

Delft University of Technology

Optimizing a vehicle’s route in an on-demand ridesharing system in which users might
walk

Fielbaum, Andrés

DOI
10.1080/15472450.2021.1901225
Publication date
2021
Document Version
Final published version
Published in
Journal of Intelligent Transportation Systems: technology, planning, and operations

Citation (APA)
Fielbaum, A. (2021). Optimizing a vehicle’s route in an on-demand ridesharing system in which users might
walk. Journal of Intelligent Transportation Systems: technology, planning, and operations, 26 (2022)(4),
432-447. https://doi.org/10.1080/15472450.2021.1901225

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1080/15472450.2021.1901225
https://doi.org/10.1080/15472450.2021.1901225

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gits20

Journal of Intelligent Transportation Systems
Technology, Planning, and Operations

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gits20

Optimizing a vehicle’s route in an on-demand
ridesharing system in which users might walk

Andrés Fielbaum

To cite this article: Andrés Fielbaum (2022) Optimizing a vehicle’s route in an on-demand
ridesharing system in which users might walk, Journal of Intelligent Transportation Systems, 26:4,
432-447, DOI: 10.1080/15472450.2021.1901225

To link to this article: https://doi.org/10.1080/15472450.2021.1901225

© 2021 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 18 Mar 2021.

Submit your article to this journal

Article views: 1107

View related articles

View Crossmark data

Citing articles: 2 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=gits20
https://www.tandfonline.com/loi/gits20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15472450.2021.1901225
https://doi.org/10.1080/15472450.2021.1901225
https://www.tandfonline.com/action/authorSubmission?journalCode=gits20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gits20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/15472450.2021.1901225
https://www.tandfonline.com/doi/mlt/10.1080/15472450.2021.1901225
http://crossmark.crossref.org/dialog/?doi=10.1080/15472450.2021.1901225&domain=pdf&date_stamp=2021-03-18
http://crossmark.crossref.org/dialog/?doi=10.1080/15472450.2021.1901225&domain=pdf&date_stamp=2021-03-18
https://www.tandfonline.com/doi/citedby/10.1080/15472450.2021.1901225#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/15472450.2021.1901225#tabModule

Optimizing a vehicle’s route in an on-demand ridesharing system in which
users might walk

Andr�es Fielbaum

Department of Cognitive Robotics, TU Delft, Delft, Netherlands

ABSTRACT
Within the context of a shared on-demand transport system, we study the problem of
selecting the stopping points from which passengers should walk to their exact destinations
(or from their exact origins). We focus on the single-vehicle case that must follow a prede-
fined order of requests, posing the mathematical program, showing that it can be solved in
polynomial time and proposing a heuristic that runs faster. We compare the optimal algo-
rithm, the heuristic, and the routes that visit the exact request points, and we show that
avoiding detours can reduce total costs by almost one fifth and vehicle costs by more than
one third. The heuristic yields competitive results. Simulations over the real street network
from Manhattan show that the time reduction achieved by the heuristic might be crucial to
enable the system to operate in real-time.

ARTICLE HISTORY
Received 24 June 2020
Revised 22 February 2021
Accepted 7 March 2021

KEYWORDS
Detour; on-demand; pick-up
and drop-off;
ridesharing; walking

Introduction

Transport and network researchers have studied
on-demand systems for a long time. The DAR (dial-a-
ride) problem was analyzed widely during the seven-
ties and eighties (for example Jaw et al., 1986;
Psaraftis, 1983; Wilson et al., 1976), usually assuming
trips requested by phone. In the past few years, the
problem has gained new attention due to the massive
coordination abilities provided by online (real-time)
apps (as shown by Uber or Cabify), which changes
the problem as now there are many more requests,
and they arrive more often. This increase in the num-
ber of users enhances the possibility of using shared
systems, in which different users can ride the same
vehicle at the same time,1 making these systems more
similar to public transport systems, and the problem
also related to VRP (vehicle routing problem).
Martinez and Crist (2016), Alonso-Mora et al. (2017),
and Fagnant and Kockelman (2018), for instance,
study different ways to operate such systems in
Lisbon, Manhattan, and Austin, respectively. They all
assume a driverless technology, which also favors the
massiveness of this type of system by reducing the
operating costs. Nevertheless, they act as private taxis
when dealing with their routes, as they carry every
passenger from their specific origin to their specific

destination, rather than requesting them to walk to/
from nearby points.2

Traditional public transport systems (with fixed
routes) collect users in stops for two main reasons: 1)
to gather enough passengers close to those routes, and
2) to avoid unnecessary detours. The first reason
becomes irrelevant when vehicles can coordinate
online with users; but the second one is still valid,
such that there is a tradeoff between shortening these
detours and preventing passengers from walking long
distances. Moreover, on-demand systems do not need
to rely on predetermined meeting points, but they can
be decided online, adjusting to each vehicle’s route.

To illustrate the potential benefits of users’ walks,
consider Figures 1 and 2 based on real-world exam-
ples. Figure 1 shows snapshots from Google Maps in
Santiago, Chile, for a vehicle that’s on its way to pick
up (or drop off) a passenger. If walks are not admitted
and the service is door-to-door, a detour of three
minutes is required to arrive at the passenger’s exact
origin. On the other hand, if the system can require
users to walk, then this passenger needs to walk a
very short distance to meet the vehicle in the same
street its currently driving, inducing zero detour. Note
that in this case, the savings are mostly justified by
the directions of the streets.

CONTACT Andr�es Fielbaum a.s.fielbaumschnitzler@tudelft.nl Department of Cognitive Robotics, TU Delft, Delft 2600 AA, Netherlands.
� 2021 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed,
or built upon in any way.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS
2022, VOL. 26, NO. 4, 432–447
https://doi.org/10.1080/15472450.2021.1901225

http://crossmark.crossref.org/dialog/?doi=10.1080/15472450.2021.1901225&domain=pdf&date_stamp=2022-06-07
http://orcid.org/0000-0003-0411-3064
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1080/15472450.2021.1901225
http://www.tandfonline.com

Figure 2 is not related with those directions, but
with the velocity of each street. It shows pictures from
a real corner in Rijswijk, Netherlands, in which one of
the streets involved is fast, and the other one is very
narrow and cars share the space with bicycles. If a
ridesharing vehicle is driving through the fast street,
and needs to pick up (or drop off) a passenger in a
point that lays over the slow street, then going to the
exact point will induce a severe delay, that would be
saved if the passenger can walk to the said corner.

In this paper, we study how to optimize the route of
a vehicle that needs to visit some requested points,
which might be origins or destinations, but not necessar-
ily at their exact locations, facing a tradeoff between the
vehicle’s costs and users’ walking costs. Introducing
users’ walks when optimizing a full ridesharing system
(i.e., when deciding the assignments between passengers
and vehicles at the same time) is a quite complex prob-
lem. For instance, in a previous work (Fielbaum et al.,
2021) we have extended the assignment model by
Alonso-Mora et al. (2017) to include the optimization of

where to pick-up and drop-off the users: results are
promising, but methods have to be specifically designed
for the assignment algorithm, which hinders the analysis
of the impact of avoiding detours from a more general
perspective; this is likely to be the case for any method
that optimizes everything together, because of the com-
plexity of the assignment problem by itself, that com-
bines DAR with the VRP, two traditional NP-Hard
problems. This is why we focus on a single vehicle,
which allows us to provide neat algorithms and results;
moreover, the methods proposed here are suitable for
the many different ways of modeling and solving ride-
sharing systems, that include agent-based models (such
as Fagnant & Kockelman, 2018, or Martinez & Crist,
2016) and algorithmic approaches (such as Alonso-Mora
et al., 2017, or Tsao et al., 2019).

State of the art

On-demand mobility systems have been increasingly
studied in the last few years, both in shared and non-

Figure 1. Snapshots from Google Maps in Santiago, Chile, showing (a) the detour induced to a vehicle if it needs to pick a pas-
senger in his/her door, (b) the walk required by the same passenger to meet the vehicle.

Figure 2. The corner between (a) Huis te Landelaan, a fast street, and (b) Van Vredenburchweg, a slow street, in Rijswijk, The
Netherlands.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 433

shared versions. Different types of shared systems
(including the ones in which drivers have their own
itinerary, and passengers sharing vehicles with cargo)
have been surveyed by Mourad et al. (2019), while
Silwal et al. (2019) reviews ridesharing systems with an
emphasis on their operational architectures. Carsharing
systems (in which rides might be non-shared), on the
other hand, have been surveyed by Narayanan et al.
(2020) and by Wang and Yang (2019).

