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Abstract
In this paper, we derive improved expressions for the harmonic correction to gravity and, for the first time, expressions for the
harmonic correction to potential and height anomaly. They need to be applied at stations buried inside the masses to transform
internal values into harmonically downward continued values, which are then input to local quasi-geoid modelling using
least-squares collocation or least-squares techniques in combination with the remove-compute-restore approach. Harmonic
corrections to potential and height anomaly were assumed to be negligible so far resulting in yet unknown quasi-geoid model
errors. The improved expressions for the harmonic correction to gravity, and the new expressions for the harmonic correction
to potential and height anomaly are used to quantify the approximation errors of the commonly used harmonic correction
to gravity and to quantify the magnitude of the harmonic correction to potential and height anomaly. This is done for two
test areas with different topographic regimes. One comprises parts of Norway and the North Atlantic where the presence
of deep, long, and narrow fjords suggest extreme values for the harmonic correction to potential and height anomaly and
corresponding large errors of the commonly used approximation of the harmonic correction to gravity. The other one is located
in the Auvergne test area with a moderate topography comprising both flat and hilly areas and therefore may be representative
for many areas around the world. For both test areas, two RTM surfaces with different smoothness are computed simulating
the use of a medium-resolution and an ultra-high-resolution reference gravity field, respectively.We show that the errors of the
commonly used harmonic correction to gravity may be as large as the harmonic correction itself and attain peak values in areas
of strong topographic variations of about 100 mGal. Moreover, we show that this correction may introduce long-wavelength
biases in the computed quasi-geoid model. Furthermore, we show that the harmonic correction to height anomaly can attain
values on the order of a decimetre at some points. Overall, however, the harmonic correction to height anomaly needs to be
applied only in areas of strong topographic variations. In flat or hilly areas, it is mostly smaller than one centimetre. Finally,
we show that the harmonic corrections increase with increasing smoothness of the RTM surface, which suggests to use a
RTM surface with a spatial resolution comparable to the finest scales which can be resolved by the data rather than depending
on the resolution of the global geopotential model used to reduce the data.

Keywords RTM correction · Harmonic correction · Quasi-geoid modelling · Least-squares collocation · Least-squares

1 Introduction

Local quasi-geoid modelling has become a routine task
despite the fact that the mathematical theory is still incom-
plete (e.g., Sanso and Sideris 2013). Reducing the data for
the contribution of a global geopotential model (GGM) and
for the gravitational signal of the topography (and, if appli-
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cable, the bathymetry) appeared to be necessary to obtain an
accurate local model. The former ensures that the long wave-
lengths have less energy, which makes it possible to ignore
data far outside the area of interest when computing the local
quasi-geoidmodel. The latter ensures that the energy of short
wavelengths (ideally those which cannot be modelled) is sig-
nificantly reduced, and the residual field, being harmonic in
a larger domain, is smoother than the original one.

There are several types of topographic reduction, depend-
ing on the method used in local quasi-geoid modelling, see
Tziavos and Sideris (2013) for a review. The subject of this
study is the so-called residual terrain model (RTM) reduc-
tion, which has been introduced in (Forsberg and Tscherning
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1981). This type of topographic reduction is part of the
remove-compute-restore approach and frequently used in
the framework of Molodensky’s theory of the quasi-geoid
(Denker 2013; Tziavos and Sideris 2013). Given the fact that
in local quasi-geoid modelling, the data are always reduced
for the contribution of a GGM, the aim of the RTM correc-
tion is to reduce the data for the gravitational signal of the
masses, which are not captured by the GGM. To do so, the
real Earth’s topography (including bathymetry if applicable)
is replaced by a smoother topography (the RTM topogra-
phy), and the data are reduced for the gravitational effect of
the mass deficit between the two topographies. In the past,
this idea was implemented in different ways (cf., Forsberg
and Tscherning 1981; Forsberg 1984; Denker and Wenzel
1986; Vermeer and Forsberg 1992; Hirt et al. 2014); see also
the review paper (Tziavos and Sideris 2013).

In this study, we follow the implementation in (Fors-
berg and Tscherning 1981). The body with RTM topography
is referred to as the RTM-reduced earth and its surface
is referred to as the RTM surface (cf. Fig. 1). A well-
known conceptual problem of this implementation arises for
data points located below the RTM surface, a situation fre-
quently encountered in or close to areas of strong topographic
variations. After RTM reduction, the gravity field function-
als neither represent boundary values nor values inside the
harmonic domain of the gravitational potential of the RTM-
reduced earth. To address this conceptual problem, Forsberg
and Tscherning (1981) suggested an additional correction to
be applied to gravity anomalies at those stations, which they
refer to as the harmonic correction. After RTMand harmonic
correction have been applied, the reduced gravity anoma-
lies are consistent with a harmonically downward continued
gravitational potential of the RTM-reduced earth. The down-
ward continuation is not done strictly, but comprises several
approximations. The most important one is that for every
buried data point the action of the masses encompassed in
the RTM body is modelled as a Bouguer plate of a thickness
equal to the vertical distance of the data point to the RTM
surface. That is, to every data point a planar Bouguer plate
is assigned with its own vertical position and thickness. The
advantage of this simplification is that the harmonic correc-
tion can be computed easily (cf. Sect. 2). The downside is that
errors in the reduced gravity anomalies are introduced, which
among others, depend on the deviation of the RTM surface
from a planar surface, in particular in some neighbourhood of
the data point. The deviation depends on how the RTM sur-
face has been constructed fromahigh-resolutionmodel of the
topography and bathymetry. A common approach is to apply
a low-pass filter, and to relate the cut-off frequency of this fil-
ter to the maximum spherical harmonic degree of the GGM.
Then, the higher the maximum degree is, the more the RTM
surface differs from the surface of a Bouguer plate. Errors
in the reduced gravity anomalies are also introduced if the

Bouguer plate is replaced by a finite Bouguer plate, a spheri-
cal shell or a spherical cap. (e.g., Kadlec 2011). Forsberg and
Tscherning (1981) do not apply a harmonic correction to dis-
turbing potential or height anomaly (see also Forsberg 1984).
They argue that if the RTM surface is smooth and does not
differ much from a Bouguer plate in the neighbourhood of
the station, the harmonic correction for potential and height
anomaly are close to zero, and may be neglected.

The main objective of this paper is twofold. First, for sta-
tions located below theRTMsurface,we derive new formulas
for harmonically downward continued gravity and potential
values referring to the RTM-reduced earth bounded by the
RTM surface. Second, we use the new formulas and investi-
gate (i) the approximation error of the harmonic correction
to gravity as suggested in (Forsberg and Tscherning 1981),
and (ii) the magnitude of the harmonic correction to poten-
tial and height anomaly, which were neglected until now. We
do this numerically for two areas with different topographic
regimes.

The paper is organised as follows. In Sect. 2, we briefly
summarise and elaborate on the harmonic correction to grav-
ity in (Forsberg and Tscherning 1981). In Sect. 3, we derive
the new formulas and extract from them new expressions for
the harmonic correction to gravity and potential and compare
themwith the harmonic correction in (Forsberg and Tschern-
ing 1981). In Sect. 4, we describe the results of experiments,
which aim at a verification of the formulas derived in Sect. 3,
and a quantification of (i) the approximation error of the
harmonic correction to gravity in (Forsberg and Tscherning
1981) and (ii) the magnitude of the harmonic corrections to
potential and height anomaly. In Sect. 5, we provide a sum-
mary and some concluding remarks.

2 Harmonic correction of Forsberg and
Tscherning

The RTM correction in (Forsberg and Tscherning 1981)
reduces an Earth gravity field functional to the corresponding
functional of a RTM-reduced earth, which is bounded by the
RTM surface, s. A point P ∈ S located above the RTM sur-
face hangs in free airwhereas a point P ∈ S located below the
RTM surface is buried inside themasses of the RTM-reduced
earth (cf. Fig. 1). Hence, a reduced gravity field functional
at a point P ∈ S located below the RTM surface represents
a functional inside the masses of the RTM-reduced earth.
The harmonic correction of (Forsberg and Tscherning 1981)
aims at a transformation of this internal gravity field func-
tional into a harmonically downward continued gravity field
functional. Forsberg and Tscherning (1981) apply this trans-
formation only to gravity.

Let P ∈ S be a point on the Earth’s surface (i.e., on the
topography or the sea surface); let Q be the intersection of
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the ellipsoidal normal through P with the RTM surface, i.e.,
Q ∈ s. As we assume that P is located below the RTM
surface, the ellipsoidal height difference �h = hQ − hP is
positive. The transformation from an internal gravity value to
a harmonically downward continued gravity value according
to Forsberg and Tscherning (1981) is done in four steps (e.g.,
Gerlach 2003, p. 71).

Step 1 Add 2πGρ0�h to the gravity at P , g(P). This cor-
responds to the removal of a Bouguer plate of thickness �h
and mass density ρ0, which is located on top of point P .
Step 2 Use a model of the free-air gravity gradient along the
ellipsoidal normal through P , and upward continue gravity
from P ∈ S to Q ∈ s. This provides gravity at Q, g(Q).
Step 3 Restore the Bouguer plate of step 1; this increases
g(Q)of step 2with 2πGρ0�h. Note that steps 1 to 3 are com-
parable to the Poincaré and Prey reduction used in Helmert’s
theory ( Heiskanen and Moritz 1967, Sect. 4.3).
Step 4 Downward-continue g(Q) of step 3 using the free-air
gravity gradient of step 2. This provides a gravity value at P ,
which is consistent with a harmonically downward continued
potential of the RTM-reduced earth with boundary s.

