increasing cost index value.

6.3.4. Comprehensive Analysis of Initial Mass and Cost Index Optimality

Based on the previous experiments in this section, mass and cost index are two factors
that cause large variations in optimal trajectory. To test the robustness of the optimizer, I
have performed a Monte-Carlo experiment, where a large sample of aircraft mass and cost
indexes are sampled from two independent unformed distributions. The cost index ranges
from 0 to 100, while the mass ranges from 65% to 100% of the maximum mass. In total,
2000 optimal trajectories are generated from 2000 sets of randomly sampled parameters.

I still follow the previous scenario where only cruise trajectories are generated with
the A320 aircraft type without the influence of wind. I further impose the extra constraints
from Section 4.2.1, which are fixed cruise altitude and fixed Mach number. This way, it is
possible to study the distribution of optimal cruise altitude and Mach number, and their
relationships with different initial mass conditions and objectives.

In Figure 10, I illustrate the distribution of optimal altitude and Mach number, which
is grouped by different cost indexes. It can be seen that with higher cost indexes, the aircraft
flies at overall lower altitudes with higher speeds, which is very consistent with operational
practices. When the cost index is low, the optimal flights have a higher altitude and lower
speed, which are dependent on the actual initial masses.

In Figure 11, the same dataset is presented and grouped by the initial mass. It is
possible to see a clear negative correlation between altitude and speed under different cost
indexes. With a lower mass, a large range of altitudes and speed choices are available
(depending on the cost indexes). However, when the initial mass is large, the aircraft’s
performance limits the freedom to select the cruise altitude and speed.
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Figure 10. Distribution of cruise altitude and Mach number grouped by cost index.
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Figure 11. Distribution of cruise altitude and Mach number grouped by initial mass.

6.3.5. Effects of Varying Wind Conditions

The final set of experiments demonstrates how flight trajectory adapts to the varying
wind conditions during daily operations using the proposed optimizer. First, I obtain a
dataset that consists of wind fields for May 1, 2020, from the ERA5 data repository. The
dataset contains the wind field of every 4th-hour segment. Six optimal trajectories are
generated with the same origin and destination, as shown in Figure 12.

Overall, the vertical profiles are similar except for the cruise durations. The relationship
between lateral deviations and wind conditions during the day can be observed. Figure 13
illustrates the trajectory and the wind field used for optimization.
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Figure 12. Optimal trajectories of the same origin and destination under different wind conditions
over the course of a day.
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Figure 13. Optimal ground track of the same origin and destination under different wind conditions
over the course of a day. The wind fields at cruise altitudes are shown for illustration purposes.

It is possible to see that during the early hours, the optimizer can take advantage of
the tailwind component during the second half of the flight, where it deviates from the
shortest distance by achieving greater fuel optimality. In addition, due to the advantage of
the tailwind, the flight time is also the shortest for the first wind scenario.
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7. Discussion

In this section, I further elaborate on the proposed open flight optimizer, OpenAP.top,
and reflect on some of the earlier experiment results, explain the limitations, and propose
the further evolution of this flight optimizer.

7.1. Insights into the Optimal Control Flight Optimization

The survey [8] suggests that even though the optimal control is more reliable and
robust than the non-optimal control approach (e.g., metaheuristic), the drawbacks in imple-
mentation complexity have prevented its widespread usage. Successful implementation
requires a deep understanding of aircraft performance models, mathematical optimization,
and programming knowledge. The main challenge of this study is to combine all three of
these different domains to produce results.

Another challenge is to design the proper constraints that allow the optimal com-
plete trajectory to be generated. Such a trajectory requires careful consideration of aircraft
performance models and performance limits. A large part of this paper, Section 4, ex-
plains the details of how these constraints are designed for different flight phases. To
overcome unrealistic exceptions, part of the OpenAP is redesigned. For example, the fuel
function is changed to avoid negative values produced outside of the aircraft performance
thrust boundary.

The underlying optimization libraries, CasADi and IPOPT, require a lot of practice
and tuning to formulate and solve the flight trajectory optimization problem. Because the
python code is converted into C code by CasADi for IPOPT to process, it is also difficult to
debug the entire direct collocation procedures.

In the study, past wind grid data are considered for optimization. In practice, forecast
wind data can be used for real-time optimization. Currently, a regularized polynomial
model is generated based on the 3D wind grid data, providing the calculation of gradients
for both u and v components of the wind. 3D wind data could easily be adapted by
increasing the dimensions of the polynomial model.

In this study, I have implemented a set of objective functions, including global warming
potential and global temperature potential. Based on the analysis from Figure 6, it is possible
to conclude that optimizing for GWP(20, 50, 100) and GTP(50, 100) is almost equivalent
to minimizing fuel consumption. On the other hand, GTP20 does not provide realistic
trajectories since the optimal trajectory is always beyond common flight operation boundary,
i.e., consuming the most amount of fuel to produce as much NOX and SOX as possible.

