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Abstract. With rapidly evolving threat landscape surrounding mal-
ware, intelligent defenses based on machine learning are paramount.
In this chapter, we review the literature proposed in the past decade
and identify the state-of-the-art in various related research directions—
malware detection, malware analysis, adversarial malware, and malware
author attribution. We discuss challenges that emerge when machine
learning is applied to malware. We also identify the key issues that need
to be addressed by the research community in order to further deepen
and systematize research in the malware domain.

1 Introduction

Over the past two decades, malicious software (malware) has emerged as one of
the biggest security threats. AV-test, a security research institute, has reported
detecting more than 1000 Million malware samples in 20191. According to Accen-
ture, a malware attack on a company can cost $2.4M on average and can take 50
days to resolve2. Anti-Viruses (AVs) are considered to be the first line of defense.
However, according to a survey by Ponemon Institute, 69% organizations do not
believe that AVs can block the threats that they monitor. Given these staggering
numbers, classical rule-based malware detectors can simply not be expected to
detect the large influx of malware variants. The main problem with rule-based
defenses is that they are reactive, where a rule is added only after experiencing
an attack.

Machine Learning (ML) has become a promising ally for malware detection.
The security community has been investigating ways to incorporate machine
learning for intelligent malware detection, profiling, and analysis. Figure 1 shows
a typical pipeline for malware defense and the opportunities to introduce machine
learning in it. It is noteworthy that machine learning is also useful for attackers:
Due to the intrinsic adversarial nature of the threat landscape, machine learning
has not only been used to build intelligent defenses, but it has also been used to
develop intelligent attacks that evade detection. In the past decade alone, this
arms-race has resulted in more than 20,000 research articles.

1 https://www.av-test.org/en/statistics/malware/.
2 https://www.accenture.com/us-en/insight-cost-of-cybercrime-2017.
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In this chapter, we conduct a systematic survey of the literature published
in the past decade to establish a taxonomy of the main research themes. For an
unbiased literature review, we select peer-reviewed papers containing a combina-
tion of fixed search queries that are highly cited in their domain. We summarize
the state-of-the-art in various sub-fields of intelligent malware defenses, i.e.,
malware detection, malware analysis, adversarial malware, and malware author
attribution. The literature is greatly dominated by malware detection approaches
with the aim of developing scalable behavioral signatures. Approaches from other
domains have been applied to perform malware detection, such as natural lan-
guage processing, image visualization, graph mining, and bioinformatics. We
categorize the research in this domain according to the data source and feature
representation used for their classifiers. Malware analysis is another research
direction that develops tools that provide the necessary insights to improve mal-
ware detection. We discuss approaches that aim to increase interpretability, and
provide smarter ways to collect behavioral traces. Adversarial machine learning
has recently gained popularity, not only for machine learning-based offensive
security, but also for hardening machine learning classifiers. Finally, malware
author attribution aims to associate malware to its author(s), a field that is
mainly driven by law enforcement agencies. Although not a very active area, it
serves as a powerful use-case for interdisciplinary research. Figure 2 shows the
literature overview in a chronological order, divided across the aforementioned
research directions.

We discuss important considerations that emerge when machine learning is
applied to malware, such as resilience against concept drift and evasion, handling
imbalanced datasets, using appropriate evaluation metrics, and providing privacy
and performance guarantees. We have observed that the absence of toy problems,
representative datasets, explainable approaches, and the usage of noisy ground
truth has limited the reproducibility of available research. Specifically, explain-
able approaches are necessary for debugging existing techniques and developing
newer ones based on obtained insights. These issues need to be addressed by the
research community in order to encourage systematized research in the intelli-
gent malware defenses domain.

This chapter is organized as follows. Section 2 serves as a roadmap for the
rest of the chapter: it identifies the feature sources and representations that have
been used to characterize malware in the literature, including several feature
engineering modes. Section 3 discusses the vast literature that explores effective
and efficient malware detection methods. We expand the discussion on malware
research in Sect. 4 by covering relevant areas, i.e., malware analysis, adversar-
ial malware, and author attribution. Section 5 enumerates the main challenges
unique to machine learning-based malware defenses. Section 6 highlights the four
key issues that should be addressed to enable reproducible research in the intel-
ligent malware defenses domain. Finally, we conclude our discussion in Sect. 7.

2 Malware Characterization

The success of machine learning classifiers lies in finding the data that appro-
priately characterizes malware. Determining these data and the input features
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Fig. 1. Machine learning pipeline for malware defense: Raw input data gets transformed
into features during pre-processing, which are given as input for model training. The
raw data may be collected using ML-based sandboxing. Features may be automatically
learned using auto-encoders. Depending on the problem, the model may be deployed
at different locations, and the output may be used in several ways: Malware detection
typically raises alerts; Insights obtained from malware analysis can lead to improved
malware characterization; Detecting changes in data distribution can trigger model
retraining; Incorporation of adversarial malware in the training process can lead to
robust models.

required for machine learning is a difficult task since they will be used to
detect new malware samples that may behave in unexpected ways. Anderson
et al. [10] suggest that effective feature engineering, including features obtained
from domain experts, plays a key role in classifier performance. There exists a
myriad of literature exploring the various features that can be used to char-
acterize different types of malware [122,132]. In this chapter, we provide an
overview of the past ten years of intelligent malware defenses from a technical
machine learning perspective, grounded in the types of features used to char-
acterize malware: statistical, graphs, images, and sequences. The type of input
feature greatly influences which machine learning technology can be employed.
Other important considerations are: (a) the target platform of the malware, (b)
how to collect data from a malware, and (c) how to extract features from such
data. We briefly introduce these other considerations below but will not go into
detail.

2.1 Platform-Specific Malware and Defenses

Malware often targets consumer devices, like desktop computers and hand-
held devices. The first malware was a PC-based virus, called Elk Cloner3,

3 https://en.wikipedia.org/wiki/Elk Cloner.

https://en.wikipedia.org/wiki/Elk_Cloner
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discovered over 35 years ago. Since then, malware has targeted multiple operating
system and browser vulnerabilities to infect desktop computers. It is important
to keep in mind that most research in intelligent malware defense also targets
specific platforms, and this has a great effect on the used input features. Recent
ransomware [4] and cryptojacking malware [30] are well-known for attacking
desktops. A major strain in research therefore targets desktop malware, most
frequently Windows-based malware. Recently, Ucci et al. [122] presented a sur-
vey of features characterizing Windows Portable Executable (PE) malware.

With the widespread use of Android smartphones, there is a growing amount
of literature on Android malware detection [54,66,72,83,104,118,119,134,144,
145], mainly for two reasons: Firstly, Android is an open-source operating system,
so developers can investigate various vulnerabilities that malware has exploited
over the years; Secondly, multiple large-scale and open-source datasets of mali-
cious Android applications have supported research in this field. This does not
mean that iOS-based malware does not exist [87], it is just not a frequent subject
of research.

Nowadays consumer devices are increasingly becoming equipped with Inter-
net connectivity, known as the Internet of Things (IoT). This comes with
new risks culminating in a novel strain of malware specifically targeting IoT
devices [131]. IoT devices are commonly made available on the Internet with
their default configurations, which makes them an easy target for the attackers.
Since IoT devices have limited computational resources, their built-in security
is significantly inferior to other internet-connected devices, making it an ideal
use-case for intelligent malware defenses. Several recent works have proposed to
enhance IoT security using ML-based malware detection [13,40]. In this chapter,
we try to avoid this distinction between platforms, instead focusing on technolog-
ical differences. However, often the platform and technologies are tightly linked,
and solutions are typically not directly applicable to other platforms.

2.2 Feature Sources

There are two major approaches for analyzing malware: (i) static analysis, and
(ii) dynamic analysis. Machine learning has been applied successfully in both
approaches. For static analysis, static features are extracted from a malware’s
code, i.e., without executing it. For dynamic analysis, features are extracted by
running malware and monitoring its behavior. These features can be obtained
from two sources: standard dynamic features are generated on the host device,
typically by interacting with the operating system, while network features are
created from network traffic generated by hosts in a network.