The single-vehicle problem with flexible pick-up
and drop-off locations within an on-demand rideshar-
ing framework, has been studied by Li et al. (2016), in
which they also optimize the order in which these
points are visited, a problem that is naturally NP-
Hard as it extends TSP (traveling salesman problem).
However, assuming that the order is endogenous
might be troublesome:

� Unless we assume that passengers have a common
origin or a common destination (which would
limit severely the range of application of this prob-
lem), the order must include some precedence con-
straints, namely that pick-ups must occur before
drop-offs.

� Not all requests emerge at the same time, which
might require some orders that are close to some
FIFO rules, to keep waiting times bounded for all,
and to ensure that the vehicle arrives not before
the passenger.

� Taking all this into account would again be specific
to the ridesharing method and to the assignment
algorithm, limiting the generality of the results.

These reasons make the problem in which the
order of the visits is fixed but the exact location is
optimized a natural one, which has not been studied
from a theoretical point of view.

In logistics, a similar problem has also been studied
for a single vehicle: a truck delivering some goods,
that can use a drone to visit the exact customers’ loca-
tions (similar to “walking”), while the truck continues
to move toward the following customer, optimizing
the places in which the drone is launched (Carlsson &
Song, 2018). They, too, optimize the order in which
the requests are visited, although they discuss the case
in which this order exogenous. As in our problem,
the extra freedom provided by the drone (like the
walking user) allows defining a more direct route for
the main vehicle, reducing the detours. However,
three structural aspects of the problem are different in
comparison with ours, implying significant modeling
and mathematical differences:

� First, they work over the Euclidean space, because
the drone can move unaffected by the road net-
work and the traffic, which allows using several
continuous and geometrical tools that are not
available in this combinatorial version.

� Second, when studying people’s mobility, each
user’s time and need to be taken into account,
whereas in logistics, one can consider just the total
circuit time (as done by Carlsson & Song, 2018).
This means that what counts is how the truck and
the drone effectively coordinate to advance simul-
taneously, rather than achieving low times for both
the car and the walking user, as we do here.
Among other implications, this makes the objective
function to consider the maximum between the
truck’s and drone’s times, instead of the sum of
the vehicle’s and user’s times.

� Third, because the logistics scheme works with a
single drone, the vehicle’s route needs to allow the
drone to go back and forth each time, which
implies that the location of a customer relates dir-
ectly with two consecutive truck’s stops: where the
drone is launched and the last point it might land.
In our problem, each vehicle’s stop is related only
with one request, representing either a pick-up or
a drop-off, which naturally entails differences in
the respective objective functions and the resulting
optimal routes.

A few previous papers, besides the ones already
described (Carlsson & Song, 2018; Fielbaum et al.,
2021; Li et al., 2016), study avoiding-detours on-
demand systems from diverse perspectives. Zhao et al.
(2018) propose a mathematical model in a non-shared
on-demand scheme that optimize where to pick-up
and drop-off the passengers. Stiglic et al. (2015) and
Li et al. (2018) also solve the complete problem, but
they impose a pre-defined set of “meeting points” to
which all passengers have to walk, and that are
selected from a subset of the nodes. Fielbaum (2020)
studies a feeder transit system in which users need to
get gathered at some optimized point, but over a sim-
plified city model; a similar approach is followed by
Daganzo (1984) under a dial-a-ride scheme, who ana-
lyzes under which scenarios it is best to use fixed lines
or a flexible dial-a-ride system that might have fixed
meeting points. Finally, Pei et al. (2019) and Zheng
et al. (2019) also consider meeting points for “flex-
route” systems, in which traditional transit routes are
allowed to make constrained changes on-demand.

While a new topic for on-demand systems, the
tradeoff between walking and vehicles’ routes has

434 A. FIELBAUM

been thoroughly studied in public transport. Hurdle
(1973), Kocur and Hendrickson (1982), and Chang
and Schonfeld (1991) have studied systems formed by
parallel transit lines, to optimize their spatial density.
More complex systems have been analyzed by
Daganzo (2010) and Badia et al. (2014), who optimize
spatial density when considering bus transit networks,
and by Tirachini et al. (2010), who compare different
modes. On a related note, Tirachini (2014) optimizes
the distance between bus stops, which affect passen-
gers’ walks and vehicles’ speed, although not their
routes. All these papers provide some intuition
regarding ridesharing systems, as they propose sound
methodologies to optimize operators’ and users’ costs
jointly, and they show that walks can be beneficial not
only for operators but also for users (at least partially),
by reducing waiting and in-vehicle times. However, as
public transport provides fixed routes (as opposed to
on-demand), there are also structural differences with
on-demand ridesharing systems; in particular, one
expects that latter can still provide door-to-door ser-
vice to requests that do not induce relevant detours.

Contribution and organization of this paper

The problem of optimizing the route of a single
shared vehicle that must serve a fixed order of
requests, in which users might be requested to walk to
a different node, has not been studied from a theoret-
ical point of view. In this paper we fill that gap. We
show that this problem can be optimized with a poly-
nomial algorithm, whose complexity for serving N
requests in a graph with Vj j nodes is Oð Vj j2NÞ, and
that is based on searching the shortest path touring
exactly N arcs with costs that evolve with each step.
This complexity might yield times that are too long
for online systems, so we also propose a heuristic that
runs much faster, as it drops the dependence on N
because it computes one step at a time rather than the
whole route at once. We compare the results of the
three procedures: the optimal one (OPT), the heuristic
(HEU), and the one that does not avoid detours and
visit the exact origins and destinations (DET), and we
show that HEU is much better than DET and not so
worse than OPT. Simulations over simplified networks
allow us to provide a clear intuition behind the results
yielded by each procedure, while simulations over a
real network (representing Manhattan) reveal that
HEU is able to work over large scales, whereas OPT
depends on the specific conditions of the problem.

This paper is structured as follows. “The mathemat-
ical program” poses the optimization problem

formally and provides the polynomial optimal algo-
rithm, the heuristic, and some results regarding the
competitive ratio of this problem. “Numerical simu-
lations” compares the three algorithms over random
networks, a small transport network representing a
ridesharing system, and over the real graph underlying
Manhattan’s streets. “Conclusions and future research”
concludes and proposes some lines for
future research.

The mathematical program

Consider a single vehicle that has to fulfill some
requests, i.e., visit some points in space that represent
origins or destinations of some users’ trips, but these
visits do not need to be exact. We aim to optimize
the vehicle’s route such that its length is not so long,
and passengers do not need to walk too much.
Deciding in which order to serve these requests
should be served can be modeled in different ways
(such as using a first-in-first-out rule or some modifi-
cations of TSP). We will assume this order is exogen-
ous. Note that we can characterize each feasible route
by its initial and ending points, and by the stopping
points serving each request: the paths between these
points are the shortest ones.

In order to pose the problem formally, let us
define some necessary notation. We will consider a
directed and strongly connected graph G ¼ ðV , EÞ:
Each arc e has two positive cost functions cVðeÞ and
cWðeÞ, representing the total costs of touring the arc
using the vehicle (cV , that should include the whole
costs induced at the system’s operator, such as the
extra travel or waiting time for the rest of the pas-
sengers and the extra monetary costs required to
operate the vehicle) or walking (cW), which we
assume to fulfill triangular inequalities. The direction
of an arc applies for vehicles only, i.e., they can
always be walked in either direction. Costs might
take the value þ1 in some arcs; when that hap-
pens, we shall say that this arc exists only for the
mode with finite costs. The two cost functions do
not need to be related, which allows representing
different types of connections (such as highways, in
which cV is much lower than cW , pedestrian paths
in which the opposite occurs, one-directional streets
that can be walked in either direction, etc.). The
requested points are q1, :::, qN ; the vehicle departs at
r and must finish at t (we will see later that having
no fixed initial or final point can be solved equiva-
lently). The mathematical program is then to find
the optimal set of stops x1, :::, xN :

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 435

min
x1, :::, xNf g

XN
i¼0

cV PV
xi, xiþ1

� �
þ
XN
i¼1

cWðPW
xi, qiÞ (1)

where x0 ¼ q0 ¼ r, xNþ1 ¼ t, and Pk
uv is the shortest

path between u and v using costs ck: The first term
represents the vehicle costs, whereas the second term
represents the walking costs. Note that the sub-opti-
mal solution DET, that visits the exact requested
points, can be arbitrarily bad; for instance, if cW � 0
and r ¼ t, then the minimum cost for (1) is 0 (the
vehicle does not move at all) and the sub-optimal one
is strictly positive.

