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ABSTRACT Design-space exploration for low-power manycore design is a daunting and time-consuming
task which requires some complex tools and frameworks to achieve. In the presence of process variation, the
problem becomes even more challenging, especially the time associated with trial-and-error selection of
the proper options in the tools to obtain the optimal power dissipation. The key contribution of this work is the
novel use of machine learning to speed up the design process by embedding the tool expertise needed for low
power design-space exploration for manycores into a trained neural network. To enable this, we first generate
a large volume of data for 36000 benchmark applications by running them under all possible configurations
to find the optimal one in terms of power. This is done using our own tool called LVSiM, a holistic manycore
optimization program including process variations. A neural network is trained with this information to build
in the expertise. A second contribution of this work is to define a new set of features, relevant to power and
performance optimization, when training the neural network. At design time, the trained neural network
is used to select the proper options on behalf of the user based on the features of any new application.
However, one problem encountered with this approach is that the database constructed for machine learning
has many outliers due to randomness associated with process variation which creates a major headache
for classification - the supervised learning task performed by neural networks. The third key contribution
of this work is a novel data coercion algorithm used as a corrective measure to handle the outliers. The
proposed data coercion scheme produces results that are within 3.9% of the optimal power consumption
compared to 7% without data coercion. Furthermore, the proposed method is about an order of magnitude
faster than a heuristic approach and two orders of magnitude faster than a brute-force approach for design-
space exploration.

INDEX TERMS Neural network, simulator, manycore, low-power, process variation, frequency scaling,
voltage scaling, 3D-stack, voltage selection, within-die variation.

I. INTRODUCTION
For the last two decades, technology scaling issues, process
variation, time-to-market, and thermal and power densities
have been major challenges facing high-performance and

The associate editor coordinating the review of this manuscript and
approving it for publication was Shunfeng Cheng.

low-power designs [1]–[4]. Consequently, processor design
has shifted towards the manycore paradigm with a promise of
providing higher performance through increased throughput
instead of raw performance. In particular, a key area of recent
focus is low-power manycore design [5]–[9].

In this new paradigm, a manycore design is constructed
out of tiles of identical processors arranged both horizontally

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 70187

https://orcid.org/0000-0003-3196-2635
https://orcid.org/0000-0002-9911-4846
https://orcid.org/0000-0002-8961-0387


S. Majzoub et al.: Rapid Design-Space Exploration for Low-Power Manycores Under Process Variation Utilizing ML

and vertically in silicon. For example, a 2× 2 tile containing
4 processor cores can be used to form a 16 × 16 array con-
taining 1024 processor cores. However, the excessive power
consumption of a thousand-core chip presents one of the key
design challenges today. To reduce power, islands of cores
can be defined with their own supply voltages and clock-
ing frequencies, called voltage-frequency domains (VFDs),
which depend on computational workloads and data traffic
of the application to be executed on the array. This approach
has been found to be very effective for power reduction.

However, device variability, such as those associated with
the threshold voltage, Vth, presents yet another problem in
small feature technologies and creates an irregular distribu-
tion of power and speed among the various processor cores
in the array [1], [2], [4], [10]–[17]. A seemingly intractable
issue is encountered by the chip designer to find the optimal
combinations of VFDs to minimize power for a particular
application in the face of such process variations. Some tools
have been developed for this purpose but they require a great
amount of expertise to use and lots of runtime in order to find
the optimal configuration in terms of power.

Machine Learning (ML) techniques have gained a strong
foothold across many research fields over the past decade,
and the goal here is to apply these techniques to build the
needed tool expertise into a trained neural network to quickly
find the best configuration to achieve a low-power design.
In recent years, manycore power optimization has utilized
ML methods to reduce the power [9], [18]–[25]. Voltage
and frequency scaling (VFS) is one of the most effective
methods for power reduction. Most of the proposed meth-
ods use ML techniques along with VFS to estimate the
proper cores’ voltage and frequency requirements for a given
workload [15], [21], [26]–[33].

Reinforcement learning has been applied through selecting
dynamic voltage and frequency scaling (DVFS) policies to
reach optimal power consumption. More recently, imitation
learning, in [21], is used with the support of an Oracle policy
(or the teacher) to guide policy selection. An offline estimator
is used to develop the Oracle Policy to be used in the imitation
learning. These learning techniques are used to dynamically
scale the voltage and frequency based on changing work-
loads. The lack of training data for VFS control was the main
justification to move to such techniques. The claim was that
there are no datasets generated from manycore commercial
chips or existing simulators specifically for voltage and fre-
quency scaling [21].

In this work, we in fact remove this barrier by gen-
erating a comprehensive dataset for this purpose using
LVSiM (a Low-power and Variation-aware Simulator for
Manycores) [4]. LVSiM is a holistic simulation environment
for low-power design-space exploration considering process
variation. It allows the user to map an application, defined by
its task graph with given workloads and data traffic, to a target
manycore design while minimizing power in the presence of
process variation. Using VFS in LVSiM involves a sequence
of steps and a myriad of options for selecting the proper

voltage and frequency values from a larger set (usually
referred to as the Voltage/Frequency Selection Problem),
then estimating the number of cores required for every
Voltage/Frequency Domain, and finally assigning the volt-
age and frequency values to cores within the manycore
array [4], [15], [16], [34].