Static Features. The source code of a malware, often obtained by decompiling
its binary, is the most reliable artefact to identify its objective. Early studies on
malware detection have mainly characterized malware using features extracted
from its code. These features are often obtained by doing a comparative analysis
of goodware (benign software) and malware features, and selecting the ones that
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are observed more frequently in malware. PE headers are commonly used for
Windows malware [3,33,47,59,107], while some works extract features directly
from the malware binary itself [56,60,96]. Most of the recent literature from
static analysis comes from the smartphone domain (i.e., Android), where the
features are extracted from either the APK’s manifest file or the disassembled
Dalvik bytecode for signature generation. Shabtai et al. [111] is one of the earlier
works on Android malware detection that uses features from the Dalvik byte-
code in order to perform binary classification (i.e., malware vs. goodware). One
of their major contributions is to apply a myriad of classification algorithms and
select the one that achieves the highest accuracy. Other features, such as Opera-
tional Codes (OpCodes) [40,72] and function API calls [1,5,54,105,134], are also
commonly used for malware detection. Existing works also analyze the amount
and types of permissions that applications request to measure their malicious-
ness [63,104,134,144]. For a higher-level semantic analysis, features from Control
flow graphs [104,137] and Data flow graphs [39] have also been used.

Dynamic Features. With the widespread use of code obfuscation tools to
evade detection and to generate malware variants, syntactic analysis has become
increasingly more difficult. Additionally, there has been a spike in fileless malware
infections4, where the malware code resides purely in the victim host’s memory
without leaving any code fingerprints. Hence, dynamic analysis is more popular
for malware detection. In dynamic analysis, malware is executed in a controlled
environment and its behavior is monitored [94]. Information such as, system API
calls [19,34,75,141], memory access patterns [55,74], and running processes [20]
are common sources for feature selection. Some works consider inter-file relation-
ships between files present on a system for malware detection [95,120]. There
also exist hybrid approaches, where static analysis guides dynamic analysis for
thorough code coverage [117].

Network Features. Network traffic analysis is popular because it can be per-
formed remotely and presents lower overhead than its system-activity counter-
part. However, machine learning has been slow to materialize in the network
security domain because of noisy ground truth and non-stationary data distri-
bution [10]. Existing sandboxes also have limited support for handling network
requests due to the risk of lateral movement, i.e., when the attacker who has
gained access to the network spreads their reach to other hosts [45]. Nevertheless,
the use of HTTP header fields [27,66,93] and traffic connections [83] is common
for malicious traffic detection. Privacy concerns have also been addressed in
network security. Boukhtouta et al. [18] evaluate the differences between Deep
Packet Inspection (DPI) based methods and IP-header based methods for classi-
fying malicious network traffic. They conclude that IP-header features make the
machine learning model generalizable and can achieve higher accuracy due to
the independence from packet payloads. They also suggest that using IP-header
features can help fingerprint zero-day malware, i.e., malware never seen before.
4 https://www.cybereason.com/blog/fileless-malware.

https://www.cybereason.com/blog/fileless-malware
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2.3 Feature Engineering Modes

Most of the existing works perform manual feature engineering, where the fea-
tures are initially obtained from domain experts and are further cherry-picked
based on a classifier’s accuracy [1,5,33,40,54,59,72,93,96,105,107,134]. The
downside to manually engineering features is that it is a laborious and (poten-
tially) subjective process, which may need to be repeated in case of concept drift,
for example. The malware threats also need to be fully scoped-out before arriv-
ing at the optimal feature-set. Nevertheless, knowing the features beforehand
helps with explaining and debugging a classifier’s decisions.

In the recent years, deep neural networks have gained tremendous traction,
making automated feature engineering through representation learning (e.g.,
with auto-encoders) a popular choice. Pascanu et al. [89] propose a recurrent
neural network approach, specifically Echo State Networks, for automatically
extracting time-domain features. They use these features in a Logistic Regres-
sion (LR) model for malware classification, and achieve better performance than
a trigram based manual feature engineering approach. David et al. [28] propose
a system that uses Deep Belief Networks (DBN), which are a type of genera-
tive graphical deep neural network that can perform unsupervised learning, with
a deep stack of de-noising auto-encoders to automatically generate behavioral
signatures. Yuxin et al. [137] have also used DBNs as auto-encoders to automat-
ically extract features from malware executables.

A common critique faced by features that are automatically learned from
deep neural networks is that they are uninterpretable, and hence undesirable
for building explainable solutions. Building interpretable deep learning models
is an open area of research. Zhu et al. [145] have recently proposed an interest-
ing approach that automatically engineers features by mimicking human ana-
lysts’ feature engineering processes. Their system mines academic documents
and synthesizes their knowledge into interpretable features that are later used
for Android malware classification. They report comparable results to state-of-
the-art manual feature engineering approaches.

2.4 Feature Representation

After having selected the data source and features to use, the next step is to
determine how to process these data. We identify four different kinds of feature
representations in this chapter, i.e., statistical, graphs, images, and sequences.
Note that feature representation means the format of the input given to a ML
classifier, not the intermediate representations from representation learning.
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Represent as Statistics. The most common representation for features
in the literature is statistical [1,3,5,10,16,20,34,63,66,73,77,93,97,99,104–
107,119,134,144]. Feature values are collapsed using aggregates or correlations.
Some statistical features also capture the temporal aspect of the behavior with-
out having to deal with sequential data, e.g., the Power Spectral Density of the
FFT of the Command & Control communication [121].

Represent as Graphs. One branch of literature represents malware using
graphs, e.g., to represent the hosts a malware connects with, as an abstrac-
tion over the original feature-set to get a high-level view of malware’s behavior.
Graphs are used to either ease analysis [139] or to extract semantic features
for malware detection [32,42,95,120]. Graphs are also used to perform malware
causality analysis [68,70,140].

Represent as Images. Another branch of literature explores various visual-
ization methods in order to characterize malware. A malware binary can be
converted into an image by encoding the raw values of the binary as the color
intensity of pixels [2,50,56,84,114,130]. The intuition here is that a malware
family may share similar code pieces, which will appear as similar motifs in the
image. Visualizing malware, and hence exposing these similarities to the human
eye, can potentially aid manual malware analysis. Furthermore, research has also
applied standard image classification techniques to perform efficient and reason-
ably accurate malware detection. Despite these encouraging initial results, we
note that image representation for malware classification should be considered
with caution, as discussed in more detail in Sect. 3.3.

Represent as Sequences. There is an increasing amount of literature that is
investigating the use of sequential data in behavior characterization. Although
sequential features capture the temporal aspect of behavior, machine learn-
ing algorithms with inherent support for sequences are rare. The main diffi-
culty lies in appropriately measuring the distance between two sequences in
the presence of noise, delays and misalignments. Methods from other fields,
such as sequence alignment adopted from bioinformatics [26,57], and n-grams
adopted from natural language processing [22,35,40,47,52] have been utilized to
that end. Increasingly more approaches are using deep neural networks because
they have good support for sequences, e.g., Long Short Term Memory net-
works (LSTM) [75,141], Recurrent Neural Networks (RNN) [43,59,112] and
Word2Vec [9,21,54].
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Fig. 2. Overview of ML-based malware defenses proposed over the past decade.
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Table 1. Literature according to feature source and representation.

Representation Source

Static Dynamic Network

Statistical [1,5,63,73,77,104–
107,119,134,144]

[19,20,34,77,99] [10,16,66,77,93,97,121]

Graphs [32,42,104] [68,70,95,120] [140]

Images [2,50,56,60,84,114,130] – [125]

Sequences [13,21,22,26,28,33,40,47,54,
59,72,73,89,96,137,145]

[57,75,141] [36,91]

3 Malware Detection

A central objective of malware research is to develop behavioral signatures that
can automatically detect future malware variants. We make a distinction between
two major strains of research in the malware domain: Detection-based (this
section) and Analysis-based (Sect. 4.1).

Most of the existing literature is about malware detection and signature gen-
eration, with the end-goal of optimizing metrics, such as classifier accuracy and
F1-scores [16,36,77,91,93,97,121]. To this end, a plethora of research has been
conducted over the past ten years that explores various features, representations,
and machine learning algorithms. LeDoux et al. [61] summarize the research on
malware detection, particularly on code-reuse detection, using machine learn-
ing. They also enumerate malware analysis problems that machine learning is
equipped to solve. The vast literature on feature extraction and data mining
techniques for malware detection is comprehensively described by Ye et al. [132].
Souri et al. [116] evaluate various signature- and behavior-based intelligent mal-
ware detectors.