The formulation of the objective function in
Equation (1) entails that we are aiming for a social
optimum, as all costs are taken into account. From
the stakeholders’ points of view, it is apparent that
operators are benefited by requiring some users to
walk, because the vehicle needs to tour shorter distan-
ces to serve the same number of requests. Users, on
the other hand, can be directly benefited with shorter
waiting and traveling times, and indirectly benefited
because the overall gain in efficiency can induce
lower fares.

Equation (1) entails that walking costs grow lin-
early with the length of the route. However, the prob-
lem can be easily generalized to consider other
increasing functions f : Rþ ! Rþ, just by considering
f ðcWðPW

xi, qiÞÞ in the second sum. Such functions f
allow to include space windows3, as done by Zhao
et al. (2018), that can be either strong (by taking
f xð Þ ¼ þ1 if x exceeds the window) or weak (by tak-
ing f xð Þ ¼ x þ p, with p a penalization, when x
exceeds the window). A concave f would represent
that the very fact of walking is already disturbing, but
once a user is walking the distance becomes less rele-
vant, whereas a convex f can take into account that
the user becomes tired while walking.

A polynomial algorithm

Problem (1) can be solved exactly in polynomial time.
To see this, let us first consider the metric completion
of the graph with respect to both cost functions: on
the complete graph ðV , E), we consider cost functions
defined by the cost of the shortest path (concerning
both cV and cW) connecting each pair of nodes. To
simplify the notation, let us call these costs cV and cW
as well (they coincide in the arcs e 2 E due to the tri-
angular inequalities). If we are considering f ðcWÞ, as
discussed in the preceding paragraph, the graph is
completed in the same way, and then the resulting

costs cW are replaced by f ðcWÞ: In what follows, we
keep the notation cW because it is simpler.

On this complete graph, we are looking for paths
formed by N þ 1 arcs (let us say that it takes N þ 1
“steps”) that start at r and end at t: We define step-
evolving costs on the edges as:

c e ¼ uv, ið Þ ¼ cV eð Þ þ cWðv, qiÞ8i ¼ 1, :::,N þ 1 (2)

The first term in the sum represents the cost asso-
ciated with the vehicle moving from one stopping
point to the next one; the second term is the walking
cost faced by the user requesting qi: Note that if the
detour is not optimized, such that vehicles go to the
exact origins and destinations, the second
term vanishes.

Problem (1) reduces to the following: given any
graph G0 ¼ V 0, E0ð Þ, a path-evolving cost function c0

on the arcs, and an integer k, find the less costly path
between some origin r0 and a destination t0 that takes
exactly k steps (or show that no such path exists).

min
P¼r', x1, :::xk�1, t'

c' r'x1, 1ð Þ þ c' x1x2, 2ð Þ þ :::

þ c' xk�2xk�1, k� 1ð Þ þ c'ðxk�1t', k
�

(3)

Before proving that problem (3) can be solved in
polynomial time, let us show that (3) can be adapted
to solve (1) with free starting or ending node: If the
starting point is flexible, we consider an additional
auxiliary node r� 62 V , E� ¼ E [fr�u : u 2 Vg and

c r�u, ið Þ ¼ 0 if i ¼ 1
þ1 �

�
(4)

It is straightforward to observe that solving (3)
with G� ¼ ðV [r�f g,E�Þ, cost functions c, kþ 1
steps, and starting point r� is equivalent to solve the
original problem with a flexible starting node. An
analogous procedure allows (3) to find the optimal
path with a flexible ending node, adding an auxiliary
node t�, arcs ut� with nil costs for the last step and
infinite costs for any previous step.

We now show that (3) can be solved in polynomial
time, adapting well-known algorithms for the case in
which costs do not evolve. The algorithm is dynamic,
finding the less costly path in j steps iteratively for j ¼
1, :::, k, based on the fact that each subpath of a less
costly path must be the less costly path for the
respective number of steps. It is useful to define

c u, jð Þ ¼ min
P2Cuj

cðPÞ (5)

where Cuj is the set of all the r � u paths that take j
steps. Then, 8j � 1 it must be fulfilled that:

436 A. FIELBAUM

c v, jð Þ ¼ min
u:uv2E'

fcðu, j� 1Þ þ cðuv, jÞg (6)

With the initial conditions:

c r, 0ð Þ ¼ 0, and c u, 0ð Þ ¼ þ1 8u 6¼ r (7)

The algorithm consists in solving (6) for j ¼
1, :::, k, and then tracking back iteratively the parent-
node at which (6) reaches its minimum from the final
node t: The algorithm is polynomial, because, for a
given j, (6) can be solved with the following proced-
ure that begins with c v, jð Þ ¼ þ1 8 u 2 V and then:

8uv 2 E, if c u, j� 1ð Þ þ c uv, jð Þ < c v, jð Þ, then :

c v, jð Þ c u, j� 1ð Þ þ c uv, jð Þ (8)

That is to say, solving (6) takes Ej j steps for each
j ¼ 1, :::k, making the complete algorithm4 OðjEjkÞ:
Recalling that the original problem (1) requires solv-
ing (3) over the metric completion of the graph, then
(1) is solvable in OðjVj2NÞ: We are not considering
the time required to obtain the shortest paths (using
Dijkstra’s algorithm or any other), as they can be cal-
culated in a preprocess. We will use OPT to denote
the solution given by this algorithm.

As a final remark, it is interesting to compare
problem (4) with the so-called shortest path with
time-dependent costs (SPTD), studied by Foschini
et al. (2014). SPTD deals with finding the shortest
path between two points, with cost functions that
evolve with time, rather than with the number of
steps as in (4). If waiting at the nodes is forbidden,
this slight change from step-dependent to time-
dependent makes SPTD an NP-Hard problem,
although some specific variants are polynomial or
quasi-polynomial.

A heuristic approach

Despite the polynomial nature of the optimal algo-
rithm studied in “A polynomial algorithm,” it might
be the case that it is still too slow to be used in online
on-demand tools, that need to run their algorithms
with tiny time windows (Alonso-Mora et al., 2017, for
instance, do it each 30 seconds). We now propose a
heuristic that diminishes the required running time.

Problem (1) is about solving the tradeoff between
providing short access/egress times and routing the
vehicles without large deviations. Intuitively, one
could expect that routes are adjusted such that
vehicles stop at points that put them on track toward
the very next request, overlooking at the following
ones. This idea exalts the relevance of studying its
competitive ratio.

Some results on the competitive ratio
Consider a mathematical problem in which the inputs
are not all known in advance, but are revealed during
the execution of any solution for the problem (i.e., an
online problem). One can naturally ask how damaging
is this lack of information. To analyze this, researchers
have defined the competitive ratio of the problem as
the quotient between the best solution achievable by
an algorithm that look only at the available partial
information, and the overall optimum with complete
information in advance (Borodin, 1992; Sleator &
Tarjan, 1983). In our case, however, vehicles can be
carrying k0 > 1 passengers, such that any algorithm
should know at least k0 requests -their drop offs- in
advance when operating (which we define as future
memory equal or larger than k0). The competitive
ratio of a specific algorithm (with limited future mem-
ory) is the quotient between its result and the over-
all optimal.

Consider the following k-algorithm (with future
memory equal to kþ 1): beginning at the starting
node, apply the optimal algorithm to the route formed
by the following kþ 1 requests and go to the first
stop given by the obtained solution; when arriving
there, reboot the algorithm with this starting point
and iterate. When there are fewer than kþ 1 remain-
ing points, apply the optimal algorithm to all of them.
This algorithm is not necessarily the best one with
future memory equal to kþ 1, but it is quite an intui-
tive one. The following proposition shows that the
worst case for the k-algorithm can be unbound-
edly bad.

Proposition. Let J 2 N. There exists an instance of
Problem 1 such that the k-algorithm reaches a competi-
tive ratio larger than J:

Proof. In Appendix A.