LVSiM is a complex tool that provides many different
configuration options to the chip designer to implement the
aforementioned low power techniques – in fact, too many for
a novice user to select the best options. In this paper, we uti-
lize machine learning to recommend the best configuration
based on the features of the application task graph. We first
build a massive dataset of applications and corresponding
LVSiM options, and then use a combination of unsuper-
vised and supervised machine learning to train a neural net-
work to produce the minimum power design for any given
new (previously unseen) application considering process
variation.

In the presence of within-die variation, the optimization
process might deviate from the assumed optimal option.
Within-die process variation creates power and speed dis-
crepancies among cores in the same platform. This affects
tasks’ start and finish time, total execution time, and the
power consumed by the cores executing those tasks. Thus,
the optimal choice might be different for the same application
executed using different process variation profiles.

In an ML context, we refer to these cases due to process
variation as outliers. Having too many outliers (i.e. noise) in
the dataset poses a major problem for supervised machine
learning. In such cases, it may not be possible to train an
ML system such that the resulting model could be used for
future predictions with acceptable results. We resolve this
issue by identifying a subset of outliers that can be modified –
called mutable outliers – and then apply a scheme called data
coercion to facilitate the use of supervised machine learning
later on. Another potential problem facing the use of ML is
the issue of skewed datasets. The issue of skewed data (gener-
ally known as class imbalance in classification) is a common
problem in real datasets [35]. In this work, we also attempt to
handle this problem by balancing different classes.

To summarize, LVSiM is used to generate the data samples.
We use self-organizing maps for unsupervised learning to
cluster the sample pool. A data coercion step is then per-
formed to handle mutable outliers to create more uniform
clusters with less skewed or unbalanced classes. Once the
dataset is prepared and labeled, it is ready for use in super-
vised learning. A multi-layer artificial neural network (ANN)
is then trained to predict the proper LVSiM configuration for
each application to produce the lowest power design.

The contributions of this paper are as follows:
• Novel unsupervised/supervised learning combina-
tion for low-power design-space exploration with
ML-assist that may be used with many other complex
EDA tools.

• New features for application task graphs are proposed
for use in ML that include workloads and traffic.
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• New data coercion approach to identify and reduce
mutable outliers due to random variations. The proposed
approach uses a cost function taking into account power
consumption, design-space exploration time, cluster
uniformity, and class skewness.

This paper is organized as follows. Section II presents
a literature review of previous work. Section III presents
the motivation for our work. The proposed algorithm along
with demonstration examples are discussed in Section IV.
Section V describes the overall ML methodology. Section VI
presents the experiments, runtimes and analysis of the results
to validate the proposed method.

II. RELATED WORK
In this section, we describe existing research on power opti-
mization for manycore designs using machine learning or
artificial intelligence methods to illustrate the breadth and
depth of the ongoing work in this field.

Rahmani et al. proposed in [11] a multi-objective dynamic
power management for a network-on-chip (NoC). The pro-
posed method uses fine-grained voltage and frequency scal-
ing and power gating considering core reliability. The authors
claim to minimize the aging effects while extending the core
lifetime and boosting the overall throughput.

Wang et al. showed in [20] an improved reinforcement
learning (RL) method for dynamic voltage and frequency
scaling in a multi-core environment. They attempted to solve
the problem of focusing on the core’s local conditions by
using core-level Modular Reinforcement Learning. The pro-
posed method considered the state of multiple cores. The
paper claims 28% in energy savings.

In [21], Kim et al. presented an imitation learning (IL)
algorithm to optimize Voltage/Frequency Islands (VFIs).
They claim that their method is the first architecture-
independent IL-based methodology for dynamic VFI control
for manycores. The paper suggests that IL produces better
quality policies compared to reinforcement learning. The
results show 5% in energy savings and lower computation
time by 3.1x compared to RL. In [22], Chen and Liu proposed
a data-driven manycore design. The authors present a many-
core design approach from a machine learning requirements
perspective.

Gupta et al. proposed in [36] an adaptive approach that
uses an online learning framework to estimate power and per-
formance under variable workloads. The proposed approach,
namely STAFF, does feature selection adaptively and changes
the estimation model dynamically. The reported speedup was
6x running on Intel R©CoreTM i5 6th generation.
In [37], Choi et al. proposed a new paradigm for the

communication network of manycores. The new network
architecture is meant to improve traffic for a convolutional
neural network (CNN). The authors analyzed the traffic in
existing platforms, namely LeNet and CDBNet, and used
this information to design a CNN-friendly network for
manycores. The paper claims 1.8x reduction in network
latency.

Islam and Lin proposed in [29] an RL methodology to
dynamically select a proper voltage and frequency scaling
approach based on workload conditions. They claim better
energy savings compared to a single policy approach.

Cai et al. proposed in [28] a ML-based method to min-
imize energy in both nominal and near-threshold comput-
ing. The proposed method showed 31.1% energy saving and
11.5% throughput increase. They considered 30% process
variation in their work.

In [38], Kim et al. used an adaptive Q-learning based
method to optimize voltage and frequency scaling along with
switching cores on and off. They consider electromigration in
their work as well.

In [39], Chen and Marculescu proposed an online dis-
tributed reinforcement learning technique. They used a local
per-core approach to adjust the frequency and the volt-
age of each core and then a global power budget reallo-
cation algorithm. They claim 23% in energy savings and
44.3x higher throughput.