We survey malware detection methods by focusing on the feature represen-
tations used by the applied machine learning or data mining technology. Both
supervised and unsupervised machine learning techniques have been used in the
literature. We categorize them into three classes: (i) Binary classification: Deter-
mine whether an unlabeled software is goodware or malware, (ii) Multi-class clas-
sification: Given a set of unlabeled malware samples and a set of known malware
family names, perform malware family attribution, and (iii) Clustering : Given a
set of unlabelled software, categorize them into distinct classes based on struc-
tural/behavioral differences. Table 1 summarizes the malware detectors reviewed
in this chapter, categorized according to the feature source (i.e., static, dynamic,
network) and input representation (i.e., statistical, graph, image, sequence) that
they employ.

3.1 Statistical Approaches

An aggregated feature-set is the most widespread feature representation used in
literature. Statistical features are fast to compute and simple to incorporate in
a machine learning classifier.

Experiments have shown that the prevalence of certain feature values is a
decent indicator of malware. Naturally, binary classification proves to be more
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successful under this setting than multi-class classification. Hence, even if the
experimental dataset is composed of malware from multiple families, earlier
works considered them together as one ‘malicious’ class. Alazab et al. [5] perform
binary classification for the task of ‘zero-day’ malware detection. They use the
frequency of static API calls to characterize Windows binaries, and show that it is
indeed possible to distinguish between malware and goodware using this charac-
terization. Aafer et al. [1] propose a light-weight Android malware detector based
on the frequency of static API calls. They use K-Nearest Neighbors (KNN) to
detect and alert the user of malicious applications. Sahs et al. [104] characterize
Android applications using a binary vector of used permissions. Because there
exist significantly more benign applications than malicious ones, they utilize a
one-class Support Vector Machine (SVM) which characterizes benign applica-
tions well, and helps detect Android malware. Yerima et al. [134] use Bayesian
classification to detect malware. They characterize applications using API call-
and permission-frequencies.

Santos et al. [106] utilize the frequency of OpCode occurrence in executa-
bles to detect malware. They show that Polynomial Kernel classifiers and Ran-
dom Forests achieve the best performance, which is not surprising because these
algorithms have a long history of performing well in text classification. Suarez
et al. [119] extract statistical features from Control Flow Graph (CFG) code
blocks, such as the number and redundancy of code chunks, and common and dis-
criminant code chunks. These text-based features are used for multi-class classi-
fication. Earlier deep learning approaches have also characterized malware using
aggregates. For example, Saxe et al. [107] propose a malware detection system that
uses a feature-set of byte histograms and frequency of PE import calls.

Although statistical features have been applied successfully in a supervised
manner, there are assumptions that may be difficult to realize in practice. For
example, AV-assigned family labels are noisy and novel threats are common.
In contrast, unsupervised learning can be used independently to identify novel
threats. In the binary classification setting, an anomaly detection approach is
often used to model the benign class and anomalies are labelled as malicious, giv-
ing the capability to detect novel threats. For example, Burguera et al. [19] built
a malware detection system using K-Means clustering to identify anomalous sys-
tem events by finding deviations from one ‘normal’ cluster. For the multi-class
setting, clustering is used to identify different threat classes. Perdisci et al. [93]
present one of the first unsupervised clustering approaches to detect HTTP-
based malware. They propose multi-step clustering to enable large-scale malware
behavioral signature generation. Unsupervised machine learning is also often
used in combination with supervised approaches to improve detection capabil-
ities. Rieck et al. [99] propose an incremental analysis approach for malware
family identification: by first performing clustering to identify novel malware
classes, and then classifying unknown malware samples by assigning them to
these discovered classes. Burnap et al. [20] have recently developed an unsu-
pervised learning method based on Self Organizing Feature Maps (SOMs) that
cluster similar malware behavior. They use the clusters of similar behavior as
features for later classification tasks. The key benefit of this approach is an added
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layer of abstraction for improved classification—instead of using raw features for
classification, the system allows fuzzy boundaries that can map new samples onto
the existing decision boundary. David et al. [28] use Deep Belief Networks, a type
of unsupervised model, to automatically generate malware behavioral signatures.
Finally, Li et al. [66] build a network traffic-based malware classifier that utilizes
both supervised and unsupervised classifiers to improve classification accuracy.

Effective malware detectors provide stable and trustworthy results. Since sta-
tistical features provide an aggregated view, a malicious application may appear
similar to a benign application from this point of view. Hence, the choice of
feature representation plays a crucial role in a classifier’s robustness. Recently,
Milosevic et al. [73] compared two text-mining approaches for Android malware
detection—using statistical features (i.e., permissions) and sequential features
(i.e., bag-of-words of decompiled Dex code). Their experiments show that the
bag-of-words approach performs better due to better malware characterization,
indicating that statistical features may not be the optimal choice in all cases.
Another way to improve the robustness of malware detectors is to use Ensem-
ble learning, i.e., a learning paradigm that combines the decisions of multiple
classifiers to arrive at the final decision. Ensemble models, such as Random
Forests have been shown to be robust to non-stationary data distribution, such
as network traffic [10]. Recently, Zhu et al. [144] proposed an ensemble Rotation
Forests model to classify Android malware. Rotation Forests [100] are an ensem-
ble of Decision Trees where diversity through rotated principal components is
given emphasis, resulting in more stable decisions.

3.2 Graph-Mining Approaches

Graph-mining approaches have been used to represent malware’s relationships
in a graphical format, in order to provide an added abstraction layer. Malware
literature adopts scalable graph mining approaches to perform fast detection.

Security products often have to mark files as malicious or benign based on
a partial view of the host’s file system. Approaches using inter-file relationships
have emerged as a solution. Chau et al. [95] perform malware detection using
large-scale graph inference. They consider files as malware based on guilt-by-
association—they exploit the inter-file relationships present on multiple systems
to compute reputation scores for unlabelled files. They use Belief Propagation
algorithm to mark files with low reputation as malware. They evaluate their
approach on a 60 terabyte dataset composed of a Billion-node graph, and show
significant improvement over existing approaches. Acar et al. [120] also use a
similar approach to detect malware, with the additional use of Locality Sensitive
Hashing (LSH) for efficiently binning similar files.

Hou et al. [42] build the first approach that uses a Structured Heteroge-
neous Information Network (HIN) to characterize API-relatedness. The HIN
edges are used to measure the semantic similarity between API calls, that is
used to measure maliciousness of an application using multi-kernel learning. Fan
et al. [32] improve upon the previous approach using a meta-graph to deter-
mine inter-file relationships for malware detection. For cost-effectiveness, they
use MetaGraph2Vec to learn low-dimensional representations for the HIN that
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preserves its structure and semantics. MetaGraph2Vec is a meta-graph approach
that has shown competitive performance for heterogeneous graph-mining tasks
such as node classification and clustering.

Using graphs to perform causality analysis is also an area of interest. Zhang
et al. [140] detect malware by performing causality analysis on its network traffic.
They build Triggering Relation Graphs (TRG) that show the inter-dependency
of various network events. The TRGs show an absence of dependency between
legitimate and malicious network events, hence making it easier to detect mali-
cious activities. Liu et al. [68] build a backward- and forward-causality graph
to detect abnormal system events, based on their rareness and location in the
causality graph.

3.3 Image Visualization Approaches

Malware visualization has opened a new research direction that uses ML-based
image classification to detect malware. These approaches rely on converting a
malware binary into an image which is then provided to an image classifier,
either as a raw image or as a set of extracted features. The key assumptions
for these methods are: (a) malware families have similar images because of code
reuse, and (b) malware images are significantly different from goodware images.

In 2011, Nataraj et al. [84] proposed a straightforward method to convert
malware into an image: a malware executable represented as a binary vector is
reshaped into a matrix of an arbitrary width and is viewed as a grey-scale image.
The authors observed that malware binaries belonging to the same family were
visually similar in both layout and texture. They extracted textural features from
these images and applied K-Nearest-Neighbors to perform malware family iden-
tification. This approach proved to be very efficient and achieved high accuracy,
close to prior methods that used static features such as n-grams. Furthermore,
they showed that malware belonging to one family packed with the same packer,
or containing sections encrypted with polymorphic engines, are still categorized
together as the same family, indicating some level of resilience to näıve obfusca-
tion. Motivated with the initial positive results, several follow-up studies [2,56]
expanded the research by investigating different types of image feature extrac-
tors and machine learning classifiers. Approaches to malware classification based
on image similarity were confirmed to be effective on the commonly used Kaggle
Microsoft Malware dataset [101].