It is worth remarking that we have studied the
competitive ratio for a particular algorithm. If k ¼ 1
(i.e., when the system only knows one request at a
time) our model is trivially a particular case of the so-
called metrical task systems, such that any determinis-
tic online algorithm will have a competitive ratio no
lower than 2 Vj j � 1 (Borodin et al., 1992).

The heuristic
The example shown in the previous section rests on a
particular network topology: the graphs induced by
the vehicle arcs have a connectivity degree equal to 1,
which is not likely to be the case in real transport net-
works. This suggests that, after all, a heuristic of lim-
ited future memory could work well. Let us define the

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 437

function cTðu, vÞ as the minimum cost if the vehicle is
in u and it has only one request from v, i.e.,

cT u, vð Þ ¼ min
x2V
½cV u, xð Þ þ cWðx, vÞ� (12)

Recalling that we aim to reduce the computational
time, this definition of cT is not very helpful, as it
requires calculating cV u, xð Þ þ cWðx, vÞ for each node
x: Instead, we use cT 0, which results by solving (12)
approximately using a local search -a discrete version
of the gradient method:

Calculation of cT 'ðu, vÞ
Initialize x ¼ v, c'T u, vð Þ ¼ cwðu, vÞ
While true

Define Ax ¼ fy 2 V : xy 2 E or yx 2 E}
(Nodes that are walking-incident in x).
Define x0 ¼ argminy2AxcV u, yð Þ þ cWðy, vÞ
If cV u, x0ð Þ þ cW x0, vð Þ � cV u, xð Þ þ cW x, vð Þ
Break

Else
x x0, c'T u, vð Þ cV u, xð Þ þ cW x, vð Þ

End
End
That is to say, look at all the nodes that are walk-

ing-incident in x, and select the one the diminishes
the cost the most; iterate until the cost is no longer
reduced (a local minimum has been reached).

The heuristic we describe now has future memory
equal to two. Consecutively, it solves (1) considering
only the current position of the vehicle and the fol-
lowing two requests; the first stopping of this partial
solution (associated to the following request) is added
to the heuristic route, and it becomes the new current
position of the vehicle. This would be the 1-algorithm,
but we perform a local search in order to reduce the
required computational time. It is useful then to
define v q0, q1, q2ð Þ as the first stop when using the 1-
algorithm:

v q0, q1, q2ð Þ ¼ argminx2V cV q0, xð Þ þ cW x, q1ð Þ
þ cTðx, q2Þ (13)

Also, define v0 as the solution to (13), but consider-
ing cT 0 (instead of cT) in the objective function, and
finding the argmin through a local search analogous
to the one used to calculate cT 0: In the worst case,
finding v0 requires looking at all nodes in this local
search, and when looking at each node, searching
again in all the graph to calculate cT 0: That is to say,
equation (13) might require at most Vj j2 steps, but
the local searches will rarely take that long. The whole
heuristic can be described as:

Heuristic
Initialize: y0 ¼ r, y1 ¼ q1, y2 ¼ q2, Route ¼ r, i ¼ 1

While true
x ¼ v'ðy0, y1, y2Þ
If i ¼ N, break
Else Route Route, xð Þ, y0 x, y1
qiþ1, y2 qiþ2, i iþ 1

End while

Route Route, tð Þ

That is to say, once the heuristic has a built a path
rx1:::xk, it defines it next stop looking at the problem
that has xk as a root and only one request qkþ1 and
that must stop at qkþ2: In order to select its single
stop (related to qkþ1), it performs a local search
around qkþ1:

If the in-degree of the nodes is small (as it is usual
in real transport networks), and if the local searches
end in nodes that are close to x1 (which is also
expectable), then the heuristic should run fast. The
required time has to be multiplied by the number of
requests if we are calculating the whole route; never-
theless, in an online on-demand system (the scheme
that might require heuristics) it is not necessary to
know the complete route in advance, because most of
the times the algorithm will be rerun before reaching
the next stop, i.e., obtaining one stop at a time
is enough.

Scalability when dealing with a fleet of vehicles

The three methods considered in this paper DET
(visit the exact requests without avoiding detours),
OPT (the optimal algorithm) and HEU (the heuristic
explained in 2.2.2), deal only with the route of a single
vehicle. However, ridesharing systems should be able
to handle fleets of thousands of vehicles simultan-
eously. Therefore, it is crucial to study what happens
with computational times when there is a fleet of
vehicles, which can be managed in two different ways:

1. One might aim to optimize the routes of every
vehicle together with how to assign them to the
requests, assuming that they might walk. This
problem is very complex (it extends dial-a-ride,
for instance), and proposing practical ways to
solve it is the scope of the papers by Fielbaum
et al. (2021), Stiglic et al. (2015), and Li et al.
(2018). As discussed in the introduction, the com-
plexity of this approach hinders the chance of
obtaining theoretical insights, and the procedures
discussed above are not useless in this case as
they assume a fixed set and order of requests.

438 A. FIELBAUM

2. In order to use the methods studied in this
paper, one should assume that each vehicle has
a sequence of requests to serve (computed with
some other technique), and then the said meth-
ods can be applied to each vehicle independ-
ently. If there are l vehicles, then the required
computational steps to determine the routes for
all them is l times the steps required for a sin-
gle vehicle, i.e., the complexity is linear on the
number of vehicles and the algorithms remain
polynomial. Moreover, as the vehicles’ path are
independent from each other, the calculations
can be easily parallelized (for instance, each
vehicle could have an own computer, yielding a
complexity that is constant regardless the num-
ber of vehicles).

Numerical simulations

In order to compare the results given by DET (visit
the exact requests without avoiding detours), OPT
(the optimal algorithm) and HEU (the heuristic
explained in 2.2.2), we are going to test them under
two different schemes. First, we run them in random
graphs: we know that OPT can be arbitrarily better
than DET and HEU, but this requires ad hoc graphs,
so we aim to analyze what happens on average.
Second, we propose a specific transport network and
study in detail the routes that emerge when applying
each of the algorithms, in order to gain intuition con-
cerning the different paths yielded by them. In add-
ition, we compare the times needed by each algorithm
in a real-sized network.

Comparison of the algorithms over
random graphs

We applied the three algorithms to 100 graphs, each
formed by 50 nodes and considering a random vector
of 10 requests. For each pair u, v of nodes, the proba-
bilities that the directed arc uv exists for both vehicles
and walking, only for walking or does not exist at all
are 0.5, 0.1 and 0.4, respectively. Including some ped-
estrian arcs is useful to enlighten the role played by
the chance of walking, by making DET comparatively
worse-off. Both cW and cV take random integer values
between 1,… , 10 [u$] at each (existing) arc, with [u$]
an artificial cost unit.

Results are synthesized in Figures 3 and 4 and
Tables 1 and 2. Figure 3 shows the total costs of the
three algorithms for each of the random graphs,

Figure 3. Total costs of the three algorithms over 100 random
graphs. The graphs are ordered in the x-axis according to the
cost of the DET algorithm.

Figure 4. Decomposition of vehicle and walking costs for (a) the optimal algorithm and (b) the heuristic, when applied over 100
random graphs, which are ordered in the x-axis according to the cost of the DET algorithm.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 439

which were sorted (in the abscissa) according to the
DET’s costs. The analysis of this Figure verifies that
the optimal algorithm always yields the best results,
but it also reveals a remarkable result: the heuristic
always outperforms the results obtained when visiting
the exact requests, despite its limited memory.

Table 1 reveals the mean, maximum, and minimum
values reached by the vectors that contain the quo-
tients between the costs of the respective pairs of algo-
rithms. The first row shows that OPT saves more
than a third of total costs on average, and can save
more than half: reducing detours via requesting users
to walk can be a crucial way to improve ridesharing
systems. Regarding HEU, its performance depends
heavily on the graph, as it can be as good as OPT or
as bad as DET.