Kodaka et al. developed in [40] a method to predict the
needed number of cores to satisfy workload changes. The
method optimizes for low power without any performance
degradation. The authors used DVFS and power gating to
achieve their goal. They used a maximum of 32 cores to
demonstrate their method.

Drego et al. used a near-optimal search algorithm to select
a proper voltage value (of two available voltages) to mitigate
core-to-core speed variation [41]. The authors claim 6 to 16%
in energy savings. The paper also addresses the switched-
off cores to save on energy while meeting the performance
constraints. The proposed methodology assumed manycore
platforms with 100 and 1000 cores.

Other papers used similar methods of reinforcement
learning, mostly online, to handle power and through-
put for multicore and manycores platforms [18], [19],
[26]–[28], [42]–[47].

There are some key differences between this work and
previous work. As indicated above, publications over the
last decade use iterative ML methods based primarily on or
related to reinforcement learning. The reason given for not
using a dataset to train a neural network in some of these
papers is that such a dataset is not available [21]. In contrast,
we tackle this issue by generating the needed dataset and
using it for non-iterative ML methods that use unsupervised
and supervised learning. Furthermore, most of the previous
work focused on a single optimization problem within the
power or performance framework, such as VFS control, net-
work traffic, or workload allocation, due to the lack of a
holistic tool that can be used to evaluate the overall power and
performance numbers in a multi-stage optimization context.
Our approach uses LVSiM which addresses all these issues
in one tool. Moreover, we introduce a novel data coercion
technique as a corrective measure to handle outliers induced
by process variation. As a result, a direct comparison with
other approaches is difficult. The appropriate comparison
here is to study the cases with and without data coercion.
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We also compare it with a heuristic approach that would be a
natural alternative to our approach.

III. MOTIVATION
Given the wide scope of the work published in the open liter-
ature, we now describe the motivation behind our work in this
section. The conventional multi-layer optimization flow used
in most electronic design automation (EDA) tools is shown
in FIGURE 1(a) [5]. It consists of an optimization loop with
one or more optimization phases. A possible configuration
is selected using an optimization criteria in every phase. The
selected configurations are then evaluated in every iteration
according to a cost function. Acceptable configurations for
all phases are produced once the cost target is reached. The
new trend in EDA tools is to use machine learning techniques
to assist in the configuration selection process [1], [2], [9].
As discussed in the previous section, most of the work used
different flavors of reinforcement learning to optimize for
dynamic voltage and frequency scaling. The learning/training
part is embedded in the optimization loop. In our view, utiliz-
ing machine learning techniques in EDA tools has to take a
more holistic approach [9].

In this work, we attempt to apply machine learning over
the entire process of the power optimization phases, start-
ing from the application characterization phase all the way
down to the mapping onto manycores phase. Design-space
exploration of this sort can be application specific and might
involve multi-phase optimization that usually takes a long
time to optimize [4]. It involves analyzing the application,
estimating the required voltage and frequency values, esti-
mating the required number of cores, assigning voltage and
frequency values to those cores, scheduling tasks into time
slots without conflicts and routing traffic to satisfy the power
and performance budgets. Scaling up the problem to many-
cores with thousands of cores to run thousands of tasks opti-
mizing for high performance and low power is much more
challenging [4], [9]. It is especially important to reduce this
design-space exploration simulation time.

We postulate that the application task graph features
largely determine the options selected in LVSiM. Based on
this, we propose the flow shown in FIGURE 1(b) to auto-
matically figure out the best configuration to use in LVSiM.
So we begin with the application task graph to be mapped
to the manycore design and extract its key features. Instead
of using an iterative loop, we use a trained neural network to
predict the proper settings of the options in LVSiM for every
optimization phase for the given application. The training of
this network is carried out using the key features of the task
graph (input) and known LVSiM options (output) using a
comprehensive set of benchmark applications. This reduces
the time needed to find optimized state during design-space
exploration since the entire space of options does not need to
be examined.

The core problem addressed in this work is a multi-
class classification problem. The applications are first
roughly grouped into clusters using unsupervised learning, in

FIGURE 1. EDA flow (a) using conventional optimization loop to select
the configuration, and (b) using machine learning to recommended the
configuration.

preparation for a subsequent step of supervised learning.
Within each cluster, the same configuration (i.e. set of options
in LVSiM) should be used by all applications in that cluster.
If some do not, they are referred to as outliers. Supervised
learning (used in a later step) works best if most of the appli-
cations within each cluster agree on the same configuration.
Too much noise in the clusters affects the neural networks’
ability to learn and predict. Any randomness in the system
produces outliers in all clusters and impacts the uniformity
of the clusters. Noisy and unbalanced datasets cannot be
easily or reliably trained using supervised machine learning.
A typical solution to this problem is to identify and eliminate
outliers before training begins.

Outliers arise from many sources. Process variation is
one of the factors considered during the power optimization.
Process variation injects a randomness factor when selecting
the optimal configuration during optimization. Other factors
can also be sources of variability during the optimization. For
instance, in the case of 3D manycores, we use xyz-routing to
pass the data from one core to another. Typically, the path
with minimum traffic is used to route the data. If all routes
have equal traffic, then one is selected at random. Moreover,
task scheduling also has an embedded randomness. That is,
tasks with equal scheduling priority are scheduled at random.