Recent work has started applying deep neural networks for the classifica-
tion task, inspired by their encouraging performance in the image classification
domain. Kalash et al. [50] successfully perform malware family identification
with a two-dimensional Convolutional Neural Network (CNN) architecture, and
Singh et al. [114] convert malware binaries into colored-images to classify obfus-
cated malware with a ResNet-50 architecture, i.e., a CNN architecture with
shortcut connections providing superior performance. Yakura et al. [130] applied
a CNN with attention mechanism [128] that allows to explain which areas of
an image contribute to particular classification decisions. Le et al. [60] have
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recently proposed a fully automated malware classification approach for non-
domain experts. They represent raw binary files as grey-scale images using the
approach by Nataraj et al. [84]. The images are given to a hybrid network, i.e.,
CNN with Bi-directional LSTM model, which outperforms a traditional CNN
model.

Despite promising performance on benchmark datasets, representing bina-
ries as images for malware detection comes with several limitations. Apart from
some empirical results, there appears to be little evidence to strongly support the
aforementioned underlying assumptions of malware classification based on visual
similarity of binaries. Some studies have encountered images from different mal-
ware families that exhibited such similar patterns that they were classified in one
class [2]. Naturally, only previously seen malware can be identified, while zero-
day malware which is structurally different will likely evade detection [56]. Even
for known malware, a common case of false negatives is observed when mali-
cious content of relatively small size is embedded within a goodware, such that
the resulting image remains very similar to other benign examples. Additionally,
when global image features are used, merely relocating sections in a binary or
adding large sections with redundant data may be sufficient to alter the image
texture and mislead a classifier. These issues illustrate that generalizability of
this approach, beyond particular datasets, remains an open question.

While image representations allow large-scale malware classification in a com-
putationally feasible way, deep neural networks do not necessarily require this
intermediate transformation. One-dimensional CNN architectures and sequential
deep neural networks are directly applicable to raw one-dimensional binaries.
Meanwhile, reshaping an initially one-dimensional binary sequence to a two-
dimensional image with an arbitrarily chosen width introduces artificial spatial
relations that are not present in the original file. Additionally, this representa-
tion does not appear stable, as adding or removing binary data in one location
may completely change the positional relations in the vertical direction of the
converted image [130]. Such artefacts may obscure naturally occurring patterns
in data and negatively impact classification. This line of reasoning may also
apply to a few studies that attempt to use CNN on dynamic features, such as
malicious network traffic: Wang et al. [125] perform malware detection by rep-
resenting network traffic as images. In any case, it is very challenging to make
such two-dimensional CNNs capable of recognizing the temporal dependencies
required for processing traffic data.

3.4 Sequence Learning Approaches

Sequential pattern mining has emerged as a promising approach for malware
detection due to increasingly better-performing sequential ML classifiers.

Earlier sequence learning works utilize n-grams to characterize temporal
behavior. Jain et al. [47] represent PE files as n-grams (with varying values
for n) to perform binary classification. They select the prominent n-grams using
Class-wise Document Frequency method. Their experiments show that trigrams
with Random Forests give the best malware detection performance. Similarly,
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Canfora et al. [22] use n-grams generated from OpCode sequences to detect
malware families. They show that bigrams with Random Forests give the best
performance. We believe these differences exist due to different datasets and
feature selection approaches. Fan et al. [33] uses function call sequences and
an All-Nearest Neighbors (ANN) classifier for PE-malware detection. ANN is a
modification of K-Nearest Neighbors algorithm that makes a decision based on
all neighbors. ANN makes a compromise on run-time efficiency for the sake of
robustness.

In recent works, deep learning-based approaches have dominated malware
detection using sequence learning. Convolutional Neural Networks (CNN) are
used due to their ability to detect complex and non-linear patterns in data. Raff
et al. [96] build a CNN framework that takes an entire PE binary as input for
automated feature engineering and malware detection. Their method consumes
the entire executable as opposed to only the PE-header to avoid over-fitting on
the header features. However, their results do not show significant improvement
over their baseline—a byte n-gram model. Mclaughlin et al. [72] perform Android
malware detection using a CNN framework that utilizes raw OpCode sequences.
Azmoodeh et al. [13] also use OpCode sequences to perform binary classifica-
tion on IoT malware that is specifically used for military purposes. They reduce
the feature dimensions using Principle Component Analysis (PCA) by provid-
ing only the first two components to the classifier. Recently, Cakir et al. [21]
have used Word2Vec feature embedding on OpCode sequences to characterize
malware. They use Gradient Boosting, which is a type of ensemble learner, for
binary classification of malware. Karbab et al. [54] use CNN and Word2Vec fea-
ture embedding on API call sequences for malware family identification. They
evaluate their system on multiple datasets, such as the MalGenome dataset [143],
the Drebin dataset [12], and benign applications from Google Play5. Kolosnjaji
et al. [59] perform multi-class classification using hybrid deep learning, i.e., Con-
volutional and Recurrent Neural Networks (CNN/RNN), for Windows malware
family identification.

Recently, Haddadpajouh et al. [40] have explored various configurations of
Long Short Term Memory networks (LSTMs) for IoT malware classification.
They characterize binaries by their OpCode sequences, and then choose the
features that maximize the Information Gain (IG). However, it is unclear how
generalizable their results are as they only use ∼500 binaries for the classification
task. Zhang et al. [141] use so-called behavior chains based on API call sequences
to characterize malware’s behavior. They use LSTMs to perform binary classifi-
cation and report a false positive rate of less than 2% (in the best case). Mishra
et al. [75] use deep learning and the sequence of dynamic system calls for malware
classification in the cloud environment. Their system uses two layered approach
– CNN for feature engineering and Bi-directional LSTMs for malware detection.
They evaluate their system on a university’s network traffic and show promising
results.

Sequential features are a common occurrence in bioinformatics. As com-
puter viruses attain their characterization from similarity to natural viruses,

5 https://play.google.com/store/apps.
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bioinformatics-inspired solutions have also been proposed to detect malware
variants. A common approach to detect similar DNA sequences is through
the use of sequence alignment algorithms, such as the Smith-Waterman algo-
rithm. Sequence alignment methods work by assigning a score based on matches,
mismatches and gaps. These values are embedded in a substitution matrix.
Domain-specific substitution matrices exist for bioinformatics applications. Chen
et al. [26] map malware’s binary code to Amino acid characters, and use the
so-called Residue substitution matrix, while Naidu et al. [82] report that the
PAM-350 substitution matrix performs the best for malware variant detection.
Chen et al. [26] also develop a multiple sequence alignment method that uses
neural networks to classify viruses and worms. They show that alignment-based
methods allow classifiers to find similarities with more ease compared to other
methods.

3.5 Performance Optimizations

Malware detectors need to be efficient to cope with the exponential increase in
malware attacks. Hence, some works propose extensions to existing works for
improving the performance of traditional malware detectors.

Feature Reduction. A classifier’s performance is directly dependent on the
quality of features used for model learning. The key idea is to select the least
number of features that maximally characterize a malware. Hence, a straight-
forward optimization is to conduct a feature reduction step that eliminates
redundant features. Li et al. [63] develop a fast Android malware detector using
an SVM classifier. As a feature reduction step, they perform ‘significant per-
missions’ analysis, that selects only the permissions that distinguish between
malicious and benign applications with high confidence. Their results achieve up
to 32 times speed-up compared to two competing approaches, i.e. Drebin [12]
and Permission-induced Risk Malware Detection [124]. Similarly, Yerima et al.
[134] select only the features with maximum Mutual Information (MI) to speed
up their malware detector. Firdausi et al. [34] demonstrate elevated performance
of their malware detector after conducting a best-first feature selection process.