Figure 4 looks deeper into the performances of
OPT (Figure 4a) and HEU (Figure 4b), by decompos-
ing their costs in vehicle costs and walking costs. As
apparent, in most instances vehicle costs exceed walk-
ing costs for HEU (black columns are taller than gray
columns), whereas the contrary occurs for OPT,
which can be interpreted by analyzing the two main
characteristics that make HEU a heuristic:

1. Recalling that when HEU searches for the stop
associated to a request qi, it minimizes c

0
T instead

of cT : The difference between both is that c
0
T is

computed through a local search starting from qi
itself, which is likely to find nodes that are close
to that starting point. That is to say, HEU priori-
tizes stops at short distance of the exact requests,
which obviously reduces walking times but fails
to optimize the vehicle’s time.

2. The limited future memory of HEU implies that
the route it chooses does not take into account
future requests in a perfect way, so when solving
the tradeoff between walking time for a current
user and vehicle’s time for all the future ones, the

latter is underestimated and the tradeoff is
inclined toward reducing walking.

Table 2 synthesizes this information and confirms
that both methods present quite different costs’
decomposition. OPT is much more stable, as the ratio
between vehicle’s and walking costs do not change as
much as in HEU.

Comparison of the algorithms over a simplified
transport network

To mimic the context in which these algorithms are
required, we now create a simple on-demand trans-
port network and study the solutions that emerge
when they are applied. We consider a 10	 10 grid, in
which there are three types of street: slow (20 km/h),
mid-speed (30 km/h) and fast (40 km/h). Slow and fast
streets are bidirectional, unlike mid-speed ones which
are one-way. The vehicle departs from one extreme of
the grid and needs to serve ten random
requests s1, :::, s10:

To simulate the fact that the systems get updated
when new requests arrive, we will assume that at
every point the vehicle only knows in advance the fol-
lowing four requests (or all the remaining requests,
when they are fewer than four). Algorithms are modi-
fied as follows to account for this incomplete
information:

� DET always goes to the closest request within the
following 4. For a proper comparison, the resulting
route R ¼ q1, . . . , q10 (which is a permutation of
the original requests vector) is the input for the
other two algorithms.

� OPT is repeatedly applied over the following 4
nodes in R, and the first resulting stop provides
the subsequent stop of the vehicle. Note that the
vehicle does not follow this output further, as the
algorithm is going to be applied again when reach-
ing that stop.

� HEU does not need to be modified, as its future
memory is lower than 4.

Table 3 shows arcs’ costs, whose calculations are
explained in Appendix B. Figure 5 show the network
(Figure 5a) and requests (Figure 5b). The width and
color of the edges represent the type of street: red

Table 1. Comparison of the three algorithms.
Mean Max Min

OPT/DET 0.62 0.84 0.42
HEU/DET 0.75 1 0.54
HEU/OPT 1.2 1.6 1

Each row deals with the ratio (dimensionless) between the costs of two
of the algorithms, showing their means, maximum and minimum val-
ues, when they are applied over 100 random graphs.

Table 2. Ratios (dimensionless) between walking and vehicle
costs for HEU and OPT.
Ratio cV=cW Mean Max Min

HEU 3.03 27 0.17
OPT 0.72 2.7 0.056

Table 3. Costs of arcs in the transport network example.
Type of arc Slow Mid-speed Fast

cV [US$] 0.394 0.262 0.197
cW [US$] 0.261 0.261 0.261

440 A. FIELBAUM

(slow), gray (mid-speed) and brown (fast). Arrows
show if streets are one-way or two-ways. In Figure 5b,
the red node represents the starting point of the
vehicle, and the green nodes the requests s1, :::, s10:

Figures 6 show the route generated by each of the
algorithms: DET (Figure 6a), OPT (Figure 6b), and
HEU (Figure 6c). To prevent curves from overlapping,
routes’ figures are divided into two halves (before and
after visiting the 5th stop). Note that all three algo-
rithms stop in the exact fifth request, such that we
can compare each half separately. Requests are shown
in green and stops in purple; when they coincide in
OPT or HEU, we use light blue.

The first half of the trips (left column in Figure 6)
is quite illustrative of the different solutions provided
by these algorithms. DET requires using all kinds of
streets, including the slow ones. The opposite happens
with OPT, which uses almost only fast streets; the
only exception occurs at the beginning of the route
because the initial node does not have incident fast
streets. Moreover, it reduces the number of arcs
toured by avoiding the detour between the first and
second requests. HEU’s outcome is some intermediate
solution: it makes a detour between the first and
second requests, but this detour is smaller than DET’s
one. After the second stop, it imitates the same path
followed by DET, including another detour that pre-
vents passengers of the third and fourth requests from
walking; OPT avoids this detour.

The second half of the trips (right column in
Figure 6) shows exact coincidence between OPT and
HEU: their path uses one mid-speed street, which is
justified because there are four requests located over
that street; afterward, they only use fast streets. DET
adds two detours, to visit the eighth and ninth
requests, which forces the route to use two slow arcs.

As a synthesis, Figure 6 show that OPT operates
very differently from DET, taking advantage of the
flexibility induced by the chance of walking, which cre-
ates shorter routes by using fewer and faster arcs. HEU
sometimes behaves as DET (when going from the
second to the fifth requests), sometimes as OPT (after
the fifth request) and sometimes as an intermediate
solution (before the second request). Table 4 shows the
cost of each algorithm. Although OPT is better than
HEU, the difference between the latter and DET is
even larger, showing that using HEU is a sound strat-
egy over transport networks. More than one quarter of
in-vehicle costs can be saved when long detours are
avoided with either HEU or OPT. Moreover, HEU
took 0.0093 [sec] and OPT required 0.24 [sec]. There is
a huge improvement in running times at a little cost.

These results are robust. If we repeat the same
experiment 100 times, HEU is on average 19% less
costly than DET, and only 5% costlier than OPT. As a
final remark, we also analyzed what happens if OPT is
calculated knowing the whole ten requests in advance
(rather than only four). In the example explained in

Figure 5. The network (a) and the requests (b). Red arcs are slow, gray are mid-speed and brown are fast. Green nodes represent
the requests, and the red node is the starting place.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 441

this section, the result does not change, and the same
happens 84 times in 100 repetitions of the experiment,
while in the most extreme case only 2.6% of the costs

are saved: there is no need of long future memory
when working over transport networks.

Comparison of the algorithms over a real-life case

In “Comparison of the algorithms over a simplified
transport network,” we showed that running OPT
could take 24 times more than HEU; nevertheless, as

Figure 6. Emerging routes when applying DET (a), OPT (b), and HEU (c).

Table 4. Walking and in-vehicle costs per method over the
simplified transport network.
Algorithm DET OPT HEU

Total cost [US$] 11.61 9.3 9.83
Walking cost [US$] 0 2.09 1.04
In-vehicle cost [US$] 11.61 7.21 8.70

442 A. FIELBAUM

they were applied over a small example, both proce-
dures required reasonable times. What happens if we
make a similar comparison over a large real-life net-
work? And how would total costs compare?

To answer this question, we test the algorithms
over a graph that represents Manhattan, in which
each edges are the real streets and nodes are corners
or dead-ends. This graph contains 4,092 nodes and
9,451 edges, and it has been used previously by
Alonso-Mora et al. (2017) and by Fielbaum et al.
(2021) to test ridesharing algorithms. Walking times
are proportional to the distance, while vehicle times
are considered as twice the real ones, to account for
users traveling in the vehicle or waiting for it. We
compute 50 rides of a vehicle that starts in a random
node and receives four random requests.

As shown in Figure 7, conclusions with respect to
costs are similar to was stated in “Comparison of the
algorithms over a simplified transport network,” whereas
the differences regarding computational times are much
higher. Let us explain and discuss these results further:

� When HEU is executed, the controller of the system
needs to execute just one step at a time, because the
next step can be calculated after the vehicle has
already moved (which is an advantage of using lim-
ited memory). Therefore, computational times are
computed just considering one step, and they lay in
the range of milliseconds, i.e., they do not increase
with the scale of the network, which is a consequence
of performing local searches.

� On the other hand, the complexity of OPT is pro-
portional to Vj j2, as discussed in “A polynomial
algorithm,” which yields computational times that

lay in the range of a few seconds. Although Figure
7b) reveals that the comparison between methods
can change dramatically, the difference is always of
some orders of magnitude, i.e., HEU is much faster
than OPT when solving real-life instances.

� Figure 7a) reveals contradictory situations. It is
true that in most instances, HEU increases costs in
less than 5%, reaching the optimal solution in
some occasions. However, there might be specific
conditions that extends the difference among the
two methods to almost 20%.