In this paper, we propose a data coercion approach
to enhance uniformity within the cluster. The proposed
approach also handles the issue of skewed classes. Some
configurations are more popular than others because they are
good default settings of the options. As a result, many of
the applications may prefer one of these configurations. This
imbalance can create a problemwhen training artificial neural
networks. We attempt to even out the classes with synthetic
data, as discussed later in section.

At this point, the LVSiM tool requires a brief description.
The tool accepts an application task graph as input and pro-
vides users with different possible configuration options in
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each phase tomap the application to themanycore array when
it performs the optimization. Thus, such a tool is instrumental
to realize the proposed flow shown in FIGURE 1(b). How-
ever, it is not straightforward to choose the best options for a
given application. A brute-force technique would be to run all
combinations to find the optimal settings but this is expensive.
Instead, machine learning will be used to recommend the
proper options of each of the optimization phases of the
LVSiM tool for a given application task graph.

IV. PROPOSED DATA COERCION STRATEGY
In this section, we present the central contribution of this
paper in detail. First, we describe data coercion as a concept
in an abstracted form and then describe the proposed algo-
rithm with a simple example. We start with an analogy to a
well-known binary classification problem: cats vs. dogs. If we
are starting from scratch, we need to create images of cats and
dogs by taking thousands of pictures. The features of each
image will be based on the pixels of the image (input) and
each one will be labeled as 1 for cats and 0 for dogs (output).
If all the images can be properly labeled, then no data coer-
cion is needed because we can readily classify all the data into
cats and dogs based on the features. On the other hand, if there
are some cats incorrectly labeled as dogs and vice-versa, they
are called outliers because they are mislabeled. But what if
50% of the images cannot be easily identified as a dog or cat,
or the images are blurry for some reason? Some cat images
may have the likeness of dogs, and some dog images may
resemble cats. We can assign some initial label to them but
if they are clustered into groups and declared to be outliers,
they become eligible for relabeling. These are called mutable
outliers.

We can perform an initial clustering of the images of cats
and dogs using unsupervised learning and then perform a
data cleaning step. In fact, we want to look into the clusters
and identify the mutable outliers and try to re-label them to
their majority class. By doing this, we will make the job of
the supervised learning using neural networks much easier.
Simply stated, data coercion refers to forcing a subset of the
outliers to fit into the majority class of elements in that cluster
to facilitate learning rather than treat them as true outliers.

Carrying the analogy a bit further, we may also need to
generate synthetic data to balance classes if we had far more
dog images than cats. For example, one image of a cat can
be manipulated to create many cat images with the cat in
different locations in the image. One can also flip the image
and repeat the same process. The combination of data coer-
cion and synthetic data generation will make the downstream
classification problem easier and produce better predictions.

A. DATA COERCION EXAMPLE
As discussed in Section III, the new design flow is meant to
use ML to quickly obtain an optimized mapping of an appli-
cation onto a manycore array. The first step is to take each
application, run through all possible options in our LVSiM
tool to determine the power dissipated, and then label each

application with the configuration that produced the lowest
power. We then cluster the applications into groups that used
the same configuration. However, the learning process is
affected by the inherent noise due to process variation, and
randomized decisions during routing and scheduling. This
random variability component is referred to here as the Inher-
ent Variability Factor (IVF).
Consequently, unsupervised learning produces clusters

with lots of outliers sprinkled within the clustered data.
To resolve this dilemma, we check each outlier to see if we
can change its label to themajority label. The cost of changing
a label is a suboptimal option and, hence, more power. If the
increase in power is marginal, then it is appropriate to switch
the label. However, if the power is too high, then label switch-
ing is not permitted. To summarize, after initial clustering,
data coercion tries to identify mutable outliers based on the
power cost to relabel them to the majority, taking into account
if it makes the cluster more uniform.

More formally, after unsupervised learning, a cluster Iwith
majority label Li has an outlier element Sj if it has a different
label LSj than the label of the majority Li within the cluster.
If this outlier is due to the IVF, then it is likely that the cost of
changing its label is small, and it is referred to as a mutable
outlier. Ourmethod uses data coercion on themutable outliers
to try to impose uniformity to enable efficient supervised
learning at the cost of slightly more power.

FIGURE 2 shows an example of data coercion. The circles
represent clusters formed during unsupervised learning and
the symbols therein represent elements of the cluster. Ele-
ments with the x label in clusterA, and o label in clusterB, are
assumed to be outliers and a mutable subset of them should
be relabeled into the label of the majority. The relabeling can
take place only if the cost of doing so is acceptable (i.e. small
power increase); otherwise the element is considered a true
outlier and it cannot be relabeled (i.e. large power increase).
This approach is referred to as data coercion because the
mutable outliers are coerced into the label of the cluster
majority to improve uniformity.

In our context, a given label refers to the optimal config-
uration used to minimize the power consumption for a given
application. However, these labels are not necessarily fixed
so we look for opportunities to enhance classification. But
relabeling the element to any other (less optimal) label incurs
an increase in the power consumption. For example, assume
that the optimal configuration for an element S is labeled x.
If this element is forced to switch to the o label (the less opti-
mal case), there will be an increase in the power consumption.
If this increase in power is considered acceptable according to
a coercion cost function (to be discussed later), then element S
is considered to be a mutable outlier and it should be forced
to be relabeled to the o label with a small penalty in power
increase. This mutable outlier is assumed to be a result of
the IVF problem. However, if the power increase due to the
relabeling is too high according to the coercion cost function,
then element S is assumed to be a true outlier and it cannot
be relabeled. Identifying all mutable outliers and relabeling
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FIGURE 2. Data Coercion applied at the element level.

them to produce more uniform clusters will reduce the IVF
noise effect and improve the classification performance.

