
 
 

Delft University of Technology

Planning Natural Locomotion for Articulated Soft Quadrupeds

Pollayil, Mathew Jose ; Della Santina, C.; Mesesan, George ; Englsberger, Johannes ; Seidel, Daniel ;
Garabini, Manolo; Ott, Christian ; Bicchi, Antonio; Albu-Schaffer, Alin
DOI
10.1109/ICRA46639.2022.9812416
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the International Conference on Robotics and Automation (ICRA 2022)

Citation (APA)
Pollayil, M. J., Della Santina, C., Mesesan, G., Englsberger, J., Seidel, D., Garabini, M., Ott, C., Bicchi, A., &
Albu-Schaffer, A. (2022). Planning Natural Locomotion for Articulated Soft Quadrupeds. In G. J. Pappas, &
V. Kumar (Eds.), Proceedings of the International Conference on Robotics and Automation (ICRA 2022)
(pp. 6593-6599). IEEE. https://doi.org/10.1109/ICRA46639.2022.9812416
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICRA46639.2022.9812416
https://doi.org/10.1109/ICRA46639.2022.9812416


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Planning Natural Locomotion for Articulated Soft Quadrupeds

Mathew Jose Pollayil1, Cosimo Della Santina2,3, George Mesesan3, Johannes Englsberger3,

Daniel Seidel3, Manolo Garabini1, Christian Ott3, Antonio Bicchi1, and Alin Albu-Schäffer3,4

Abstract— Embedding elastic elements into legged robots
through mechanical design enables highly efficient oscillating
patterns that resemble natural gaits. However, current tra-
jectory planning techniques miss the opportunity of taking
advantage of these natural motions. This work proposes a
locomotion planning method that aims to unify traditional
trajectory generation with modal oscillations. Our method
utilizes task-space linearized modes for generating center of
mass trajectories on the sagittal plane. We then use nonlinear
optimization to find the gait timings that match these trajec-
tories within the Divergent Component of Motion planning
framework. This way, we can robustly translate the modes-
aware centroidal motions into joint coordinates. We validate
our approach with promising results and insights through
experiments on a compliant quadrupedal robot.

I. INTRODUCTION

Compliant legged robots [1]–[3] are being increasingly

used as part of the effort to match the mobility skills of living

beings [4]. Exploiting their inherent elastic motions promises

more natural movements and efficiency [4], [5]. Certainly,

by taking inspiration from muscles, tendons, and other soft

tissues, introducing elastic elements in the mechanics can

promote energy-saving and high-speed locomotion [6], [7].

This notwithstanding, such trend does not tally with a cor-

responding attention towards locomotion planning techniques

for legged robots with elasticity: in particular, efficient mo-

tion planning for compliant walkers remains to date an under-

explored topic. Few authors have addressed the problem of

finding motions to locomote following the natural dynamics

of the robotic system and with minimal reliance on feedback:

for instance, see [8]–[12]. Data-driven approaches have also

been applied successfully with the aim of learning to store

and release elastic energy in the legs [13], [14]. However,

all these works have the common limitation of tackling the

problem only from a control perspective and never actually

attempting to generate physically feasible trajectories that

comply with the natural system motions of elastic robots.

Perhaps, this is due to the mismatch between the complexity

of such systems and the simplification commonly required

by motion planning.
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Fig. 1. We propose a motion planning architecture for planar articulated soft
quadrupeds that merges traditional motion planning with linearized modal
oscillations to generate CoM trajectories coherent with the natural dynamics.

Indeed, traditional motion generation strongly reduces

system dynamics through template models [15]. This has the

advantage of taming the complexity of planning. Examples

of templates are the Linear Inverted Pendulum Model (LIPM)

[16], or the Spring-Loaded Inverted Pendulum (SLIP) [17]

- all of which have been successfully used in locomo-

tion planning. Nevertheless, using templates may deprive

planners of necessary information about the mechanical

system - such as its compliance, its multi-body dynamics,

and its nonlinear natural oscillations. These oscillations can

be studied with nonlinear modal theory [18]–[21]. Some

preliminary applications to locomotion have been proposed

(e.g. [22], [23]). But - at least at their current stage -

these mathematical descriptions are too complex and not

yet sufficiently understood to be directly applied to general

quadrupedal locomotion.