After step 4, gravity g(P) has increased with

δgFTharm (P) = 4πGρ0�h . (1)

Equation (1) is the harmonic correction to gravity in (Fors-
berg and Tscherning 1981). Note that although it is called
a correction, it is added to the RTM-reduced gravity value
to obtain a harmonically downward continued gravity value,
whereas the RTM correction is subtracted from measured
gravity. In this paper, we follow the sign convention in (Fors-
berg and Tscherning 1981) for the harmonic correction. The
increase of Eq. (1) is twice the effect of a Bouguer plate of
thickness�h and density ρ0. The same result is obtained if in
step 3 the Bouguer plate is not restored but condensed on an
infinite plane through point P . This interpretation is used in
(Forsberg and Tscherning 1981). Applying the same proce-
dure to a height anomaly is meaningless as the gravitational
potential of a Bouguer plate is not defined. However, Fors-
berg and Tscherning (1981) argue that if the RTM surface is
smooth enough in some neighbourhood of the data point, the
harmonic correction to potential (likewise to height anomaly)
at this point is very small and may be neglected. Ignoring the
harmonic correction to potential implies that no difference is
made between the potential inside the masses and a harmon-
ically downward continued potential.

Note that Eq. (1) still applies if the Bouguer plate is
replaced by a spherical shell. This follows directly from the
formulas derived in Kadlec (2011) and is a result of potential
theory (Martinec 1998). However, in case of a spherical shell,
the harmonic correction to height anomaly is well-defined
and given by

4πGρ0

3rQγ

(
r3Q−r3P

)
−2πGρ0

γ

(
r2Q−r2P

)
≈ −2πGρ0

γ
�h2 ,

(2)

where γ is normal gravity at P (cf. Kadlec 2011). Assuming
ρ0 = 2670 kg/m3 and �h = 500 m, this is about 2.8 cm,
i.e., not negligible in cm-accuracy quasi-geoid modelling.
The effect is below 1 cm if |�h| < 300 m. This simple
example already indicates that depending on the situation, the
harmonic correction to height anomalymay not be neglected.

The harmonic correction to gravity in (Forsberg and Tsch-
erning 1981) is an approximation, and to our knowledge, the
approximation error has not been investigated yet. A major
conceptual weakness of this approximation is that the verti-
cal position of the Bouguer plate differs per data point. Even
if two data points are just a few kilometres apart, the verti-
cal positions of the two Bouguer plates may differ by tens
or hundreds of metres. This introduces inconsistencies in the
reduced gravity values, in particular between neighboured
data points.

There are several attempts in literature to address the con-
ceptualweakness of the harmonic correction in (Forsberg and
Tscherning 1981). For instance, Kadlec (2011) suggested to
replace the (infinite) Bouguer plate by a finite one or a finite
spherical shell (i.e., a spherical cap), andwrites the RTMcor-
rection as the difference between the complete effect of the
topography and the complete effect of the RTM topography.
However, this does not provide gravity field functionals con-
sistent with a harmonically downward continued potential
field. Therefore, this idea should not be used in the context
of local quasi-geoid modelling. Omang et al. (2012) sug-
gested to upward continue inside themasses observed gravity
field functionals to the RTM surface ignoring the horizon-
tal components of the gravity gradient vector. After RTM
reduction, the gravitational potential of the RTM-reduced
earth fulfils Laplace’s equation, i.e., �V (P) = −4πGρ0,
and assuming vanishing horizontal gravity gradients, it is
Vzz = −4πGρ0. Therefore, the upward continuation to the
RTM surface changes gravity by −4πGρ0�h. In this way,
they obtain gravity field functionals at points on theRTMsur-
face, and avoid the problem of a harmonic correction. The
main disadvantage of this approach is that errors in the verti-
cal gradient of gravity, specially due to variations of density,
directly propagate into the upward continued gravity anoma-
lies proportional to the height difference �h.

3 The complete RTM correction

Here, we follow a different approach for data points located
below the RTM surface. The approach is applicable to all
methods used in local quasi-geoid modelling which do not
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require data located on the boundary of the harmonic domain.
The approach does not move terrestrial data to the RTM sur-
face. This is important, becausemoving data from the Earth’s
surface (land topography or sea surface) to the RTM surface
may introduce significant errors in areaswhere the distance to
the RTM surface is large (e.g., the Norwegian fjords) due to a
lack of knowledge of the external potential field. This applies
in particular to gravity anomalies due to uncertainties in the
free-air vertical gravity gradient. Furthermore, the approach
provides harmonically downward continued data referring to
a RTM-reduced earth which is bounded by the RTM surface
like the harmonic correction in (Forsberg and Tscherning
1981) does, but with a much higher accuracy and not limited
to gravity anomalies. This aspect is very important if gravity
data are combinedwith other gravity field functionals in local
quasi-geoid modelling as only then the reduced datasets are
consistent in the sense that they all refer to a harmonically
downward continued field.

Intrinsically, the new equations not only comprise the
RTM corrections but also improved harmonic corrections.
We refer to them as the complete RTM corrections. The equa-
tions are derived for two types of gravityfield functionals, i.e.,
for gravity g and potential W . Dividing the equation for W
by the normal gravity at the telluroid point provides the equa-
tion for height anomaly. The derivation of the corresponding
equations for other gravity field functionals is out of the scope
of this study, but straightforward. We find it appropriate to
note that for all other points (i.e., points located above the
RTM surface), the complete RTM correction is identical to
the RTM correction in (Forsberg and Tscherning 1981).

We assume that the data point P is located on the land
topography or the sea surface. As before, a point Q is the
intersection of the ellipsoidal normal through P with the
RTM surface.� denotes the volume between the Earth’s sur-
face (i.e., the topography on land or the bathymetry at sea)
and the RTMsurface. The part of the volume� that is located
above the RTM surface is denoted �+; likewise, the volume
below the RTM surface is denoted �−. The RTM-reduced
earth is mass-free in volume �+ and is filled with masses of
constant density ρ0 in volume �−, where ρ0 is commonly
set equal to a mean crustal density (cf. Figs. 1, 2).

δV+
RTM and δg+

RTM denote the gravitational potential and
gravitational strength, respectively, of the masses inside the
volume �+. Likewise, δV−

RTM and δg−
RTM denote the gravita-

tional potential and gravitational strength, respectively, of
the masses added to the volume �−.

Note that when computing δg+
RTM, δg

−
RTM, δV

+
RTM, and δV−

RTM

we need to distinguish between the five cases depicted in
Fig. 2 and listed in Table 1. Three of them require to compute
two tesseroids per grid cell (Heck and Seitz 2007; Grombein
et al. 2013).

3.1 Complete RTM correction for points located
below the RTM surface

Let δgcorr(P) and δWcorr(P)be the completeRTMcorrection to
measured gravity and potential, respectively. Then, we define
the reduced gravity gred(P) and reduced potential Wred(P) as

gred(P) := g(P) − δgcorr(P) , (3)

Wred(P) := W (P) − δWcorr(P) . (4)

Note that gred(P) and Wred(P) refer to a RTM-reduced earth,
which is mass-free outside the RTM surface; moreover, they
represent harmonically downward continued potential field
functionals at points P ∈ S located below the RTM surface.
Whenever convenient, the value of a function f at a point P
is either written as f (P) or as fP . All equations are provided
with error terms. The factors appearing in the error terms are
derived for an isotropic potential field for which applies

∂2g

∂h2
≈

∂2g

∂r2
= 6g

r2
and

∂3W

∂h3
≈

∂3W

∂r3
= −6W

r3
. (5)

The complete RTMcorrection requires four steps to be taken:

Step 1 Move the masses inside �+ to infinity and correct
gravity and potential for the gravitational effect this has. If
the effect on gravity is denoted δg+

RTM(P) and the effect on
potential is denoted δV+

RTM(P), we obtain reduced values of
gravity, g+(P), and potential, W+(P), respectively, i.e.,

g+(P) := g(P) − δg+
RTM(P) , (6)

W+(P) := W (P) − δV+
RTM(P) . (7)

Note that all evaluation points P are located on the Earth’s
surface (land topography or sea surface), i.e., P ∈ S
(cf. Figs. 1, 2).
Step 2 For points P ∈ S located below the RTM surface
(i.e., points for which �h = hQ − hP > 0, where h is
the ellipsoidal height), upward continue gravity and potential
obtained in step 1 to the corresponding points Q ∈ s; data at
all other points P ∈ S are left unchanged:

g+(Q) = g+(P) + ∂g+

∂h

∣∣∣
P

�h + 3g+
PO(ε2) , (8)

W+(Q) = W+(P) + ∂W+

∂h

∣∣∣
P

�h + 1

2

∂2W+

∂h2

∣∣∣
P

�h2 − W+
P O(ε3), (9)

where R is the mean radius of the Earth and ε = �h
R . Terms

of the order of O(ε2) and O(ε3) are neglected in the expan-

sion of gravity and potential, respectively. Note that ∂g+
∂h in

Eq. (8) and ∂2W+
∂h2

in Eq. (9) have step discontinuities across
the surface bounding the masses. Therefore, it is appropriate
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Fig. 1 Mass distribution of the earth (a) and the RTM-reduced earth (b)

Fig. 2 Cases to be distinguished when computing the complete RTM
correction

to mention here that ∂g+
∂h

∣∣∣
P
, ∂W+

∂h

∣∣∣
P
and ∂2W+

∂h2

∣∣∣
P
are free-

air gradients which apply to a modified Earth which has no
masses in �+, i.e.,

∂g+

∂h

∣∣∣
P

= lim
δ→0+

g+(P ′) − g+(P)

δ
, (10)

∂W+

∂h

∣∣∣
P

= lim
δ→0+

W+(P ′) − W+(P)

δ
, (11)

∂2W+

∂h2

∣∣∣
P

= lim
δ→0+

∂W+
∂h (P ′) − ∂W+

∂h (P)

δ
≈ ∂g+

∂h

∣∣∣
P

, (12)

where P ′ is a point on the ellipsoidal normal through P
with ellipsoidal height hP +δ. Using the difference quotient,
Eqs. (10) and (11) may be approximated by