B. DATA COERCION COST FUNCTION
The first step is to assign initial labels to each element in
our set for the purposes of clustering using unsupervised
learning. The proposed data coercion scheme is then used to
identify the true and mutable outliers, and then relabel the
mutable outliers to improve cluster uniformity based on its
cost. The coercion cost is calculated using a cost function
during the relabeling process. It incorporates an evaluation
of the cluster uniformity, power penalty, and class imbalance
when relabeling a given element. Note that the simulation
time is also used in the cost function but neglected here for
simplicity.

FIGURE 3 shows a detailed toy example of the coer-
cion cost calculation and the relabeling process. Note that
the example is simplified to demonstrate the proposed
method. Thus, only one stage of the optimization flow of
FIGURE 1(b) is assumed. In this example, we assume 15 ele-
ments with 3 labels, and 3 clusters. The elements represent the
applications and the labels represent the optimization option.
Each element can be assigned one of the three labels with
a specific power cost. FIGURE 3(a) shows the 15 elements
in the dataset and the assumed normalized power cost for
each of the three labels (Note that the numbers relevant to
this example are set in bold). The power cost is normalized
with respect to the optimal value in each column. Thus, the
optimal power label for a given element is shown as 1. The
rest of the non-optimal labels are greater than one.

For instance, elements 1, 3, and 5 have the optimal power
label given as ��. As shown, the normalized power is 1,
while the power for the other suboptimal labels are all
greater than 1, e.g. element 1’s normalized power values for
labels X and O are 1.8 and 1.9, respectively. Similarly, the
optimal power label for elements 2, 6, 7, 8, 9, 10, and 14
is X, and for elements 4, 11, 12, 13, and 15 is O.

The diagram in FIGURE 3(b) shows the elements hypo-
thetically grouped into 3 clusters (supposedly after unsuper-
vised learning based on the elements features) where the
elements are labeled with the minimum power option (hence
the power costs of the elements are considered 1). Elements
1, 2, 3, and 4 are grouped into cluster A; elements 5, 6, 7,
8, 9, 10 into cluster B; and 11, 12, 13, 14, 15 into cluster C.

FIGURE 3. Coercion demonstration example.

The table in FIGURE 3(b) shows the uniformity and power
costs per cluster, and the skewness cost per label. The given
clusters are not uniform, but the majority labels are ��’s
in cluster A (2 out of 4), X’s in cluster B (5 out of 6), and
O’s in cluster C (4 out of 5). Thus, the uniformity cost is cal-
culated by dividing the total number of elements in a cluster
by the count of themajority label. For instance, the uniformity
cost in cluster A is equal to 4/2, i.e. the total number of
elements, 4, divided by the count of the majority label,
2 (elements 1 and 3).

The power cost of a cluster is the total sum of the elements’
costs. For instance, in cluster B, the summation of the total
power costs of all elements, based on the table shown in
FIGURE 3(a) is 6.

Then, the cluster imbalance is computed. A non-skewed
label distribution necessitates 5 elements per label (i.e. 15 ele-
ments divided by 3 labels, 5 ��’s, 5 O, and 5 X’s), which is
not the case here. As shown in FIGURE 3(b), 3 elements are
labeled �� (elements 1, 3, and 5); 5 elements are labeled O
(elements 4, 11, 12, 13, and 15); and 6 are labeledX (elements
2, 6, 7, 8, 9, 10, and 14). Thus, the skewness cost of every
label is calculated as the non-skewed label count divided by
the current label count. For instance, the skewness costs for
the ��, X, and O labels are 5/3, 5/7, and 5/5, respectively.

The total uniformity cost of the given configuration in
FIGURE 3(b) is the sum of the individual clusters’ uniformity
costs, i.e. 4.45. The power cost is the sum of the power cost of
the three clusters, i.e. 15. The skewness cost is the maximum
label skewness costs, i.e. 1.667. Consequently, the coercion
cost is the sum of all costs, i.e. 21.1. These calculations are
shown below the table of FIGURE 3(b).

The example shown in FIGURE 3(b) begins with the opti-
mal power labels. The next step is to modify the labels of the

70192 VOLUME 10, 2022



S. Majzoub et al.: Rapid Design-Space Exploration for Low-Power Manycores Under Process Variation Utilizing ML

elements in the clusters to improve uniformity. FIGURE 3(c)
shows an extreme case where all the elements are forced into
the majority label to produce fully uniform clusters. In this
case, elements 2 and 4 are relabeled�� in clusterA. The power
cost can be obtained from the table in FIGURE 3(a), which
is 7.0 for element 2, and 1.6 for element 4. Unfortunately, the
power cost increases from 4 (FIGURE 3(b) minimum power
configuration) to 10.6 (fully uniform clusters configuration).
The same is applied to clusters B and C, where the power
cost increases to 11.0 and 9.0, respectively. The uniformity
cost, on the other hand, is reduced to 1 for all clusters. The
total uniformity cost is reduced from 4.45 (FIGURE 3(b))
to 3 (FIGURE 3(c)). The total skewness cost is also reduced
as a result of this change to 1.25. However, the full coercion
cost is now 34.85 which is much higher than the option of
FIGURE 3(b), where the cost is 21.1.