A strategy that sits in between these two extremes may

potentially combine the capability of the template-based

planners to manage complex systems and the power of modal

analysis to exploit the robot’s natural dynamics. This paper

aims to provide an example of such an architecture (Fig. 1).

We build upon DCM-based planning framework [24] - of

which this work represents the first implementation on a

quadrupedal robot - so as to optimally select some free pa-

rameters for maximally matching the natural dynamics of the

robot. Our planner can generate joint trajectories that produce

smooth and natural center of mass (CoM) evolutions, which

are then implemented by low level feedforward controllers.

We validate our approach on the articulated soft quadruped

DLR Bert [1] (Fig. 2).

II. OVERALL MAP OF THE PROPOSED FRAMEWORK

We give a general overview of the proposed architecture,

as shown in Fig. 1 and summarized by Algorithm 2. In the

following sections, the building blocks will be explained

more in detail. First, modal oscillations of the linearized
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systems around planned stances equilibria are combined to

obtain natural CoM trajectories (Sec. III). We then use non-

linear motion optimization to find the optimal gait timings to

match the DCM-based CoM trajectory to the natural motion

given by the modal oscillations (Sec. V). Such motion is

then made physically feasible by using the DCM motion

planning framework [25] (Sec. IV) using the optimized

timings. The plans returned by our architecture can be

implemented with any low level controller. Here, we use

feedforward inverse kinematics (IK) augmented with gravity

compensation (Sec. VI). Note that the planner’s input - a

sequence of stances Σ and step heights ∆h - can be evaluated

by standard foot-step planners (e.g. [26], [27]).

III. SIMPLIFIED MODAL EVOLUTION

This section discusses the automatic generation of a

CoM evolution composed by interconnecting linear modal

oscillations. This part corresponds to “Natural Trajectory

Generation” in Fig. 1 and FIND NATURAL TRAJECTORY in

Algorithm 2.

A. Modal Oscillations of Floating-Base Robots

Consider the elastic model of a compliantly actuated

floating-base robot

M(q)q̈ +C(q, q̇)q̇ + g(q) = S
⊺
K(θ − qj) + J

⊺

c(q)λ,

Bθ̈ +K(θ − qj) = τ .
(1)

Here, q =
[
q
⊺

b q
⊺

j

]⊺ ∈ IRn is the vector of generalized co-

ordinates of the robotic system, qb ∈ IRnb is the vector of

virtual base coordinates, and qj ∈ IRnj is the vector of link

positions of the legs, with n = nb + nj . We denote by

θ ∈ IRnj the vector of motor positions, by τ ∈ IRnj the

motor torques vector, and by λ ∈ IRnc the contact forces

vector, where nc is the number of constraints imposed by

contacts. M ∈ IRn×n is the inertia matrix, C ∈ IRn×n is

the Coriolis and centrifugal matrix, g ∈ IRn is the gravity

vector, Jc ∈ IRnc×n is the contact Jacobian, B ∈ IRnj×nj

is the projected motor inertia matrix, K ∈ IRnj×nj is the

joint stiffness matrix, and S = [Onj×nb
Inj×nj

] ∈ IRnj×n

is the selection matrix.

Assuming nc ≤ nj , according to the size of the contact

constraint Jcq̇ = 0, we partition the generalized coordinates

q into independent and dependent variables, qI ∈ IRn−nc

and qD ∈ IRnc , respectively. It is noteworthy that, with

nc ≤ nj , the independent variables qI contain the base co-

ordinates qb, which can be chosen to be a parametrization of

the CoM position x = (x1 x2 x3)
⊺ and orientation without

loss of generality.

Subsequently, we use the Lagrange-D’Alembert Method

to solve the constraint
[
Jc,I Jc,D

]

︸ ︷︷ ︸

Jc(q)

[
q̇I

q̇D

]

︸ ︷︷ ︸

q̇

= 0 → q̇D = −J−1
c,D Jc,I

︸ ︷︷ ︸

TD,I

q̇I .

We re-write the generalized coordinates as a function of the

independent ones:

q̇ =

[
I

TD,I

]

︸ ︷︷ ︸

T

q̇I . (2)

Fig. 2. The articulated soft quadruped DLR Bert with its kinematic structure
superimposed. The leg joint positions qj = [− qk −]⊺ and motor positions

θ = [− θk −]⊺ are highlighted. The virtual repellent point v pushes the
DCM ξ to which the CoM x converges to produce its trajectory x(t).