∂g+

∂h

∣∣∣
P

≈

g+(P ′) − g+(P)

�h
and

∂W+

∂h

∣∣∣
P

≈

W+(P ′) − W+(P)

�h
, (13)

respectively.
Step 3 Fill the volume�− with mass so that the mass density
equals ρ0, and correct gravity and potential for the gravita-
tional effect this has (cf. Figs. 1, 2). For data that have been
upward continued in step 2, the gravitational effect has to
be computed at the points Q ∈ s. If δg−

RTM(Q) is the effect

on gravity and δV−
RTM(Q) the effect on potential, we obtain

reduced values of gravity and potential, respectively, i.e.,

gred(Q) := g+(Q) + δg−
RTM(Q) , (14)

Wred(Q) := W+(Q) + δV−
RTM(Q) . (15)

Note that for all other points, the reduced values of gravity
and potential refer to points P ∈ S.
Step4Performaharmonic downward continuationof the data
referring to points Q ∈ s (i.e., data that have been upward
continued in step 2) to their original locations P ∈ S on the
Earth’s surface (i.e., land topography or sea surface) along
the ellipsoidal normal through P:

gred(P) := gred(Q) + ∂gred

∂h

∣∣∣
Q
(−�h) + 3gred(Q)O(ε2) ,

(16)

Wred(P) := Wred(Q) + ∂Wred

∂h

∣∣∣
Q
(−�h) + 1

2

∂2Wred

∂h2

∣∣∣
Q
�h2

+ Wred(Q)O(ε3). (17)

The gradients in the last two equation are free-air gradients
which apply to a RTM-reduced earth bounded by the RTM
surface, i.e.,

∂gred

∂h

∣∣∣
Q

= lim
δ→0+

gred(Q′) − gred(Q)

δ
, (18)

∂Wred

∂h

∣∣∣
Q

= lim
δ→0+

Wred(Q′) − Wred(Q)

δ
, (19)

∂2Wred

∂h2

∣∣∣
Q

= lim
δ→0+

∂Wred
∂h (Q′) − ∂Wred

∂h (Q)

δ
≈ ∂gred

∂h

∣∣∣
Q

, (20)

and Q′ is a point on the ellipsoidal normal through Q with
ellipsoidal height hQ + δ. Hence, for points P located below
the RTM surface, gred(P) andWred(P) represent harmonically
downward continued quantities.
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Table 1 Cases to be
distinguished when computing
the complete RTM correction

Case # Tesseroids Contributes to Density contrast DTM-RTM harmC

1 2 �+, �+ ρ0, ρw hB − hQ , hP − hB No

2 2 �−, �+ �ρ, ρw hQ − hB , hP − hQ = −�h Yes

3 2 �−, �− �ρ, ρ0 hP − hB , hQ − hP = �h Yes

4 1 �− ρ0 hQ − hP = �h Yes

5 1 �+ ρ0 hP − hQ No

hB denotes the ellipsoidal height of a point on the bathymetry. Column harmC indicates whether the case
contributes to the harmonic correction or not. �ρ = ρ0 − ρw

Inserting Eqs. (6), (8), and (14) into Eq. (16) yields

gred(P) = g(P) −
[
δg+

RTM(P) − δg−
RTM(Q) +

(
∂gred

∂h

∣∣∣∣
Q

− ∂g+

∂h

∣∣∣∣
P

)
�h

]

+ 3(g+(P) + gred(Q))O(ε2) . (21)

Likewise, inserting Eqs. (7), (9), and (15) into Eq. (17) yields

Wred(P) = W (P) −
[
δV+

RTM(P) − δV−
RTM(Q) +

(∂Wred

∂h

∣∣∣∣
Q

− ∂W+

∂h

∣∣∣∣
P

)
�h − 1

2

(
∂2Wred

∂h2

∣∣∣∣
Q

+ ∂2W+

∂h2

∣∣∣
P

)
�h2

]
+ (Wred(Q) − W+(P))O(ε3) .

(22)

In Eq. (21), the term proportional to �h can be simplified.
To do so, we take the partial derivative with respect to h of
Eqs. (14) and (8), respectively, and obtain,

(
∂gred

∂h

∣∣∣∣
Q

− ∂g+

∂h

∣∣∣∣
P

)
�h

= ∂δg−
RTM

∂h

∣∣∣∣
Q

�h + 6g+(P)O(ε2). (23)

Inserting the last equation into Eq. (21) gives

gred(P) = g(P) −
[
δg+

RTM(P) − δg−
RTM(Q) + ∂δg−

RTM

∂h

∣∣∣∣
Q

�h

]

+3

[
gred(Q) − g+(P)

]
O(ε2). (24)

From Eq. (14),

gred(Q) − g+(P) = δg−
RTM(Q) + O(ε), (25)

Table 2 Norway test area: statistics of the heights of (i) the digital
topographic/bathymetric model (DTM), (ii) the two RTM-surfaces, and
(iii) the two RTM tesseroids. Units are in m

Min Max Mean RMS Std

DTM −1108 2507 223 597 554

RTM5 −557 1871 223 575 530

RTM36 −351 1375 219 539 492

DTM-RTM5 −1404 1036 0 139 139

DTM-RTM36 −1825 1252 4 204 204

which allows to simplify the error term of Eq. (24) and pro-
vides the final form of Eq. (21):

gred(P) = g(P) −
[
δg+

RTM(P) − δg−
RTM(Q) + ∂δg−

RTM

∂h

∣∣∣∣
Q

�h

−3δg−
RTM(Q)O(ε2)

]
. (26)

The term in brackets on the right-hand side of Eq. (26) is
the complete RTM correction to gravity as defined in Eq. (3).
Ignoring the error term provides the approximation

δgcorr(P) = δg+
RTM(P) − δg−

RTM(Q) + ∂δg−
RTM

∂h

∣∣∣
Q

�h . (27)

Equation (22) can be simplified. First, taking the first and
second partial derivative of Eq. (15) with respect to h, we
find

∂Wred

∂h

∣∣∣
Q

�h − 1

2

∂2Wred

∂h2

∣∣∣
Q

�h2

= ∂W+

∂h

∣∣∣
Q

�h + ∂δV−
RTM

∂h

∣∣∣
Q

�h

− 1

2

∂2W+

∂h2

∣∣∣
Q

�h2 − 1

2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2. (28)

Inserting this result into Eq. (22) gives

Wred(P) = W (P) −
[
δV+

RTM(P) − δV−
RTM(Q)

]
−

[
∂δV−

RTM

∂h

∣∣∣∣
Q
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(a) DTM (b) RTM5 (c) RTM36

Fig. 3 Norway test area: Digital topographic and bathymetric model (a), RTM-surfaces RTM5 (b) and RTM36 (c)

�h − 1

2

∂2δV−
RTM

∂h2

∣∣∣∣
Q

�h2
]

−
[
∂W+

∂h

∣∣∣∣
Q

�h − 1

2

∂2W+

∂h2

∣∣∣∣
Q

�h2 − ∂W+

∂h

∣∣∣∣
P

�h − 1

2

∂2W+

∂h2

∣∣∣∣
P

�h2
]

+ (Wred(Q) − W+(P))O(ε3) (29)

A Taylor series expansion of W+ about P and Q, respec-
tively, shows that inEq. (29) the last termbefore the error term
is of the order of 4W+(Q)O(ε4), i.e., it can be neglected. Fur-
thermore, the error term in Eq. (29) can be simplified. From
Eq. (15), it follows that

Wred(Q) − W+(P) = Wred(Q) − W+(Q) + O(ε)

= δV−
RTM(Q) + O(ε), (30)

hence,

(Wred(Q) − W+(P))O(ε3) = δV−
RTM(Q)O(ε3), (31)

which provides the final from the Eq. (22):

Wred(P) = W (P) −
[
δV+

RTM(P) − δV−
RTM(Q) + ∂δV−

RTM

∂h

∣∣∣
Q

�h

− 1

2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2 − δV−
RTM(Q)O(ε3)

]
. (32)

The term in brackets on the right-hand side of Eq. (32) is the
complete RTM correction to potential as defined in Eq. (4).

Ignoring the error term provides the approximation

δWcorr(P) = δV+
RTM(P) − δV−

RTM(Q) + ∂δV−
RTM

∂h

∣∣∣
Q

�h

− 1

2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2 . (33)

We may achieve the same results within error in just three
steps. This is shown in “Appendix A”.

3.2 Complete RTM correction for arbitrary data
points

So far, we derived new formulas for the complete RTM cor-
rection for data points located below the RTM surface. For all
other data points, the well-known RTM correction in (Fors-
berg and Tscherning 1981) applies. Hence, we obtain the
following formulas for arbitrary data points P ∈ S:

(i) Gravity For gravity at a point P ∈ S with �h =
hQ − hP < 0 (i.e., P is located above the RTM sur-
face and therefore in free air after mass redistribution),
the reduced value of gravity at this point is

gred(P) = g(P) −
[
δg+

RTM(P) − δg−
RTM(P)

]
, �h < 0 .

(34)

The term in brackets is identical to the RTM correction
given in Forsberg and Tscherning (1981) (see also Fors-
berg and Tscherning (1997)). At a point P ∈ S with
�h = hQ −hP > 0 (i.e., P is located inside the masses
of the RTM-reduced earth), the reduced value of gravity
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(a) δ gharm(P), RTM5 (b) δ gharm(P), RTM36

(c) δ gharm(P)−δ gFTharm(P), RTM5 (d) δ gharm(P)−δ gFTharm(P), RTM36

(e) δζ harm(P), RTM5 (f) δζ harm(P), RTM36

Fig. 4 Norway test area: harmonic correction to gravity, δgharm(P)

(Eq. (37)), the difference between δgharm(P) and the harmonic correc-
tion in (Forsberg and Tscherning 1981), δgharm(P) − δgFTharm(P), and the
harmonic correction to height anomaly, δζharm(P) (based on Eq. (41)).
The areas where topography or sea surface is located above the RTM
surface are shown in white

up to terms 3δg−
RTM(Q)O(ε2) is

gred(P) = g(P) −
[
δg+

RTM(P) − δg−
RTM(Q) + ∂δg−

RTM

∂h

∣∣∣
Q
�h

]
,

�h > 0 . (35)

We re-write Eq. (35) as

gred(P) = g(P)−
[
δg+

RTM(P) − δg−
RTM(P)

]

+
[
−δg−

RTM(P) + δg−
RTM(Q) − ∂δg−

RTM

∂h

∣∣∣
Q

�h
]
, �h>0 .