We can observe that there is a large penalty going from
FIGURE 3 (b) to (c). The coercion costs of the two cases
are 21.1 (optimal power) and 34.85 (fully uniform clusters).
This might be too high to be acceptable. We need to minimize
the total coercion cost and not just the power, uniformity,
or skewness costs. Thus, the proposed algorithm attempts
to switch the label of various elements and re-calculate the
coercion cost. The initial configuration is assumed to be
the one given in FIGURE 3(b), i.e. lowest power cost. Then,
the coercion cost is calculated when the label of a given
element is switched to any of the existing labels.

FIGURE 4(a) shows the coercion cost covering all scenar-
ios. It shows the coercion cost when an element is labeled ��,
X or O. This helps the algorithm decide whether an element
should be relabeled or not. For example, if element 1 kept
its �� label, then the total coercion cost is going to be 21.1
(as demonstrated in the previous example), but it is going
to increase to 22.7 and 23.8 if it is relabeled to X or O,
respectively.

FIGURE 4. Coercion cost calculation and minimum coercion cost solution.

ClusterA is now used to demonstrate the coercion process.
There are 4 elements in clusterA (1, 2, 3, and 4). The coercion
cost of element 1 is 21.1 for the �� label (it is already ��
in FIGURE 3(b) so it shows the same cost). If element 1 is
switched to X, the coercion cost increases to 22.7. Similarly,

if the label is switched toO, the cost increases to 23.8. So ele-
ment 1 must remain as �� because this is the label with the
minimum coercion cost. Since this label matches the majority
label (i.e. ��), then element 1 is not an outlier. Similarly,
element 3 shows the label with the minimum coercion cost
to be ��, i.e. 21.1, thus it is not an outlier either.

Next, the minimum coercion cost of element 2 is 21.1, i.e.
when it is left as X, which is different than the label of the
cluster majority. This means that element 2 is a true outlier.
In the case of element 4, the coercion cost is 20.6 for the
�� label which is the minimum. Consequently, it should be
switched from O to ��. Hence, element 4 a mutable outlier.
The same procedure can be done to clusters B and C, where
elements 5 and 14 are deemed to be true outliers, since the
minimum coercion costs (21.1 for both as shown in table in
FIGURE 4(a)) are associated with labels�� and X for the two
elements, respectively, so they must remain in place. Thus,
clusters B and C stay the same.
The calculations of the total coercion cost for this case are

shown in FIGURE 4(b). As shown, the power cost increases
to 15.6, i.e. a 4% increase. This power increase is acceptable
to improve the cluster uniformity. The next step would be to
apply unsupervised learning and re-clustering again in
a 2nd pass and to repeat the whole process. This would con-
tinue until the clusters stabilize. In our work, we proceeded
directly to supervised learning using the labels resulting from
one or two iteration of this process.

C. MULTI-PHASE COST FUNCTION
In the previous example, each element is assumed to have
one label. But the flow, discussed earlier in section III, has
multiple phases so, in reality, each element should have a set
of labels, one for each phase. The goal is to select a config-
uration option for each of the different phases all at once.
Each label represents the optimization method used during
one of the phases within the optimization flow shown earlier
in FIGURE 1(b). The following demonstration example is
used to show the calculation of the coercion cost in the case
of a multi-phase optimization flow.

Table 1 shows an example of the normalized power values
for 15 elements in a two-phase optimization example. Each
phase has a label set, namely phase 1 has��, X, andO labels;
and phase 2 has �, 4, and ∇ labels. Each element can be
assigned only one of the three labels in each of the two phases.
The table shows the power cost for each label assignment in
the two phases. An assignment is assumed to be the minimal
power case if it is represented by 1 as the normalized power.
Thus, each row represents an element with two 1s indicating
the minimum power labels for each of the two phases.

Similar steps are used to calculate the coercion cost for the
multi-phase case. First, we calculate the total coercion cost
for the strictly optimal power case. In this case, we consider
the normalized power cost to be 1 for all elements. Thus, the
power cost is the summation of all 15 elements, i.e. 15. The
average uniformity cost of each phase for all clusters are as
follows:
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TABLE 1. Normalized Power of 15 elements in a Multi-Phase
Optimization Example.

• Cluster A uniformity cost is (4/2+4/3)/2 = 1.667
• Cluster B uniformity cost is (6/5+6/4)/2 = 1.350
• Cluster C uniformity cost is (5/4+5/3)/2 = 1.458
In the case of cluster A, phase 1 has 3 labels where the

�� is the majority label, since it is assigned to two elements
(elements 1 and 3). Thus, the number of elements in the
cluster, i.e. four, divided by 2 is the uniformity cost of this
cluster for phase 1. In the case of phase 2 of cluster A, the
� is the majority label (assigned to three elements, namely
elements 2, 3, and 4), so the uniformity cost is 4/3. Thus, the
total uniformity cost of clusterA is the average of the two, i.e.
(4/2+4/3)/2. In the same way, the cluster uniformity cost is
calculated for clusters B and C. The total cluster uniformity
cost is the sum of the uniformity costs of all clusters.