Hardware-Assisted Detection. Hardware-assisted Malware Detection
(HMD) has emerged as an alternative for improving malware detection using
Hardware Performance Counters (HPC). HMDs are light-weight detectors that
live on the microprocessor to provide a first-line of defense, and to reduce over-
head on software-based detectors. Khasawneh et al. [55] show that hardware-
detectors reduce performance overhead by up to 11 times compared to software-
only detectors. Xu et al. [129] propose a novel HMD that monitors system calls’
memory access patterns, which are used to classify malware, e.g., kernel rootkits.

Existing studies suggest that HMDs execute a malware sample multiple times
in order to collect the required data, due to the limited number of HPCs avail-
able on microprocessors. Most of the methods propose to use an ensemble of
light-weight classifiers to resolve this issue. Khasawneh et al. [55] propose an
ensemble of specialized LR classifiers to improve the performance of HMDs,
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while only inducing minimal additional overhead on the cycle-time and power
consumption. Specialized classifiers are malware-family specific classifiers, i.e.,
one classifier is trained for one class of malware. They use LR due to its cheap
and simple implementation on the microprocessor. Sayadi et al. [110] propose
ensemble learning to collect the required data while using even less HPCs. Their
results show that ensemble learning approach using only 4 HPCs can match the
robustness and performance of standard classifiers that use 16 HPCs. In a recent
work, Sayadi et al. [109] demonstrate that the performance of HMDs is directly
related to the number of available HPCs. They propose a feature reduction step
in order to select the most significant HPCs. They propose a two-step classifi-
cation approach: a course-grained classifier that categorizes a software as either
goodware or one of the malicious classes (i.e., rootkit or trojan); followed by
a fine-grained specialized classifier (i.e., one for each type of malicious class).
To further reduce the run-time, they utilize ensemble learning in the coarse-
grained classifiers and show that using merely 4 HPCs outperforms state-of-the-
art classifiers with 8 HPCs by a factor of 1.31.

3.6 Trend

There is a growing interest towards alternative approaches for malware detec-
tion, such as causality-based, and ant-colony optimization-based approaches [44],
and a more targeted focus on Android malware detection. The use of sequence
learning is growing, especially due to superior performance of recurrent neural
networks, such as LSTMs, but also due to sequences being better equipped to
characterize behavior. For example, Amer et al. [9] have used a combination of
Word2Vec and Markov chains to establish the relationship between malware API
call sequences. Despite that, works on network-traffic based sequential models
are meagre due to the difficulty of handling non-stationary and noisy sequences.
There is also a growing concern for the brittle nature of neural networks, to be
discussed in Sect. 4.2, which is driving research towards better interpretability
of such models’ output.

4 Additional Research Directions

Although malware detection is a central research objective, there are additional
research directions that have been gaining traction lately. Malware analysis, as
opposed to detection, aims to improve malware understandability rather than
to optimize detection rates [17,78,119]. Adversarial machine learning techniques
have gained particular popularity in recent years in relation to detecting evasive
malware. Finally, attributing malware to its author(s) is also an area of interest,
mainly driven by law enforcement agencies. In this section, we discuss the seminal
works in these three popular research themes.

4.1 Malware Analysis

Malware analysis methods aim to improve malware understandability, and pro-
vide essential insights that can improve malware detection methods. Although
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malware analysis and detection are often seen together in literature, below we
present approaches that: (a) aim to improve malware understandability, e.g., by
providing insights into malware relationships, and (b) enable malware analysis,
e.g., by collecting traces and building analysis environments.

Ucci et al. [122] present a recent survey on ML-based malware analysis tech-
niques. The survey provides a taxonomy of research objectives, features and ML
algorithms used for Windows PE malware. They identify topical trends on mal-
ware triage. They also present the concept of Malware Analysis Economics that
studies the trade-off between detection accuracy and the resources required for
detection.

Increasing Interpretability. Malware analysts have to frequently monitor
large-scale network traffic, which is a laborious task. Zhang et al. [139] propose
a framework to visualise the causal relationships between network requests to
help detect abnormal events. Their user studies reveal that visualising network
traffic in this way enhances analysts’ malware detection capabilities. Mariconti
et al. [70] perform causality analysis on user actions that trigger a malware
infection. They characterize malware samples by the trigger-actions commonly
performed by users. Their method can successfully infer relations between, e.g.,
information-stealing malware and web pages asking for user credentials. Suarez
et al. [119] build a dendrogram of malware families showing overlapping code
snippets, which helps them to generate evolution-invariant signatures.

Smith et al. [115] have pointed towards the semantic gap between the machine
learning and malware analysis communities. One of their proposals is to reposi-
tion the task from identifying malware to identifying behavior, making it possible
to understand what a malware is doing. Along these lines, Nadeem et al. [81]
have proposed the use of behavioral profiles to describe malware samples as
opposed to using black-box family names. They develop MalPaCA, a clustering-
based framework that discovers distinct behaviors present in network traffic and
uses the cluster membership information to generate a profile for each malware
sample.

Collecting Traces. Collecting malware traces, especially for dynamic analysis,
is a challenging problem due to the difficulty of finding live malware samples and
setting up sandboxes. Burguera et al. [19] addresses the unavailability of mal-
ware datasets by setting up a crowd-sourcing system to collect system traces from
unlimited number of real smartphone users. Secondly, effective features for mal-
ware are often not shared among the security community. Gu et al. [39] address
this issue by introducing a consortium blockchain framework. The blockchain is
used as a database of malware-characterizing features. Their classifier consumes
the blockchain for malware family identification. Recently, Shibahara et al. [112]
have proposed a machine learning-based data collection method for efficient
dynamic analysis. Typically, malware traces are collected for a fixed amount
of time before moving on to executing the next sample. The method proposed
in [112] treats network traces as natural language, and uses the communication
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pattern as a heuristic to suspend analysis. They use RNN to learn the underly-
ing objective of communication and to detect when a change in purpose occurs.
They suspend analysis when a malware has stopped its activities. With this
approach, they report a reduction of 67.1% analysis time.

Sandboxing. Multiple works have proposed sandboxes that can forcefully trig-
ger malware functionality in order to provide more holistic behavioral logs, but
very few have used machine learning to do so. There also exist other approaches
that use search-based algorithms to improve code coverage of malware samples,
e.g., Wang et al. [126] propose a fuzzing-based approach to forcefully trigger
malware’s hidden behaviors. Among the literature that uses machine learning
is the work by Spreitzenbarth et al. [117]. They propose an end-to-end anal-
ysis environment for Android malware where applications are executed, traces
are collected and a clustering algorithm categorizes them as malware or good-
ware. However, they only use machine learning to post-process behavioral traces.
Additionally, their sandbox does not support latest Android versions. Yerima
et al. [133] have recently proposed a machine learning based malware analysis
framework. They learn a state machine of each Android application using code’s
static analysis. They use insights from the state machine to guide the so-called
stateful event generation. They also compare with an existing approach based on
random event-generation and show that the guided behavior-triggering approach
results in better data collection.

An orthogonal research objective is sandbox evasion, where a malware uses
machine learning to detect whether it is being executed in a sandbox or on a live
system. When malware detects the presence of a sandbox, it either shuts down, or
starts sending garbage data to mislead analysis. Yokoyama et al. [135] show that
it is possible for attackers to use straightforward machine learning algorithms to
differentiate between a sandbox and a live system based on leaking characteristics
of Windows-based sandboxes. Miramirkhani et al. [74] propose sandbox evasion
techniques based on the natural ‘wear and tear’ of a real system compared to that
of a sandbox. They exploit the past usage of a system to determine its age and
degree of use. They show that a simple decision tree classifier can differentiate
between a sandbox and a real system with a very high accuracy.

Trend. The security community appears to be heavily biased towards detection-
based solutions. Analysis is most often conducted as a precursor for detec-
tion methods, or as a part of Systematization of Knowledge studies. Recently,
there has been a push towards using explainable machine learning for the mal-
ware domain, which specifically allows to reason about classifier decisions. Fan
et al. [31] have evaluated various explanation techniques for malware analysis,
and conclude that LIME [98] and SHAP [69] provide the most robust and sta-
ble explanations. Also, machine learning has not yet been applied to malware
lineage—how a certain malware family evolves over time in terms of structure,
behavior and its target. Most of the work in this domain is manual and requires
a deep understanding of the evolving threat landscape: e.g., Black et al. [17] per-
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form an in-depth analysis of banking malware families, and Moubarak et al. [78]
discuss the structural relationship between several potentially state-sponsored
malware. Evidently, the success of this research is dependent on the quality and
size of the used dataset.