(36)

The first two terms on the right-hand side of Eq. (36)
represent a gravity value inside the masses of the RTM-
reduced earth. Hence, the last term in brackets reduces
this internal gravity value into a harmonically downward
continued gravity value, i.e., it is the new formula for
the harmonic correction to gravity:

δgharm(P) = −δg−
RTM(P) + δg−

RTM(Q)

− ∂δg−
RTM

∂h

∣∣∣
Q
�h , �h > 0. (37)

Equation (37) is correct up to terms 3δg−
RTM(Q)O(ε2).

(ii) Potential For a point P ∈ S with �h = hQ − hP < 0,
the reduced value of the potential is

Wred(P) = W (P) −
[
δV+

RTM(P) − δV−
RTM(P)

]
, �h < 0 .

(38)

If P ∈ Swith�h = hQ−hP > 0, the improved expres-
sion for the reducedpotential up to terms δV−

RTM(Q)O(ε3)
is

Wred(P) = W (P) −
[
δV+

RTM(P) − δV−
RTM(Q) − ∂δV−

RTM

∂h

∣∣∣
Q

× (−�h) − 1

2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2
]
, �h > 0 ,

= W (P) −
[
δV+

RTM(P) − δV−
RTM(Q) − δg−

RTM(Q)�h

− 1

2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2
]
, �h > 0 . (39)

Formally, Eq. (39) may be re-written as

Wred(P) = W (P) −
[
δV+

RTM(P) − δV−
RTM(P)

]

+
[

− δV−
RTM(P) + δV−

RTM(Q) − ∂δV−
RTM

∂h

∣∣∣
Q

�h − 1

2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2
]
, �h > 0 , (40)

123



The RTM harmonic correction revisited Page 9 of 25 39

where the second term in brackets is the new formula
for the harmonic correction to potential, i.e.,

δVharm = −δV−
RTM(P) + δV−

RTM(Q) − ∂δV−
RTM

∂h

∣∣∣
Q

�h

− 1

2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2 ,

�h > 0 . (41)

Equation (41) is correct up to terms δV−
RTM(Q)O(ε3).

Equations (37) and (41) involve the terms ∂δg−
RTM

∂h

∣∣∣
Q
�h and

1
2

∂2δV−
RTM

∂h2

∣∣∣
Q
�h2, respectively. To obtain an idea about the

magnitude of these terms, we consider a volume �−, which
consists of a spherical cap of radius ψ0 and thickness �h.
We locate the point Q at the top centre of the spherical cap to
maximise themagnitude of the two terms.We use Eq. (2.134)
on p. 50 of Kadlec (2011). Ifψ0 = 5′,�h = 1000 m, and the
density contrast of the masses in �− is 2670 kg/m3, we find

a value of ∂δg−
RTM

∂h

∣∣∣
Q

≈ − ∂2δV−
RTM

∂h2

∣∣∣
Q

= 0.012 mGal/m. Hence,

∂δg−
RTM

∂h

∣∣∣
Q
�h = 12mGal, and 1

2
∂2V−

RT M
∂h2

∣∣∣
Q
�h2 = 0.06m2/s2.

The former is much larger than the accuracy of today’s
gravity anomaly datasets; the latter is below the accuracy
level achievable today in local gravity field modelling. If �h

is halved to �h = 500 m, the term ∂δg−
RTM

∂h

∣∣∣
Q
�h reduces

by a factor of four to about 3.0 mGal. This is still above
the noise standard deviation of today’s terrestrial gravity
anomaly datasets. From this, we expect that in moderate

terrain, only the term 1
2

∂2V−
RT M

∂h2

∣∣∣
Q
�h2 in Eq. (41) may be

neglected.

3.3 Approximation error of the harmonic correction
of Forsberg and Tscherning

The complete RTM correction according to Forsberg and
Tscherning (1981), δgFT

corr(P) and δW FT
corr(P), respectively, is

the sum of RTM correction and harmonic correction, with
the understanding that the latter is only applied to gravity at
points located below the RTM surface and is assumed to be
zero for potential, i.e.,

δgFT
corr(P) = δg+

RTM(P) − δg−
RTM(P) −

{
δgFT

harm(P), �h > 0

0, �h ≤ 0
,

(42)

δW FT
corr(P) = δV+

RTM(P) − δV−
RTM(P) , (43)

where�h = hQ −hP , and δgFTharm (P) is the harmonic correc-
tion of Eq. (1) proposed in (Forsberg and Tscherning 1981).

If �h > 0, there is a difference between the complete
RTMcorrection δgcorr(P) of Eq. (27) and δgFT

corr(P) of Eq. (42).
Assuming that the approximation error of δgcorr(P) is much
smaller than that of δgFT

corr(P) (this is confirmed by the numer-
ical results of Sect. 4), we may refer to the difference as the
approximation error of the harmonic correction to gravity in
(Forsberg and Tscherning 1981):

ε(g)
harm(P) := δgcorr(P) − δgFTcorr (P) = δg−

RTM(P) − δg−
RTM(Q)

+∂δg−
RTM

∂h

∣∣∣
Q
�h + 4πGρ0�h . (44)

Likewise, if �h > 0, there is a difference between the com-
plete RTM correction to potential, δWcorr(P) of Eq. (33) and
δW FT

corr(P) of Eq. (43). This difference is equal to the new for-
mula for the harmonic correction to potential as (Forsberg
and Tscherning 1981) assumed that the harmonic correction
to potential is negligible for smooth RTM surfaces:

ε(V )
harm (P) := δVcorr(P) − δV FT

corr (P) = δV−
RTM(P) − δV−

RTM(Q)

+∂δV−
RTM

∂h

∣∣∣
Q

�h + 1

2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2 . (45)

4 Experiments

The experiments are divided into two parts. First, semi-
analytical investigations are carried out to clarify the nature
of the harmonic correction and to verify the equations derived
in Sect. 3. Second, numerical investigations are carried out in
two regions with the goal to quantify the approximation error
of the harmonic correction to gravity and potential in Fors-
berg and Tscherning (1981). Here, we present the results of
the numerical experiments; the semi-analytical experiments
are presented in “Appendix B”.

Numerical experiments were done for two regions with
different topographic regimes. The first region is located
between 1◦E–10◦E and 56◦N–63◦N and comprises parts of
Norway and the Atlantic ocean. Here, we expect significant
approximation errors of the harmonic corrections to gravity
and potential in Forsberg and Tscherning (1981) as height
differences between the Earth’s surface and the RTM sur-
face are large and change quickly, in particular around the
fjords. The second region is located in the centre of France
between 1◦W–7◦E and 43◦N–49◦N. This area is referred to
as the Auvergne test area as it has been used in the past to
compare different methods of local quasi-geoid modelling
(cf. Duquenne 2006). It is a moderate mountainous area with
heights varying from less than 150m in the north-west where
the Bassin de Paris starts to 1886m at the Puy de Sancy in the
middle south. In this test area, we expect smaller approxima-
tion errors of the harmonic correction to gravity in (Forsberg
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and Tscherning 1981) and smaller harmonic corrections to
potential and height anomaly.

EachRTM surface is computed by applying a low-pass fil-
ter to the high-resolution digital topographic and bathymetric
model (DTM). We use a spherical Gaussian low-pass filter,
which is truncated at a spherical distance ψ0. The spherical
distance ψ0 is also the distance at which the Gaussian filter
has dropped to half of it maximum value. We refer to ψ0 as
the radius of the Gaussian filter.We relate the choice ofψ0 to
the maximum degree N of the GGMwhich is used to reduce
the data for long-wavelength signals, asψ0 = 180◦

N , i.e.,ψ0 is
set equal to the half-wavelength resolution of the GGM. This
filter is in fact a weighted moving average filter, where the
size of the window is equal to the half-wavelength resolution
of the GGM and the weights are determined by the Gaussian.
The filter operation is implemented in the frequency domain
using a 2D planar FFT.

For each test area, two RTM surfaces with different
smoothness were computed. The first one assumes that the
data were reduced for the contribution of an ultra-high-
resolution GGM complete to degree 2160 (e.g., EGM2008,
Pavlis et al. 2012). The corresponding radius of the spheri-
cal Gaussian filter is ψ0 = 5′. The second one assumes that
the GGM is complete to degree 300 (e.g., Pail et al. 2011;
Bruinsma et al. 2014; Förste et al. 2019); the corresponding
radius of the spherical Gaussian filter is ψ0 = 36′. We refer
to the two RTM surfaces as RTM5 and RTM36, respectively.

Applying a low-pass filter to a local DTM causes edge
effects along the boundaries of the DTM due to missing data.
Therefore, RTM effects were always computed over a spher-
ical patch which was smaller than the area of the DTM by
one degree in all four directions.

In Sects. 4.2 and 4.4, we focus on the harmonic correction
to gravity, potential, and height anomaly. An analysis of the
individual contributors to the complete RTM correction to
gravity and potential is provided in “Appendix C” for the
Norway test area and in “Appendix D” for the Auvergne test
area.