As discussed earlier, the skewness of a given label is calcu-
lated by dividing the ideal number of elements per label by the
actual number. Since the total number of elements is 15 and
there are 3 labels in each phase, the ideal number of elements
per label is 15/3 which is 5. For instance, the total number of
elements labeled � is 4 in phase 2. Thus, the skewness of the
� label is 5/4. Similarly, the skewness cost is calculated for all
other labels. Then, the skewness cost per phase is considered
to be the maximum skewness cost of its labels. Thus, the
skewness cost per phase are calculated as follows:
• Phase 1 skewness cost is max(5/3,5/7,5/5) = 5/3
• Phase 2 skewness cost is max(5/4,5/7,5/4) = 5/4
The total skewness cost is the average of the two phases,

i.e. (5/3+5/4)/2. The coercion cost is then the summation of
the power, uniformity, and skewness costs, which in this case
is given by 15+4.475+1.458 = 20.9.

D. COERCION COST EQUATIONS
Based on the detailed calculations given above, the gen-
eral equations used to calculate the coercion cost can now
be presented. It should be noted that each of the power,

simulation time, uniformity, and skewness costs are mul-
tiplied by a calibration factor to fine tune the coercion
cost.

Henceforth, the term sample will be used to refer to an
element of a cluster since we are now describing the specifics
of our methodology. It refers to the application or benchmark
to be mapped to cores of the manycore design using LVSiM.
The power cost is the summation of the normalized power
for each individual sample within the cluster. The total power
cost is the summation of the clusters’ power costs multiplied
by a calibration weight as shown in Eq. (1).

PC = WP

∑NC

1

(∑NS

1
NPi

)
(1)

WP: power cost calibration weight.
NPi: normalized power of a given sample.
NS : number of samples in the cluster.
NC : number of clusters

The simulation time cost is calculated in a similar fashion
as the power cost. The equation is shown below:

TC = WT

∑NC

1

(∑NS

1
NT i

)
(2)

WT : time cost calibration weight.
NTi: normalized simulation time of a given sample.
NS : number of samples in the cluster.
NC : number of clusters

The total uniformity cost is the multiplication of the unifor-
mity calibration weight by the summation of the uniformity
cost for all clusters. The uniformity cost of each cluster is the
average of the uniformity cost per phase for that cluster. The
uniformity cost per phase is calculated by dividing the total
number of samples in a cluster (NS ) by the number of samples
of the majority label (MS ) within that phase. The uniformity
cost for a cluster is shown in the equation below:

UC = WU ×
∑NC

1

∑MPh
1

(
NS
MS

)
MPh

 (3)

WU : uniformity cost calibration weight.
MPh: number of phases.
NC : number of clusters.
NS : number of samples in the cluster.
MS : number of samples of the majority label in the cluster.

The skewness cost is the skewness calibration weight mul-
tiplied by the average phase skewness cost (summation of
the skewness costs of all phases divided by the number of
phases). The skewness cost per phase is equal to the maxi-
mum skewness cost of all labels in that phase. The skewness
cost of a given label is equal to the ideal number of samples
per label (i.e. total number of samples, NTS , divided by the
number of labels in that phase, NL) divided by the total
number of samples for a given label in that phase (LTS ).
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The skewness cost formula is shown in the equation below:

SC = WS ×

∑MPh
1 max

(
NTS

NL×LTS

)
j

MPh
(4)

WS : skewness cost calibration weight.
MPh: number of phases.
NTS : total number of samples.
NL: number of available labels for a given phase.
LTS : total number of samples for a given label for a given
phase.

Finally, the coercion cost is the summation of the power,
uniformity, and skewness costs. The general formula to cal-
culate the coercion cost is given in the equation below:

CC = PC + TC + UC + SC (5)

CC: Coercion Cost.
PC: Power Cost.
TC: Simulation Time Cost.
UC: Uniformity Cost.
SC: Skewness Cost.

E. DATA COERCION ALGORITHM
FIGURE 5 shows the proposed data coercion algorithm. The
algorithm starts by importing the samples with their features.
Synthetic samples are then created based on the features
of the real samples. The values of the synthetic samples are
generated at random, within the range of the real samples.
The synthetic samples help to produce well-represented and
well-spread-out data set for clustering purposes only.

A demonstration of synthetic data is shown in FIGURE 6.
Each sample is represented as a point in the 2D plot (assuming
2 features and 9 clusters) and the labels are represented using
different colors. As shown, the real data is usually packed
into groups in some corners (colored regions) and scattered in
others. Synthetic data generation populates the open areas of
all clusters evenly to help create a better distribution. A Self-
Organizing Map (SOM) is then used to group the sample
pool into clusters. The output of this step is still going to
be non-uniform clusters, but then the data coercion algorithm
converts them into more uniform clusters in preparation for
supervised learning. While it is possible to use the results of
unsupervised learning to perform inference, we found it more
efficient to use a neural network to produce the options for
each phase, as will be discussed later.

The algorithm of FIGURE 5 continues by selecting a clus-
ter, and then calculating the coercion cost for every sample
within this cluster, as described earlier. The sample with the
minimum coercion cost is selected for re-labeling. Then, data
coercion is applied to the sample with the minimum coercion
cost. Consequently, if the label of that sample can be changed
to the majority label, then it is considered to be a mutable
outlier. Otherwise, if it differs from the majority label, it is a
true outlier.