4.2 Adversarial Malware

The security of machine learning is an active area of research that has been gain-
ing increasing popularity in the recent years. This theme addresses the arms-race
between crafting evasive malware samples (offensive security) and developing
robust methods to detect said samples (defensive security). Although the threat
landscape is already adversarial in nature, many approaches in this area have
been borrowed from the computer vision domain, where adversarial ML was pio-
neered. Biggio et al. [15] provide an overview of the developments in adversarial
machine learning in the past ten years. An open problem in this area is using
machine learning to craft adversarial malware samples where the perturbations
are big enough to mimic goodware while preserving malicious functionality.

Offensive Security. While evasive malware has existed for a long time, latest
research applies machine learning to automatically craft these samples. These
techniques work by performing small perturbations on a malware sample to
create a variant that leads to a misclassification by the ML model. Most of
the proposed attacks are gradient-based, as they target deep neural networks.
White-box techniques require some knowledge of the target, such as the structure
and weights of the target model, while black-box techniques do not assume any
knowledge of the targeted classifier.

There are two main concerns in creating adversarial malware samples: (a) the
perturbations are performed in the continuous domain, while malware binaries
exist in the discrete domain; and (b) the frameworks often create perturbations
that break functionality of the executable. Anderson et al. [11] have proposed
a reinforcement learning-based method to guide the search for functionality-
preserving perturbations. However, since their method is quite general, they
report modest evasion rates. Grosse et al. [38] propose a method for crafting
adversarial examples that operates in the discrete domain and preserves func-
tionality. They craft adversarial Android malware by adding constraints to the
perturbations—they only allow changes in the manifest file that adds a single
line of code to the application. They use the adversarial examples on Drebin [12]
and report a misclassification (evasion) rate of 69%. Hu et al. [43] target RNN
models based on sequential API features. They learn a local substitute (surro-
gate) model of the victim RNN that propagates the gradients to a generative
RNN that produces sequential adversarial examples. Their results show that
more than 90% of the adversarial examples result in misclassifications. Kolosn-
jaji et al. [58] target a sequential model that learns from raw malware bytes. They
craft adversarial examples using a gradient-based attack modifying the last 1%
of the bytes that achieve misclassifications. They report a maximum evasion rate
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of 60%. Al-Dujaili et al. [3] adapt the saddle-point optimization problem from
the continuous domain to generate adversarial examples in the discrete domain.
They present a framework that discovers adversarial examples and incorporates
them in the training process to harden the learnt classifier. They conclude that
the randomized rounding technique helps discover four times as many adversar-
ial examples. Chen et al. [25] craft adversarial Android malware by optimally
perturbing the Dalvik byte code to target semantic features. They show the
effectiveness of their adversarial examples by using them on two famous Android
malware detectors, MaMaDroid [86] and Drebin [12], where they report an eva-
sion rate of 100%. Recently, Verwer et al. [123] used [3] to develop GRAMS,
which is a greedy approach that randomly flips bits to obtain functionality-
preserving high-quality adversarial examples in the discrete domain. GRAMS
was successful in crafting evasive malware and defending against competitors’
evasion attempts during the robust malware detection challenge6.

Poisoning attacks are another important concern for machine learning clas-
sifiers. Poisoning attacks refer to an attacker’s capability to inject adversarial
examples during classifier training phase, such that it learns to classify mali-
cious entities as benign. For example, Biggio et al. [14] poison behavioral mal-
ware clustering and Muñoz-González et al. [79] propose a poisoning algorithm
for deep learning classifiers. Chen et al. [24] have specified attacker models for
poisoning attacks in the malware domain: (a) a weak attacker who injects mali-
cious code in the non-logical part of the application, such as manifest file; (b) a
strong attacker who injects malicious code in resources, such as jar or jpg; and
(c) a sophisticated attacker who uses Dynamic Code Loading via Reflection for
injecting malicious code at run-time. Having concrete attacker models provides
terminology to develop more streamlined defenses, and to compute resilience
guarantees.

Defensive Security. One approach for forensic malware analysis is to cate-
gorize malware based on similar evasion strategies. Kirat et al. [57] propose a
bioinformatics-inspired solution to generate and analyze evasion signatures—
they cluster similar evasive behavior among malware samples. They use a
sequence alignment algorithm to measure similarity among different system call
sequences. Then, they extract evasion signatures from the behavioral clusters.
These signatures can be used to detect when a future malware sample attempts
to evade detection in a similar way.

One of the key benefits of adversarial machine learning is that it hardens
the security of an adversarially trained model [38]. When adversarial examples
are part of the training process, they allow to discover samples in the so-called
blind spots of the malicious domain, increasing its robustness to unseen eva-
sive samples. Recently, there has been a lot of interest in developing ML-based
adversary-aware approaches. The main difference from malware detectors pre-
viously discussed in Sect. 3 is that these approaches actively anticipate evasion
attempts. Demontis et al. [29] propose a so-called secure-learning paradigm that

6 https://github.com/ALFA-group/malware challenge.
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suggests having the feature weights more evenly distributed in order to bound
linear classifiers’ sensitivity to feature changes. They also propose attacker mod-
els based on their capabilities, knowledge and skills. Zhang et al. [138] propose
an adversary-aware feature selection method, since the choice of features may
also be a factor in adversarial robustness. Their wrapper-based framework makes
assumptions about the adversary and simulates evasion attacks at each step of
the training phase. The framework chooses the features that maximize the clas-
sifier’s generalizability in the absence of adversarial examples and minimize the
classifier’s impact against evasion attempts. Chen et al. [23] present a robust
malware detection system based on two key components: (a) a feature selection
method that picks features that maximize attacker’s evasion costs, and (b) an
ensemble learning method with diverse classifiers that incorporate a major part
of the feature space. Li et al. [62] investigate the resilience of ensemble classifiers
and the effectiveness of ensemble attacks. Their experiments show that while
adversarial training for ensemble classifiers promotes robustness, they are unfor-
tunately no match for adversarial examples learned through ensemble methods.

Another way to harden classifiers without explicit adversarial training is
through the special handling of suspicious files. Chen et al. [24] have developed a
self-adaptive learning scheme for detecting poisoning attacks. They introduce a
so-called camouflage detector that finds suspicious false negatives by performing
similarity analysis with the most-benign and most-malicious looking samples,
and sends such camouflaged samples back to the training phase as malicious
examples.

Trend. At the moment of writing, the security community seems to have a
strong affinity towards offensive security research. Naturally, conducting defen-
sive research is especially challenging due to the strict requirements that a defen-
sive framework is expected to fulfill. In case of malware defenses, provable robust-
ness to evasion is a major milestone that cannot be reached by the community
without public datasets of evasive malware. We believe that adversarial learning
for defensive model hardening is an unfolding but promising research field.

4.3 Malware Author Attribution

In general, authorship attribution can be considered from two perspectives: (i)
code authorship attribution – attributing a software to its author(s); and (ii) fam-
ily attribution – identifying code similarities between unlabelled software pieces.
In malware research, the latter problem appears as malware family identifica-
tion, which involves multi-class classification already covered in Sect. 3. Hence,
here we discuss the code authorship attribution problem.

Code authorship attribution has a rich history in the Software Engineer-
ing literature. The aim of this research is to extract features that capture an
author’s programming style. Existing work can also be found in related fields,
such as forgery and plagiarism detection where the goal is to extract distinguish-
ing stylistic or fingerprinting attributes from a software that identifies where the



238 A. Nadeem et al.

code was copied from. Source code attribution is the simplest variant since the
author’s stylistic features can be relatively easily extracted. One such work is
proposed by Alsulami et al. [8] who extract features from the Abstract Syntax
Tree (AST) of source code collected from Google Code Jam (GCJ). In fact, GCJ
and Github are popular sources of experimental data for authorship attribution,
in general [6,7,103,113].

In many real-world settings however, source code is not directly available,
rendering aforementioned techniques ineffective. It is also commonly believed
that the compilation process removes most of the stylistic features. Rosenblum
et al. [103] perform one of the first attempts to address this problem by using a
ML approach that identifies the surviving stylistic features for binary authorship
attribution.

