
 
 

Delft University of Technology

Induced aseismic slip and the onset of seismicity in displaced faults

Jansen, Jan Dirk; Meulenbroek, Bernard

DOI
10.1017/njg.2022.9
Publication date
2022
Document Version
Final published version
Published in
Geologie en Mijnbouw/Netherlands Journal of Geosciences

Citation (APA)
Jansen, J. D., & Meulenbroek, B. (2022). Induced aseismic slip and the onset of seismicity in displaced
faults. Geologie en Mijnbouw/Netherlands Journal of Geosciences, 101, Article e13.
https://doi.org/10.1017/njg.2022.9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1017/njg.2022.9
https://doi.org/10.1017/njg.2022.9


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Netherlands Journal of
Geosciences

www.cambridge.org/njg

Original Article

Cite this article: Jansen J-D and
Meulenbroek B. Induced aseismic slip and the
onset of seismicity in displaced faults.
Netherlands Journal of Geosciences, Volume
101, e13. https://doi.org/10.1017/njg.2022.9

Received: 7 February 2022
Revised: 27 April 2022
Accepted: 30 April 2022

Keywords:
Chebyshev polynomial; semi-analytical;
singular integral; stability

Author for correspondence:
Jan-Dirk Jansen,
Email: j.d.jansen@tudelft.nl

© The Author(s), 2022. Published by Cambridge
University Press on behalf of the Netherlands
Journal of Geosciences Foundation. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use,
distribution and reproduction, provided the
original article is properly cited.

Induced aseismic slip and the onset of
seismicity in displaced faults

Jan-Dirk Jansen1 and Bernard Meulenbroek2

1Department of Geoscience and Engineering, Delft University of Technology (TU Delft), Delft, Netherlands and 2TU
Delft, Delft Institute of Applied Mathematics, Delft, Netherlands

Abstract

We address aseismic fault slip and the onset of seismicity resulting from depletion-induced or
injection-induced stresses in reservoirs with pre-existing vertical or inclined faults. Building on
classic results, we discuss semi-analytical modelling techniques for fault slip including disloca-
tion theory, Cauchy-type singular integral equations and the use of Chebyshev polynomials for
their solution and an eigenvalue-based stability analysis. We consider slip patch development
during depletion for faults with zero, constant static and slip-weakening friction, and our results
confirm earlier findings based on numerical simulation, in particular the aseismic growth of two
slip patches that may subsequently merge and/or become unstable resulting in nucleation of
seismic slip. New findings include improved approximate expressions for the induced seismic
moment per unit strike length and a description of the effect of coupling between the slip
patches which affects both forward simulation and eigenvalue computation for high values
of the ratio of fault throw to reservoir height. Our implementation based on analytical inversion
and semi-analytical integration with Chebyshev polynomials is more efficient and more robust
than our numerical integration approach. It is not yet well suited for Monte Carlo simulation,
which typically requires sub-second simulation times, but with some further development that
option seems to be within reach. Moreover, our results offer a possibility for embedded fault
modelling in large-scale numerical simulation tools.

Introduction

The motivation for our paper is to contribute to the understanding of earthquakes that result
from the production of hydrocarbons, geothermal operations or the storage of fluids in subsur-
face reservoirs (Segall, 1989; Suckale, 2009; Elsworth et al., 2016; Muntendam-Bos et al., 2021).
Therefore, we investigate the use of (semi-) analytical techniques to describe induced fault slip
and their potential for computational purposes. Our paper forms an extension to an earlier one
that provided closed-form analytical expressions for the injection-induced or depletion-induced
elastic stresses in and around displaced faults, that is, faults with a non-zero offset (Jansen et al.,
2019). That earlier paper build methodologically on analytical work of, amongst others,
Geertsma (1973), Segall (1985, 1992) and Rudnicki (2002). The analytical results confirmed
and extended the findings of earlier, numerical studies.

The aims of the current paper are four-fold: (1) gaining further insight in the poro-mechani-
cal aspects of induced seismicity in displaced faults; (2) clarifying some of the theory underlying
(semi-) analytical techniques for fault modelling; (3) investigating the scope for fast (Monte
Carlo) simulation of induced seismicity; and (4) developing a semi-analytical framework for
embedded fault modelling in large-scale numerical simulation tools. We focus on a semi-ana-
lytical approach to describe depletion-induced aseismic fault slip and the onset of seismicity
with the aid of Cauchy-type singular integral equations and the use of Chebyshev polynomials
for their solution. The core of the underlying theory was developed decades ago by Bilby &
Eshelby (1968) and Rice (1968, 1980) on the basis of dislocation theory and fracture mechanics,
with themore recent book by Segall (2010) providing an inspiring overview and further develop-
ment of much of this material. Also, the stability criterion for aseismic slip developed by Uenishi
& Rice (2003) forms important input for our paper.We build on this existing body of knowledge
to cope with the particularities of the stress field resulting from depletion of a reservoir with
displaced faults; these include singularities and discontinuities in the shear and normal stresses,
and the development of two distinct slip patches that may merge at increased depletion levels.
Our paper also builds on the findings of more recent (numerical) work on depletion-induced
seismicity, in particular the seminal reports by Van den Bogert (2015, 2018) and further pub-
lications by, amongst others, Buijze et al. (2017, 2019), Buijze (2020) and VanWees et al. (2017).

The paper is organised as follows. In Section 2, we review expressions for the injection-
induced or depletion-induced stress field in a displaced fault. We also introduce an illustrative
Example that will be used throughout the paper to highlight various elements of the theory. In
Section 3, we discuss aspects of dislocation theory and its relationship to slip-induced stresses,
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whereafter Section 4 treats the use of Cauchy-type singular integral
equations to compute the induced slip pattern for a given
depletion-induced stress field. Section 5 illustrates the computa-
tion of induced fault slip for the Example corresponding to three
different friction models: zero friction, constant static friction and
slip-weakening friction. For the latter, we also introduce amodified
Uenishi & Rice (2003) stability criterion. Section 6 treats computa-
tional aspects, and Section 7 presents a discussion with conclusions
about the potential of the developed theory for computational
applications. The Appendices provide all mathematics necessary
to derive the expressions in the main text. Further mathematical
background material is provided in the Supporting Information.

Induced elastic stresses in a displaced fault

Initial and incremental stresses

We consider a two-dimensional (2D) plane-strain model of an
infinitely wide reservoir of height h ¼ aþ b intersected by a dis-
placed non-sealing normal fault with throw tf ¼ b� a; see Fig. 1
with typical values given in Table 1.We assume the presence of an
initial regional stress pattern with principal stresses σ0yy (vertical)
and

σ0xx ¼ σ00xx � �p0

¼ K0σ00yy � �p0

¼ K0ðσ0yy þ �p0Þ � �p0;

(1)

(horizontal), where � is Biot’s coefficient, p0 is the initial pore pres-
sure (a superscript ‘0’ means ‘initial’), K0 is the initial effective
stress ratio, and where a primed stress variable σ0 represents an
‘effective stress’. We employ a sign convention where positive
strains and stresses imply extension and tension, and where pore
pressures are positive. The resulting initial normal and shear
stresses acting on the fault follow from a coordinate rotation as

σ0? ¼ σ0ŷŷ ¼ σ0xx sin2 �þ σ0yy cos2 �; (2)

σ0k ¼ �σ0x̂ŷ ¼ ðσ0xx � σ0yyÞ sin � cos �; (3)

where x̂ and ŷ are rotated coordinates, and where � is the dip angle
of the fault; see Fig. 1. A positive-valued shear stress σkcorresponds
to a normal faulting regime, or in other words, to a situation where
the hanging wall (to the left of the fault in Fig. 1) has a tendency to
slide down from the foot wall (to the right of the fault). The initial
effective normal stress acting at the fault follows as

σ00? ¼ σ0? þ βp0; (4)

where β is an effective stress coefficient which is not necessarily
identical to � and is often taken as unity (Scholz, 2019; Fjaer
et al., 2021).

An increase or decrease in pore pressure in the reservoir will
result in incremental normal and shear stresses in the reservoir
and its surroundings. We restrict our analysis to the case of a
quasi-steady state, or in other words, to the case of a spatially
homogeneous incremental pore pressure pðtÞ that is a slow func-
tion of time t. Closed-form analytical expressions for the corre-
sponding incremental normal and shear stresses in the fault
were obtained by Jansen et al. (2019) and can be expressed as

σ? ¼ ð�σxy sin � cos �þ σxx sin2 �Þ; (5)

σk ¼ ðσxy sin2 �þ σxx sin � cos �Þ; (6)

where σxx ¼ σŷŷ and σxy ¼ �σx̂ŷ are normal and shear stresses for
a vertical fault, that is, for a dip angle � ¼ �

2. They are defined as (see
also Appendix A)

σxx ¼
0 if y � �b or b � y

��C if �b < y � �a or a � y < b ;
�2�C if �a < y < a

8<: (7)

and

σxy ¼
C
2
ln
ðy � aÞ2ðy þ aÞ2
ðy � bÞ2ðy þ bÞ2 ; (8)

where CðpðtÞÞ is a pressure-dependent scaling parameter, with SI
units Newton per meter squared, defined as

C ¼ ð1� 2�Þ�pðtÞ
2�ð1� �Þ ; (9)

with � representing Poisson’s ratio, and t time. For dipping as well
as vertical faults, the incremental effective normal stress is given by

σ0? ¼ σ? þ 0 if y � �b or b � y
βp if �b < y < b

�
: (10)

In the derivation of Equation 10, it was assumed that only those
parts of the fault that are in direct contact with the reservoir expe-
rience incremental reservoir pressure, or in other words, that the
relevant fault segment is given by �b <y <b. If a larger part of the
fault is exposed to incremental pressure, the domain where βp is
added should be extended accordingly.

Relation to other studies

In parallel to the work reported in Jansen et al. (2019), similar ana-
lytical expressions were derived by Lehner (2019). Using a slightly
different approach, he arrived at a set of alternative closed-form
expressions for the induced stresses around a displaced fault, which
produce near-identical results when evaluated numerically. More
recently, Wu et al. (2021) and Van den Hoek & Poessé (2021) pre-
sented similar expressions, based on slightly different derivations.
The former publication includes the effect of a (static) pressure dif-
ference across the fault, while the latter includes the effect of ther-
mal stresses in addition to incremental pressures.

Figure 1. Infinitely wide reservoir with a displaced normal fault.
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In all these studies, it is assumed that the reservoir is embedded in
an infinite full space, that is, an infinite domain in both horizontal and
vertical directions. In reality, the presence of the earth’s surface sug-
gests that the use of an infinite half space might be more appropriate.
However, for a small ratio of reservoir thickness over depth, the
differences between a full-space and a half-space representation of
the stresses are negligible, as demonstrated in detail by Lehner (2019).

At some horizontal distance away from the fault, say at more
than a few times the height of the reservoir, the stresses approach
those of an infinitely wide reservoir without faults. In the limit
x ! �1, the expressions for an infinitely wide reservoir derived
in Jansen et al. (2019) therefore become equal to those for the poro-
mechanical behaviour of a straight horizontal ‘elastic thin sheet’
that undergoes unidirectional (vertical) fluid-induced expansion
or compression (Bourne & Oates, 2017; Fjaer et al., 2021).

Another, semi-analytical, method to model the elastic stresses
in displaced faults was presented by Van Wees et al. (2019) who
based their expressions on earlier work by Okada (1992). The
underlying solid-mechanical formulation is closely related to those
used by Jansen et al. (2019) and Lehner (2019) but the semi-ana-
lytical implementation allows, in theory, for the computation of
stresses in more complex 3D configurations of fault blocks than
the 2D analytical formulations of Jansen et al. (2019), Lehner
(2019), Wu et al. (2021) and Van den Hoek & Poessé (2021).
Comparison of the stresses in 2D examples using the methods
of Van Wees et al. (2019), Lehner (2019) and Jansen et al.
(2019) showed near-identical results, while, moreover, all three
methods have been checked independently against finite element
solutions by their respective authors.

Yet another analytical approach was taken by Hettema (2020)
who started from different assumptions leading to different results.
However, despite their somewhat different approaches, all the

methods referred to in this section share the limitation of assuming
elastic material behaviour with uniform homogeneous properties.
More importantly, they all disregard the effect of fault slip on the
stress field around the fault and the resulting redistribution of
stresses. In the present paper, we aim at addressing the latter short-
coming through developing a (semi-) analytical approach that
includes the effect of fault slip for various friction laws.

Fault slip and coulomb stress

Fault slip is defined as

δðs; tÞ ¼ uþk ðs; tÞ � u�k ðs; tÞ; (11)

where u�k and uþk are the along-fault displacements at both sides of
the fault; it is governed by combined (i.e. initial plus incremental)
shear and effective normal stressesP

k ¼ σ0k þ σk; (12)P0
? ¼ σ00? þ σ0?: (13)

Slip-provoking conditions occur when

jPkj>
P

sl; (14)

where
P

sl is the slip threshold, defined asP
sl ¼ �� �

P0
?; (15)

with � � 0 indicating cohesion and � the friction coefficient, and
where it should be kept in mind that negative normal stresses
correspond to compression. In the most general case, the friction

Table 1. Reservoir properties and fault geometry for the Example.

Symbol Property Value SI units

a See Fig. 1 75 m

b ” 150 m

D0 Depth at reservoir center (y ¼ 0) 3500 m

g Acceleration of gravity 9:81 m=s2

G Shear modulus 6500 MPa

K0 Ratio of initial effective horizontal to vertical stresses 0.5 -

p Incremental reservoir pressure �25 MPa

p00 Initial reservoir pressure at reservoir center 35 MPa

� Biot coefficient 0.9 -

� Effective stress coefficient for fault friction 0.9 -

� Dip angle 70 deg.