4.1 Norway test area

The DTM for the Norway test area is based on EuroDEM
(Eurogeographics 2008) and has a half-wavelength resolu-
tion of 2′′ × 2′′. A characteristic feature of this area are the
long, deep and narrow fjords. Hence, we can expect signif-
icant positive and negative height differences between the
DTM and each of the two RTM surfaces. These height differ-
ences are referred to asRTM tesseroid heights (cf. Fig. 3). The
RTM tesseroid heights range from −1404 m to 1036 m for
RTM5 and from−1825m to 1252m for RTM36 (cf. Table 2);
the corresponding RMS values are 139 m and 204 m, respec-
tively. In the vicinity of extreme tesseroid heights, we can
expect large approximation errors of the harmonic correc-

tion to gravity in (Forsberg and Tscherning 1981) and large
harmonic corrections to potential and height anomaly.

4.2 Norway test area: harmonic correction

In the Norway test area, the harmonic correction was evalu-
ated at the 800,000 nodes of an equal-angular 18′′×18′′ grid,
which formed a subgrid of theDEM.About 32% (RTM5) and
29% (RTM36) of the evaluation pointswere located below the
RTM surface. Figure 4 shows a geographic rendition of the
improved harmonic correction to gravity and height anomaly,
and the approximation error of the harmonic correction to
gravity in (Forsberg and Tscherning 1981). It appears that
their distributions are asymmetric with a one-sided long tail,
which is the reason why we prefer percentiles and median
above RMS, mean, and standard deviation in the summary
statistics of Table 3.

Referring to Table 3, there are a few observations worth
to be mentioned. First, the harmonic correction to gravity of
Eq. (37) can be negative unlike the correction in Forsberg
and Tscherning (1981). The latter is always non-negative, as
it assumes that all masses of the RTM-reduced earth inside
the volume Q− are located above the level of the evaluation
point. In reality, however, somemasses in�− may be located
below that level. Overall, this reduces the magnitude of the
harmonic correction, but may also lead to negative values
at particular evaluation points in extreme situations (e.g., if
the RTM surface has lows in the neighbourhood of the eval-
uation point). In the Norway test area this only happened
for the smooth RTM surface, RTM36, at just 0.03% of the
evaluation points. No negative values were noticed for the
rougher RTM5 surface. We explain this by the fact that then
the volume �− is smaller so is the amount of mass added
to this volume, and the effect of masses located below the
level of the evaluation point and close-by is very small and
not enough to make the harmonic correction negative.

Second, it is an over-simplification to state that the
smoother the RTM surface the smaller the harmonic cor-
rection to gravity. For the Norway test area, all statistics of
Table 3 point to a larger harmonic correction for the (smooth)
RTM36 surface, compared to the (rough) RTM5 surface. This
can be explained by the fact that for a smooth RTM surface,
the volume �− increases so does the amount of mass added
to that volume resulting in larger harmonic corrections to
gravity.

Third, the approximation error of the harmonic correc-
tion to gravity in Forsberg and Tscherning (1981) is very
large in the Norway test area. It ranges from −126.9 mGal
to 13.1 mGal (RTM5) and −284.8 mGal to 191.5 mGal
(RTM36). Hence, the range of the approximation error of
the harmonic correction to gravity in Forsberg and Tsch-
erning (1981) is comparable to the range of the harmonic
correction of Eq. (37). Most of the approximation errors are
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Table 3 Norway test area:
statistics of the harmonic
correction to gravity, δgharm of
Eq. (37) and height anomaly
(δζharm, based on Eq. (41)) and of
the harmonic correction to
gravity in Forsberg and
Tscherning (1981) (δgFTharm)

(a) RTM5, 253, 388 evaluation points

Unit Range Percentiles Median

Min Max 25% 75% 95%

δgharm(P) mGal 0.0 148.2 8.4 38.6 72.5 19.7

δgFTharm(P) mGal 0.0 246.2 8.8 48.0 105.6 22.3

δgharm(P) − δgFTharm(P) mGal −126.9 13.1 0.5 8.8 37.0 2.3

δζharm(P) cm 0.0 7.8 0.0 0.4 1.8 0.1

(b) RTM36, 222, 892 evaluation points

Unit Range Percentiles Median

Min Max 25% 75% 95%

δgharm(P) mGal −82.9 346.4 13.6 56.4 109.4 30.2

δgFTharm(P) mGal 0.0 263.0 14.3 68.4 161.0 33.7

δgharm(P) − δgFTharm(P) mGal −284.8 191.5 0.8 11.9 52.5 3.2

δζharm(P) cm 0.0 11.5 0.6 0.9 4.4 0.2

Note that percentiles and median are given for the absolute values if the range comprises both negative and
positive values, which is the case for δgharm(P) − δgFTharm(P) (RTM5 and RTM36) and δgharm(P) (RTM36)

Fig. 5 Norway test area:
histogram of the harmonic
correction to height anomaly,
δζharm(P)

(a) δζ harm(P), RTM5 (b) δζ harm(P), RTM36

negative (about 81% for RTM5 and 77% for RTM36), i.e., the
harmonic correction to gravity in Forsberg and Tscherning
(1981) is often too large.We explain this by the fact that Fors-
berg and Tscherning (1981) assumed that all masses of the
RTM-reduced earth are located above the level of the evalu-
ation point, whereas in reality there are also masses located
below that level.

Fourth, the harmonic correction to height anomaly (like-
wise to potential) is non-negative for both RTM5 andRTM36,
except a few points with slightly negative values of magni-
tudes not exceeding 0.1 cm. We explain this by the higher
smoothness of this correction compared to the harmonic cor-
rection to gravity. This results in somecancellationof positive
and negative contributions to the harmonic correction gener-
ated by the mass redistribution inside the volume �− as also
mass redistributions in areas further away from the evaluation
point still contribute.

Fifth, the harmonic correction to height anomaly is not
negligible as also indicated by the histogram of Fig. 5. Peak
values are 7.8 cm (RTM5) and 11.5 cm (RTM36). About 12%
(RTM5) and 23% (RTM36) of all harmonic corrections are
larger than 1 cm, though the majority of 77% (RTM5) and
65% (RTM36) of the corrections are smaller than 0.5 cm. The
95% percentiles are 1.8 cm (RTM5) and 4.4 cm (RTM36).
Whereas the former is comparable to the reported quality of
the Baltic Region and Nordic Area (NKG2015) gravimet-
ric quasi-geoid model of 1.5–1.8 cm (95% confidence level)
based on a comparison with GPS-levelling (cf. Eshagh and
Berntsson 2019), the latter is significantly larger than the
95% confidence level.

Sixth, the approximation error of the harmonic correction
to gravity in Forsberg and Tscherning (1981) has a non-zero
mean: −7.6 mGal (RTM5) and −10.2 mGal (RTM36). This
introduces a bias in the reducedgravity anomalieswhenusing
the harmonic correction to gravity in Forsberg and Tschern-
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Fig. 6 Auvergne test area:
DTM-surface (a), location of
the 133, 615 gravity stations in
red (b), and the two RTM
surfaces used in the numerical
experiments, (c) and (d)

(a) DTM (b) Gravity stations

(c) RTM5 (d) RTM36

ing (1981). This bias introduces long-wavelength errors in
the computed quasi-geoid model. When computing a correc-
tion surface in support of GNSS-levelling, most of the bias
will be absorbed.

4.3 Auvergne test area

The DTM of the Auvergne test area is based on SRTM3
(Jarvis et al. 2008). It is given for an area of 42◦N–50◦N and
2◦W–8◦E at the nodes of a 3′′ × 3′′ grid. To reduce the com-
putational costs, we use a data window covering an area of
44◦N–49◦N and 1◦W–7◦E. We still refer to this smaller area
as theAuvergne test area (cf. Fig. 6a). Likewise, the data area
was reduced accordingly comprising 133,615 of the original
244,009 gravity values. Different from the Norway test area,
the RTM corrections were not computed at the nodes of an
equal-angular grid but at the gravity stations.

The statistics of the DTM- and RTM-surfaces as well as
of the tesseroid heights are given in Table 4.

Table 4 Auvergne test area: statistics of the DTM surface, the RTM
surfaces, and the tesseroid heights

Min Max Mean RMS Std

DTM 0 4740 404 608 455

RTM5 0 2741 404 592 433

RTM36 16 1880 397 540 367

DTM-RTM5 −1185 2125 0 116 116

DTM-RTM36 −1209 2994 7 201 200

Units in m

4.4 Auvergne test area: harmonic correction

In the Auvergne test area, the harmonic correction had to be
computed at about 59% (RTM5) and 71% (RTM36) of all
evaluation points. These percentages are significantly larger
compared to those for the Norway test area. As already found
in Sect. 4.2, the smooth RTM36 surface increases the num-
ber of evaluation points which are located below the RTM
surface, i.e., for which harmonic corrections need to be com-
puted, in the Auvergne test area. Figure 7 shows a geographic
rendition of the harmonic correction to gravity of Eq. (37)
and height anomaly (based on Eq. (41)), and the approxima-
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Fig. 7 Auvergne test area:
harmonic correction to gravity,
δgharm of Eq. (37), the difference
between δgharm and the harmonic
correction in Forsberg and
Tscherning (1981),
δgharm − δgFTharm, and the harmonic
correction to height anomaly,
δζharm (based on Eq. (41)). The
areas where topography or sea
surface is located above the
RTM surface are shown in white

(a) δ gharm, RTM5 (b) δ gharm, RTM36

(c) δ gharm −δ gFTharm, RTM5 (d) δ gharm −δ gFTharm, RTM36

(e) δζ harm, RTM5 (f) δζ harm, RTM36

tion error of the harmonic correction to gravity in Forsberg
and Tscherning (1981). The corresponding summary statis-
tics are given in Table 5.

There are a few aspects which we would like to mention
when comparing the results with those for the Norway test
area presented in Sect. 4.2.

First, all harmonic corrections to gravity are non-negative;
for the Norway test area, we found that at some evalua-
tion points, the harmonic correction to gravity is negative
for the relatively rough RTM5 surface, which we explained
by strong variations of that surface in the neighbourhood
of these points. Obviously, these extreme situations do not
occur in the Auvergne test area as topographic variations in
this area are not that extreme.