It is noteworthy that code authorship attribution for malware is significantly
more difficult because the authors have strong incentives to hide their identity.
Using machine learning to solve the attribution problem is also tricky because
code samples from known malware authors that are required to train a classifier
are rarely available. Additionally, the availability of malware-as-a-service indi-
cates that samples are authored by multiple developers in a malware’s lifetime.
Hence, research in this area is scarce because of the difficulty of establishing a
ground truth.

Saxe et al. [108] have written an introductory book on big data analysis
for malware detection. They show the usage of static and dynamic analysis for
performing shared code analysis with the aim of identifying similar adversary
groups. Alrabaee et al. [6] propose a multi-layered approach to improve malware
binary authorship attribution by conducting both syntax- and semantic- analy-
sis. They attempt to reconstruct the source code from malware binaries, which
they compare with code-based signatures of other families. They also extract
semantic features, such as the way registers are manipulated, to establish strong
evidence for attribution. Rosenberg et al. [102] use deep neural networks for the
attribution of nation-state Advanced Persistent Threats (APTs). They observe
that nation-state APTs have different styles and objectives, which makes their
classification feasible. To that end, they take raw dynamic logs as input to the
neural network that learns a high-level abstraction of the APTs. Their system is
evaluated on two major nation-state malware families and show it to be effective
for the purpose.

Natural Language Processing has also been proposed for attribution purposes
after its success in attributing cyber-stalkers [35]. Kalgutkar et al. [52] build
an Android malware detection system based on ‘malware author’ signatures.
Their system leverages strings extracted from the malware binaries to generate
profiles of malware authors, with the expectation that future malware samples
authored by the same person will match the profiles. They use n-grams for
feature representation and Support Vector Machine for APK classification.

Research related to adversarial attacks also exists in code authorship attribu-
tion. Simko et al. [113] propose adversarial stylometry attacks to defeat source
code attribution classifiers. They demonstrate that current code attribution clas-



Intelligent Malware Defenses 239

sifiers are not robust to adversarial attacks, even when they are executed by non-
experts. The authors claim that although not fool-proof, augmenting machine
learning classifiers with human analysts proves to be more resilient against adver-
sarial attacks, especially when they are warned about potential forgeries in the
code. They analyze C/C++ programs and conclude that semantic features, such
as those extracted from ASTs are more resilient to forgery attacks.

Alrabaee et al. [7] present a literature survey of existing techniques for mal-
ware binary attribution. The survey also lists features that can be used for author
attribution because they survive compilation, e.g., compiler information, system
calls, and the usage of particular strings may characterize coding styles. Addi-
tionally, certain type of bugs in the code may also point to semantic hints that
can be used for author attribution. They also note that a key research challenge
is feature selection that captures author’s style rather than functionality of the
program. Following this, Murenin et al. [80] have used LIME to understand the
role of selected features in source code attribution for Android malware.

Iqbal et al. [46] have recently published a book on authorship attribution and
cyber forensics using machine learning in which they comprehensively describe
research into authorship identification and attribution using few training sam-
ples, authorship characterization and verification. Kalgutkar et al. [51] show
how the field has evolved from basic software matching techniques to sophisti-
cated methods based on API calls and dependency graphs. They conclude that
although there is no one-size-fits-all solution yet for malware attribution, the
existing work on varying levels of abstraction has brought us one step closer to
the solution. Nevertheless, this field still has many open problems that are yet
to be explored.

Trend. The popularity of the malware attribution field is impacted by the
adversarial and ad-hoc nature of the threat landscape. Unavailability of open
datasets further complicates realistic evaluation. Further, having a narrow target
audience (e.g., law enforcement, intelligence agencies) means that the works do
not get highly cited and thus remain undiscovered. We believe that this field can
get a new life with explainable approaches, open benchmark datasets and access
to ground truth.

5 Challenges in ML-Applied Malware Defenses

The malware domain presents unique challenges for machine learning applica-
tion. After years of research, the security community has made a significant head-
way in highlighting the proper usage of machine learning for malware defenses.
As a result, additional problems have emerged that require further investigation.
Souri et al. [116] and Ye et al. [132] identify several unsolved problems in the
data-mining based malware detection domain. One must remember that machine
learning is not a silver bullet that can solve all malware-related problems [51]. In
this section, we describe common pitfalls and challenges that emerge when ML
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is used for malware detection, which should be accounted for when designing
and evaluating such methods.

Robustness Against Time-Decay. Some of the existing work is filled with
unrealistic simplifying assumptions about the malware landscape. One of the
most prevalent assumptions is the closed-world assumption, which assumes that
training data is fully representative of all categories of samples that may appear
at test-time. However, as malware is an ever-evolving threat, static training data
will inevitably become outdated. Consequently, researchers have shown that ML-
classifiers’ performance degrades over time [92,107]. Recent works have incorpo-
rated concept drift detection in their ML classifiers for handling non-stationary
data population. These classifiers continually re-learn the changing concepts in
order to maintain an acceptable detection accuracy. Jordaney et al. [48] and
Wang et al. [127] use P-values that can proactively detect concept drift before
the classifier’s performance starts to degrade. There is also a growing interest
in semantic features that are less affected by malware evolution and hence slow
down the aging of malware detectors [142].

Robustness Against Evasion. Evasion resilience is an important character-
istic for deployable classifiers. A misleading expectation from ML classifiers is
that they should be fully and provably evasion resilient. To this end, defensive
adversarial machine learning has emerged as a promising solution for evasion
resilient classifiers, which has been previously discussed in Sect. 4.2. The pur-
pose of defensive adversarial ML is to explore additional search space in order to
harden models against evasion attempts. However, this search is still bounded by
the Independent and Identically Distributed data (i.i.d) assumption. As a con-
sequence, out-of-distribution adversarial examples prevalent in the open world
are unlikely to be detected by an adversarially trained ML classifier.

Imbalanced Training-Set. Benign examples occur significantly more fre-
quently than malicious ones. Failure to incorporate this trait in the training
dataset creates a so-called spatial-bias [92] in the classifier. Existing works have
often used unrealistic class distribution, e.g., the use of inverted class distribu-
tion [83] and equal class distribution [90,136]. Chen et al. [27] propose a solu-
tion for imbalanced network traffic classification to perform accurate Android
malware detection. They experiment with various combinations of imbalanced
classification algorithms, such as Synthetic Minority Oversampling Technique
(SMOTE) with SVM, SVM cost-sensitive and C4.5 cost-sensitive. They also
develop Simplex Imbalanced Data Gravitation-based Classification (S-IDGC)
that works faster while maintaining the stability of IDGC. In the deep learn-
ing domain, Le et al. [60] use the class re-balance sampling procedure in bi-
directional LSTMs to address the class imbalance problem.

Evaluation Metrics. The usage of appropriate evaluation metrics is an under-
rated challenge. For example, using accuracy to measure a classifier’s perfor-
mance when it is trained with a highly imbalanced dataset results in mislead-
ing conclusions. Similarly, precision and recall values can also be altered based



Intelligent Malware Defenses 241

on the choice of empirical thresholds and dataset-specific parameters. Mean-
while, evaluating approaches using such varied metrics limits objective analysis,
and the obtained results become incomparable. Jordaney et al. [49] demonstrate
that traditional evaluation metrics show misleading information about classifiers’
performance. They propose two metrics based on non-conformity measures for
evaluating a classifiers’ performance. Credibility measures the homogeneity of a
given label compared to others of the same class, and Confidence measures the
separation between a given label and other classes. Pendlebury et al. [92] have
recently identified experimental biases in existing Android malware classifiers,
namely (a) spatial bias due to unrealistic class distribution in training and test-
ing data, and (b) temporal bias due to incorrect time splits causing impossible
configurations. They propose a new metric, namely Area Under Time (AUT),
to characterize classifier robustness when time decay is present.