� Cohesion 0 MPa

�st Static friction coefficient 0.52 -

� Poisson’s coefficient 0.15 -

	fl Fluid density 1020 kg=m3

	s Solid density 2650 kg=m3


 Porosity 0.15 -

Note: the initial vertical stress, initial pressure and initial effective normal stress have been computed as: σ0yyðyÞ ¼ ½ð1� ϕÞ	s þ ϕ	fl �gðy � D0Þ; where σ0v < 0, p0ðyÞ ¼ p00 � 	fl g y,
σ00?ðyÞ ¼ σ0?ðyÞ þ βp0ðyÞ: (Valid for reservoir, overburden and underburden).

Netherlands Journal of Geosciences 3
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coefficient �ðδ; δ̇;  ; s; tÞ is lithology-dependent and thus a func-
tion of the along-fault coordinate s. Moreover, it is a function of
the slip rate

δ̇ðs; tÞ ¼ dδðs; tÞ
dt

; (16)

the cumulated slip

~δ ¼
Z

t

0
jδ̇ðs; tÞjdt; (17)

possibly one or more additional state variables  iðs; tÞ and time t
directly. Equation 14 implies that slip of the hanging wall may
occur in upward or downward direction, where exceedance of
the slip threshold

P
sl by a positive combined shear stress

P
k

implies downward slip of the hanging wall, or in other words, a
continued normal fault development. In the remainder of the
paper, we will only consider such downward slip without reversals
of direction. Therefore, we have ~δ ¼ δ, and we can employ the
usual definition of the pre-slip Coulomb stressP

Cðs; tÞ ¼
P

kðs; tÞ �
P

slðs; tÞ; (18)

in which slip corresponds to positive values of
P

C .

Illustrative example

Figure 2 (left) depicts an example of combined shear stresses and
the (downward) slip threshold for a displaced fault crossing a
hydrocarbon reservoir that is experiencing a gradual pore pressure
decrease due to quasi-steady-state depletion. The parameter values
for this example have the same order of magnitude as those of the
Groningen natural gas reservoir in the Netherlands (NAM, 2016),
and their values are listed in Table 1 together with calculation
details of the initial stresses and pore pressures. We will use this

Example throughout the paper to illustrate various elements of
the theory.

The figure corresponds to an incremental pressure p ¼ �25
MPa (where the negative sign implies depletion) and displays
two potential slip patches formed by areas where the shear
stress exceeds the slip threshold, indicated in green. The two
patches are initiated at the ‘internal’ reservoir-fault corners, at
y ¼ �a ¼ �75 m, and, with increasing depletion, gradually grow
into the reservoir such that the top patch extends downwards and
the bottom patch upwards. Figure 2 (right) displays the corre-
sponding Coulomb stresses with green areas for the same y values
as in the left figure. Note that these results do not yet include the
effects of slip.

With continuing depletion, the two potential slip patches may
merge and form a single patch. This stress pattern development is
typical for depletion-induced shear stresses in displaced faults and
was first described byVan denBogert (2015, 2018) and subsequently
by others; see Buijze et al. (2017, 2019), VanWees et al. (2017, 2018,
2019) for numerical studies, and Jansen et al. (2019) and Lehner
(2019) for analytical approaches. Opposedly, injection-induced
shear stresses result in the development of potential slip patches
at the ‘external corners’ (in this example located at y ¼ �150 m)
which subsequently (mainly) grow outwards into the overburden
and underburden; see Jansen et al. (2019).

Intersections

Intersections of the shear stress profiles with the slip threshold in
Fig. 2 (left) have been indicated with horizontal green lines. They
are identical to the zeros of the Coulomb stresses; see Fig. 2 (right).
Their magnitudes can be obtained by solving iteratively for y from
the implicit equation P

kðyÞ ¼
P

slðyÞ; (19)

with the aid of Equations 1–15 resulting in four values
fy1; y2; y3; y4g, where

Figure 2. Shear stresses, slip threshold and pre-slip
Coulomb stresses for the Example. Left: red lines represent
the combined depletion-induced shear stresses

P
k and

black lines the slip threshold
P

sl as a function of vertical
position y. Right: red lines represent the pre-slip Coulomb
stresses

P
C ¼Pk �

P
sl . In both the left and right figures

the green areas indicate those regions where the shear
stresses exceed the slip threshold and, accordingly, the green
horizontal lines at y ¼ �76; � 51; 47 and 76mcorrespond to
the intersections between shear stresses and slip threshold,
i.e. the zeros of the pre-slip Coulomb stresses. The light gray
areas depict the vertical positions of the foot wall and the
hanging wall, and the dash-dotted rectangle in the right fig-
ure corresponds to the detailed view in Figure 5 (left).

4 J.-D. Jansen and B. Meulenbroek
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� b < y1 <�a < y2 < 0< y3 < a< y4 < b; (20)

as long as the slip patches have not merged, and two relevant values
fy1; y4g, where

� b < y1 <�a < 0< a< y4 < b; (21)

thereafter. Note: in Fig. 2, there are four intersections, but the posi-
tions of y1 and y4 are just below y ¼ �a and just above y ¼ a,
respectively, such that they nearly coincide with the dotted black
lines that indicate the locations of the top of the hanging wall
and the bottom of the foot wall.

We emphasise that the stress distribution as depicted in Fig. 2 is
based on an elastic equilibrium without taking into account the
effect of slip. Once slip occurs, whether aseismic or seismic, the dis-
tribution will change, as will be shown below, and so will the inter-
sections. These pre-slip intersections should therefore not be used
as a basis for a quantitative prediction of slip patch size, but rather
as an indication of the potential region where slip may occur.

Logarithmic singularities and jump discontinuities

Figure 2 (left) displays sharp peaks in the shear stresses and the slip
threshold at y ¼ �a and y ¼ �b, and Fig. 2 (right) shows similar
peaks in the pre-slip Coulomb stresses. These peaks correspond to
singularities in the underlying logarithmic expressions which
result in infinite values when evaluated for y ¼ �a or y ¼ �b;
see Equations 5 and 6which both inherit the logarithmic term from
Equation 8 for the shear stress in a vertical fault. Equations 5 and 6
also both contain jump discontinuities at y ¼ �a and y ¼ �b.
Although these are hidden in Fig. 2 by the peaks, their presence
can be inferred from their common descendance from the expres-
sion for the normal stresses in a vertical fault; see Equation 7 which
displays jump discontinuities of magnitude C� at y ¼ �a
and y ¼ �b.

A consequence of the logarithmic singularities is that numerical
results, for example from finite element simulations, that suggest
the existence of a ‘threshold depletion’ above which there seems
to be an absence of slip, are mesh-size dependent and may fail
to converge to a fixed value on refinement of the simulation grid.
In our model, the logarithmic singularities as well as the jump dis-
continuities result from the sharp ‘internal’ and ‘external’ reser-
voir-fault corners at y ¼ �a and y ¼ �b. In reality, such
infinite peaks are physically impossible, and small amounts of
aseismic fault slip, plastic deformation and/or pore pressure diffu-
sion will result in finite peak stresses, while the presence of more
rounded corners or gradual pore pressure transitions between the
reservoir and the surrounding rock will have the same result.
Mathematically, such a smoothing of the peaks can be obtained
through regularising the expressions for the stresses; see Appendix B.
However, even under suchmore realistic conditions, a major effect of
the presence of a displaced fault in a depleting reservoir is the occur-
rence of high-magnitude stress peaks.

Dislocation theory and singular integral equations

Dislocations and double couples

To obtain insight into the relation between depletion-induced
stresses and fault slip, we use elements of dislocation theory as
developed in the field of material sciences (Burgers, 1939;
Nabarro, 1952; Weertman, 1996; Cai & Nix, 2016). Since the
1950s, dislocations have been applied to represent earthquake

sources by, for example, Vvedenskaya (1956), Keylis-Borok
(1956) and Steketee (1958a, b). We refer to Eshelby (1973),
Segall (2010), Udías et al. (2014) and references therein for further
discussions on the use of dislocation theory for geophysical
applications.

An edge dislocation (also known as a glide dislocation) can be
represented in ðx; yÞ coordinates as an in-plane shear displacement
along a semi-infinite slip line; see Fig. 3 (top left) where the
material just to the right of the y axis in the half plane fy <0g
has been displaced in the positive y direction over a distance
uy ¼ δ=2 while the material in the same half plane but just to
the left of the y axis has been displaced in the negative y direction
over the same distance. As a result, the displacement field contains
a singularity at the origin.

Expressions for the plane-strain displacements ui and stresses
σij; i 2 fx; yg; j 2 fx; yg, around an edge dislocation, can be
obtained with techniques from the theory of elasticity (Nabarro,
1952; Barber, 2010; Cai & Nix, 2016). Alternatively, one can use
the fact that an edge dislocation with slip of magnitude
δ ¼ uþy � u�y results in a seismic moment per unit area of magni-
tudem ¼ δG, where G is the shear modulus. In 2D, the moment at
a given point can then be interpreted as a nucleus of strain in the
form of a double couple fm;�mg per unit length where the pos-
itive and negative couples act counter-clockwise and clockwise,
respectively, a well-known concept in earthquake source mechan-
ics. For further information, see, for example, Steketee (1958b),
Eshelby (1973), Segall (2010) and Udías et al. (2014). Section S1
of the Supporting Information describes how to obtain expressions
for ui and σij, using Green’s functions for a point source (Lord
Kelvin, 1848) and the nucleus-of-strain concept (Love, 1927) to
represent double couples. For an inclined fault passing through
the origin, and with an edge dislocation just there, it follows that
the stresses at the fault location can be expressed as

σ? ¼ 0; (22)

σk ¼
δG

2�ð1� �Þs ¼
δG sin �

2�ð1� �Þy ; (23)

where s is the along-fault coordinate, and δ is the along-fault slip
for s <0 (see Fig. 1). Figure 3 (top right) displays the slip-induced
shear stresses σk for the case of an edge dislocation in a vertical fault
in which case it holds that σk ¼ σxy . Note that Equation 22 implies
that along-fault displacements caused by slip do not result in a
change in normal stresses in that fault and therefore do not directly
influence the magnitude of the slip thresholds.

Distributed dislocations

Next we consider an edge dislocation with an along-fault slip δ that
is no longer constant but is a function of the along-fault coordinate
sðyÞ ¼ y

sin �. The shear stresses σ
^

k resulting from an array of infini-
tesimal edge dislocations dδ with magnitude

dδ ¼ @δðsÞ
@s

ds ¼ rδðsÞds; (24)

for s� � s � sþ and dδ ¼ 0 otherwise, can be expressed with the
aid of Equation 23 as
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σ
^

kðsÞ ¼ A
Z 1

�1

rδð�Þ
� � s

d� ¼ A
Z

sþ

s�

rδð�Þ
� � s

d�; (25)

where, for plane-strain conditions,

A ¼ G
2�ð1� �Þ ; (26)

and

rδð�Þ ¼ @δðsÞ
@s

����
s¼�

; (27)

see also Bilby & Eshelby (1968). The quantity rδðsÞ can be inter-
preted as the dislocation density or the slip gradient.

The integral in Equation 25 is a so-called Cauchy-type singular
integral of the first kind or a Cauchy integral for short (Cates,
2019). This means that, although it contains a singularity at
� ¼ s, it is associated with a finite result that is known as its prin-
cipal value (PV) defined as

PV
Z

sþ

s�

rδð�Þ
� � s

d� ¼ lim
"#0

Z
s�"

s�

rδð�Þ
� � s

d� þ
Z

sþ

sþ"

rδð�Þ
� � s

d�

� �
:

(28)

These integrals frequently occur in contact and fracture mechanics
and a classic mathematical text that extensively treats theoretical
and applied aspects is the book by Muskhelishvili (1953).
Somewhat more accessible treatments are given by, for example,
Tricomi (1957), Weertman (1996) and Estrada & Kanwal
(2000). The first integral in Equation 25 can also be interpreted

as an (infinite) Hilbert transform as used in signal processing.
Applications in geophysics were pioneered in the 1960s by Bilby
& Eshelby (1968) and Rice (1968), with a more recent treatment
being given in the book by Segall (2010). In the remainder of
the paper, we will not explicitly indicate the PV for singular
integrals.

If the slip gradient rδðsÞ is a simple function of s, it may be
possible to obtain the PV through straightforward analytical inte-
gration. As an example, the step-shaped slip profile in the vertical
fault in Fig. 3 (top left) can be replaced by a ramped profile by
choosing a constant slip gradientrδðyÞ ¼ c <0 over a slip interval
y� � y � yþ, where y� ¼ �100 m, and a zero gradient otherwise.
(Note that in a vertical fault we have s ¼ y). A possible realisation
of the corresponding vertical displacements u

^�
y and u

^þ
y has been

depicted in Fig. 3 (bottom left), and the resulting shear stress fol-
lows from Equation 25 as

σ
^

k ¼ σ
^

xy ¼
Ac
2
ln

ðy � yþÞ2
ðy � y�Þ2
� �

; (29)

and is depicted in Fig. 3 (bottom right). Note that it is only the slip
gradient rδ that determines the slip-induced stresses and not the
magnitude δ of the slip itself. Therefore, an arbitrary constant may
be added to δ, over the entire infinite domain, and the same holds
for the corresponding displacements.

It can be seen that the peaks in the stress profile at
y ¼ y� ¼ �100 m in Fig. 3 (bottom right) resemble those in the
shear stress profile in Fig. 2 (left). This resemblance can also be
noted in the logarithmic terms in Equations 8 and 29, a feature that
will be made use of later on in this paper.

Figure 3. Top left: slip δ (red) and vertical displacements uy
(orange) in a vertical fault corresponding to an edge disloca-
tion at the origin with given displacements u�y and uþy along

the half line fx ¼ 0; y <0g. The corresponding slip
δ ¼ uþy � u�y has a magnitude of 0.05 m. Top right: slip-

induced shear stresses σk in the fault (which are identical

to σxy in this vertical case) resulting from the dislocation. Bot-

tom left: slip δ (red) and vertical displacements u^y in a vertical

fault corresponding to a ramped slip profile between boun-
daries y� ¼ �100 m and yþ ¼ 100 m with slope c ¼ � 0:05

200 .