Second, the peak approximation error of the harmonic
correction to gravity in Forsberg and Tscherning (1981)
appears to be very large againwith−118.5mGal (RTM5) and
−109.6 mGal (RTM36). However, the low 95% percentiles
of the absolute approximation errors, which are 4.1 mGal
(RTM5) and 5.2 mGal (RTM36), indicate, that there is only
a small number of points where such extreme values occur.

Third, the statistics of the harmonic corrections to grav-
ity and height anomaly are overall smaller in the Auvergne
test area compared to the Norway test area. This is a con-
sequence of the moderate topography in the Auvergne test
area, which implies smaller tesseroid heights compared to
the Norway test area. The harmonic corrections to height
anomaly are very small, though the peak values of 10.9 cm
(RTM5) and 13.6 cm (RTM36) are even larger than the peak
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Table 5 Auvergne test area:
statistics of the harmonic
correction to gravity (δgharm,
Eq. (37)) and height anomaly
(δζharm, based on Eq. (41)) and of
the harmonic correction to
gravity in Forsberg and
Tscherning (1981) (δgFTharm)

(a) RTM5, 78,950 gravity stations

Unit Range Percentiles Median

Min Max 25% 75% 95%

δgharm(P) mGal 0.0 191.7 1.9 9.8 26.7 4.6

δgFTharm(P) mGal 0.0 245.3 1.9 10.4 30.4 4.7

δgharm(P) − δgFTharm(P) mGal −118.5 12.0 0.0 0.6 4.1 0.2

δζharm(P) cm 0.0 10.9 0.0 0.0 0.2 0.0

(b) RTM36, 95,360 gravity stations

Unit Range Percentiles Median

Min Max 25% 75% 95%

δgharm(P) mGal 0.0 223.6 7.8 30.7 67.6 18.7

δgFTharm(P) mGal 0.0 263.3 8.0 31.3 72.7 19.2

δgharm(P) − δgFTharm(P) mGal −109.6 22.7 0.1 1.0 5.2 0.4

δζharm(P) cm 0.0 13.6 0.0 0.2 1.1 0.1

Note that percentiles and median are given for the absolute values if the range comprises both negative and
positive values, which is the case for δgharm(P) − δgFTharm(P) (RTM5 and RTM36)

values found in the Norway test area. The large peak val-
ues may be caused by the location of the gravity stations,
which in the mountains often follow the roads; correspond-
ingly, tesseroid heights at these stations may become pretty
large (remember that in the Norway test area, the evaluation
points are located on a equal-angular grid and are not related
to gravity stations). However, larger harmonic corrections to
height anomaly only occur at a very small number of grav-
ity stations. This is supported by the histograms of Fig. 8.
About 98% (RTM5) and 90% (RTM36) of all corrections are
smaller than 0.5 cm and only 1% (RTM5) and 6% (RTM36)
of all corrections are larger than 1 cm. The 95% percentiles
are just 0.2 cm (RTM5) and 1.1 cm (RTM36) compared to
1.8 cm (RTM5) and 4.4 cm (RTM36) in the Norway test
area. From this we conclude that the harmonic correction
to height anomaly is not critical when computing a quasi-
geoid model in the Auvergne test area. When looking at the
published results of the Auvergne quasi-geoid test, standard
deviations of the computed height anomalies based on a com-
parison with GPS-levelling data between 2.9 and 6.7 cm are
reported; the median is 3.5 cm (Forsberg 2010). Only about
0.2% (RTM5) and 0.8% (RTM36) of the harmonic correc-
tions for height anomaly are larger than this median.

Fourth, the harmonic correction to gravity in Forsberg
and Tscherning (1981) introduces a bias in the reduced
gravity anomalies as already observed in the Norway test
area (cf. Sect. 4.2). However, in the Auvergne test area,
the magnitude of the bias is much smaller: −0.87 mGal
(RTM5) and −0.97 mGal (RTM36). Still, it will introduce a
long-wavelength bias in the computed quasi-geoid model. A
suitable chosen correction surface estimated from the differ-

ences between gravimetric and geometric height anomalies
at a set of GNSS-levelling points will absorb most of the
long-wavelength errors.

5 Summary and concluding remarks

We derived new (approximate) equations for the harmonic
correction to gravity and potential which apply to points
located below the RTM surface, and provide harmonically
downward continued gravity and potential values referring
to a RTM-reduced earth bounded by the RTM surface. We
showed that the approximation error of the simple harmonic
correction to gravity as suggested in Forsberg andTscherning
(1981) can be as large as the harmonic correction itself.

The new equations allow for the first time to compute the
harmonic correction to potential and height anomaly. This is
important if these types of gravity field functionals are used as
data in local quasi-geoidmodelling (e.g., Farahani et al. 2017;
Slobbe et al. 2019). We showed that in both test areas, the
harmonic correction to height anomaly can be larger than the
target accuracy of today’s quasi-geoid models (i.e., one cen-
timetre) with peak values close to or even exceeding the one
decimetre level at some points. Overall, however, the results
indicate that the harmonic correction to height anomaly may
be critical mainly in areas with strong topographic variations
like the Norway test area, whereas in flat or hilly areas such
as large parts of the Auvergne test area, the one-centimetre
threshold will only be exceeded at a few points.

We also showed that the choice of the RTM surface
has a significant impact on the magnitude of the har-
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Fig. 8 Auvergne test area:
histogram of the harmonic
correction to height anomaly,
δζharm(P)

(a) δζ harm(P), RTM5 (b) δζ harm(P), RTM36

monic corrections. Overall, a smooth RTM surface provides
larger harmonic corrections to gravity, potential, and height
anomaly. Likewise, the errors of the harmonic correction
to gravity in Forsberg and Tscherning (1981) increase with
increasing smoothness of the RTM surface. Therefore, we do
not recommend to use very smooth RTM surfaces. From a
theoretical point of view there is no need to relate the reso-
lution of the RTM surface (i.e., its smoothness) to the spatial
resolution of the GGM used in data reduction. It is suffi-
cient to choose the smoothness of the RTM surface such that
the high-frequency signals in the gravity datasets that cannot
be resolved for a given data distribution and accuracy are
reduced as much as possible. For some areas of interest, this
may allow the choice of rougher RTM surfaces.

One of the main concerns related to the harmonic cor-
rection to gravity in Forsberg and Tscherning (1981) is the
bias this correction introduces in the reduced gravity anoma-
lies. This bias causes long-wavelength errors in the computed
quasi-geoid model.

The new equations for the harmonic correction to grav-
ity and potential involve Taylor series expansions, and the
dominant term of the remainder is of the order of O(ε2)

andO(ε3), respectively. Using the results provided in Tables
2, 4, 6, and 7, we can estimate this term. For instance, the
largest tesseroid height in the Norway test area is�h = 1825
m (cf. Table 2, RTM36), hence ε = 2.9·10−4.Whenwe com-
bine this value with the largest value of δg−

RTM(Q), which is
123.3 mGal (cf. Table 6), the dominant term of the remainder
of Eq. (26) is 3.1 · 10−5 mGal. Likewise, the largest value
of δV−

RTM(Q) is 28.76 m2/s2 (cf. Table 7, RTM36); hence, the
dominant term of the remainder of Eq. (32) is 6.8 · 10−10

m2/s2. A comparison of these error estimates with the dif-
ferences between the new harmonic corrections and the ones
in Forsberg and Tscherning (1981) indicates how substantial
the improvements are which the new harmonic corrections
provide.

The complete RTM correction presented in this paper
can easily be implemented in existing RTM software. The

numerical complexity is about a factor of two higher than
the traditional RTM correction in Forsberg and Tscherning
(1981). In fact, the modified code has to be run twice; first,
to compute the effect of removing the masses in the volume
�+; second, to compute the effect of adding masses to the
volume �−.

Finally, we would like to mention that the harmonic cor-
rections to gravity, potential, and height anomaly must not
be restored in the remove-compute-restore approach. They
are only needed to transform values inside the masses into
harmonically downward continued values and do not reflect
mass re-distributions.
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AppendixA: CompleteRTMcorrection: three-
step procedure

In Sect. 3, we derived the equations for the complete RTM
correction in four steps. Here, we suggest a three-step pro-
cedure and show analytically that from a theoretical point
of view both provide the same results. The difference with
respect to the four-step procedure is that points P ∈ S which
are located below the RTM surface are upward continued
(in the Earth’s gravity field) to the RTM surface before the
masses in �+ are removed and masses are added to �−.

Three-step procedure
Step 1 Upward-continue data at points P ∈ S located below
the RTM surface to the corresponding points Q ∈ s using
the free-air vertical gravity gradient; all other data are left
unchanged.

g(Q) = g(P) + ∂g

∂h

∣∣∣
P
�h + 3gpO(ε2) , (46)

W (Q) = W (P) + ∂W

∂h

∣∣∣
P
�h + 1

2

∂2W

∂h2

∣∣∣
P
�h2 − WPO(ε3) ,

(47)

where the inner gradients are defined as

∂g

∂h

∣∣∣
P

= lim
δ→0+

g(P ′) − g(P)

δ
, (48)

∂W

∂h

∣∣∣
P

= lim
δ→0+

W (P ′) − W (P)

δ
, (49)

∂2W

∂h2

∣∣∣
P

= lim
δ→0+

∂W
∂h (P ′) − ∂W

∂h (P)

δ
≈ ∂g

∂h

∣∣∣
P

, (50)

and P ′ is a point on the ellipsoidal normal through P with
ellipsoidal height hP + δ.