Privacy Concerns. Machine learning classifiers typically perform better with
fine-grained contextual features. In an attempt to perform large-scale classifi-
cation, classifiers have access to both benign and malicious data. Privacy con-
cerns arise as the feature-set becomes more and more fine-grained. For example,
DPI-based approaches analyze the payload of each packet, which may contain
privacy sensitive information. With data protection laws being widely enforced,
such methods are tricky to deploy at large-scale. There are a couple of solutions
for being privacy-aware: (i) selecting abstract features that do not violate the
privacy of user actions, while still being able to characterize malicious behav-
ior; (ii) deploying a distributed classifier, as in the case of federated learning,
that trains on local data provided by multiple clients [85]. In the latter solu-
tion, secure multi-party computation (SMC) and differential privacy (DP) are
required to provide privacy guarantees.

Performance Optimizations. Malware infections are a widespread security
threat faced by all network-connected devices. Classical machine learning solu-
tions are often not ideal for fending off millions of malware infections each day.
Effective intelligent defenses should be fast, proactive and evolve with the chang-
ing threat landscape. Hence, a dedicated research direction exists that designs
online, optimized classifiers capable of detecting malware in real-time. Federated
learning, discussed earlier as a possible solution to privacy issues, provides a dis-
tributed infrastructure that enables efficient large-scale detection. Other works
are discussed in Sect. 3.5.

6 Open Problems in ML-Based Malware Defenses

In this section, we discuss what we believe are the key problems that the
research community should address. At the heart lies the problem of repro-
ducible research: the absence of toy problems and representative datasets makes
the results from different papers incomparable. Furthermore, the results often
cannot be taken at their face value because malware ground truth is inherently
inconsistent and unreliable. Crucially, many solutions eagerly emphasize met-
ric optimization but overlook explainability, providing little new insight into
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the problem of malware detection. We believe that these four issues hinder fair
assessment of new contributions in the intelligent malware defenses domain. It is
very difficult to objectively compare new methods against state-of-the-art solu-
tions for the same problem, using the same data, and the same ground truth.
An alarming side-effect is the lack of meaningful contributions to the field even
though many new papers are published each year.

Toy Problems. Toy problems are important in the early development of a
research field. These are simplified challenges that can help develop and test
methodologies that solve a more challenging problem. Computer science in gen-
eral and artificial intelligence in particular have established traditional toy prob-
lems that are still used to develop newer methodologies. However, malware
research has always aimed to solve real-world threats. We observe that limited
access to data and resources that are necessary for the evaluation of proposed
methodologies has constrained systematic and open academic research. More-
over, building fool-proof methodologies in malware detection is an especially
challenging problem, because the adversaries keep evolving rapidly. Since mal-
ware is constantly evolving, the research is driven by the availability of newer
threats, and is reactive in nature. In light of these inevitable issues, we urge
the community to introduce standardized toy problems, which could act as a
starting point for developing new methods in a more synchronized and proactive
manner. Toy problems would allow the assessment of proposed algorithms in iso-
lation from the general practical limitations of malware detection. Ultimately, as
the algorithms become more mature, they should be enhanced for deployment—
practical feasibility should not be fully discarded at the envisioning stage.

Representative Datasets. The biggest hurdle in ML-based malware analysis
research is the absence of representative datasets. These datasets are crucial
for the development of usable and generalizable defensive solutions. However,
with the rapid evolution of malware, any available dataset becomes obsolete in
a matter of years, e.g., the well-known VX Heavens dataset [41] from 2010, the
Drebin dataset [12] from 2010–2012, and the MalGenome dataset [143] from
2012 are arguably no longer representative. Since most of the available datasets
are not representative, the trained models only describe part of the real threat
landscape. This is not to say that open-source datasets are not available. In
fact, the Stratosphere IPS project7 has published large-scale network traffic,
e.g., the CTU-13 dataset [37] captures traffic for 13 botnet scenarios, and the
recently published IoT-23 dataset [88] captures 20 IoT malware scenarios and
3 benign ones. The Kaggle Microsoft Malware dataset [101] was also widely
used in multiple works. Other works have also released their private datasets
for reproducibility [67,105]. Nevertheless, one promising way for the academic
community to gain access to reliable and representative data is to establish a
long-term collaboration with industry partners who directly monitor the threat
landscape and can provide updated threat intelligence for the development of
robust machine learning solutions. This is an excellent way to keep up with

7 https://www.stratosphereips.org/datasets-overview.
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the rapidly changing threat landscape. The downside is that the data often
contains highly sensitive information that cannot be released to the public, thus
exacerbating problems of reproducibility.

Noisy Ground Truth. Existing literature has repeatedly shown that AV-
provided malware family labels are inconsistent. These labels are used as ground
truth by researchers to evaluate newer malware detection methods, making the
results unreliable. Popular tools, such as VirusTotal8, run multiple AV scanners
and return an array of labels predicted by each scanner, without any indica-
tion as to which is correct. There is also an absence of a common vocabulary
that all security companies can follow to label malware samples. Research has
shown that the consensus reached by AV scanners regarding the labeling of a
single malware sample is no better than a coin-toss (around 50%) [76]. Machine
learning has also been slow to materialize in network security domain due to
non-stationary data and noisy ground truth [10]. Unsupervised ML can already
provide a foundation to address this issue. However, in practice, existing unsu-
pervised ML approaches often use some form of ground truth for evaluation. For
example, Perdisci et al. [93] evaluate their malware clustering by introducing a
notion of AV graphs that depict the agreement between AV vendors as a mea-
sure of cluster cohesion and separation. Yuping et al. [65] use majority-voted
family labels from 25 AV vendors as their ground truth to evaluate malware
clustering. Li et al. [64] have advised caution when deciphering highly accurate
clustering results as they can be impacted by spatial bias: performing majority
voting on AV-provided labels is hazardous, since if most of the AV vendors are
in agreement, it typically indicates that the families are already easy to detect.
Hence, we either need better ground truth [53] or purely data-driven unsuper-
vised evaluation approaches.

Explainable Solutions. In recent works, deep learning based malware detec-
tors have surpassed the performance of traditional ML classifiers. They have
also automated the detection pipeline for the most part. However, deep neural
networks are inherent black-boxes that provide limited interpretability. It is also
alarming how brittle deep learning is to adversarial attacks. Alternatively, non-
deep learning approaches are not much more interpretable—they are frequently
packed with complicated filtering steps to maximise performance [77], which also
turns them into black-boxes. This concern has motivated research on explainable
machine learning. Explainable models enable identification of bias in raw data,
debug errors in trained models, enable model optimization, and allow analysts
to extrapolate advanced results, i.e., to get detailed insights from data instead
of simply reading off detection rates. Without explainability, such extrapola-
tion will be difficult and error-prone. Mathews et al. [71] provide a summary
of explainable ML techniques for malware classification, including both intrinsic
and post-hoc methods. The research trend shows that moving forward, special
emphasis will be given to explainable and human-in-the-loop solutions.

8 https://www.virustotal.com/.

https://www.virustotal.com/


244 A. Nadeem et al.

7 Summary

Machine learning has emerged as a promising ally for developing intelligent
malware defenses. However, the research in this area is scattered across dif-
ferent venues and domains. In this chapter, we identify the key research themes
and assemble the state-of-the-art literature that has been proposed in the past
decade. In doing so, we highlight trends in these research themes.

The literature is greatly dominated by malware detection approaches with
the aim of developing scalable behavioral signatures. We categorize the research
in this domain according to the data source and feature representation used for
their classifiers. The trends in the literature suggest that sequence learning and
explainable machine learning are considered promising areas of research. Mal-
ware analysis is another research direction that develops tools that provide the
necessary insights to improve malware detection. Adversarial machine learning
has recently gained popularity to harden machine learning classifiers. Also, mal-
ware author attribution proves to be a challenging field with limited progress due
to the unavailability of datasets, and an absence of concrete problem statements
that data-driven methods can realistically address.

We have discussed important considerations that emerge when machine learn-
ing is applied in the malware domain, such as resilience against concept drift and
evasion, handling imbalanced datasets and using appropriate evaluation metrics.
We have also identified key issues that need to be addressed in our opinion by the
research community in order to encourage systematized research in the malware
domain: toy problems, representative datasets, noisy ground truth, and explain-
able solutions. Without overcoming these issues, limited progress can be made
due to the inability to compare research results.

It is evident that intelligent malware defenses will continue to grow. However,
understanding the unique challenges that the malware domain brings to the table
is absolutely essential for developing effective machine learning enabled solutions
that can withstand the test of time.
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