Bottom right: slip-induced shear stresses σ
^

k ¼ σ
^

xy resulting

from this ramped profile. The material properties to compute
the stresses in the sub figures at the right have been chosen
according to Table 1.
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Computing the slip gradient and the slip

Mathematical aspects

Equation 25 provides the shear stress σ^kðsÞ for a given slip gradient
rδðsÞ. However, in the following we will consider situations where
we aim to anihilate the pre-slip Coulomb stress

P
CðsÞ over the slip

patches through finding a slip distribution δðsÞ such that
σ
^

kðsÞ ¼ �PCðsÞ. In that case, we need to compute the slip gra-
dient for a given shear stress which requires the inverse of Equa-
tion 25. It was shown inMuskhelishvili (1953) that such an inverse
can be obtained analytically if the function σ

^

kð�Þ is Hölder con-
tinuous, where Hölder continuity is a stricter form of continuity
than the version used in regularmathematical analysis; see the Sup-
porting Information belonging to this paper. As discussed before,
Equations 5 and 6 for the shear and normal stresses in a displaced
fault display jump discontinuities in y ¼ �a and y ¼ �b. (An
exception is a vertical fault in which case the shear stresses are
continuous but the normal stresses still display jump discontinu-
ities). Therefore, these stresses are not even continuous in the
regular sense in those points, leave alone Hölder continuous,
and the same holds for the pre-slip Coulomb stresses

P
C .

A more detailed analysis of the discontinuities reveals that
inversion results in slip values that contain a weak (logarithmic)
singularity in the expression for the slip gradient rδ, while it
produces a (just) regular result for the slip δ; see the Supporting
Information. However, as discussed before, we can regularise
Equations 5 and 6 such that the jump discontinuities and loga-
rithmic singularities are removed; see also Appendix B. In that
case, we can safely use the approach of Muskhelishvili (1953) to
invert Equation 25 which results in a solution that is well-known
in the fracture mechanics and contact mechanics literature as will
be discussed briefly below and in more detail in Appendix C.

Inverse equation

For the case thatrδ remains finite at both s ¼ s� and s ¼ sþ, it was
shown by Muskhelishvili (1953) that the inverse of Equation 25 is
given by

rδðsÞ ¼ CðsÞ
�2A

Z
sþ

s�

σ
^

kð�Þ
Cð�Þ ðs� �Þ d�; s� � s � sþ; (30)

where

CðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� s�Þðsþ � sÞ

p
; (31)

with a similar expression forCð�Þ. Equation 30 is only valid if the
following two conditions are fulfilled (Bilby & Eshelby, 1968):

Z
sþ

s�

�k σ
^

kð�Þ
Cð�Þ d� ¼ 0; k ¼ 0; 1: (32)

For various proofs, see Muskhelishvili (1953), Weertman (1996),
Segall (2010) and the Supporting Information belonging to this
paper. For a given function σ

^

k, conditions (32) can only be met
for specific values of s� and sþ. These two values should therefore
be solved for from conditions (32), which typically requires an iter-
ative process. Physically, conditions (32) imply that the sum of the
slip-induced shear stresses as well as their first moment vanish

when evaluated over the slip patch s� < s < sþ. In terms of the cor-
responding slip gradient, this means that the magnitudes of the
gradient at the endpoints are finite, in other words, that the slip
at those points is equal to zero.

Once the slip gradient rδðsÞ has been established with Equa-
tion 30, the along-fault slip can be determined with the aid of
Equation 27 as

δðsÞ ¼
Z

s

s�
rδð�Þ d�; (33)

where we can use our knowledge that δðs�Þ ¼ 0. It should be noted
that Equation 25 is valid for �1< s <1, whereas the validity of
Equation 30 is restricted to s� � s � sþ such that the latter is now
equivalent to a finite Hilbert transform (Tricomi, 1957; Weert-
man, 1996).

Equations 30 and 32, with s� ¼ �sþ, were used in Bilby &
Eshelby (1968) and Rice (1968) to compute the stresses in various
fracture configurations modelled as arrays of dislocations, and in
Rice (1980) and Segall (2010) in a similar fashion to compute
stresses in and around faults caused by imposed shear stresses.
In Uenishi & Rice (2003), the equations served as a basis to deter-
mine the stability of a fault loaded by a peaked shear stress. In the
following, we will start from Equations 30 and 32 to obtain the full
slip distribution along a displaced fault and thereafter return to the
stability aspects.

Slip-induced shear stresses and slip gradient

From now on, we will express all variables, including the along-
fault slip δ and the along-fault slip gradientrδ ¼ dδ

ds as functions
of the vertical coordinate y ¼ s sin �. As discussed before, a
decrease in pore pressure in a reservoir with a displaced fault
will always result in the development of two potential slip
patches in those fault segments where the shear stressesP

kðy; tÞ exceed the slip threshold
P

slðy; tÞ, that is, where the
pre-slip Coulomb stresses

P
Cðy; tÞ are positive; see Fig. 2. A

complicating factor is that the slip in one patch influences the
shear stresses in the other patch and vice versa, although we
may disregard this coupling effect as long as the patches are
located far enough from each other.

In any case, we seek a slip gradientrδðy; tÞ, and thus a slip pat-
tern δðy; tÞ, that results in a slip-induced shear stress distribution
σ
^

kðy; tÞ that annihilates the pre-slip Coulomb stress defined in
Equation 18, such that the green areas in Fig. 2 vanish. Recall that
slip does not influence the normal stresses; see Equation 22. How-
ever, such a slip pattern also induces a change in shear stresses for y
values outside those green fault segments and therefore influences
the location of the intersections yi. As a result, the region where the
slip-induced stresses annihilate the pre-slip Coulomb stresses
becomes larger. Thus, as long as the coupling effect can be disre-
garded, we are looking for a slip pattern with corresponding slip
patch boundaries that obey the following mixed boundary condi-
tions for σ^k and rδ:

σ
^

kðy; tÞ ¼ �PCðy; tÞ; f~y1ðtÞ< y <~y2ðtÞg _ f~y3ðtÞ< y <~y4ðtÞg;
(34)
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rδðy; tÞ ¼ 0; f y �~y1ðtÞg _ f~y2ðtÞ � y �~y3ðtÞg _ f~y4ðtÞ � yg;
(35)

where~yiðtÞ; i ¼ 1; . . . ; 4 are shifted intersections that now constitute
the post-slip patch boundaries, and where

P
Cðy; tÞ is given by Equa-

tion 18with further details in Equations 1–15. Here we explicitly indi-
cate the time dependency of the variables which may result from one
or more sources, such as the slow (i.e. quasi-steady-state) change in
reservoir pressure pðtÞ, the time dependency of the cohesion �ðy; tÞ
or the rate and state dependency of the friction coefficient
�ðy; tÞ ¼ �ð~δðy; tÞ; δ̇ðy; tÞ;  iðy; tÞÞ. From now on, we will refrain
from indicating these dependencies except when necessary. It is
shown in Appendix C how Equations 30–32 can be combined with
Equations 34 and 35 to obtain a system of equations to solve for the
boundaries fy�; yþg and a Cauchy integral formulation to compute
the slip gradient rδðyÞ in each of the two slip patches.

For increasing depletion, both slip patches will grow in size and
approach each other in which case the coupling effect may no
longer be disregarded. In that case, we can still use
Equations 30–32 in combination with 34 and 35 if we replace
the term �PCðyÞ in Equation 34 by �PCðyÞ � σ

^�
k ðyÞ, whereP

CðyÞ are now the pre-slip Coulomb stresses in a patch while
the cross-term σ

^�
k ðyÞ represents the shear stresses in that same

patch as caused by slip in the other patch; see Appendix C for fur-
ther details. Alternatively, we could employ a split-integral
approach, using results from fracture mechanics for multiple dis-
location zones, resulting in two two-term integrals to compute the
slip gradients in the two slip patches (Weertman, 1996). The inte-
grals then contain a square root of a fourth-order polynomial,
resulting in a set of four conditions that should be fulfilled to obtain
the four slip patch boundaries. Although this alternative formu-
lation has the benefit of avoiding iterations, it requires a simulta-
neous solution of four highly nonlinear equations. For the
examples that we considered, this turned out to be much more
prone to generating spurious results than the iterative sequential
solution of two sets of two nonlinear equations, and we therefore
did not pursue the split-integral approach any further.

After merging of the slip patches, which may occur at larger
depletion values, the coupling effect is no longer relevant. In that
case, the slip and the slip patch boundaries can be computed with
the aid of the same equations as used for the uncoupled patches,
but now applied to a single merged patch.

Numerical and semi-analytical integration

Evaluation of the Cauchy integrals required to compute the slip
gradient can be performed numerically if attention is paid to han-
dling of the singularities; see, for example, Golberg (1990), Keller &
Wróbel (2016) and Viesca & Garagash (2018) who provide several
algorithms that benefit in varying degrees from the underlying
mathematical structure of the equations. Alternatively, semi-ana-
lytical expressions can be obtained by expanding the known func-
tion in the integrand in terms of Chebyshev polynomials (Mason &
Handscomb, 2003; Uenishi & Rice, 2003; Segall, 2010; Barber,
2018). We applied such a semi-analytical approach for the various
Cauchy integrals, with details as discussed in Appendix D. To
verify the semi-analytical results, we also obtained results through
numerical integration with a relatively simple ‘staggered grid’
approach inspired by the paper of Uenishi & Rice (2003).
Further details are provided in Appendix E, which also contains
a brief comparison of the computational performance of the two
approaches.

The influence of friction

No friction

As a first step in addressing the effects of friction on the develop-
ment of slip, consider the hypothetical case of a frictionless fault.
This implies a restriction to vertical faults because the absence of
friction would make it impossible to sustain the initial shear
stresses corresponding to the usual situation with unequal horizon-
tal and vertical principal stresses. For this case of a vertical friction-
less fault without initial shear stresses, Bourne & Oates (2017)
developed an approximate solution in which they assumed that,
in each of the two fault blocks, the post-slip displacements become
uniaxial (vertical) with values equal to those at x ¼ �1. The same
assumption, following a slightly different derivation, was made in
the Supporting Information of Jansen et al. (2019) leading to the
same approximate solution. Here we relax this assumption and
start from the stresses in a vertical fault which were given in Equa-
tions 7 and 8.

For such a vertical frictionless fault, we do not yet need an
inverse formulation but can directly apply Cauchy Equation 25
for the Coulomb stresses

P
C as function of a given slip gradient

rδ as follows. We know that the pre-slip Coulomb stresses are just
equal to the incremental shear stresses and are therefore given by
Equation 8. Now recall the resemblance between the stresses
induced by depletion and those resulting from a ramped slip gra-
dient, see Equations 8 and 29. Exploiting this analogy, and guided
by the approximate solution of Bourne &Oates (2017), we arrive at
the following expression for the depletion-induced slip in a fric-
tionless vertical fault:

δðyÞ ¼ �C
A

�

0 if y ��b;
�ðy þ bÞ if �b< y ��a;
ða� bÞ if �a< y < a;
ðy � bÞ if a� y <b;
0 if b � y ;

8>>>><>>>>: (36)

where � is an auxiliary variable which is equal to one for our pro-
posed solution while it is equal to 1

2ð1��Þ for the approximate sol-

ution of Bourne & Oates (2017). The shear stresses in the fault
corresponding to Equation 36 can be determined with the aid of
Equation 25 as

σ
^

kðyÞ ¼ �C
Z �a

�b

�1
� � y

d� þ
Z

b

a

1
� � y

d�

� 	
¼ � �C

2
ln

ðy � aÞ2ðy þ aÞ2
ðy � bÞ2ðy þ bÞ2
� �

: (37)

For � ¼ 1, these slip-induced shear stresses are exactly equal to
minus the depletion-induced shear stresses σk given in Equation 8
such that we find for the post-slip Coulomb stresses:

P̂
C ¼PC þ σ

^

k ¼ σk � σk ¼ 0; (38)

which proves that Equation 36 is indeed a correct solution for slip
in a frictionless vertical fault. We note that other, equally valid sol-
utions could be obtained by adding an arbitrary constant amount
of slip δ0 to the slip distribution of Equation 36 over the entire fault
range�1<y <1. However, even in case of a infinitesimal amount
of friction, the slip at y ¼ 	1 would vanish, because the slip-
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induced shear stresses as given in Equation 8 vanish at y ¼ 	1,
and therefore, it must hold that δ0 ¼ 0.

Figure 4 (left) depicts the pre-slip Coulomb stresses
P

C , the

slip-induced shear stresses
P̂

k and the resulting post-slip Cou-

lomb stresses
P̂

C ¼PC þ P̂k for a modified version of the
Example, with � ¼ 90 deg. and � ¼ 0 such that it now represents
a frictionless vertical fault. The solid red line in Fig. 4 (right) depicts
the corresponding fault slip δ as given in Equation 36 with � ¼ 1.
The dashed line represents the approximate solution of Bourne &
Oates (2017) which is given by Equation 36 with � ¼ 1

2ð1��Þ. We

verified our semi-analytical solution against a fully numerical
one obtained with an in-house finite-volume code for coupled
porous media flow and mechanics (Novikov et al., 2022). The
numerical results are indicated with blue triangles in Fig. 4 (right)
and they almost exactly coincide with the solid red line.