Step 2 Move the masses inside �+ to infinity assuming that
their mass density is ρ0, and fill the volume �− with mass
to achieve a mass density of ρ0. Compute the effect this has
on gravity and potential, respectively, at Q:

gred(Q) := g(Q) − δg+
RTM(Q) + δg−

RTM(Q) , (51)

Wred(Q) := W (Q) − δV+
RTM(Q) + δV−

RTM(Q) . (52)

Step 3 Downward-continue harmonically the data that have
been upward continued in step 1 to their original locations
on the Earth’s surface (terrain or sea surface), i.e., from Q to
P along the ellipsoidal normal through P:

gred(P) = gred(Q) − ∂gred

∂h

∣∣∣
Q
�h + 3gred(Q)O(ε2) , (53)

Wred(P) = Wred(Q) − ∂Wred

∂h

∣∣∣
Q
�h + 1

2

∂2Wred

∂h2

∣∣∣
Q
�h2

+ Wred(Q)O(ε3) , (54)

where ∂gred
∂h

∣∣∣
Q

and ∂2Wred

∂h2

∣∣∣
Q

are defined as in Eq. (18) and

Eq. (20), respectively.
Inserting Eqs. (46) and (51) into Eq. (53), we find

gred(P) = g(P) −
[
δg+

RTM(Q) − δg−
RTM(Q)

+
(∂gred

∂h

∣∣∣
Q

− ∂g

∂h

∣∣∣
P

)
�h

]

+ (3g(P) + 3gred(Q))O(ε2) . (55)

Using the partial derivative of Eq. (51) with respect to h, we
re-write Eq. (55) as

gred(P) = g(P) −
[
δg+

RTM(P) − δg−
RTM(Q) + ∂δg−

RTM

∂h

∣∣∣
Q
�h

]
.

(56)

This is identical to Eq. (26), the result of the four-step pro-
cedure derived in Sect. 3.1.

Inserting Eqs. (47) and (52) into Eq. (54), and observing
Eqs. (46) and (51), we find

Wred(P) = W (P) −
[
δV+

RTM(Q) − δV−
RTM(Q)

+
(∂Wred

∂h

∣∣∣
Q

− ∂W

∂h

∣∣∣
P

)
�h

− 1

2

(∂2Wred

∂h2

∣∣∣
Q

+ ∂2W

∂h2

∣∣∣
P

)
�h2

]

+ (Wred(Q) − W (P))O(ε3) . (57)

Using the partial derivative of Eq. (52) with respect to h, we
can simplify Eq. (57) to

Wred(P) = W (P) −
[
δV+

RTM(P) − δV−
RTM(Q) − δg−

RTM(Q)�h

− 1

2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2
]
. (58)

This is identical to Eq. (32), the result of the four-step pro-
cedure derived in Sect. 3.1.

From a practical point of view, there is a minor difference
between the four-step and the three-step procedure. This dif-
ference is in the upward continuation operation. Take as an
example a measured gravity value. In the four-step proce-
dure this gravity value has to be upward continued to the
RTM surface using the free-air gravity gradient referring to a
modified Earth which is mass-free inside �+ (step 2). In the
three-step procedure, the upward continuation uses the free-
air gravity gradient of the real Earth. Note that the gradient
to be used in the upward continuation of the three-step pro-
cedure is likely rougher than the gravity gradient used in step
2 of the four-step procedure. The reason is that the removal
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of the masses inside �+ likely has a smoothing effect on the
gravity gradient.

Appendix B: Semi-analytical experiments

In the first semi-analytical example, we consider the Earth to
be a non-rotating homogeneous sphere of radius R and con-
stant density ρ. The gravity measurement point P is located
on the surface of that sphere, i.e., rP = R. The RTM-surface
is assumed to be a sphere of radius rQ = R + h as depicted
in Fig. 9a. The complete RTM correction to gravity follows
from applying Eq. (26) and neglecting terms of the order
O(ε2):

δgcorr(P) = gP − gred(P)

=
[
δg+

RTM(P)︸ ︷︷ ︸
=0

−δg−
RTM(Q) + ∂δg−

RTM

∂r

∣∣∣
Q
h
]
.

(59)

For a spherical shell, a power series expansion yields

δg−
RTM(Q) = δgshellQ = 4

3
πGρ

(R + h)3 − R3

(R + h)2
,

= 4πGρh

[
1 − h

R
+ 4

3

(
h

R

)2

+ O(ε3)

]
,

(60)

hence,

∂δg−
RTM

∂r

∣∣∣
Q

= −2
4

3
πGρ

(R + h)3 − R3

(R + h)3
,

= −8πGρ
h

R

[
1 − 2

h

R
+ O(ε3)

]
,

(61)

Inserting the last two expressions into Eq. (59) yields

δgcorr(P) = −4πGρh

[
1 + h

R
− 8

3

(
h

R

)2

+ O(ε3)

]
.

(62)

With measured gravity at P ,

g(P) = GM

R2 = 4

3
πGρ

R3

R2 = 4

3
πGρR ,

we find

gred(P) = gP − δgcorr(P) = 4

3
πGρR

[
1 + 3

h

R

+3

(
h

R

)2

− 8

(
h

R

)3
]

+ O(ε3). (63)

Gravity gred(P) corresponds to the harmonically down-
ward continued gravity of our RTM-reduced earth, which is
a homogenous sphere of radius R+h. Therefore, gred(P) can
easily be computed exactly. For this, we consider the differ-
ence between g(P) and gred(P), which is caused by the mass
M− = ρ�− of a spherical shell with inner radius R and
outer radius R + h, i.e.,

M− = 4

3
πρ

(
(R + h)3 − R3

)
, (64)

Hence,

g(P) − gred(P) = −GM−

R2 . (65)

If M denotes the mass of a homogenous sphere of radius R
and density ρ, the exact value of gred(P) is

g∗
red(P) = GM

R2 + GM−

R2 = 4

3
πGρR

[
1 + 3

h

R
+ 3

(
h

R

)2

+
(
h

R

)3
]

. (66)

Equations (63) and (66) are identical up to terms O(ε2).
This is less than 1μGal for any shell of thickness |h| < 9 km.
The application of the derived completeRTM reduction leads
to a corrected gravity value at P , which is now a boundary
value of the external gravity potential caused by the mass
M+ = M + M− = 4

3πρ(R + h)3. It is no longer an inner
potential gradient and can be upward continued by the use of
a free-air reduction. If necessary to apply, the free-air gradient
is now based on M+. For the gravity potential of the RTM-
reduced earth, we find

Wred(P) = WP − δVcorr(P) = 4

3
πGρR2

[
1 + 3

h

R

+3

(
h

R

)2

+
(
h

R

)3

+ O(ε4)

]
. (67)

The correct analytical result of a homogeneous sphere with
radius R + h and density ρ is

W ∗
red(P) = 4

3
πGρ

(R + h)3

R
. (68)

Equations (67) and (68) agree up to terms of O(ε4).
The second semi-analytical example uses a spherical cap

with opening angle ψc to model the RTM-masses in the
region �− (see Fig. 9b). In this more specific example, the
presented precise harmonic correction formulas are also con-
firmed analytically.

We assume that the Earth consists of a non-rotating homo-
geneous sphere of radius R + h with constant density ρ
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Fig. 9 Semi-analytical
experiment

(a) Spherical shell. (b) Spherical cap.

with a conical mass element with symmetry axis through
P and opening angle ψc ≤ π removed (cf. Fig. 9b). The
RTM-reduced earth, which results after the complete RTM
correction has been applied, is a homogeneous sphere of
radius R + h. With this assumption it follows directly that
rP = R, i.e., the point P is located on the sphere of radius R
at a depths h below the RTM surface. For this geometry, it is

g(P) = 4

3
πGρ0R + δgscP , (69)

δg+
RTM(P) = 0, (70)

δg−
RTM(Q) = δgscQ , (71)

∂δg−
RTM

∂h

∣∣∣
Q

= ∂δgsc

∂h

∣∣∣
Q
. (72)

Hence, Eq. (35) reads

gred(P) = gP − δgcorr(P)

= 4

3
πGρ0R + δgscP + δgscQ − ∂δgsc

∂h

∣∣∣
Q
h .

(73)

The analytical expressions for the gravity effect of a spher-
ical cap, δgscQ , are given in Kadlec (2011, Eq. (2.106)) or
Heck and Seitz (Eq. (54), 2007). Using the approximations
ψc < 1◦, sinψc ≈ ψc, cosψc ≈ 1 − ψ2

c /2, it is up to terms
of O(ε2),

δgscP + δgscQ = 2πGρh

(
h

�1
+ 2

h − �1

R

)
, (74)

with the Euclidean distances

�1 =
√
r2 + r21 − 2rr1 cosψ, �2 =

√
r2 + r22 − 2rr2 cosψ ,

(75)

and the spherical distance ψ between the geocentric vectors
of P and Q,

cosψ = sin φ sin φ′ + cosφ cosφ′ cos
(
λ′ − λ

)
. (76)

For the last term of Eq. (73), we find ( Kadlec 2011,
Eq. (2.134)) up to terms of O(ε2)

∂δgsc

∂r

∣∣∣
Q

= −2πGρh

�1
=

{
−2πGρ, h 	 Rψ

−2πGρh h
Rψ

, h 
 Rψ
.

(77)

When inserting the last expressions into Eq. (73) the eval-
uations lead to the gravity value including the harmonic
correction which is in accordance with the expected value
(cf. Eq. (66)) on the approximation level of O(ε2).

For the potential the results of this thought experiment are
based on Kadlec (2011, Eq. (2.98)) or Heck and Seitz (2007,
Eq. (52)):

(i) The gravity potential W (P) at a point P ∈ S:

W (P) = 4

3
πGρR2 + 2πGρ((R + h)2 − R2) − δV−

RTM|P ,

(ii) The expected value of the harmonically continued
potential is

W ∗
∣∣∣
P

= 4

3
πGρ

(R + h)3

R
,

= 4

3
πGρR2

(
1 + 3

h

R
+ 3

(
h

R

)2

+
(
h

R

)3
)
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(iii) Gravity potential at P after applying harmonic RTM
reduction according Eq. (39):

Wred(P) = WP − δVcorr(P) = 4

3
πGρR2

[
1 + 3

h

R

+3

(
h

R

)2

+ O(ε3)

]
. (78)

(iv) Items (ii) and (iii) are equal on the approximation level
O(ε3). The application of the derived harmonic RTM
reduction leads to a corrected gravity potential at P ,
which is now a boundary value of the external gravity
potential caused by the masses M∗.