Substituting (2) into the first equation of (1) and pre-

multiplying T ⊺ lead to

T
⊺
MTq̈I+T

⊺(MṪ+CT )q̇I+T
⊺
[
g+S

⊺
K(θ − qj)

]
=0.

Linearizing this equation around an equilibruim qeq yields

M I(qeq)∆q̈I +KI(qeq)∆qI = 0, (3)

where ∆qI = qI − qIeq
, the inertia of the independent

coordinates is given by M I(q) = T ⊺MT , and the Hessian

of the potential energy gives the effective stiffness

KI(q) =
∂ {T ⊺

[
g + S⊺K(θ − qj)

]
}

∂qI

≈ T
⊺

(

K̄ +
∂g

∂q

)

T .

The matrix K̄ = S⊺KS is the equivalent stiffness of the

generalized coordinates and T is considered quasi-static.

The modal oscillations of (3) can be found by studying

the generalized eigenvalue problem

λiM I(qeq)ui = KI(qeq)ui, (4)

and are of the form

∆qI(t) = uiA sin(
√
λi t+ ψ). (5)

These oscillations are commonly referred to as the eigen-

modes of the linearized system (3). In general, there are

n − nc distinct oscillations ∆qI(t) about qeq . They evolve

on the subspaces (eigenspaces) generated by ui, which are

the eigenvectors of K
− 1

2

I M IK
1
2

I . The oscillation frequency

is the square-root of the associated eigenvalue ωi =
√
λi.

Eq. (5) parametrizes the small natural oscillatory motions of

the independent variables qI of (1), constrained by (2), and

close enough to qeq . The amplitude A and phase ψ depend

on the initial conditions ∆qI(0) and ∆q̇I(0).

Remark 1. With nc ≤ nj , eq. (5) by itself describes the nat-

ural oscillations ∆x of the CoM around the corresponding

equilibrium.

B. Natural Motions of the Center of Mass

In this subsection, we propose the method to generate

CoM trajectories that are compliant with the natural dynam-

ics utilizing the theory presented in Sec. III-A

Assumption 1. We assume to be provided with a sequence

of ns stances Σ = {σ1, . . . ,σns
} that have been planned to

move the robot. Here, a stance σi = {ck|k = 1, . . . , nk} is

a set of limb contacts [28].

6594
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The generation of natural motions of the CoM is as

follows: we choose modal oscillations around the stances

equilibria and concatenate them in order to move in the

planned direction. As mentioned, we plan these motions

only in the sagittal plane of the robot. We reserve to lift

this simplification in future works. We define the following

procedure, which is also described in a compact way in

Algorithm 1:

• Compute a succession of ns admissible equi-

libria Qeq = {q(1)
eq , . . . , q

(ns)
eq } of (1) correspond-

ing to the contact positions given by the pre-

computed stances in Σ. That is, we request that

a qeq , found by means of IK from a given

stance, complies with the static equilibrium condi-

tion g(qeq) = S⊺K(θeq − Sqeq) + J⊺

c (q)λeq , while

being subject to friction cone constraints on λeq

and to bounds on both θeq and λeq . This prob-

lem can be solved effectively using a quadratic

program, which can also minimize some cost re-

lated to the contact and elastic forces: for instance,
1
2λ

⊺

eqλeq +
1
2 (θeq − Sqeq)

⊺K(θeq − Sqeq). This is

performed by ComputeAdmissibleEquilibria.

• Next, for each of the equilibria in Qeq , the func-

tion ComputeCoMPositions computes forward kine-

matics and finds the associated CoM positions

Xeq = {x(1)
eq , . . . ,x

(ns)
eq }.

• For each element x
(i)
eq ∈ Xeq , using (4), compute

the related eigenspaces ES
(i)
eq = (λ

(i)
1,2,u

(i)
1,2) to get a

list ESeq = {ES(1)
eq , . . . , ES

(ns)
eq }. This is done by

ComputeEigenSpaces.
• Initialize an empty variable for the trajectory x⋆(t)

using function EmptyTrajectory.