In this section, it was shown that the approximate expression
for slip in a frictionless fault as first derived by Bourne & Oates
(2017) underestimates the present result with a factor
��1 ¼ 2ð1� �Þ. The same holds for the corresponding maximum
possible seismic moment per unit strike length M̂s which is now
given by

M̂s ¼ G
Z

b

�b
δðyÞ dy ¼ ����1Cðb2 � a2Þ ¼ ����1Chtf

¼ ð2� � 1Þ�phtf ; (39)

where h ¼ aþ b and tf ¼ b� a are the reservoir height and fault
throw. This expression forms an upper boundary to the seismic
moment per unit strike length that can be generated by
depletion-induced completely seismogenic fault slip. However, it
excludes the potential effects of propagation of the fault slip above
or below the reservoir.

Constant friction

As a next step in addressing the effects of friction, consider the
depletion-induced elastic stresses in the Examplewith a homogeneous
and constant static friction coefficient �ðy; tÞ ¼ �st ¼ 0:52. We now
employ the inverse formulation discussed above and given in detail
in Appendix C and perform semi-analytical integration using
Chebyshev polynomials as described in Appendix D, verified with
numerical integration using a ‘staggered grid’ approach as described
in Appendix E.

Consider a gradually increasing depletion, in other words, a
gradually decreasing incremental pressure pðtÞ< 0. If no slip
would occur, the pre-slip Coulomb stresses would gradually grow
and so would the (potential) slip patches with boundaries
yi; i ¼ 1; . . . ; 4; see Equation 20. However, from the results
obtained by Uenishi & Rice (2003) we know that, for a constant
friction coefficient, stable non-seismic slip will occur. Figure 5 (left)
displays the pre-slip Coulomb stresses

P
C , the slip-induced shear

stresses σ^k (originating from slip in both patches) and the resulting

post-slip Coulomb stresses
P̂

C ¼PC þ σ
^

k for the original Exam-
ple, that is, just like in Fig. 4 but now with � ¼ 70 deg. and
�st ¼ 0:52. The figure illustrates that, inside the green areas, the
negative-valued slip-induced stresses (orange lines) exactly annihi-
late the positive-valued pre-slip Coulomb stresses (red lines) such
that the post-slip Coulomb stresses (blue dots) become just zero.
However, slip also results in significant positive-valued shear

stresses just above and below the green areas, and as a result,
the slip patches will grow. In case of stable non-seismic slip, as
is the case for a static friction coefficient without slip weakening
or velocity weakening, the growth process will stabilise such that
slip patches, that is, regions of zero post-slip Coulomb stresses, will
form between boundaries ~y1 <y <~y2 and ~y3 <y <~y4 (Uenishi & Rice,
2003). This growth process is also apparent from the green and
blue horizontal lines in Fig. 5: the green lines indicate the bounda-
ries yi; i ¼ 1; . . . 4, of the original potential slip patches while the
blue lines indicate the boundaries ~yi of the patches once slip has
occurred. Figure 5 (right) displays the corresponding fault slip
for increasing depletion and illustrates the gradual growth and sub-
sequent merging of the patches.

Figure 6 displays the pre-slip Coulomb stress zeros and the slip
patch boundaries as a function of depletion pressure p for a static
friction coefficient �st ¼ 0:52 and with all other variables as in the
Example (see also Table 1). It clearly illustrates that the difference
between the zeros (i.e. the potential slip patch boundaries; green
curves) and the actual slip patch boundaries (blue curves) grows
with increasing depletion. It also illustrates that, for a constant fric-
tion coefficient, the uncoupled approximation (indicated with a
dotted blue line) performs quite well until approaching the pres-
sure at which the two patches merge.

Slip-weakening friction

Loss of stability
An early model to explain the occurrence of seismic events is one in
which the friction coefficient drops from its static value �st to a

lower dynamic value �dyn as a linear function of the ratio jδj
δc
, where

δc is the critical slip distance. The corresponding pre-slip Coulomb
stress is defined asP

Cðy; δðy; pÞ; pÞ¼
P

kðy; pÞ �
P

slðy; δðy; pÞ; pÞ

¼Pkðy; pÞ �
P0

?ðy; pÞ �
�st � ð�st � �dynÞ jδðy;pÞjδc

if jδðy; pÞj � δc
�dyn if jδðy; pÞj> δc

(
;

(40)

where �st , �dyn and δc may all be functions of y, and where we indi-
cated an explicit dependence of the various stresses and the slip on
the incremental pressure pðtÞ rather than on time t directly because
we consider a quasi-static situation without any explicitly time-
dependent parameters.

To compute the slip patch boundaries, we can now use the same
semi-analytical and numerical integration approaches as for the
constant friction case, although with an iterative treatment of
the dependency of

P
C on δ. The red curve in Fig. 6 depicts the

slip patch boundaries ~yi; i ¼ 1; . . . ; 4, as a function of p for the
Example with �st ¼ 0:52, �dyn ¼ 0:20 and δc ¼ 0:02 m. It can
be seen that the patches grow in size much more rapidly than
for the case with the same static friction coefficient without slip
weakening (blue curve). A decrease in pressure to p ¼ �17:44

MPa leads to an unbounded value of the derivative @
~y3
@p at the lower

boundary of the top patch, as shown in detail in the circular inset.
Quasi-static aseismic slip is now impossible for further depletion
which implies that a seismic event will occur. A similar loss of sta-
bility is depicted by the orange curves which correspond to slip-
weakening friction with a higher dynamic friction coefficient
(�dyn ¼ 0:40) while keeping all other parameter values the same.
The less aggressive drop in friction value results in a delayed onset
of seismicity at p ¼ �21:38 MPa.
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A detailed analysis of the onset of seismicity under slip-weak-
ening conditions was made by Uenishi & Rice (2003), and elabo-
rate finite element studies using a slip-weakening model for faults
in the Groningen gas field were reported by Van den Bogert (2018)
and Buijze et al. (2019). In the latter two studies, the onset of seis-
mic slip is followed by a dynamic rupture analysis which shows
that the seismic slip may result in merging of the two slip patches.
As demonstrated by Van den Bogert (2018) and Buijze et al. (2019),
the slip in the merged patches usually stays inside the reservoir, but
dynamic effects may sometimes cause the slip to propagate beyond
the reservoir boundaries, in particular into the underburden.

Before the start of depletion, the pre-slip Coulomb stress just below
the bottom of the reservoir (i.e. just below y ¼ �150 m) is governed
by the static friction coefficient �st and has magnitude
σ0C ¼ σ0k � σ0sl ¼ 8:57� 15:48 ¼ �6:91 MPa, where we used

σ0sl ¼ �� �ðσ0? þ βp0Þ with � ¼ 0, � ¼ �st ¼ 0:52 and β ¼ 0:90,
and where the negative Coulomb stress implies that the fault does
not slip. The corresponding pre-slip shear capacity utilisation
(SCU), defined as SCU ¼ σ0k=σ

0
sl , is equal to 0.55, which is way below

one, the threshold above which slip will occur. The post-slip SCU just
below the reservoir is defined as SCU ¼ ðσ0k þ σ

^

kÞ=σ0sl where σ0sl is

Figure 4. Depletion-induced stresses and fault slip in a
frictionless vertical fault (modified Example). Left: pre-
slip Coulomb stresses

P
C (red), slip-induced shear

stresses σ
^

k (orange) and post-slip Coulomb stressesP̂
C (blue dots). The green area indicates the region

where the shear stresses exceed the (zero) slip threshold
and, accordingly, the green horizontal lines at y ¼ �119
m correspond to the zeros y1 and y4 of the pre-slip Cou-
lomb stresses. Right: the solid red line represents the cor-
responding fault slip δ. The dashed red line represents
the approximate solution of Bourne and Oates (2017).
The blue triangles depict numerical results obtained with
a finite volume code. The blue horizontal lines at
y ¼ �150 m correspond to the boundaries~y1 and~y4 of
the slip patch.

Figure 5. Depletion-induced stresses and fault slip for the
Example. Left: pre-slip Coulomb stresses

P
C (red), slip-

induced shear stresses σ^k (orange) and post-slip Coulomb

stresses
P̂

C (blue dots) for p ¼ �25 MPa. The green areas
indicate the regions where the pre-slip shear stresses
exceed the slip threshold. Accordingly, the green horizontal
lines at y ¼ �76; � 51; 47 and 76 m (partly hidden by the
red curves) correspond to the zeros yi; i ¼ 1; . . . ; 4; of the
pre-slip Coulomb stresses (see also Figure 2). The blue hori-
zontal lines at y ¼ �80; � 33; 29 and 80 m correspond to
the boundaries~yi of the slip patches. The black curves
represent the pre-slip Coulomb stresses

P
C for other

depletion values (p ¼ �24; � 26; � 27 and �28 MPa).
Right: Corresponding fault slip showing the transition from
two slip patches to a single, merged slip patch for increas-
ing depletion. The red curve corresponds to a depletion
pressure of �25 MPa, and the black curves to
p ¼ �24; � 26; � 27 and �28 MPa.
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now governed by the slip-dependent friction coefficient
�dyn � �ðδÞ � �st . For a dynamic friction coefficient �dyn ¼ 0:40,
the post-slip SCU has a lower bound σ0k=σ

0
sl ¼ 0:72 if it is assumed

that the slip becomes so large that the dynamic friction coefficient is
indeed reached, which is likely to happen once seismic slip occurs. For
�dyn ¼ 0:20, we obtain a post-slip SCU with a lower bound equal to
1.44. This latter SCU, with a value way above one, implies that fault
slip governed by such a low dynamic friction coefficient would con-
tinue to propagate in a run-away fashion once it would reach the
underburden. Only a heterogeneity or a change in stress state could
then arrest the growth of the slip patch. Note that if such a run-away
situation would occur inside the reservoir boundaries, the very large
negative Coulomb stress peaks at y ¼ �150 m (see Fig. 2) might still
form a barrier for propagation to outside the reservoir if dynamic
effects would be sufficiently small. Such complexities of dynamic fault
slip are outside the scope of our paper and we refer to Van den Bogert
(2018), Buijze et al. (2017), Buijze et al. (2019) and Buijze (2020) for
examples and further analyses.

Eigen problem
An alternative to simulation-until-seismicity is to assess the stabil-
ity of the a-seismically slipped fault. Uenishi & Rice (2003) per-
formed such a quasi-static stability analysis for a fault loaded by
a single peak-shaped shear stress distribution, building on earlier
work by, amongst others, Dascalu et al. (2000). Uenishi & Rice
(2003) developed an explicit expression for the nucleation length
Dy
, defined as the slip patch length at which stable aseismic slip
will cease to be possible and seismic slip will occur. The corre-
sponding pressure is then the nucleation pressure p
.

In the paper by Uenishi & Rice (2003), the pre-slip Coulomb
stress has a particular form while slip weakening is defined in a
slightly different way than in Equation 40, that is, in terms of
the slip resistance

P
sl ¼

P0
?� rather than in terms of �. The for-

mulation in terms of
P0

?�, instead of �, makes no difference if the
normal stress

P0
? is constant along the fault. However, in our case

of an inclined displaced fault, the normal stresses vary along the

fault, see Fig. 2 (left). More importantly, in our case the pre-slip
Coulomb stress distribution is more complex, with a combined
dependence on both space and pressure. To cope with these
differences, we extended the stability analysis of Uenishi & Rice
(2003) as described in detail in Appendices C and D. Assuming
that coupling effects may be neglected, the resulting generalised
eigen problem becomes

�Wðy; pÞ δ̇ðy; pÞ ¼ A
Z

yþðpÞ

y�ðpÞ

r δ̇ð�; pÞ
� � y

d�; (41)

where dotted variables indicate differentiation with respect to p,
and Wðy; pÞ is a measure of slip weakening as defined in detail
in Equation C-9 in Appendix C.

Equation 41 resembles the regular eigen equation derived by
Uenishi & Rice (2003) except for the presence of a variable coef-
ficient Wðy; pÞ, instead of just WðpÞ, which introduces an addi-
tional dependency on y. Appendix D describes a semi-analytical
approximation to this generalised eigen problem in terms of Che-
byshev polynomials. The eigenvalues are (weakly) pressure-depen-
dent, and the largest eigenvalue is equal to Dy
 if the slip-induced
stresses σ^k obey conditions 32. Unlike in the case considered by
Uenishi & Rice (2003), it seems out of reach to determine the
nucleation pressure p
 by solving the eigenproblem 41 in a
stand-alone fashion.

As an alternative to the full eigenvalue computation, one may
approximate Equation 41 through replacingWðy; pÞ by a spatial aver-
age WðpÞ ¼ ðyþ � y�Þ�1

R
yþ
y�

Wðy; pÞdy, an approach that was

taken by Van den Bogert (2018) and Buijze et al. (2019) in conjunc-
tion with finite element simulations. After replacing Wðy; pÞ by
WðpÞ, Equation 41 then becomes the regular linear eigen equation
that was solved semi-analytically by Uenishi & Rice (2003). We
can therefore directly use their result which can be expressed as:

Figure 6. Pre-slip Coulomb stress zeros and slip patch boun-
daries as a function of depletion pressure p for Example 1.
The green curves represent the zeros yi; i ¼ 1; . . . ; 4; and the
blue curves the boundaries

~
yi for a constant static friction coef-

ficient �st ¼ 0:52. The blue dotted curves represent the
uncoupled approximation. Intersections of these curves with
the vertical dashed line at a depletion pressure of -25 MPa cor-
respond to the pre-slip Coulomb stress zeros (green horizontal
lines) and slip patch boundaries (blue horizontal lines) in
Figures 2 and 5. The red curves represent the boundaries

~
yi

in case of slip weakening with static and dynamic friction coef-
ficients �st ¼ 0:52, �dyn ¼ 0:20 and a critical slip distance

δc ¼ 0:02 m. The vertical dotted red line indicates the nuclea-
tion pressure p
 ¼ �17:44 MPa at which seismic slip occurs.
The orange lines also represent boundaries

~
yi in case of slip

weakening but now with a dynamic friction coefficient
�dyn ¼ 0:40while keeping all other parameter values the same.