� Taking everything into account, it is better to use
OPT when possible, but HEU provides a good
alternative when OPT is too slow, which depends
largely on the computational power. For instance,
Alonso-Mora et al. (2017) decide which requests
assign to each vehicle each 30 [sec]. For a single
vehicle, it might be possible to spend some seconds
to determine its exact route; however, when thou-
sands of vehicles are managed simultaneously, this
is no longer possible and HEU should be chosen,
unless there is plenty of computational power (for
instance, each vehicle could compute its own route
independently).

Conclusions and future research

In this paper, we have studied the problem of finding
the optimal route of a shared vehicle, assuming that
users can walk from their origins to (or to their desti-
nations from) a different node where they meet
(leave) the vehicle. Considering an exogenous order in
which to fulfill the requests, we have shown that this
is a polynomial problem, providing the respect-
ive algorithm.

Figure 7. Comparison of the results obtained by OPT and HEU when solving random instances over Manhattan, (a) Ratio between
total costs, and (b) Ratio between computational times. In both cases OPT is in the numerator and HEU in the denominator. Both
figures are sorted in increasing order.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 443

In order to further reduce the required computa-
tional time, we proposed a heuristic with limited
future memory. We compared these two algorithms
and the one that visits the exact requests, by applying
them over random graphs, a simplified transport net-
work and a real-life case, showing that shortening the
detours (with the optimal algorithm or with the heur-
istic) improves the results.

As we provide two suitable algorithms (the optimal
one and the heuristic), it is worth discussing in detail
the comparison among them. The heuristic can run
hundreds of times faster when solving real-life instan-
ces. However, it can increase the costs up to 20%, a
difference that may justify the extra time if this is
compatible with operating the vehicles. How to solve
this tradeoff will depend on the specific characteristics
of the mobility system. Moreover, some intermediate
solutions might be built by extending the so-called
future memory of the heuristic. Any extension should
keep the local searches utilized by the heuristic
studied here, to prevent looking (repeatedly) at all the
nodes in the graph.

From a practical point of view, we can identify at
least two situations in which it is possible to utilize
the optimal algorithm, that requires a few seconds to
optimize the route of each vehicle. First, if the prob-
lem is not solved online but in advance (for instance,
the night before executing the trips); in this case, opti-
mizing the routes of thousands of vehicles would be
feasible, as the process would require some hours.
Second, if the routes can be computed in a distributed
fashion, e.g., if each vehicle carries its own computer,
so that only some seconds are required; the fact that
the route of each vehicle can be computed independ-
ently is a virtue of both algorithms. On the other
hand, if the calculations are centrally computed and
the system works online, then the optimal algorithm
is too slow and the heuristic is required.

We have shown that there might be very significant
savings when optimizing the route instead of follow-
ing a door-to-door scheme. The large magnitude of
these savings is crucial, because it implies that it is
possible to distribute such savings in a way that all
the involved agents end up in a better situation. In
other words: one of the central conclusions of this
paper is that requiring some users to walk can be
beneficial to everybody and help making these emerg-
ing mobility systems to succeed. Moreover, avoiding
detours can be a strategic decision when expanding
on-demand systems in order to make them part of
the public transport network (as studied by Hrn�c�ı�r
et al. (2015) and Mounce et al. (2018)), when

improving the so-called MaaS systems (Hensher,
2017), and for carpooling systems in which different
private users share the vehicle of one of them (Li
et al., 2020; Tamannaei & Irandoost, 2019). It is worth
recalling that the results and methods proposed here
can be applied to any of the ridesharing systems that
have emerged recently in the literature.

There are several promising avenues to pursue in
future research. When analyzing the competitive ratio
of this problem, the degree of connectivity of the
graph seemed to be critical; transport networks are
usually very well connected, as there are many differ-
ent paths for each origin-destination pair: is it possible
to obtain more promising results regarding the com-
petitive ratio if more hypotheses with respect to the
topology of the graph are assumed? Including some
constraints on the walking times, as well as the chance
that some users might be late (Hyland & Mahmassani,
2020; Kucharski et al., 2020), could make a more real-
istic model.

Notes

1. Some authors define “sharing” as different users riding
the same vehicle but at different times. This difference
has significant impacts over the whole transport
systems: Santi et al. (2014), for instance, show that
sharing taxis in New York would reduce the vehicles-
kilometer traveled by this mode in about 40%.

2. There are a few real-life shared systems in which
passengers are requested to walk. Uber Express Pool is
already working in some American cities, although it
requires that all users are gathered in the same meeting
point. Many airports (Sidney, Melbourne and Madrid
are some examples) have created specific spots where a
passenger has to walk to meet his/her (possibly non-
shared) cab. These examples, however, are very
incipient, and the underlying optimization processes do
not always pursue social optimum criteria.

3. As the order of the requests is fixed, the times in which
requests are visited cannot change much, which is why
space windows are more significant than the more
traditional time windows in this scheme.

4. Classical Dijkstra’s algorithm could also be used, over a
modified graph that contains the root and copies of
each vertex. If is an arc in the original graph, then is an
arc in the modified graph, with cost . The complexity
of original Dijkstra is , that would become , which is
worse than the algorithm described in the main text.

5. Moreover, papers that do model these systems usually
obtain numerical results rather than analytical
expressions (as Alonso-Mora et al., 2017; Fagnant &
Kockelman, 2018; Martinez & Crist, 2016).

6. This assumes that vehicles arrive at constant headways;
otherwise, a larger number replaces the 1=2.

444 A. FIELBAUM

Acknowledgments

The author wishes to thank V�ıctor Verdugo and Gonzalo
Mu~noz, both from Universidad de O’Higgins, for their valu-
able comments that helped to improve this paper.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Andr�es Fielbaum http://orcid.org/0000-0003-0411-3064

References

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E.,
& Rus, D. (2017). On-demand high-capacity ride-sharing
via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences of the United States of
America, 114(3), 462–467. https://doi.org/10.1073/pnas.
1611675114

Badia, H., Estrada, M., & Robuste, F. (2014). Competitive
transit network design in cities with radial street patterns.
Transportation Research Part B: Methodological, 59,
161–181. https://doi.org/10.1016/j.trb.2013.11.006

Borodin, A. (1992). Can competitive analysis be made com-
petitive? [Paper presentation]. Proceedings of the 1992
Conference of the Centre for Advanced Studies on
Collaborative Research (Vol. 1, pp. 359–367). IBM Press.

Borodin, A., Linial, N., & Saks, M. (1992). An optimal on-line
algorithm for metrical task system. Journal of the ACM,
39(4), 745–763. https://doi.org/10.1145/146585.146588

Carlsson, J. G., & Song, S. (2018). Coordinated logistics
with a truck and a drone. Management Science, 64(9),
4052–4069. https://doi.org/10.1287/mnsc.2017.2824

Chang, S., & Schonfeld, P. (1991). Multiple period optimiza-
tion of bus transit systems. Transportation Research Part
B: Methodological, 25(6), 453–478. https://doi.org/10.
1016/0191-2615(91)90038-K

Daganzo, C. F. (1984). Checkpoint dial-a-ride systems.
Transportation Research Part B: Methodological, 18(4-5),
315–327. https://doi.org/10.1016/0191-2615(84)90014-6

Daganzo, C. F. (2010). Structure of competitive transit net-
works. Transportation Research Part B: Methodological,
44(4), 434–446. https://doi.org/10.1016/j.trb.2009.11.001

Fagnant, D., & Kockelman, K. (2018). Dynamic ride-sharing
and fleet sizing for a system of shared autonomous
vehicles in Austin, Texas. Transportation, 45(1), 143–158.
https://doi.org/10.1007/s11116-016-9729-z

Fielbaum, A. (2020). Strategic public transport design using
autonomous vehicles and other new technologies.
International Journal of Intelligent Transportation Systems
Research, 18(2), 183–191. https://doi.org/10.1007/s13177-
019-00190-5

Fielbaum, A., Bai, X., & Alonso-Mora, J. (2021). On-
demand ridesharing with optimized pick-up anddrop-off
walking locations. Transportation Research Part C:
Emerging Technologies, 126, 103061.