• Then, iteratively repeat the following for each succes-

sive pairs of equilibria (x
(i)
eq ,x

(i+1)
eq ) ∈ Xeq:

– Find all possible intersection points of the cor-

responding eigenspaces in ES
(i)
eq and ES

(i+1)
eq

(FindIntersections).
– From these intersections, choose a random x̄ through

the function ChooseRandom.

– Then, ComputeOscillation computes the trajectories

x′
(i)(t) and x′′

(i)(t), from x
(i)
eq to x̄ and from x̄ to

x
(i+1)
eq , considering the appropriate time intervals.

That is, we find a motion x′
(i)(t), which follows

modal oscillation with eigenfrequency
√
λ(i) and is

along the associated eigenvector u(i), connecting

the equilibrium x
(i)
eq to the state x̄, and such that

∀t′ : x′
(i)(t) = x̄ we have ẋ′

(i)(t
′) = 0. Such

a motion is given by x′
(i)(t) = x

(i)
eq + ∆x′

(i)(t),

where ∆x′
(i)(t) = u(i)A′ sin(

√
λ(i) t) with A′ =

||x̄−x
(i)
eq ||. The trajectory x′

(i)(t) goes from x
(i)
eq to x̄

in the time interval
[

0, π

2
√
λ(i)

]

. A similar procedure

can be followed to find the motion from x̄ to x
(i+1)
eq

by computing x′′
(i)(t) = x

(i+1)
eq + ∆x′′

(i)(t), where

∆x′′
(i)(t) = u(i+1)A′′ sin(

√
λ(i+1) t), A′′ = ||x̄ −

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.14

0.15

0.16

0.17

(a) Sagittal plane: the equilibria and the corresponding eigenspaces
(eigenvectors) are shown over the trajectory.

0 0.05 0.1 0.15 0.2
0

0.025

0.05

0 0.05 0.1 0.15 0.2
0.15

0.155

0.16

(b) Forward and vertical components of the CoM trajectory against
time.

Fig. 3. An example of natural trajectory x⋆(t) obtained by combining
modal oscillations (Algorithm 1) for trotting with DLR Bert. We show

the three equilibria (x
(1)
eq , x

(2)
eq , and x

(3)
eq ) connected by four piecewise

trajectories x⋆
i , which build the natural motion.

x
(i+1)
eq ||, and considering the portion of x′′

(i)(t) in the

interval
[

− π

2
√
λ(i+1)

, 0
]

.

– Finally, append the found x′
(i)(t) and x′′

(i)(t) to the

natural one x⋆(t) (AppendTrajectory).

Remark 2. Given the periodicity of gaits, there exists a

subset Σ̄ of the stances Σ that contains all information about

the chosen gait. Hence, it suffices to apply Algorithm 1 only

to Σ̄ and concatenate the resulting x⋆(t) appropriately to

find the natural CoM trajectory associated with Σ.

An example trajectory, computed using Algorithm 1 and

following the natural dynamics, is shown in Fig. 3. Therein,

from three equilibria (x
(1)
eq , x

(2)
eq , and x

(3)
eq ) of a trot gait for

Algorithm 1 Natural Trajectory of the Center of Mass

Input: Σ Output: x⋆(t)

1: procedure FIND NATURAL TRAJECTORY(Σ)
2: Qeq ← ComputeAdmissibleEquilibria(Σ)
3: Xeq ← ComputeCoMPositions(Qeq)
4: ESeq ← ComputeEigenSpaces(Xeq)
5: x⋆(t)← EmptyTrajectory()

6: for x
(i)
eq ∈ Xeq do

7: ES
(i)
eq ← GetEigenSpaces(ESeq,x

(i)
eq )

8: ES
(i+1)
eq ← GetEigenSpaces(ESeq,x

(i+1)
eq )

9: {xint} ← FindIntersections(ES
(i)
eq , ES

(i+1)
eq )

10: x̄← ChooseRandom({xint})
11: x′

(i)(t)← ComputeOscillation(x
(i)
eq , x̄)

12: x′′
(i)(t)← ComputeOscillation(x̄,x

(i+1)
eq )

13: x⋆(t).AppendTrajectory(x′
(i)(t))

14: x⋆(t).AppendTrajectory(x′′
(i)(t))

15: return x⋆(t)
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the quadruped DLR Bert, we concatenate modal oscillations

to get a natural motion of the CoM.