The corresponding nucleation pressure is indicated with a dot-
ted orange line at p
 ¼ �21:38 MPa. For both of the slip-weak-
ening cases, instability resulting in seismicity occurs at the
bottom of the top patch, i.e. at boundary

~
y3 , as shown in detail

in the circular inset for the case where �dyn ¼ 0:20.
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Dy
U &R ¼ 1:158
G

WðpÞð1� �Þ : (42)

For simulation with a small final pressure step and a tight con-
vergence setting, we found slightly lower results forDy
U &R in com-
parison to Dy
eig which illustrates that the effects of the spatial
dependence ofW and of the more complex ‘loading stress’ are lim-
ited. Note, however, that this approximate approach only leads to a
moderate computational advantage: it skips the eigenvalue compu-
tation but still requires an iterative computation of the slip distri-
bution to determine the spatial average W .

It should be noted that the nucleation length based on eigenval-
ues, whether Dy
eig or Dy
U &R, is obtained without taking into
account the coupling effect between the patches. The distance
between the slip patches is influenced by the relative fault throw
tf =h, that is, the fault throw normalised with respect to reservoir
height. For tf =h getting closer to one, the distance becomes smaller
and thus the coupling effect larger. An example of this effect will be
discussed below.

Termination criteria
Simulation up to nucleation can be performed through solving the
inverse Equation 30 in combination with conditions 32 while iter-
atively taking care of the slip dependency of the Coulomb stress, for
a gradually decreasing pressure p. Close to nucleation it requires
very small pressure steps and tight convergence tolerances to avoid
overshooting the critical slip length Dy
 and the associated nucle-
ation pressure p
. Termination of the simulation can then be gov-

erned through numerically computing the derivative @p
@Dy for each of

the slip patches and checking if it drops below a predefined toler-
ance close to zero; see Fig. C-1 (right) in Appendix C.

An alternative approach is to simulate the slip development and,
when approaching nucleation, concurrently solve the eigen system at
each pressure step. Whenever the simulated critical slip length Dy
sim
in one of the patches becomes equal to the nucleation lengthDy
eig for
that patch, the simulation is terminated; see Fig. C-1 (middle) in
Appendix C. However, the eigenproblem does not take into account
coupling effects and may therefore overpredict Dy
 and jp
j, a situa-
tion thatwill typically occur for large relative fault offsets tf =h. In prac-
tice, termination of the simulation can therefore be chosen to occur
when either the numerical derivative drops below a value close to zero
or when Dy
sim overshoots Dy
eig . Alternatively, one can simply simu-
late until convergence failure and accept the last converged results, but
this easily leads to an over-prediction of the nucleation length unless
very small pressure steps and very tight convergence control are used.

In case the slip-induced reduction in fault friction becomes so
large that �dyn is locally reached, a further reduction will no longer
take place in that location. If this happens in one patch before the
critical slip length Dy
 is reached, that is, before nucleation takes
place, continued patch growth will occur which may now reach
values beyond Dy
 without leading to nucleation in that patch,
although seismicity may still be triggered by nucleation in the other
patch. If � drops to �dyn in both patches before Dy
 is reached,
nucleation will be avoided altogether (Van den Bogert, 2018;
Buijze, 2020). With continuing depletion, non-seismic merging
of the patches may then occur. We refer to the report by Van
den Bogert (2018) for a detailed analysis and a taxonomy of the
various possible combinations of merging and slip.

Seismic moment
For a given nucleation pressure p
, Equation 39 provides an upper
bound for the seismic moment per unit strike length under the
assumption that slip remains confined to the reservoir. A tighter
upper bound, under the same assumption, can be obtained by
starting from the slip configuration δ
ðyÞ as follows. In line with
the quasi-steady-state approach that was used to simulate
depletion, we can assume that the post-event configuration is in
a quasi-steady state again and corresponds to a post-seismic slip
distribution δpsðyÞ with post-seismic slip patch boundaries ey�;ps
in a fault with a post-seismic (residual) static friction coefficient
�ps that is equal to the former dynamic friction coefficient �dyn.
Thus, we assume that after the onset of seismicity when
Dy ¼ Dy
, additional slip occurs under dynamic conditions lead-
ing to a reduction of the friction coefficient to its residual value.
The approximate seismic moment can then be expressed as

Ms ¼ G
Z ~y2;ps

~y1;ps

δpsðyÞ dy þ
Z ~y4;ps

~y3;ps

δpsðyÞ dy �
Z ~y
2

~y 

1

δ
ðyÞ dy �
Z ~y
4

~y
3

δ
ðyÞ dy
 !

;

(43)

where the last two terms constitute the moment released during
aseismic slip. The post-seismic slip configuration and the corre-
sponding boundaries can be approximated by simulating aseismic
slip with a constant friction coefficient �ps up to p
.

In a 3D fault configuration, the slip patches will have a finite size
in the strike direction. The shape of the patches in that direction is
unknown and requires a 3D analysis to be determined, especially in
view of the coupling effect between the patches, the possibility of
patch merging before or after nucleation, and the limits on vertical
propagation beyond the reservoir boundaries in case of depletion;
see also Weng & Ampuero (2019). The results from Equation 43
are therefore only relevant to illustrate the dependence of Ms in a
2D setting. Moreover, in reality, dynamic effects may strongly
influence the post-nucleation stress distribution while also more
realistic friction behaviour will probably strongly influence the
results. An example of Ms versus relative fault throw tf =h will
be discussed in the next section.

Computational aspects and example (continued)

We implemented the theory for simulation of fault slip using the
software package Matlab with details as described in Appendix E.
To compute the results in Fig. 6, representing the slip patch boun-
daries as a function of gradually increasing depletion, we used a
variable-step-size algorithm for the depletion pressure steps. The
algorithm employs a target value for the change of Dy in the slip
patches such that strong changes in function values near merging
or nucleation limits can be accurately traced.

For the Example considered in this paper and for a large number
of others, practical convergence was usually achieved for 100–300
Chebyshev terms with a regularisation parameter η ¼ 0:10 m. Typ-
ical wall clock times for simulation until the onset of nucleation or
merging were in the order of seconds up to tens of seconds for the
semi-analytical approach, and up to minutes for the staggered grid
approach, strongly depending on the setting of the various numeri-
cal parameters for spatial discretisation, regularisation, pressure
stepping and convergence tolerance. Overall, the semi-analytical
integration with Chebyshev polynomials proved to be computation-
ally more robust and efficient than the staggered grid approach.
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Figure 7 displays several properties as a function of fault throw
tf in the Example with �dyn ¼ 0:30, while keeping all other varia-
bles fixed. The fault throw varies in 45 steps between 0 and 222.5 m
which corresponds to a range of dimensionless fault throw values
0 � tf =h � 0:99. (There are no theoretical restrictions to extend-
ing this range to values above 1; the upper limit of 0.99 is a con-
sequence of our current implementation.)

Sub-figure (a) displays the nucleation pressure p
. For the first
four increments, no nucleation occurs before reaching full
depletion of �30 MPa. Thereafter, nucleation occurs increasingly
faster, in other words, the (negative) pressure p
 gradually drops
while the nucleation length Dy
 increases.

Sub-figure (b) displays the nucleation length and illustrates that
the approximation Dy
U &R (green triangles) is pretty close to the
eigenvalue-based result Dy
eig (blue triangles). Moreover, the latter
is equal to the simulated nucleation length Dy
sim (red triangles) for
increasing values of tf =h until, rather suddenly, at tf ¼ 180 m, that
is, at tf =h ¼ 0:80, the effect of coupling starts to strongly influence
the growth of the two slip patches. As a result, the eigenvalue-based
result Dy
eig is no longer a good measure of the true nucleation
length which rapidly drops to smaller values. We note that for
all increments in Fig. 7, nucleation occurs before merging of the
slip patches; in other words, they all correspond to Mechanism
2 in the taxonomy of Van den Bogert (2018), while, also, in none
of these cases the value of the friction coefficient drops to the lower
limit �dyn before nucleation occurs.

Sub-figure (c) displays the seismic moment per unit strike
length Ms (red dots) according to Equation 43 and the upper
bound M̂s given by Equation 39 with p ¼ p
 (blue dots). They both
initially increase with increasing fault throw but reach a maximum
whereafter they drop to lower values again. Note, however, the
caveat made in Subsection 5.3.4 about the limited relevance of
the magnitude of these seismic moment values.

Sub-figure (d) displays the computing time tcomp for each incre-
ment.We used 150 Chebyshev terms, aminimum allowed pressure
increment Dp ¼ �100 Pa for the slip-weakening simulations and
Dp ¼ �104 Pa for the residual friction computations, and a relative
convergence tolerance for the iterative computation of the slip
boundaries of 10�8.We ran the simulations on a lap top (Intel Core
i7-6600U CPU @ 260 GHz). The corresponding computing time
per increment of up to 45 s is for two simulations until the nucle-
ation pressure: one with slip-weakening friction and another one
with residual friction.

Discussion and conclusions

Our paper started off with an analytical description of depletion-
induced fault stresses and then moved to a semi-analytical descrip-
tion of fault slip, in terms of Chebyshev polynomials, and sub-
sequently considered the effects of three relatively simple
representations of friction laws while introducing successively
more numerical elements. We limited our scope to quasi-static
depletion-induced aseismic slip and the onset of seismicity. We

Figure 7. Results corresponding to the Example with
�dyn ¼ 0:30 and fault throw tf varying between 0 and

222.5 m in 45 increments (relative fault throw
0 � tf =h � 0:99). a) nucleation pressure p
; no nuclea-

tion occurs during the first four steps. b) nucleation
length Dy
 of top patch; blue: Dy
eig , green: Dy



U &R, red:

Dy
sim ; c) seismic moment per unit strike length; blue:

upper-bound M̂s according to Equation 39; red: more
accurate estimate Ms according to Equation 43; d)
elapsed computing time tcomp . Each bar represents the

time required for simulation to nucleation plus the time
for an additional simulation to compute the post-seismic
slip distribution.

Netherlands Journal of Geosciences 13

https://doi.org/10.1017/njg.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/njg.2022.9


did not address slow slip at constant reservoir pressures (fault
creep), dynamic effects (rupture) or intermittent seismicity (stick
slip). Capturing these effects would require more complex physics
and in particular more advanced friction formulations such as rate
and state ormechanistic models. Also, slip is known to be governed
by local fluctuations in friction properties, both at small scales (Luo
& Ampuero, 2018; Lebihain et al., 2021) and at larger scales
because friction properties are lithology-dependent (Hunfeld
et al., 2017). More advanced friction formulations and hetero-
geneities in friction properties can be implemented relatively
straightforward in the current formulation. However, further com-
plexities such as heterogeneous mechanical properties and 3D
faults can most likely be modelled more efficiently by adopting
a next level of numerical computation in the form of the boundary
element method (Crouch & Starfield, 1983).

The presence of infinitely sharp stress peaks at the internal and
external reservoir-fault corners in our model will not occur in real-
ity because of a less abrupt geometry, non-elastic material behav-
iour and pressure diffusion between reservoir and overburden/
underburden. However, relatively sharp peaks in the fault shear
stresses will persist under such more realistic circumstances which
means that even for small incremental pressures some amount of
(aseismic) fault slip is likely to occur. Searching for an injection or
depletion threshold beyond which no slip at all will occur is there-
fore not very meaningful, while, moreover, numerical results will
likely be mesh dependent. A more relevant feature to search for
seems to be the transition from near-steady-state aseismic slip
to seismicity, as represented by the nucleation pressure p
 and
the associated nucleation length Dy
. However, it is well-known
that the nucleation pressure is strongly dependent on friction
properties and fault geometry, while for more complex friction
models, such as the rate and state model, also complex patterns
of intermittent seismicity may develop; see, for example, Ampuero
& Rubin (2008), Cueto-Felgueroso et al. (2017). Given these uncer-
tainties, it seems therefore more appropriate to perform sensitivity
analyses or probabilistic studies aimed at defining probability dis-
tributions for the incremental pressure that may lead to seismicity,
rather than to search for a single deterministic nucleation pressure.

The first aim of our paper was to gain further insight in the
poro-mechanical aspects of induced seismicity in displaced faults.
We confirmedmany of the findings based on numerical simulation
of earlier studies, in particular those by Van den Bogert (2015,
2018), Buijze et al. (2017, 2019), Buijze (2020) and Van Wees
et al. (2017). A new aspect concerned the coupling between the
two slip patches that develop during induced slip in a displaced
fault, which affects both the forward simulation and the eigenvalue
computation. Also, we relaxed an assumption in an earlier
approximate expression for slip in a frictionless fault, first obtained
by Bourne &Oates (2017), and showed that the original expression
underestimates the present result with a factor 2ð1� �Þ. The same
holds for the corresponding upper bound for the induced seismic
moment per unit strike length.Moreover, we showed that in case of
slip-weakening friction, the maximum seismic moment per unit
strike length occurs for intermediate values of the dimensionless
fault throw tf =h. We derived an extension of the eigenvalue com-
putation of Uenishi & Rice (2003) for the nucleation length which
can cope with pressure-dependent and location-dependent fric-
tion. We demonstrated that the result of Uenishi & Rice (2003)
is a good approximation, but that both formulations fail to predict
the true nucleation length at high values of the scaled fault throw
because of coupling between the slip patches.