Foschini, L., Hershberger, J., & Suri, S. (2014). On the com-
plexity of time-dependent shortest paths. Algorithmica,
68(4), 1075–1097. https://doi.org/10.1007/s00453-012-
9714-7

Hensher, D. (2017). Future bus transport contracts under a
mobility as a service (MaaS) regime in the digital age:
Are they likely to change? Transportation Research Part
A: Policy and Practice, 98, 86–96. https://doi.org/10.1016/
j.tra.2017.02.006

Hrn�c�ı�r, J., Rovatsos, M., & Jakob, M. (2015). Ridesharing
on timetabled transport services: A multiagent planning
approach. Journal of Intelligent Transportation Systems,
19(1), 89–105. https://doi.org/10.1080/15472450.2014.
941759

Hurdle, V. F. (1973). Minimum cost locations for parallel
public transit lines. Transportation Science, 7(4), 340–350.
https://doi.org/10.1287/trsc.7.4.340

Hyland, M., & Mahmassani, H. (2020). Operational benefits
and challenges of shared-ride automated mobility-on-
demand services. Transportation Research Part A: Policy
and Practice, 134, 251–270. https://doi.org/10.1016/j.tra.
2020.02.017

Jansson, J. O. (1980). A simple bus line model for optimisa-
tion of service frequency and bus size. Journal of
Transport Economics and Policy, 14(1), 53–80.

Jara-D�ıaz, S., & Gschwender, A. (2009). The effect of finan-
cial constraints on the optimal design of public transport
services. Transportation, 36(1), 65–75. https://doi.org/10.
1007/s11116-008-9182-8

Jaw, J., Odoni, A., Psaraftis, H., & Wilson, N. (1986). A
heuristic algorithm for the multi-vehicle advance request
dial-a-ride problem with time windows. Transportation
Research Part B: Methodological, 20(3), 243–257. https://
doi.org/10.1016/0191-2615(86)90020-2

Kocur, G., & Hendrickson, C. (1982). Design of local bus ser-
vice with demand equilibration. Transportation Science,
16(2), 149–170. https://doi.org/10.1287/trsc.16.2.149

Kucharski, R., Fielbaum, A., Alonso-Mora, J., & Cats, O.
(2020). If you are late, everyone is late: Late passenger
arrival and ride-sharing systems’ performance.
Transportmetrica A: Transport Science. https://doi.org/10.
1080/23249935.2020.1829170

Li, M., Di, X., Liu, H. X., & Huang, H. J. (2020). A
restricted path-based ridesharing user equilibrium.
Journal of Intelligent Transportation Systems, 24(4),
383–403. https://doi.org/10.1080/15472450.2019.1658525

Li, R., Qin, L., Yu, J., & Mao, R. (2016). Optimal multi-
meeting-point route search. IEEE Transactions on
Knowledge and Data Engineering, 28(3), 770–784. https://
doi.org/10.1109/TKDE.2015.2492554

Li, X., Hu, S., Fan, W., & Deng, K. (2018). Modeling an
enhanced ridesharing system with meet points and time
windows. PLoS One, 13(5), e0195927. https://doi.org/10.
1371/journal.pone.0195927

Martinez, L., & Crist, P. (2016). Urban mobility system
upgrade, how shared self-driving cars could change city
traffic. OECD/ITF Forum. http://www.internationaltrans-
portforum.org/Pub/pdf/15CPB_Self-drivingcars.pdf

Mounce, R., Wright, S., Emele, C., Zeng, C., & Nelson, J. D.
(2018). A tool to aid redesign of flexible transport services
to increase efficiency in rural transport service provision.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 445

https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1016/j.trb.2013.11.006
https://doi.org/10.1145/146585.146588
https://doi.org/10.1287/mnsc.2017.2824
https://doi.org/10.1016/0191-2615(91)90038-K
https://doi.org/10.1016/0191-2615(91)90038-K
https://doi.org/10.1016/0191-2615(84)90014-6
https://doi.org/10.1016/j.trb.2009.11.001
https://doi.org/10.1007/s11116-016-9729-z
https://doi.org/10.1007/s13177-019-00190-5
https://doi.org/10.1007/s13177-019-00190-5
https://doi.org/10.1007/s00453-012-9714-7
https://doi.org/10.1007/s00453-012-9714-7
https://doi.org/10.1016/j.tra.2017.02.006
https://doi.org/10.1016/j.tra.2017.02.006
https://doi.org/10.1080/15472450.2014.941759
https://doi.org/10.1080/15472450.2014.941759
https://doi.org/10.1287/trsc.7.4.340
https://doi.org/10.1016/j.tra.2020.02.017
https://doi.org/10.1016/j.tra.2020.02.017
https://doi.org/10.1007/s11116-008-9182-8
https://doi.org/10.1007/s11116-008-9182-8
https://doi.org/10.1016/0191-2615(86)90020-2
https://doi.org/10.1016/0191-2615(86)90020-2
https://doi.org/10.1287/trsc.16.2.149
https://doi.org/10.1080/23249935.2020.1829170
https://doi.org/10.1080/23249935.2020.1829170
https://doi.org/10.1080/15472450.2019.1658525
https://doi.org/10.1109/TKDE.2015.2492554
https://doi.org/10.1109/TKDE.2015.2492554
https://doi.org/10.1371/journal.pone.0195927
https://doi.org/10.1371/journal.pone.0195927

Journal of Intelligent Transportation Systems, 22(2),
175–185. https://doi.org/10.1080/15472450.2017.1410062

Mourad, A., Puchinger, J., & Chu, C. (2019). A survey of
models and algorithms for optimizing shared mobility.
Transportation Research Part B: Methodological, 123,
323–346. https://doi.org/10.1016/j.trb.2019.02.003

Narayanan, S., Chaniotakis, E., & Antoniou, C. (2020).
Shared autonomous vehicle services: A comprehensive
review. Transportation Research Part C: Emerging
Technologies, 111, 255–293. https://doi.org/10.1016/j.trc.
2019.12.008

Pei, M., Lin, P., Du, J., & Li, X. (2019). Operational design for a
real-time flexible transit system considering passenger demand
and willingness to pay. IEEE Access, 7, 180305–180315.
https://doi.org/10.1109/ACCESS.2019.2949246

Psaraftis, H. (1983). An exact algorithm for the single
vehicle many-to-many dial-a-ride problem with time win-
dows. Transportation Science, 17(3), 351–357. https://doi.
org/10.1287/trsc.17.3.351

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S., &
Ratti, C. (2014). Quantifying the benefits of vehicle pool-
ing with shareability networks. Proceedings of the
National Academy of Sciences of the United States of
America, 111(37), 13290–13294. https://doi.org/10.1073/
pnas.1403657111

Silwal, S., Gani, M. O., & Raychoudhury, V. (2019, June). A
survey of taxi ride sharing system architectures [Paper
presentation]. 2019 IEEE International Conference on
Smart Computing (SMARTCOMP) (pp. 144–149). IEEE.
https://doi.org/10.1109/SMARTCOMP.2019.00044

Sleator, D. D., & Tarjan, R. E. (1983, December). Self-
adjusting binary trees [Paper presentation]. Proceedings
of the Fifteenth Annual ACM Symposium on Theory of
Computing (pp. 235–245). https://doi.org/10.1145/800061.
808752

Stiglic, M., Agatz, N., Savelsbergh, M., & Gradisar, M.
(2015). The benefits of meeting points in ride-sharing
systems. Transportation Research Part B: Methodological,
82, 36–53. https://doi.org/10.1016/j.trb.2015.07.025

Tamannaei, M., & Irandoost, I. (2019). Carpooling problem:
A new mathematical model, branch-and-bound, and
heuristic beam search algorithm. Journal of Intelligent
Transportation Systems, 23(3), 203–215. https://doi.org/
10.1080/15472450.2018.1484739

Tirachini, A. (2014). The economics and engineering of bus
stops: Spacing, design and congestion. Transportation
Research Part A: policy and Practice, 59, 37–57. https://
doi.org/10.1016/j.tra.2013.10.010

Tirachini, A., Hensher, D., & Jara-D�ıaz, S. (2010).
Comparing operator and users costs of light rail, heavy
rail and bus rapid transit over a radial public transport
network. Research in Transportation Economics, 29(1),
231–242. https://doi.org/10.1016/j.retrec.2010.07.029

Tsao, M., Milojevic, D., Ruch, C., Salazar, M., Frazzoli, E.,
& Pavone, M. (2019, May). Model predictive control of
ride-sharing autonomous mobility-on-demand systems
[Paper presentation]. In 2019 International Conference on
Robotics and Automation (ICRA) (pp. 6665–6671). IEEE.
https://doi.org/10.1109/ICRA.2019.8794194

Wang, H., & Yang, H. (2019). Ridesourcing systems: A
framework and review. Transportation Research Part B:
Methodological, 129, 122–155. https://doi.org/10.1016/j.
trb.2019.07.009

Wilson, N., Weissberg, R., & Hauser, J. (1976). Advanced
dial-a-ride algorithms research project (No. R76-20 Final
RPt.).