Trajectories found by Algorithm 1, even though compliant

with the mechanics of the robot, are not guaranteed to be

physically feasible, in the sense of locomotion. This means

that they disregard the physical constraint that the line of

action of the sum of external forces acting on the CoM must

intersect the base of support. Traditional motion planning

efficiently deals with such a constraint. For this reason,

in Sec. IV we quickly review the three-dimensional DCM

planning, which will be used to “follow” CoM references

generated by Algorithm 1.

IV. PHYSICAL FEASIBILITY OF COM TRAJECTORIES

We discuss here briefly the Divergent Component of

Motion layer of our architecture (“DCM Motion Planning” in

Fig. 1 and DCMPlanning in Algorithm 2), only to the extent

that it is needed to this paper. It is indeed worth stressing

out here that - with the exception of two mappings of the

quadrupedal gait phases to the conventional single support

and double support phases of bipeds - this block is not a

contribution of this work. It is instead an implementation of

the theory laid by [25], [29].

The DCM is a point ξ = (ξ1 ξ2 ξ3)
⊺ defined as ξ =

x + bẋ, where x is the center of mass (CoM) position, ẋ

its velocity, b =
√

∆z/g is a constant, ∆z is the average

height of the CoM above the ground and g is the gravitational

acceleration. The second order dynamics of the CoM can be

rewritten as follows

ẋ = −1

b
(x− ξ), ξ̇ =

1

b
(ξ − v). (6)

Here, v = (v1 v2 v3)
⊺ is the so called Virtual Repellent

Point (VRP), which encodes the effects of the total force

acting on the CoM. Eq. (6) shows that the CoM has a

stable first order dynamics that converges to the DCM

and the DCM has an unstable first order dynamics that

diverges pushed by the VRP. From a planning perspective,

the problem of finding feasible CoM trajectories reduces

to planning properly v. Solving (6) with suitable boundary

conditions and a feasible VRP trajectory v(t) yields closed-

form feasible C2 continuous trajectories of the CoM. This

process is briefly summarized below.

1) Trajectory Generation: The motion of the CoM

is divided into nφ transition phases. For each phase

φ ∈ {1, . . . , nφ}, we design VRP trajectories vφ(t). Then,

the corresponding ξφ(t) and xφ(t) are found by integrating

(6). The boundary values of each phase are some vφ,0, ξφ,0
and xφ,0 for the start points and vφ,T , ξφ,T and xφ,T for the

end points. Continuity of the whole trajectories is guaranteed

by connecting start and end points of successive phases:

vφ,0 = vφ−1,T , ξφ,0 = ξφ−1,T , and xφ,0 = xφ−1,T . These

points can be seen as waypoints of the trajectories. The

generation of these waypoints is discussed later on.

For each phase, VRP waypoints are smoothly interpolated

in time as

vφ(t) = (1− fφ(t))vφ,0 + fφ(t)vφ,T , (7)

where, t ∈ [0, Tφ], Tφ is the constant phase duration, and

the function fφ(t), called temporal interpolation function, is

a polynomial with the following properties: (i) fφ(0) = 0,

(ii) fφ(Tφ) = 1, (iii) 0 ≤ fφ(t) ≤ 1, ∀t ∈ [0, Tφ]. Substitut-

ing (7) in (6) and solving, for each phase, with boundary

condition ξφ(Tφ) = ξφ,T , yields

ξφ(t) = αφ,ξ(t)vφ,0 + βφ,ξ(t)vφ,T + γφ,ξ(t)ξφ,T , (8)

with αφ,ξ(t), βφ,ξ(t), and γφ,ξ(t) being nonlinear functions

of t, b and Tφ. Similarly, combining (8) and the first equation

in (6), and solving for the boundary condition xφ(0) = xφ,0,

yields

xφ(t)=αφ,x(t)vφ,0+βφ,x(t)vφ,T+γφ,x(t)ξφ,T+δφ,x(t)xφ,0. (9)

Analogously to (8), also αφ,x(t), βφ,x(t), γφ,x(t), and δφ,x(t)
are nonlinear functions of t, b and Tφ.

In summary, given the start and end waypoints for each

phase, smooth trajectories of VRP, DCM and CoM can be

found using (7), (8), and (9), respectively, and concatenated

to find the whole trajectories v(t), ξ(t), and x(t).