The second aim of the paper was to clarify some of theory
underlying (semi-)analytical techniques for fault modelling. To
this purpose, we described the use of the nucleus-of-strain concept
to obtain the stress field around an infinite row of edge dislocations
representing a fault (reported in the Supporting Information). We
discussed aspects of Cauchy-type singular integral equations and
reviewed the analytical inversion theorem of Muskhelishvili
(1953). We also addressed the logarithmic singularities and jump
discontinuities in the stress field around a displaced fault, the
resulting lack of Hölder continuity, and regularised expressions
to circumvent these issues.We discussed the use of Chebyshev pol-
ynomials to solve the governing singular integral equations for
fault slip, including coupling effects between slip patches. We pro-
vided two formulations for simulation using Chebyshev polyno-
mials. Both use (semi-)analytical integration, but while one is
also based on analytical inversion (described in Appendix C),
the other one uses a numerical inversion approach (described in
the Supporting Information). Moreover we implemented a formu-
lation with numerical integration, using a staggered grid approach,
and analytical inversion (briefly described in Appendix E). We
conclude that semi-analytical integration with analytical inversion
can provide accurate results and, in our implementation, is more
efficient and more robust than the other two formulations. We
modified the Uenishi & Rice (2003) approach of the eigenvalue
problem that governs fault stability under slip-weakening condi-
tions to cope with pressure-dependent and location-dependent
friction, and for this, we used a direct formulation in terms of
Chebyshev polynomials instead of an eigenvalue expansion.

The third aim of the paper was to investigate the scope for fast
simulation of induced seismicity in multiple realisations of faulted
reservoirs (Monte Carlo simulation). This requires a combination
of computational speed and robustness, where the simulation ofmil-
lions of fault configurations would typically require run times in the
sub-second domain. Our current implementation (with typical run
times in the order of seconds to tens of seconds) does not fully meet
the speed requirement.More importantly, the various possible com-
binations of reservoir and fault geometries correspond to a variation
in slip patch merging and nucleation patterns that require widely
varying numerical settings to be accurately simulated without fatal
convergence failures. An increase in speed may be obtained through
implementing Chebyshev integration with the aid of a Fast Fourier
Transform (Mason & Handscomb, 2003). Also, the approximate
analysis of nucleation with an energy approach, as described by
Rice&Uenishi (2010),may offer an opportunity to increase the sim-
ulation speed, while the use of numerical methods based on
Chebyshev polynomials, rather than the polynomials themselves,
may offer another route to speed up (Golberg, 1990; Viesca &
Garagash, 2018). An increased robustness will require adaptive
and robust simulation control algorithms.We conclude that the cur-
rent semi-analytical formulation is not yet well suited for Monte
Carlo simulation, but that with some further speed up and improved
simulation control that option seems to be within reach.

The last aim of the paper was to develop a semi-analytical frame-
work for embedded fault modelling in large-scale numerical simu-
lation tools. We conclude that this appears to be a possibility, with
the potential benefit that Muskhelishvili’s analytical inversion of
Cauchy integrals may help to avoid numerical convergence prob-
lems that are well-known to sometimes frustrate the quasi-static
simulation of fault slip. Moreover, an implementation with
Chebyshev polynomials offers scope for adaptive error control
through varying the number of terms in the expansion.Whether this
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offers sufficient advantages in comparison to straightforward
numerical integration or boundary element techniques requires fur-
ther research.We aim to test implementation in our in-house finite-
volume-based poro-mechanical simulation code with embedded
fracture modelling capabilities (Shokrollahzadeh Behbahani
et al., 2022).
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Appendix A: Closed-Form Expressions for Fluid-Induced
Stresses

The normal and shear stresses in an inclined displaced fault inter-
secting a reservoir that undergoes injection or production can be
expressed as (Jansen et al. 2019)

σ? ¼ C G? � 2� δΩð Þ; (A-1)

σk ¼ CGk; (A-2)

where the scaling parameter C is defined in equation (9) in the
body of the text and where δΩ is a modified Kronecker delta
defined as

δΩ ¼ 1 if ðx; yÞ 2 Ω
0 if ðx; yÞ =2 Ω

�
; (A-3)

with the domainΩ representing the reservoir. The variablesG? and
Gk are functions of position along the fault and were derived by con-
sidering a limit approaching the fault from the right. Closed-form
expressions for these scaled incremental normal and shear stresses
can be expressed as (Jansen et al. 2019, Eqns. (29) and (30))

G?ðxþ; yÞ ¼ � 1
2
ln

ðy � aÞ2ðy þ aÞ2
ðy � bÞ2ðy þ bÞ2
� �

sin � cos �

� �

2
sgnðy þ bÞ � sgnðy � aÞ½ � sin2 �

þ �

2
sgnðy þ aÞ � sgnðy � bÞ½ �ð1þ cos2 �Þ; (A-4)

Gkðxþ; yÞ ¼
1
2
ln

ðy � aÞ2ðy þ aÞ2
ðy � bÞ2ðy þ bÞ2
� �

sin2�

��

2
½sgnðy þ aÞ � sgnðy � aÞ � sgnðy � bÞ

þsgnðy þ bÞ� sin � cos �;

(A-5)

where

sgnð�Þ ¼
1 if ð�Þ> 0
0 if ð�Þ ¼ 0

�1 if ð�Þ< 0

8<: ; (A-6)

and where xþ ¼ lim x # y
tan � such that equations (A-4) and

(A-5) represent the scaled stresses at an infinitesimally small dis-
tance to the right of the fault which is assumed to have zero thick-
ness. At that location the segment of the fault that forms part of the
reservoir domain Ω is given by�a <y <b, see Figure 1, and we can
write 2� δΩ ¼ � sgnðy þ aÞ � sgnðy � bÞ½ �. Using this equality and
the relationship 1þ cos2ð�Þ ¼ 2� sin2ð�Þ, equation (A-4) can be
rewritten as
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G?ðxþ; yÞ � 2� δΩ ¼ �1
2
ln

ðy � aÞ2ðy þ aÞ2
ðy � bÞ2ðy þ bÞ2
� �

sin � cos �

� �

2
sgnðy þ aÞ � sgnðy � aÞ � sgnðy � bÞ þ sgnðy þ bÞ½ �

sin2�:

(A-7)

For a vertical fault, i.e. for � ¼ �
2, equations (A-7) and (A-5)

reduce to

Gxxð0þ; yÞ � 2� δΩ

¼ � �

2
sgnðy þ aÞ � sgnðy � aÞ � sgnðy � bÞ þ sgnðy þ bÞ½ �;

(A-8)

Gxyð0; yÞ ¼
1
2
ln

ðy � aÞ2ðy þ aÞ2
ðy � bÞ2ðy þ bÞ2
� �

; (A-9)

where Gxx and Gxy represent scaled horizontal and shear stresses.
The term Gxxð0þ; yÞ in equation (A-8), is valid just to the right of
the fault. However, after subtraction of 2� δΩ the resulting term
Gxxð0þ; yÞ � 2� δΩ becomes continuous across the fault, i.e. it is
now valid at both sides, just like the term Gxyð0; yÞ for the shear
stresses.

The incremental effective normal stresses at the fault location
(whether vertical or inclined) can be expressed as

σ0? ¼ σ? þ βp δðΩ[FÞ ¼ C G? � 2� δΩð Þ þ βp δðΩ[FÞ; (A-10)

where δðΩ[FÞ is defined in a similar way as δΩ in equation (A-3),
with F representing those parts of the fault that experience reser-
voir pressure. If it is assumed that only those parts of the fault that
are in direct contact with the reservoir experience incremental res-
ervoir pressure, the relevant fault segment F is given by �b <y <b.
In that case, working out equations (A-1) to (A-10) in detail results
in equations (5) to (10) for σ0? and σk in the body of the text. All
these equations are valid for a situation where no slip has occurred.

Appendix B: Regularization

As discussed in themain text, a regularized form of the incremental
stresses σ (and thus of the Coulomb stresses

P
C) removes the log-

arithmic singularities and jump discontinuities at y ¼ �a and
y ¼ �b; see Figure B-1 (left). We used the following expressions
which were inspired by those derived earlier for stresses just beside
a vertical displaced fault where the values naturally decay with
increasing distance from the fault; see Figure 10 in Jansen et al.
(2019) and Section S3.1 of the Supporting Information of that
paper. The regularization parameter 0< η � ðaþ bÞ has dimen-
sion ‘length’:

σxx ¼ �C arctan 2 ðaþ bÞη; η2 þ ðy � bÞðy þ aÞ½ �f
þarctan 2 ðaþ bÞη; η2 þ ðy � aÞðy þ bÞ½ �g; (B-1)

σxy ¼
C
2
ln

η2 þ ðy � aÞ2½ � η2 þ ðy þ aÞ2½ �
η2 þ ðy � bÞ2½ � η2 þ ðy þ bÞ2½ � : (B-2)

Here we use the ‘arctan2’ operation which is defined for argu-
ments ðy; xÞ in the interval ½��; �� according to

arctan 2ðy; xÞ ¼
sgnðyÞ � arctan y

x

�� ��
 �
x > 0

sgnðyÞ � �2 x ¼ 0; y 6¼ 0
undefined x ¼ 0; y ¼ 0
sgnðyÞ � �� arctan y

x

�� ��
 �� 
x < 0

:

8>><>>:
(B-3)

Equations (B-1) and (B-2) can be used instead of equations (7) and
(8) to which they can be shown to revert for η ¼ 0. The corre-
sponding regularized version of the second line in equation (10)
for the effective normal stresses is given by

σ0? ¼ σ? þ βp
�
arctan 2 ðaþ bÞη; η2 þ ðy � bÞðy þ bÞ½ �: (B-4)

Appendix C: Formulations to Compute the Slip Gradient

C.1 Simulation

We aim at computing the slip gradient rδðyÞ in the two slip
patches f ~y1 � y � ~y2g and f ~y3 � y � ~y4g. Disregarding coupling
effects, this can be done by combining equations (30) and (34)
while replacing s by its vertical projection y:

rδðyÞ ¼ CðyÞ
�2A

Z
yþ

y�

�PCð�Þ
Cð�Þ ðy � �Þ d�; (C-1)

where y� ¼ ~y1 and yþ ¼ ~y2, or y� ¼ ~y3 and yþ ¼ ~y4, as appropri-
ate, and where C now becomes

Figure B-1: Regularized Coulomb stress; the red curve is identical to the one in
Figure 2 (right) which was produced with a regularization parameter η ¼ 0:10 m.
The blue curve is produced with the same parameter settings except for an exagger-
ated regularization parameter which is now taken as η ¼ 2:00 m.
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CðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy � y�Þðyþ � yÞ

p
: (C-2)

Note that the sin � terms that result from the transformation from s
to y cancel out and therefore do not appear in the expression for
rδ. The slip patch boundaries ~yi; i ¼ 1; . . . ; 4, can be obtained
from conditions (32) by combining them with equation (34) while
replacing s� and sþ by the relevant instances of ~yi:Z

yþ

y�

�k � �PCð�Þð Þ
Cð�Þ d� ¼ 0; k ¼ 0; 1: (C-3)

In this case a sin � termwill remain when k ¼ 1, but because it mul-
tiplies an integral that is equated to zero, we may disregard it.

Once the slip gradient has been computed, the slip follows from
equation (33) according to

δðyÞ ¼
Z

y

y�
rδð�Þ d�; (C-4)

where δðy�Þ ¼ 0 and where it should be remembered that δ is the
along-fault slip andrδ the along-fault slip per along-fault distance s,
but that both variables are represented as a function of vertical dis-
tance y.

For increasing depletion, both slip patches will grow in size and
approach each other in which case the coupling effect may no
longer be disregarded. We can still use equations (C-1) to (C-3)
if we replace the term�PCð�Þ in the nominators of the integrands
by ½�PCð�Þ � σ

^�
k ð�Þ�, where

P
CðyÞ are the pre-slip Coulomb

stresses in a patch while the cross term σ
^�
k ðyÞ represents the shear

stresses in that same patch as caused by the slip in the other patch.
To evaluate this cross term, we can use equation (25) to obtain

σ
^�
k ðyÞ ¼ A

Z
y�þ

y��

rδ�ð�Þ
� � y

d�; y�� � � � y�þ; (C-5)

where, as before, the sin � terms cancel each other. The integration
boundaries y�� and y�þ and the slip gradient rδ� are those of the
slip patch that is opposite to the one for which it is required to com-
pute the slip-induced stresses σ^�

k . Because in each of the patches the
slip gradient is influenced by slip in the opposite patch, it requires
an iterative solution strategy to fully evaluate the coupling effect.

After merging of the slip patches, which may occur at larger
depletion values, the coupling effect is no longer relevant. In that
case the slip and the slip patch boundaries can be computed with
the aid of equations (C-1) to (C-4) again, for a single merged
patch f ~y1 � y � ~y4g.

C.2 Eigen Problem

As discussed in Subsection 5.2, which covers constant friction, a
decrease in p results in a growth of Dy until the slip-induced shear
stresses σ

^

k become just equal to minus the pre-slip Coulomb
stresses

P
C over the areas where slip occurs. Moreover, in Subsec-

tion 5.3 it was discussed that slip weakening implies a dependence
of
P

C on δ which makes the problem nonlinear and prone to
instability. To analyze the effects of slip-weakening we start from
equations (25) and (34) to express the relationship between

P
C

and rδ as (while explicitly noting the pressure dependence and
changing s to y where appropriate)

�PCðy; δðy; pÞ; pÞ ¼ A
Z

yþðpÞ

y�ðpÞ

rδð�; pÞ
� � y

d�: (C-6)

Figure 6 shows that, for the Example considered, the simulated
nucleation pressure in case of slip-weakening friction is way below
the region where coupling starts to become important and we
therefore did not introduce any cross-terms in equation (C-6).

We are interested in the nucleation pressure p
, and the asso-
ciated slip patch length Dy
, at which the equilibrium expressed in
equation (C-6) can just no longer be sustained. To do so, we can
follow the approach of Uenishi and Rice (2003) but need to take
care of the effects that result from defining the slip weakening
in terms of � rather than in terms of

P
sl ¼

P0
?�, and the some-

what more complicated “loading stress”, as it is called by Uenishi
and Rice (2003), in the form of (minus) the pre-slip Coulomb
stress �PCðy; pÞ.