Zhao, M., Yin, J., An, S., Wang, J., & Feng, D. (2018).
Ridesharing problem with flexible pickup and delivery
locations for app-based transportation service:
Mathematical modeling and decomposition methods.
Journal of Advanced Transportation, 2018, 1–21. https://
doi.org/10.1155/2018/6430950

Zheng, Y., Li, W., Qiu, F., & Wei, H. (2019). The benefits of
introducing meeting points into flex-route transit services.
Transportation Research Part C: Emerging Technologies,
106, 98–112. https://doi.org/10.1016/j.trc.2019.07.012

Appendix A: Proof of the proposition in “Some
results on the competitive ratio”

Without loss of generality, we assume that k
 J: Define a
graph G ¼ ðV,EÞ, with V ¼ rf g [V0 [::: [VJ : Let D be a
large number (eventually, we will make D!1) and let
e
 1=D2 : Each set Vi contains Dþ i nodes Vi ¼
fvi, 1, :::, vi,Dþig which form a vehicle path (let us call it a
“highway”), i.e., e ¼ vi, jvi, jþ1 2 E, with cV eð Þ ¼ 1, cW eð Þ ¼
þ1: There are arcs between the respective nodes of con-
secutive paths, representing very short pedestrian bridges,
i.e., e ¼ vi, jviþ1, j 2 E, with cV eð Þ ¼ þ1, cW eð Þ ¼ e: The
vehicle starts at the root r, and the requests vector is
ðv0, 1, v0, 2, :::, v0,D, v1,Dþ1, v2,Dþ2, :::, vJ�1,DþJ�1, vJ,DþJÞ: Figure
A1 shows this network, with the requests in solid blue.

If e is small enough, the optimal route is taking the J-th
highway, because it needs to be taken at some moment to reach
the final request, and walking costs are negligible. This yields:

cOPTðDÞ ¼ ðDþ JÞ þ DJeþ eþ 2eþ :::þ J � 1ð Þe (9)

The first term in (9) are vehicle’s costs, the second term
represents the first D requests (the cost of walking toward
the first highway), and the following terms come from the
other requests’ walking costs. Note that only the first term
will be relevant when making D! þ1:

What happens with the k-algorithm? At the beginning, it
only looks at requests that are located over the first high-
way, so it is going to take it. When reaching the D� k th
request, node v1,Dþ1 enters the requests vector, which can-
not be reached walking from the first highway, forcing the
vehicle to go back to the root and to take the second high-
way. The same happens repeatedly afterward, making the
vehicle tour completely all the highways from the second to
the last one, yielding:

ckðDÞ ¼ 2 D� kð Þ þ
Xk
i¼1
½2 D� kþ ið Þ þ ie�

þ
XJ�k
i¼1

2 Dþ ið Þ þ ke½ �

þ Dþ J þ eþ 2eþ :::þ k� 1ð Þe½ � (10)

446 A. FIELBAUM

https://doi.org/10.1080/15472450.2017.1410062
https://doi.org/10.1016/j.trb.2019.02.003
https://doi.org/10.1016/j.trc.2019.12.008
https://doi.org/10.1016/j.trc.2019.12.008
https://doi.org/10.1109/ACCESS.2019.2949246
https://doi.org/10.1287/trsc.17.3.351
https://doi.org/10.1287/trsc.17.3.351
https://doi.org/10.1073/pnas.1403657111
https://doi.org/10.1073/pnas.1403657111
https://doi.org/10.1109/SMARTCOMP.2019.00044
https://doi.org/10.1145/800061.808752
https://doi.org/10.1145/800061.808752
https://doi.org/10.1016/j.trb.2015.07.025
https://doi.org/10.1080/15472450.2018.1484739
https://doi.org/10.1080/15472450.2018.1484739
https://doi.org/10.1016/j.tra.2013.10.010
https://doi.org/10.1016/j.tra.2013.10.010
https://doi.org/10.1016/j.retrec.2010.07.029
https://doi.org/10.1109/ICRA.2019.8794194
https://doi.org/10.1016/j.trb.2019.07.009
https://doi.org/10.1016/j.trb.2019.07.009
https://doi.org/10.1155/2018/6430950
https://doi.org/10.1155/2018/6430950
https://doi.org/10.1016/j.trc.2019.07.012

The first term in (10) is induced by going from the root
to v0,D�k and back. The second term appears when visiting
the next k stops (whose passengers need to walk to the first
highway). The third term represents visiting all the next
highways but the last one, whose stops are k bridges away
from the respective exact requests. The last term is caused
by touring the last highway, responding to k requests on
the way. Rearranging:

ckðDÞ ¼ 3Dþ 2JDþ f ðJ, k, eÞ (11)

where f ðJ, k, eÞ is a term that does not depend on D and in
which e appears only multiplying some terms, such that it
is irrelevant when D! þ1: It is apparent then that
limD!þ1

ckðDÞ
cOPTðDÞ ¼ 3þ 2J > J, which proves the proposition.

Appendix B: Arc’s costs in “Comparison of the
algorithms over a simplified
transport network”

To calculate the vehicle and walking costs, we follow the
guidelines of ridesharing transport systems, but without
using a detailed model, such that cV is the sum of operators’
and users’ costs, while cW depends only on users. Let us
denote d0 the (homogenous) length of the arcs.

� Explicit expressions for operators’ costs would require a
detailed model for an on-demand system, which is
beyond the scope of this paper. Instead, we take as refer-
ence the well-known expression for a single line in a
traditional public transport system cO ¼ Bðc0 þ c1KÞ
(Jansson, 1980; Jara-D�ıaz & Gschwender, 2009), in
which B is the fleet size, K is the capacity of the vehicles
(which is fixed in this system), and c0 and c1 are
exogenous parameters. In that model, the fleet size is
given by B ¼ 1

2tw
tc, where tw is the average users’ waiting

time and tc is the cycle time. Using the arc e increases

cycle time by an amount that depends on the vehicle’s
speed in that arc ve: Using some exogenous value tw0 for
the average waiting time yields:

cOe ¼ 1
2tw0

d0
ve

c0 þ c1Kð Þ (A1)

� Users’ costs increase due to the delay on their arrival
times, by an amount that depends on the arc’s speed. If
pV is the monetary value of one unit of time, and con-
sidering an average of 4 users assigned to each vehicle
yields:

cUe ¼ 4pV
d0
ve

(A2)

� Walking costs depend on the walking speed vW and on
the value of one unit of time walking pW : Then every
arc has the same walking cost:

cW ¼ d0
vW

pW (A3)

The numeric value of the parameters is shown in
Appendix C.

Appendix C: Numeric value of the parameters

When needed, costs are taken from Fielbaum (2020).

Figure A1. Network and requests that yield a competitive ratio larger than J:

Table A1. Numeric value of the parameters.
Parameter Meaning Value

c0 Fixed cost per vehicle 4.02 [US$]
c1 Variable cost per vehicle 0.29 [US$]
K Number of seats in each vehicle 4
d0 Length of each arc 150 [m]
tw0 Average waiting time 3 [min]
pv Value of one unit of time traveling 2.32 [US$/h]
vw Walking speed 4 [km/h]
pw Value of one unit of time walking 6.96 [US$/h]

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 447

	Abstract
	Introduction
	State of the art
	Contribution and organization of this paper

	The mathematical program
	A polynomial algorithm
	A heuristic approach
	Some results on the competitive ratio
	The heuristic

	Scalability when dealing with a fleet of vehicles

	Numerical simulations
	Comparison of the algorithms over random graphs
	Comparison of the algorithms over a simplified transport network
	Comparison of the algorithms over a real-life case

	Conclusions and future research
	Acknowledgments
	Disclosure statement
	Orcid
	References