2) Waypoint Generation: Waypoints are computed from

the given sequence of ns = nφ + 1 stances in Σ. We

place VRP waypoints V = [v1 . . .vns
]⊺ ∈ IRns×3 for each

σi ∈ Σ. Our strategy is to choose the vi based on the

equilibria x
(i)
eq computed for the stances σi in Sec. III-B.

We set vi with the same horizontal position, however we

impose the height to be ∆z. This is to be consistent with the

definition of the time constant b. Notice that these vi are the

same waypoints that were previously denoted as start and

end points. For instance, for the ith phase vφ,0 = vi and

vφ,T = vi+1. DCM waypoints Ξ = [ξ1 . . . ξns
]⊺ ∈ IRns×3

and CoM waypoints X = [x1 . . .xns
]⊺ ∈ IRns×3 can be

found from V by evaluating (8) for t = 0, and (9) for

t = Tφ, for all nφ phases, and writing the resulting relations

in matrix form. In this way, waypoints can be efficiently

found as follows [29]

Ξ =
[
ΞCV

Ξcξ
]
[
V
ξ
⊺

f

]

, X =
[
XCV

Xcξ
Xcx

]





V
ξ
⊺

f

x⊺

s



. (10)

Here, ξf = ξns
= vns

for stopping the robot and xs =
x1 = x(0). The matrices ΞCV , Ξcξ, XCV , Xcξ, and
Xcx depend on the coefficients αφ,ξ(0), βφ,ξ(0), γφ,ξ(0),
αφ,x(Tφ), βφ,x(Tφ), γφ,x(Tφ), and δφ,x(Tφ). Please see [29]

for more details.

Remark 3. The formulation of DCM-based planning

adopted in this paper [24], [29] requires that the average

height of the CoM does not deviate significantly from ∆z.

Hence, oscillations in the vertical direction are not present.

3) Phases Mapping: Here, we propose a simple mapping

from quadrupedal to bipedal phases to ease the implementa-

tion of the DCM framework on multi-legged robots.

Definition 1 (Quadrupedal Single Support). We define as

single support the phases in which the VRP reference is

constant. In these phases, one or more legs are swinging.

Definition 2 (Quadrupedal Double Support). We define as

double support the phases in which the VRP reference is

interpolated between two waypoints. These correspond to

stance phases, in which no legs are swinging.
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4) Feet Trajectories: The trajectories of the limbs rk(t),
with k ∈ {LF,RF,LH,RH}, can be computed from the

stances Σ as usually done in the literature, i.e. using cubic or

quintic splines. In this work, we use third-order polynomials.

Note that in our formulation, planning feet motions only

requires the step height ∆h, since the stances in Σ already

specify the step forward-length and side-length.

V. MOTION OPTIMIZATION FOR NATURAL WALKING

This section aims to enable the DCM-based CoM trajec-

tory (eq. (9) of Sec. IV) to follow CoM motions, compliant

with the natural dynamics, which are generated by Algo-

rithm 1 of Sec. III-B. This part corresponds to “Motion

Optimization” in Fig. 1 and MotionOptimization in Algo-

rithm 2.

We notice that the trajectories generated by (9) can be

shaped by varying either the phase times Tφ or the VRP

waypoints V . Hence, Tφ and V can be used to set up

an optimization to match the x(t), computed using (9), to

the natural CoM motion x⋆(t) over a number of p ≤ nφ

significant phases.

In this work, we choose to optimize over the phase times

since we believe that matching the natural frequencies of the

system will already produce desirable results (as confirmed

by the experiments in Sec. VI). The possibility of finding

online “optimal” VRP adjustments is left to a future work.

We choose as cost function the least-squares difference

between the two trajectories:

w(x(t),x⋆(t)) = ||x(t)− x
⋆(t)||22. (11)

Thereafter, we set up the nonlinear optimization

min
T1,...,Tp

w(x(t,Ξ,X),x⋆(t))

s.t. lφ ≤ Tφ ≤ uφ

(12)

Here, lφ and uφ are arbitrary lower and upper bounds on

the phase times. Recall that both Ξ and X are nonlinear

functions of the phase times Tφ; moreover, the coefficients

αφ,ξ, βφ,ξ, γφ,ξ, αφ,x, βφ,x, γφ,x, and δφ,x all depend

nonlinearly on Tφ. This is the reason why the cost function

w is nonlinear with respect to the optimization variables Tφ.