Appendix C: Complete RTM correction for the
Norway test area

Figures 10 and 11 show a geographic rendition of the con-
tributors to the complete RTM correction to gravity and
potential, respectively, in the Norway test area. The statistics
of the contributors are presented in Table 6 for gravity and
Table 7 for potential. All contributors have distributions with
a long, one-sided tail. Therefore, Tables 6 and 7 show next
to range, the 25%, 75% and 95% percentiles and the median
instead of mean, RMS and standard deviation. Both tables
reveal that the complete RTM correction is dominated by
the mass re-distribution related term, δg+

RTM(P) − δg−
RTM(Q)

and δV+
RTM(P) − δV−

RTM(Q), respectively. Their contribution
to the complete RTM correction is about 75% for grav-
ity and about 90% for potential. Among the two remaining
terms of the complete RTM correction to potential, which
are only relevant at evaluation points located below the RTM

surface, the term ∂δV−
RTM

∂h

∣∣∣
Q

�h is the largest; its range is

0.82 m2s−2 (RTM5) and 1.29 m2s−2 (RTM36). The term

− 1
2

∂2δV−
RTM

∂h2

∣∣∣
Q

�h2 is indeed small as the rough estimate in

Sect. 3.2 already indicated, but with a range of 0.25 m2s−2

(RTM5) and 0.35 m2s−2 (RTM36) still not negligible in cm-
accuracy local quasi-geoid modelling.

Fig. 10 Norway test area: contributors to the complete RTM correction
to gravity according to Eq. (27). Units in mGal. The contributors in
Figures e and f are only computed at evaluation points which are located
below the RTM surface
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Fig. 11 Norway test area: contributors to the complete RTM correction to potential according to Eq. (33). Units in m2s−2. The contributors in
Figures c, d, g, and h were only computed at evaluation points which are located below the RTM surface
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Table 6 Norway test area:
statistics of the contributors to
the complete RTM correction to
gravity according to Eq. (27)

(a) RTM5, 253, 388 evaluation points

Range Percentiles Median

Min Max 25% 75% 95%

δg+
RTM(P) −23.1 16.4 −2.7 −0.4 0.0 −1.2

δg−
RTM(Q) 0.1 83.2 5.9 24.0 46.0 12.7

δg+
RTM(P) − δg−

RTM(Q) −92.1 0.0 −26.6 −6.8 −2.0 −14.3
∂δg−

RTM
∂h

∣∣∣
Q

�h −15.8 42.7 0.1 3.4 14.2 0.9

Complete RTM correction −80.4 0.0 −22.9 −6.4 −2.0 −12.9

(b) RTM36, 222, 892 evaluation points

Range Percentiles Median

Min Max 25% 75% 95%

δg+
RTM(P) −32.9 16.2 −2.6 −0.4 0.0 −1.2

δg−
RTM(Q) 0.1 123.3 9.8 35.3 74.7 19.5

δg+
RTM(P) − δg−

RTM(Q) −125.5 −0.1 −38.1 −11.4 −3.8 −21.5
∂δg−

RTM
∂h

∣∣∣
Q

�h −16.0 48.9 0.0 4.4 24.9 1.0

Complete RTM correction −120.6 −0.1 −33.4 −10.9 −3.8 −19.8

The statistics were computed for all evaluation points which are located below the RTM surface. Units in
mGal

Table 7 Norway test area:
statistics of the contributors to
the complete RTM correction to
potential

(a) RTM5, 253, 388 evaluation points

Range Percentiles Median

Min Max 25% 75% 95%

δV+
RTM(P) 7.72 19.29 11.94 16.00 18.00 13.83

δV−
RTM(Q) 5.62 17.44 9.93 13.41 16.01 11.57

δV+
RTM(P) − δV−

RTM(Q) −0.24 5.16 1.64 2.69 4.08 2.07
∂δV−

RTM
∂h

∣∣∣
Q

· �h −0.82 0.00 −0.05 0.00 0.00 −0.01

− 1
2

∂2δV−
RTM

∂h2

∣∣∣
Q

· �h2 −0.19 0.06 0.00 0.00 0.00 0.00

Sum −0.97 0.00 −0.05 0.00 0.00 −0.01

Complete RTM correction −0.79 5.16 1.60 2.65 4.06 2.04

(b) RTM36, 222, 892 evaluation point

Range Percentiles Median

Min Max 25% 75% 95%

δV+
RTM(P) 14.08 29.96 19.24 23.92 26.73 21.56

δV−
RTM(Q) 7.95 28.76 14.46 18.80 24.85 16.45

δV+
RTM(P) − δV−

RTM(Q) −4.45 11.37 3.40 6.37 8.35 4.97
∂δV−

RTM
∂h

∣∣∣
Q

· �h −1.22 0.00 −0.10 −0.01 0.00 −0.03

− 1
2

∂2δV−
RTM

∂h2

∣∣∣
Q

· �h2 −0.27 0.08 −0.01 0.00 0.00 0.00

Sum −1.44 0.00 −0.11 −0.01 0.00 −0.03

Complete RTM correction −5.74 11.37 3.29 6.32 8.28 4.92

Units in m2s−2
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AppendixD: CompleteRTMcorrection for the
Auvergne test area

Figures 12 and 13 show a geographic rendition of the contrib-
utors to the completeRTMcorrection to gravity andpotential,
respectively, over the Auvergne test area. The associated
statistics are provided in Tables 8 and 9, respectively. The
share of the mass redistribution related contributors to the
complete RTM correction is comparable to the one found for

the Norway test area, though in absolute terms, the contribu-
tors are a bit smaller now.When comparing the results for the
two RTM surfaces, we notice again that the complete RTM
correction and its contributors are larger for the smoother
RTM36 surface compared to the rougher RTM5 surface for
both gravity and potential.

Fig. 12 Auvergne test area:
contributors to the complete
RTM correction to gravity
according to Eq. (27). Units in
mGal. The contributors in
Figures e and f were only
computed at evaluation points
which are located below the
RTM surface

(a) (b)

(c) (d)

(e) (f)

123



The RTM harmonic correction revisited Page 23 of 25 39

Fig. 13 Auvergne test area:
contributors to the complete
RTM correction to potential
according to Eq. (33). Units in
m2s−2. The contributors in
Figures e, f, g, and h were only
computed at evaluation points
which are located below the
RTM surface

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Table 8 Auvergne test area:
statistics of the contributors to
the complete RTM correction to
gravity

(a) RTM5, 78, 950 evaluation points

Range Percentiles Median

Min Max 25% 75% 95%

δg+
RTM(P) −16.7 0.1 −0.1 0.0 0.0 0.0

δg−
RTM(Q) −0.1 89.5 1.0 5.2 14.1 2.4

δg+
RTM(P) − δg−

RTM(Q) −95.9 0.0 −5.3 −1.0 −0.3 −2.5
∂δg−

RTM
∂h

∣∣∣
Q

�h −20.1 46.0 0.0 0.2 1.5 0.0

Complete RTM correction −97.8 0.0 −5.1 −1.0 −0.3 −2.4

(b) RTM36, 95, 360 evaluation points

Range Percentiles Median

Min Max 25% 75% 95%

δg+
RTM(P) −37.5 0.1 0.0 0.1 0.1 0.0

δg−
RTM(Q) 0.1 106.3 4.1 15.7 34.5 9.7

δg+
RTM(P) − δg−

RTM(Q) −110.2 0.0 −15.8 −4.1 −0.9 −9.7
∂δg−

RTM
∂h

∣∣∣
Q

�h −32.3 50.4 0.0 0.3 1.8 0.1

Complete RTM correction −114.6 0.0 −15.5 −4.1 −0.9 −9.5

Units are in mGal

Table 9 Auvergne test area:
statistics of the contributors to
the complete RTM correction to
potential

(a) RTM5, 78, 950 evaluation points

Range Percentiles Median

Min Max 25% 75% 95%

δV+
RTM(P) 4.33 20.31 6.62 10.19 13.78 8.44

δV−
RTM(Q) 4.38 21.57 6.67 10.26 14.13 8.50

δV+
RTM(P) − δV−

RTM(Q) −1.97 0.95 −0.14 −0.02 0.07 −0.08
∂δV−

RTM
∂h

∣∣∣
Q

· �h 0.00 0.96 0.00 0.00 0.02 0.00

− 1
2

∂2δV−
RTM

∂h2

∣∣∣
Q

· �h2 −0.09 0.22 0.00 0.00 0.00 0.00

Sum 0.00 1.18 0.00 0.00 0.02 0.00

Complete RTM correction −1.51 0.95 −0.13 −0.02 0.08 −0.08

(b) RTM36, 95, 360 evaluation points

Range Percentiles Median

Min Max 25% 75% 95%

δV+
RTM(P) 9.15 45.85 14.16 21.48 27.17 18.57

δV−
RTM(Q) 7.86 37.45 13.78 24.14 30.47 19.61

δV+
RTM(P) − δV−

RTM(Q) −6.68 20.86 −2.99 0.28 1.76 −0.59
∂δV−

RTM
∂h

∣∣∣
Q

· �h 0.00 1.24 0.00 0.02 0.11 0.01

− 1
2

∂2δV−
RTM

∂h2

∣∣∣
Q

· �h2 −0.11 0.28 0.00 0.00 0.00 0.00

Sum 0.00 1.40 0.00 0.02 0.11 0.01

Complete RTM correction −6.34 20.87 −2.96 0.29 1.77 −0.58

Units are in m2s−2
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