Based on this observation, it is also possible to speculate further on other types of
metrics, such as monetary cost linked to emissions from flights [31,32]. The large negative
contribution of NOX and SOX to climate cost would lead to a similar situation as the GTP20
objective for en-route flights. However, the air quality cost from these studies would
provide a different insight into the optimal trajectories for the climb and descent flights.

7.2. Limitations

The main focus of this research is the comprehensiveness of an open trajectory opti-
mizer, which still leaves much room for future research development and improvement,
especially for the climb and descent phases.

During the various tests, it has been found that the lower fidelity in the idle thrust and
idle drag polar of the point-mass model is one of the causes of an oversimplified optimal
descent trajectory, i.e., optimal trajectories coverage at the lower boundary of vertical rates,
as shown in Figure 5c.

Currently, the guidance modes are not considered for climb and descent. Future
evolution of the research should model more realistic climb and descent procedures (such
as constraint CAS/Mach) as additional (optional) constraints for the optimization. Overall,
flight procedures at the terminal control area could also be modeled to provide more
realistic lateral trajectory optimization at the terminal area, which is described in the study
of [33].
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Finally, the level of accuracy in underlying OpenAP models affects the results of
optimal trajectories. For example, compared to the BADA model, differences exist in the
drag polar model, where the mean absolute difference between the zero-lift drag coefficient
and the lift-induced drag coefficient are both around 0.007 [17]. Increasing the accuracy
of the thrust, drag, and fuel flow model without comprising the openness of the model
remains high on the agenda in further air transport research studies.

7.3. Future Recommendations

The proposed open flight optimizer includes the underlying performance model and
data, as well as the annotated source code. Through this research, I hope the OpenAP.top
can enable future researchers to easily and rapidly incorporate trajectory optimization
procedures in their studies. The use of the accompanying Python library will allow an
optimal trajectory to be generated in two lines of code (see Appendix A). However, there
are still many challenging topics on which further inputs from the aviation open-source
community are welcome.

There are large uncertainties in most climate-oriented objective functions. In the
current form of OpenAP.top, the objective function is deterministic, i.e., the coefficients in
Tables 1 and 2 are constant. In principle, each of the coefficients can be considered a random
variable, and the problem can be considered a stochastic optimization problem. This can
be easily solved with the Monte-Carlo method using the existing approach, but with an
enormous computational burden. Thus, more advanced and efficient methods should be
proposed to cope with such adaptation.

In the current implementation, equally distributed nodes are used in the direct colloca-
tion approach. As shown in Figure 4, the best approach would be one that distributes more
nodes during the climb and descent phase. Together with a model for assigning dynamic
node numbers depending on the range, these computational improvements would surely
increase the efficiency of the optimizer.

8. Conclusions

This paper presented a fully open and four-dimensional flight optimizer covering com-
plete flight phases for sustainable air transportation studies. The optimizer is built upon the
open aircraft model (OpenAP) and open-source non-linear optimal control solvers (CasADi
and IPOPT). The optimizer employs an efficient non-linear optimal control approach that
solves the optimization challenge with direct collocation methods. It considers wind field
and can be employed in all different flight phases separately or combined.

In addition to conventional fuel or cost index optimizations, climate objective func-
tions based on global warming potential and global temperature potential have also been
implemented. These new objective functions form the basis for studying climate optimal
air traffic operations. It can be concluded that GTP20 shouldn’t be used as an objective
for flight trajectory optimization. Other GTP and GWP climate objectives, in their current
form, are essentially the same as optimizing for fuel consumption.

Overall, the proposed OpenAP.top optimizer brings a high performance for optimal
trajectory generations by providing optimal trajectories in around tens of seconds. Fur-
thermore, the optimality under different factors like varying mass, cost index, and wind
conditions are analyzed in this paper. Finally, the source code of the optimizer and under-
lying model is fully open and shared to encourage the reusability and reproducibility of
future air transport research studies.
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Appendix A. Using the openap.top Python Library

Source code for the Python library and user guide can be found on https://github.
com/junzis/openap-top (accessed on 20 June 2022). Following are a few examples for
generating optimal flight trajectories at different conditions:

1. Produce a complete fuel optimal flight trajectory:

import openap.top as otop

optimizer = otop.CompleteFlight("A320", "EHAM", "LGAV", m0=0.85)

flight = optimizer.trajectory(objective="fuel")

2. Produce a GWP50 optimal flight trajectory with an alternative engine type:

import openap.top as otop

optimizer = otop.CompleteFlight("A320", "EHAM", "LGAV", m0=0.85)

op.change_engine("V2527E-A5")

flight = optimizer.trajectory(objective="GWP50")

3. Consider wind for a cost index optimized cruise flight:

import openap.top as otop

windfield = otop.wind.read_grib("era5_wind_file.grib")

optimizer = otop.Cruise("A320", "EHAM", "LGAV", m0=0.85)

op.enable_wind(windfield)

flight = optimizer.trajectory(objective="CI:50")

The resulting flight variable is a DataFrame object that can be further processed by the
pandas library.
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