In practice, nonlinear optimization problems, such as (12),

can be addressed with state-of-the-art numerical methods,

such as branch-and-bound and SQP algorithms [30], [31],

or other methods as [32]–[35]. Also note that nonlinear

optimization (12) is not performed online in Algorithm 2,

thus avoiding heavy computations during online planning.

Only the DCM-based trajectory generation, which is proven

to be very efficient [24], is carried out online.

We applied optimization (12) using as x⋆ the trajectory

computed in Sec. III-B and shown in Fig. 3. Here, we

optimized only over the first two phases (single and double

support), which we henceforth call Tswing and Tstance for

the sake of clarity. Assuming a symmetric robot and periodic

trot, these two phases fully specify the gait. In line with

Remark 3, we used as ∆z the average of the vertical

component of x⋆ (the x3 of Fig. 3b). The resulting DCM-

based optimal CoM trajectory xd(t), which uses the optimal

Tswing and Tstance, is shown in Fig. 4. It is noteworthy that

the forward component of the natural trajectory is followed

0 0.05 0.1 0.15 0.2

0

0.01

0.02

0.03

0.04

0.05

0.06

(a) Forward axis.
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(b) Vertical axis.

Fig. 4. The natural CoM trajectory x⋆(t) (previously shown in Fig. 3)
against the DCM-based CoM trajectory xd(t) that uses the optimal phase
times given by optimization (12). Notice the vertical oscillations zeroed by
the DCM framework.

as close as possible by the second order dynamics of the

CoM (see Fig. 4a). However, given our particular choice of

VRPs, by virtue of Remark 3, Fig. 4b shows that the vertical

oscillations are zeroed to the average height.

At this point, having defined all the necessary concepts,

we merge our CoM modal evolution method (Sec. III-B) into

the DCM planning framework (Sec. IV) using the proposed

motion optimization (Sec. V). Thus, we build our complete

planning architecture, shown in Algorithm 2.

VI. EXPERIMENTAL VALIDATION

In this section, we validate the proposed approach on the

compliant quadruped DLR Bert [1]. The robot weighs 3.2

kg. Its length, width, and height are approximately 0.33 m,

0.21 m, and 0.20 m in zero position. The stiffness of the

joint springs is 2.7 Nm/rad.

A. Implementation Details

We purposely do not employ any feedback controller

for two reasons: 1) for a fair evaluation of the planned

trajectories, and 2) because it is known that feedback actions

on compliant robots have a stiffening effect [36]. Hence, we

perform offline closed-loop inverse kinematics [37]

q̇kd
= J

†
kR

[ṡkd
+KP (skd

− sk)], (13)

Algorithm 2 Natural Motion Planning. Σ is a pre-planned

sequence of stances and ∆h the step height. FindSubset finds

the subset of stances Σ̄ that are periodically repeated in Σ.

FIND NATURAL TRAJECTORY generates the natural CoM motion

through Algorithm 1. MotionOptimization solves the motion

optimization (12). DCMPlanning is a DCM-planning layer [25].

ForwardPlan performs IK and sends the trajectories to the robot

for execution.

Input: Σ, ∆h Output: xd(t), rjd(t)

1: procedure NATURAL MOTION PLANNING(Σ)
2: Σ̄← FindSubset(Σ)
3: x⋆(t)← FIND NATURAL TRAJECTORY(Σ̄)
4: (T1, . . . , Tp)← MotionOptimization(x⋆(t))
5: repeat
6: xd(t)← DCMPlanning(Σ, T1, . . . , Tp)
7: rjd(t)← FeetTrajectories(Σ,∆h, T1, . . . , Tp)
8: ForwardPlan(xd(t), rjd(t))
9: until stopping condition
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(a) First Experiment: Bert moves using DCM-based planning with Tswing = 0.5 s and Tstance = 0.4 s.

(b) Second Experiment: Bert moves using DCM-based planning with Tswing = 0.2 s and Tstance = 0.1 s.

(c) Third Experiment: Bert moves “naturally” using the optimal timings Tswing = 0.1335 s and Tstance = 0.1019 s, provided by Algorithm 2.