Recall the definition of the Coulomb stress for slip-weakening
friction as given in equation (40):

P
Cðy; δðy; pÞ; pÞ ¼

P
kðy; pÞ �

P
slðy; δðy; pÞ; pÞ

¼Pkðy; pÞ

�P0
?ðy; pÞ �st � ð�st � �dynÞ

δðy; pÞ
δc

� �
;

(C-7)

where we now assume that δ � 0, as is the case for depletion in a
normal-faulted reservoir, and that the friction reduction is limited,
such that we always have �st � �>�dyn. Defining the auxiliary
functions

Rðy; pÞ ¼Pkðy; pÞ �
P0

?ðy; pÞ�st; (C-8)

Wðy; pÞ ¼P0
?ðy; pÞð�st � �dynÞ=δc; (C-9)

equation (C-6) can be rewritten as

Rðy; pÞ þWðy; pÞδðy; pÞ ¼ �A
Z

yþðpÞ

y�ðpÞ

rδð�; pÞ
� � y

d�: (C-10)

Note that equations (C-6) and (C-10) are ‘forward equations’, as
opposed to the ‘inverse equation’ (C-1) which we used as a basis
for simulating the development of slip patches as a function of
depletion. As shown in the Supporting Information to this paper
it is also possible to perform such a simulation based on the for-
ward formulation but in that case the inversion has to performed
numerically, i.e. as a matrix inversion. Furthermore note that,
while using equation (C-1), (C-6) or (C-10), we also need to con-
sider conditions (C-3) to be able to determine the post-slip patch
boundaries eyi which form an integral part of the solution.

As a next step we largely follow the reasoning in Uenishi and
Rice (2003). The fault configuration becomes unstable when, in
at least one end point of at least one of the slip patches, the deriva-
tive of the slip gradient raterδ with respect to pressure (or equiv-
alently the derivative of the slip-induced shear stress σ

^

k with
respect to pressure) becomes unbounded. The pressure corre-
sponding to this condition is then, by definition, the nucleation
pressure p
. We therefore differentiate equation (C-10) with
respect to p which leads to
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Ṙðy; pÞ þẆðy; pÞδðy; pÞ þWðy; pÞ δ̇ðy; pÞ

¼ �A
Z

yþðpÞ

y�ðpÞ

r δ̇ð�; pÞ
� � y

d�

� A
rδðyþ; pÞ
yþ � y

ẏþðpÞ �
rδðy�; pÞ
y� � y

ẏ�ðpÞ
� �

; (C-11)

where we use dots above variables to indicate derivatives with
respect to p, and where the last term can be disregarded because
rδðy�Þ ¼ rδðyþÞ ¼ 0. Through subsequent use of equations
(C-8), (C-9), (12), (13), (2), (3), (10), and (5) to (9) it can be shown
that

Ṙðy; pÞ ¼ σkðy; pÞ
p

� σ0?ðy; pÞ
p

�st; (C-12)

Ẇðy; pÞ ¼ σ0?ðy; pÞ
p

ð�st � �dynÞ=δc: (C-13)

To compare equation (C-11) with the equivalent expression (9) in
Uenishi and Rice (2003) we need to convert their notation to ours
as follows: x � y; a� � y�; V � δ̇; �
 � 2�A. It then follows that
in our problem we have a slightly more complex ‘loading stress’
Ṙðy; pÞ and an additional termẆðy; pÞδðy; pÞ resulting from the
pressure dependence of the ‘slip-weakening slope’ W.

It can be numerically verified that Ṙ reduces in magnitude
when approaching nucleation, while Ẇδ and W δ̇ increase,
although at significantly different rates withW δ̇ eventually dwarf-
ing the other two terms; see Figure C-1 (left). Indeed, for values p
close to p
 we can define

"ðpÞ ¼ 1
Dy

Z
yþ

y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðṘþẆδÞ2
ðWδ̇Þ2

s
dy � 1; (C-14)

such that we can approximate equation (C-11) as

½1þ "ðpÞ�Wðy; pÞ δ̇ðy; pÞ ¼ �A
Z

yþðpÞ

y�ðpÞ

rδ̇ð�; pÞ
� � y

d�; (C-15)

which for " ¼ 0 reduces to the eigenproblem considered by
Uenishi and Rice (2003). Recall that, in addition to fulfilling equa-
tion (C-15), equilibrium also requires fulfillment of conditions
(C-3).

C.3 Scaling

We define the vertical projection Dy of the along-fault length Ds of
a slip patch, and its vertical average position y as follows:

Dy ¼ yþ � y�; (C-16)

y ¼ y� þ yþ
2

: (C-17)

Although Dy and y are functions of the depletion pressure p,
because the end points y� and yþ are depletion-dependent, we will
treat them as independent parameters in the solution procedure
described below. With the aid of these parameters we now intro-
duce a dimensionless scaled coordinate z and a correspondingly
scaled dummy variable  according to

zðy;Dy; yÞ ¼ 2
y � y
Dy

� 	
;) y ¼ Dy

2
z þ y; (C-18)

Figure C-1. Results corresponding to the
Example with �dyn ¼ 0:2. Left: root mean square

values of Ṙ, Ẇδ, Wδ̇, and magnitude of " as a
function of depletion pressure p. Middle: length
of top slip patch as computed from simulation
and from the eigenproblem as a function of
depletion pressure p. Right: numerical deriva-

tives @p
@Dy for the top and bottom patches. In all

three sub-figures the dotted red line corre-
sponds to the nucleation pressure p
, which is
the pressure where Dysim ¼ Dyeig .
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ðy;Dy; yÞ ¼ 2
� � y
Dy

� 	
;) � ¼ Dy

2
 þ y; (C-19)

such that the scaled end point values become z� ¼ �1 and zþ ¼ 1.
Note that in these expressions we use a semicolon to separate the
independent variable y from the parameters Dy and y. Next, we
define the dimensionless scaled pressure q as

qðp;AÞ ¼ p
A
; (C-20)

where the constant A was defined in equation (26) as
A ¼ G=½2�ð1� �Þ�. The dimensionless scaled slip d and induced
shear stress s

^

k can then be written as

dðz; q;DyÞ ¼ δðy ¼ yðz;Dy; yÞ; p ¼ pðq;AÞÞ � 2
Dy
; (C-21)

s
^

kðz; q;AÞ ¼ σ
^

kðy ¼ yðz; ;Dy; yÞ; p ¼ pðq;AÞÞ � 1
A
; (C-22)

while similar dimensionless scaled expressions follow for the full
Coulomb stress SC , the slip-independent part of the Coulomb
stress r and the slip weakening slope w:

SCðz; q;AÞ ¼
P

C

A
; rðz; qÞ ¼ R; wðz; q;Dy;AÞ ¼ W

Dy
2A

:

(C-23)

Appendix D: Solution in Terms of Chebyshev Polynomials

D.1 Expansion

(Semi-)analytical solutions of Cauchy-type singular integrals can
often be obtained through the use of expansions in terms of
Chebyshev polynomials (Mason and Handscomb 2003; Uenishi
and Rice 2003; Segall 2010; Barber 2018). We follow this approach
and start by expanding �SC as

� SCðz; q;AÞ ¼
P01

n¼0cnðq;AÞ � TnðzÞ 
P0N

n¼0cnðq;AÞ � TnðzÞ;
(D-1)

where cn are coefficients, Tn are Chebyshev polynomials of the first
kind, N is the number of terms in the expansion minus one, and
where the primed summation sign indicates that the first term in
the series has to be halved (Mason and Handscomb 2003).

The coefficients can be obtained exactly with the aid of the
continuous orthogonality relationships of the Chebyshev poly-
nomials or, to a close approximation, by using their discrete
orthogonality relationships. The former are defined as
(Mason and Handscomb 2003)

Z
1

�1

TnðzÞTmðzÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dz ¼
0 if n 6¼ m
� if n ¼ m ¼ 0

�=2 if n ¼ m 6¼ 0

8<: ; (D-2)

and the latter as

PNþ1
j¼1 TnðzjÞTmðzjÞ ¼

0 if n 6¼ m � N
N þ 1 if n ¼ m ¼ 0

ðN þ 1Þ=2 if 0<n ¼ m � N

8<: ;

(D-3)

where zj are discrete values of the scaled coordinate z, known as
(first-kind) Chebyshev points, which are defined as the N þ 1
zeros of TNþ1ðzÞ:

zjðy;Dy; yÞ ¼ � cos
ðj� 1

2Þ�
N þ 1

; j ¼ 1; . . . ;N þ 1: (D-4)

With the aid of relationships (D-3) it can now be shown that
(Mason and Handscomb 2003, p. 151)

cnðq;AÞ 
2

N þ 1

PNþ1
j¼1 � SCðzj; q;AÞ � TnðzjÞ; (D-5)

where the function values �SC are evaluated at discrete points yj
that follow from equation (C-18) as

yjðzj;Dy; yÞ ¼
Dy
2
zj þ y: (D-6)

We note that the truncated expansion in equation (D-1) may be
interpreted as an N th-degree polynomial that approximates the
Coulomb stress SC for arbitrary values of z, in-betweenN þ 1 Che-
byshev points zj where the stresses take their exact values (Mason
and Handscomb 2003, x 6.3).

We also note that equations (D-1) and (D-5) illustrate that the
expansion results in a decoupling of the position- and pressure-
dependent Coulomb stress SCðz; q;AÞ into position-dependent
polynomials TnðzÞ and pressure-dependent coefficients cnðq;AÞ.
In the following we will drop the dependency on position, pressure
and parameters from most of the notation unless necessary to
clarify the formulation.

D.2 Cauchy Integrals

With the scaling defined in Subsection C.3 and the expansion
defined in equation (D-1), we can now evaluate the Cauchy inte-
gral in ‘inverse’ equation (C-1) as follows:

rdðz; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

�2

Z
1

�1

�SCðÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
ðz � Þ

d


ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

�2

Z
1

�1

P0N
n¼0cnTnðÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2
p

ðz � Þ
d

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

�

XN
n¼0

cnUn�1ðzÞ; (D-7)

whereUn are Chebyshev polynomials of the second kind, augmented
with the term U�1 ¼ 0. The last equality in equation (D-7) can be
obtained by using an integral relationship from the theory of Cheby-
shev polynomials (Mason and Handscomb 2003, p. 210), which is a
well-known result in the fracture mechanics and contact mechanics
literature; see, e.g., Segall (2010); Barber (2018). (In these applications,
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the c0 term multiplying U�1 is usually omitted, but we maintain it to
facilitate further manipulation of the finite sum.)

The scaled slip d can be obtained through integration according
to equation (33) which, in terms of Chebyshev polynomials, leads
to the following expression:

dðz; q;DyÞ  �
Z

z

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
�

XN
n¼0

cnUn�1ðÞ d

¼ c1
arccos z � �� z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

2�

" #

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

�

PN
n¼2

cn
UnðzÞ
2ðnþ1Þ � Un�2ðzÞ

2ðn�1Þ
h i

; (D-8)

where we used an integral relationship derived in Subsection D.3
andmade use of our knowledge that the slip at the end points of the
patch is, by definition, equal to zero.

With the aid of equation (D-7) we can now also express the
scaled equivalent of ‘forward’ equation (C-6) in terms of
Chebyshev polynomials:

s
^

kðz; q;AÞ ¼
Z

1

�1

rdðÞ
 � z

d  �
Z

1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p PN
n¼0

cnUn�1ðÞ
�ð � zÞ d

¼ PN
n¼0

0
cn TnðzÞ;

(D-9)

where the final equality is again a well-known result (Mason and
Handscomb 2003, p. 210). Note that for s

^

k ¼ �SC , equation (D-9)
is identical to equation (D-1), as it should be.

D.3 Integral Relationship

In order to derive the integral relationship used in equation (D-8)
we start from the trigonometric definitions of the Chebyshev poly-
nomials (Mason and Handscomb 2003, Ch. 1):

TnðzÞ ¼ cos n�; z ¼ cos�; (D-10)

UnðzÞ ¼
sinðnþ 1Þ�

sin�
; z ¼ cos�; (D-11)

where 0 � � � �. From these it follows that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 �

p
¼ sin�; (D-12)

and

Un�1ðzÞ ¼
sin n�
sin�

; (D-13)

which allows us to write

Z
z

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
Un�1ðzÞdz ¼

Z
arccos z

�
sin�

sin n�
sin�

� ð� sin�Þd�

¼ 0 if n ¼ 0
z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
� arccos z þ �

� �
=2 if n ¼ 1

�
;

(D-14)

while for n � 2 we can derive

Z
z

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
Un�1ðzÞdz ¼

Z
�

�
sin�

sin n�
sin�

� ð� sin�Þd�

¼ sinðnþ 1Þ�
2ðnþ 1Þ � sinðn� 1Þ�

2ðn� 1Þ
¼ sin�

2ðnþ 1ÞUnðzÞ �
sin�

2ðn� 1ÞUn�2ðzÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

2ðnþ 1ÞUnðzÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

2ðn� 1ÞUn�2ðzÞ:
(D-15)

D.4 Cross Terms

For the scaling of the cross terms defined in equation (C-5) we use a
variable ẑðyÞ, as defined in equation (C-18) but on an expanded
domain f ~y1 <y < ~y4g such that both slip patches are covered:

s
^�
k ðẑ; q;AÞ ¼

Z
1

�1

rd�ð̂Þ
̂ � ẑ

d̂: (D-16)

Here we use hatted variables as a reminder that they refer to an
expanded domain. The scaled slip gradient rd� is equal to zero
for ẑ values corresponding to fy <y�� _ y�þ <yg. With the help of
equation (D-9) we can write

s
^�
k ðẑ; q;AÞ 

PN
n¼0

0
cn TnðẑÞ: (D-17)

To use equation (D-17) in conjunction with equation (D-7),
only a subset of ẑ values is relevant, corresponding to
fy� < y < yþg = f~y1 < y <~y2g or fy� < y < yþg = f~y3 < y <~y4g
depending on which patch we want to compute s

^�
k for. Note that

we require a full set of Chebyshev points ẑj covering the larger
domain f~y1 < y <~y4g to compute the coefficients cn.