Fig. 5. Experiments performed on DLR Bert. The photo sequences are in t ∈ [0, 5] s, at intervals of 1.25 s each. Subfigures (a) and (b) show Bert
trotting during the first two experiments with DCM-based planning. The results are not satisfactory: undesired oscillations can be noticed. Our planning
architecture (c), instead, confers a robust walking even without control feedback since Algorithm 2 produces trajectories that are compliant with the natural
dynamics of the system. The trajectories of the CoM, estimated using video tracking, are shown in red. See also the submission video.

where, sk = rk − x is the relative vector between the kth

foot and the CoM, skd
= rkd

− xd is the corresponding

planned vector, and JkR
is the relative Jacobian associated

to ṡk. The desired leg link coordinate trajectories would be

qjd
= [q⊺

LFd
q
⊺

RFd
q
⊺

LHd
q
⊺

RHd
]⊺.

We compute offline the θd that are required to track qjd
.

Assuming steady-state conditions, we use [38]

θd = qjd
+K

−1
ḡ(qjd

). (14)

Here, ḡ = (N⊺

cS
⊺)N⊺

cg is the constraint-consistent gravity

compensation torques with N c being the contact nullspace

matrix [39].

Algorithm 2 was implemented in MATLAB/SIMULINK

and fmincon with the SQP method was used to solve

optimization (12). The dynamic and Jacobian matrices were

computed using the method presented in [40]. For moving

the robot we feedforward the motor position trajectories

computed by (14).

B. Experiments: Results and Discussion

We performed three experiments with trot gait. Initially,

we planned the CoM motion exclusively based on DCM

planning without motion optimization. We stress again that,

to the best of the authors’ knowledge, this is the first time

that this framework is employed for quadrupedal robots. For

the sake of comparison, we also let the robot walk with

small “non-optimal” timings. Finally, we used our planner

(Algorithm 2) to optimize the phase times, which were found

to be very close to the eigenfrequencies of the linearizations.

The three experiments are shown in the photo sequences of

Fig. 5a, 5b, and 5c and in the attached submission video.

In the first experiment (shown in Fig. 5a), we used the

following two phase durations: Tswing = 0.5 s and Tstance =
0.4 s. We noticed that since we do not consider at all the

elasticity of the robot, the behaviour is undesirable; the robot

bounced back and forth due to the elastic forces and tracking

errors. Instead, the second experiment (Tswing = 0.2 s and

Tstance = 0.1 s), although not as bad as the first one,

exhibited some small disturbing oscillations. This is probably

due to the non-compliance with the system eigenfrequencies.

Finally, for the third experiment, we use the optimal phase

durations Tswing = 0.1335 s and Tstance = 0.1019 s output

by Algorithm 2. The corresponding natural and optimized

trajectories, x⋆(t) and xd(t), were already shown in Fig. 3

and Fig. 4, respectively. The trot was visually impressive

and very robust notwithstanding the relative IK and the feed-

forward control. The robot seemed to abide by its intrinsic

elasticity. This shows that our planning method complies

with the natural dynamics of the system.

Furthermore, we observed that, in the first two experi-

ments, due to the non-conformity to the natural dynamics, the

robot movements were considerably more jerky and unsteady

when compared to the third experiment (please see the CoM

paths, drawn using the video tracking software Kinovea1, in

Fig. 5 and watch the attached video submission). Further-

more, notice also that with Algorithm 2 the robot covered

more distance than with the DCM planning with non-optimal

timings, despite the same total time of 5 s.

VII. CONCLUSIONS

In this paper, we addressed the challenge of planning

natural locomotion with articulated soft quadrupeds. The

proposed architecture generates CoM trajectories on the

robot’s sagittal plane using modal oscillations. By means

of nonlinear optimization, phase durations are found so that

said natural trajectories are matched by the DCM planning

framework. We achieved promising - although preliminary -

experimental results with the quadruped DLR Bert. Future

work will extend our natural trajectory generation beyond

the sagittal plane and use VRP adjustments to optimize the

trajectories. We will also employ nonlinear modes to better

capture the robot’s natural dynamics. Finally, we will conduct

a thorough and quantitative evaluation of energy efficiency:

this was not included at present due to space constraints.

1https://www.kinovea.org/
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