D.5 End-Point Conditions

With the scaling defined in Subsection C.3 we can rewrite condi-
tions (C-3) as

2
Dy

Z
1

�1

�SCðÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p d  2
Dy

Z
1

�1

P0N
n¼0cn TnðÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p d ¼ 0; (D-18)
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Z
1

�1
 � 2y

Dy

� 	
SCðÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p d 
Z

1

�1
 � 2y

Dy

� 	P0N
n¼0cn TnðÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p d

¼ 0:

(D-19)

We can now make use of orthogonality condition (D-2) and of the
fact that T0 ¼ 1, to rewrite the second integral in equation (D-18)
as (dropping the constant multiplier)

Z
1

�1

P0N
n¼0cn TnðÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p d ¼
XN
n¼0

0
cn

Z
1

�1

T0TnðÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p d ¼ c0
�

2
¼ 0;

(D-20)

from which it follows that c0 has to be equal to zero for the equality
to hold.

Similarly, we can use condition (D-2) and the fact thatT1 ¼ z to
rewrite the part of the second integral in equation (D-19) that is
multiplied with  as

Z
1

�1


P0N

n¼0cn TnðÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p d ¼
XN
n¼0

0
cn

Z
1

�1

T1TnðÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p d ¼ c1
�

2
¼ 0;

(D-21)

from which it follows that also c1 has to vanish.
For a given value of p, searching for the boundaries y� and yþ of

a slip patch and the corresponding slip distribution dðzÞ can now
be done through expanding �SC (in the uncoupled case) or
�SC � s

^�
k (in the coupled case) with the aid of equation (D-5)

or its equivalent including cross terms. Using a first guess of
y� and yþ will typically produce non-zero values for coefficients
c0 and c1. An iterative procedure is therefore required to system-
atically update y� and yþ until the values of c0 and c1 have dropped
below a specified tolerance.

D.6 Eigen Problem

The scaled version of eigen equation (C-15) becomes

wðzÞ ḋðzÞ ¼ �2
Z

1

�1

r ḋðÞ
 � z

d; (D-22)

where we now we take " ¼ 0. With the aid of equation (D-9) we
can express the integral at the right-hand side in terms of Cheby-
shev polynomials ifr ḋ is substituted forrd. Similarly, we can use
equation (D-8) to rewrite the slip rate at the left-hand side if ḋ is
substituted for d. Combining equations (D-8), (D-9) and (D-22)
then results in the eigen equation

wðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p

�

XN
n¼2

en
UnðzÞ

2ðnþ 1Þ �
Un�2ðzÞ
2ðn� 1Þ

� �
¼ 2�

XN
n¼2

0
enTnðzÞ;

(D-23)

where � ¼ LDy is a scaled eigenvalue such that L ¼ 1=Dy is
the corresponding dimensional eigenvalue, the coefficients
½e2; e3; . . . ; eN �T form the scaled right eigenvector, and where we
made use of the requirement that e0 ¼ e1 ¼ 0 to fulfill the end
point conditions in analogy to the requirements on c0 and c1 as
discussed in Subsection D.5. Equation (D-23) is valid as long as

the scaled slip d remains below the scaled critical slip distance
dc ¼ 2δc=Dy over the entire domain f�1 � z � 1g. We note that
this formulation of the eigenproblem directly in terms of Cheby-
shev polynomials is somewhat different from the one used by
Uenishi and Rice (2003) who first expanded the slip in terms of
eigenfunctions and only thereafter introduced the Chebyshev pol-
ynomials.

For a numerical implementation it is convenient to represent
equation (D-23) in matrix-vector notation as

Ae ¼ �Be; (D-24)

where

A ¼ WZ UN� ~

U
~

NÞ;

(D-25)

B ¼ 2T: (D-26)

Here, W ¼ diagðwÞ with w an ðN þ 1Þ � 1 vector with elements
wðzjÞ, Z ¼ diagðzÞ with z an ðN þ 1Þ � 1 vector with elements

ð1� z2j Þ
1
2=�, U,

~
U and T are ðN þ 1Þ � ðN þ 1Þ matrices with

spatially discretized Chebyshev polynomials as columns with the
elements in the first column of T halved and with the elements
of

~
U shifted to the right over two positions, N ¼ diagðnÞ

with n ¼ ½0; 0; 16 ; 18 ; . . . ; 1
2ðNþ1Þ �T ,

~N ¼ diag ð~nÞ with
~n ¼ ½0; 0; 12 ; 14 ; . . . ; 1

2ðN�1Þ �T , and e is an ðN þ 1Þ � 1 vector of coef-

ficients forming the discrete right eigenvector, while we choose the
discrete values zj, j ¼ 1; . . . ; ðN þ 1Þ as the Chebyshev points
defined in equation (D-4). Because we demand the coefficients
e0 and e1 to be zero in order to fulfill conditions (C-3), we only need
to solve the eigenproblem in terms of the remaining coefficients
e2; e3; . . . ; eN . Therefore, the matrices A and B are stripped from
their first two columns while at the same time we remove the first
and last Chebyshev points, i.e. the top and bottom rows of the
matrices such that they remain square and regular.

We can now compute values Dysim up to nucleation through
‘simulation’, i.e. through integration of equation (D-7) for increas-
ing depletion (decreasing incremental pressures 0>p>p
) while
iteratively searching for values y� (and thus for Dy and y) to honor
the end-point conditions, as described in Appendices C to E. Note
that close to nucleation we need increasingly small pressure steps
and an increasing number of iterations. We can also compute val-
ues Dyeig from equation (D-24) for the same range of depletion
pressures. It then follows that at pressure p ¼ p0, defined as the
pressure at which Dysim ¼ Dyeig , i.e. the pressure where � ¼ 1,
we have reached the nucleation pressure p
 and the nucleation
length Dy
; see Figure C-1 (middle).

Appendix E: Numerical Implementation

E.1 Numerical Integration

The Chebyshev matrices T and U required for the semi-analyti-
cal simulation and eigenvalue computation can be obtained effi-
ciently through a recursive formulation of the Chebyshev
polynomials (Mason and Handscomb 2003). Moreover, the
evaluation of the polynomials (stored in columns) at all Cheby-
shev points (stored in an equally large number of rows) can, in
theory, be accelerated by using a Fast Fourier Transform. How-
ever, we did not implement this potential speed up and relied on
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the Matlab vectorization functionality for the matrix multipli-
cations.

As an alternative to the semi-analytical approach to com-
pute Cauchy integrals, as described in Appendix D, we also
implemented a numerical integration approach. In case of
two slip patches, it employs two equidistant one-dimensional
grids for y in each of the two patches, to evaluate the integral in
equation (C-1). The two grids in a single patch are spaced from
y� to ya and from ya to yþ, where ya ¼ �a for the bottom patch
and ya ¼ a for the top patch. The number of grid points is
chosen such that the spacing is approximately equal in all four
grids. In case of a single merged patch we use three grids from
y� to �a, from �a to a, and from a to yþ respectively. More-
over, we use four staggered conjugate grids (or three once the
patches have merged) for the dummy variable �. These conju-
gate grids are shifted over half the spacing of the y grids such
that evaluation of the integrand in the singular points y ¼ y�,
y ¼ �a and y ¼ � is avoided. Similar sets of four or three stag-
gered grids for y are used to compute the integrals in condi-
tions (C-3), spaced such as to avoid evaluation in y ¼ y�
and y ¼ �a. The integrations are performed with a trapezoidal
rule while using the Matlab vectorization functionality to
increase computational speed.

E.2 Equation Solving

Iteratively solving for the pre-slip Coulomb stress zeros
yi; i ¼ 1; . . . ; 4 from equation (19) is done with Matlab function
fzero with default settings. Iteratively solving the two nonlinear
equations (C-3), with the cross-terms set to zero, is required to
obtain the slip patch boundaries eyi for the uncoupled or merged
cases. This is done with the Matlab function fsolve. Solving for
the coupled case with the aid of the same equations with the
cross-terms included is performed as a follow-up to the uncoupled
case by a nested application of fsolve for the two patches (inner
loop) and Picard iteration to converge to a coupled solution foreyi (outer loop) up to a pre-defined relative tolerance. Moreover,
for slip weakening friction, the iteration also accounts for the
dependency of

P
C on δ.

E.3 Eigen Problem

The discrete generalized eigenproblem (D-24) is solved for a given
depletion pressure p with the standard Matlab function eigs which
can be instructed to search just for the highest eigenvalue.

Appendix F: Nomenclature

Tables F-1 to F-3 list all the Roman and Greek variables and the
subscripts and superscripts used in the paper.

Table F-1. Roman variables.

Symbol Meaning

a; b Geometrical parameters

A constant ¼ G=½2�ð1� �Þ�
A Auxiliary matrix

B Auxiliary matrix

c Constant slope

cn Coefficient in Chebyshev expansion of stresses

C Scaling parameter

d Scaled along-fault slip

ḋ Scaled along-fault slip rate (with respect to time or
pressure)

rd Scaled slip gradient (with respect to scaled along-fault
coordinate)

rḋ Scaled slip rate gradient

D Depth

en Coefficient in Chebyshev expansion of slip rate
gradients

e Right eigen vector (formed by coefficients in Chebyshev
expansion)

g Acceleration of gravity

G Shear modulus

h Reservoir height

k Counter

K0 Ratio of initial effective horizontal to vertical stresses

m Moment per unit surface area

bM Upper bound to seismic moment per unit strike length

M Seismic moment per unit strike length

n Counter

n Auxiliary vector

~n Auxiliary vector

N Number of terms in Chebyshev expansion minus one

N Diagonal matrix diag(n)

~N Diagonal matrix diag(~n)

p Incremental pore pressure

p0 Initial pore pressure

q Scaled incremental pore pressure

r Scaled loading stress

R Loading stress

s Along-fault coordinate

s
^

k Scaled slip-induced shear stress

S Scaled combined stress

t Time

tf Fault throw

Tn Chebyshev polynomial of the first kind

T Matrix of Chebyshev polynomials of the first kind

(Continued)
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Table F-1. (Continued )

Symbol Meaning

u Displacement

Un Chebyshev polynomial of the second kind

U Matrix of Chebyshev polynomials of the second kind

w Scaled slip-weakening parameter

w Auxiliary vector

W Slip-weakening parameter

W Spatially averaged slip-weakening parameter

W Diagonal matrix diag ðwÞ
x; y Coordinates

x̂; ŷ Co-rotated coordinates; note that x̂ is also referred to
as s

yi ; i ¼ 1; . . . ; 4 Horizontally projected intersections of shear stresses
and slip thresholds

~yi ; i ¼ 1; . . . ; 4 Horizontally projected slip patch boundaries

yþ; y� Generic horizontally projected slip patch boundaries

y Horizontally projected slip patch mid point

by Horizontally projected slip patch midpoint on
expanded domain

z Scaled horizontally projected coordinate for single slip
patch

z Vector with coefficients ð1� z2j Þ1=2

ẑ scaled horizontally projected coordinate on expanded
domain

Z Diagonal matrix diagðzÞ

Table F-2. Greek variables.

Symbol Meaning

� Biot’s coefficient

� Effective stress coefficient for fault friction

� Auxiliary variable

� Along-fault slip

~
� Cumulated along-fault slip

:
� Along-fault slip rate (with respect to time or pressure)

r� Slip gradient (with respect to along-fault coordinate s)

r :
� Slip rate gradient

Dp Depletion pressure increment

Dy Length of a horizontally projected single slip patch
fyþ � y � y�g

" Small parameter

 Scaled dummy variable for single slip patch

̂ Scaled dummy variable on expanded domain

� Regularisation parameter

(Continued)

Table F-2. (Continued )

Symbol Meaning

� Dip angle

� Cohesion

� Scaled eigenvalue

L Eigenvalue

� Friction coefficient

� Poisson’s ratio

� Dummy variable

	 Density

� Total incremental stress ¼ �0 � �p

�0 Effective incremental stress ¼ �þ �p

�0 Initial total stress ¼ �00 � �p0

�00 Initial effective stress ¼ �0 þ �p0

�k Fault shear stress resulting from a concentrated dislocation

�
^

k Slip-induced fault shear stress, i.e. resulting from distributed
dislocationsP
Combined stress ¼ �0 þ �P0 Combined effective stress ¼ �00 þ �0P

C Pre-slip Coulomb stress ¼Pk �
P

slP̂
C

Post-slip Coulomb stress ¼Pk þ �
^

k �
P

slP
sl Slip stress ¼ �� �

P0
?P

? Fault normal stress ¼ �0? þ �?; see equations (2) and (5)P0
? Effective fault normal stress ¼ �00? þ �0?; see equations (4)

and (10)P
k Fault shear stress ¼ �0k þ �k; see equations (3) and (6)


 Porosity

Φ Fault segment experiencing reservoir pressure

� Independent variable in trigonometric definition of Chebyshev
polynomials

 State variable in rate and state-dependent friction

C Auxiliary function

Ω Reservoir
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Table F-3. Subscripts and superscripts.

Symbol Meaning

Subscripts

0 @ reservoir centre (y ¼ 0)

– Lower

þ Upper

? Normal

k Shear

c Critical

comp Computing

C Coulomb

dyn Dynamic

eig Eigenvalue-based

f Fault

fl Fluid

n Counter

ps Post-seismic

s Solid, or seismic

sim Simulated

sl Slip

st Static

unc Uncoupled

U& R Uenishi and Rice

Superscripts

0 Initial

– To the left of the x axis

þ To the right of the x axis


 Nucleation

� Cross-term
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