Changing the label of one sample increases the power
and affects the uniformity of the cluster under examination

FIGURE 5. Proposed Data Coercion Algorithm.

and the overall skewness. Thus, the algorithm revisits the
remaining samples within the cluster and attempts coercion
again. All outliers within the cluster have to be identified as
either true or mutable. Then, it will be coerced, or relabeled,
if it is a mutable outlier. Finally, after visiting all samples
in all clusters, the algorithm produces a more uniform set of
clusters. The data coercion algorithm is applied to the training
set while the test set is used on the trained neural network to
recommend the LVSiM options to obtain low power.

V. MACHINE LEARNING METHODOLOGY
In this section, we describe the complete methodology for
low-power manycore design-space exploration under process
variation using machine learning. We have already described
how we clean the data so that it is suitable for supervised
training. In order for the ANN to be trained, a set of features
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FIGURE 6. Real and Synthetic samples within the clusters.

must be defined and used for each application as input to the
ANN and an optimal configuration must be specified with a
binary code at the output. Then, a suitable architecture of the
ANNmust be identified, which is more of an art than science.
After training, themachine learning flow is used to predict the
options for LVSiM for any new application, and then applied
to LVSiM produce the optimized array in a single run.

A. LVSiM OPTIMIZATION PLATFORM
For the interested reader, the details of the simulator have
been described in [4] but we provide pertinent information
here for completeness. The LVSiM optimization flow is
shown in FIGURE 7. The application is first analyzed to
determine the initial power and speed characteristics. The
tasks and the number of cores for each Voltage and Frequency
Domain (VFD) are estimated. Then, a core reduction step
is used to optimize the number of cores needed per VFD.
AVFD reduction step is then performed to reduce the number
of domains in the design to a pre-defined number. The core
reduction step within VFDs is performed again to further
reduce the number of cores. Next, the layout of VFD onto
cores is performed followed by themapping of the application
onto cores.

As mentioned earlier, the term Sample is used to refer to
the application or benchmark to be mapped into manycore
using LVSiM. Each optimization stage is referred to as a
Phase. Selecting one option in each phase defines the set
of Labels for a sample and constitutes a configuration in
LVSiM. The five optimization phases in LVSiM are the core
reduction phase, the VFD reduction phase, VFD layout shape
phase, VFD layout order phase, and task mapping to cores
phase.

The core reduction phase optimizes the number of needed
cores by attempting to remove some cores and migrate their
tasks onto other cores within other VFDs. There are four
different options to consider in this phase [9]:

1) Core to Multiple Domains (C2MD): tasks of removed
core can be scheduled on any destination core of any
destination VFD.

FIGURE 7. LVSiM simulation platform.

2) Core to Single Domain (C2SD): tasks of removed core
must be scheduled on any other core but all within the
same destination VFD.

3) Core to Single Core (C2SC): tasks of the removed core
must be scheduled on any other core but all within the
same destination core in the same destination VFD.

4) VFD Nominal Number of Cores (VFDNC): uses the
nominal number of cores without any further reduction.

The VFD reduction phase reduces the number of voltages
and frequencies in a design from a larger given set. The
Removal-Cost Method is used in the reduction [4], [15], [34].
The available options by LVSiM are as follows:

1- Reducing voltages and then frequencies (VFR).
2- Reducing frequencies then voltages (FVR)
3- Reducing both voltage and frequencies simultane-

ously (SVFR).

The VFD layout shape phase assigns the voltage and fre-
quency values onto actual cores. LVSiM provides three
options for VFD layout shape as follows:

1- Stacked Domain Layout (SDL), VFDs are stacked
one after the other starting with the one with the highest
voltage and frequency values.

2- Alternating Domain Layout (ADL), the voltage and
frequency values of the VFDs are alternated.

3- Square Domain Layout (SQDL), a square shaped
island encompassing a group of cores of the same VFD
are going to be placed in an alternating fashion. The
size of the square is user defined.

The VFD layout order phase in which the VFD are placed
can be of two user-defined options as follows:

1- Number Ordered VFD Layout (NOVFL), VFDs are
placed from higher to lower Vdd/Frequency values.

2- Traffic Ordered VFDLayout (TOVFL), the VFD are
placed based on the traffic between VFDs.

The task scheduling phase is a modified As-Soon-As-
Possible (ASAP) scheduler. The scheduler prioritizes ready
tasks based on which one should go first. The following are
two prioritization options to be used during scheduling:
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1- Child-based Task Priority (CTP): after random
shuffling, ready tasks with more children are sched-
uled first. Prioritizing with respect to the number-
of-children assumes that finishing a task (with more
children) would allow more successor tasks to be
scheduled.

2- Slack-based Task Priority (STP): after random shuf-
fling, ready tasks with smaller slack times are sched-
uled first.

In summary, the given Phases and Labels are as follows:
- Core Reduction Phase 1: given Labels {C2MD, C2SD,
C2SC, VFDNC}.

- VFD Selection Phase 2: given Labels {FVR, VFR,
SVFR}.

- VFD Layout Shape Phase 3: given Labels {SDL, ADL,
SQDL}.

- VFD Layout Order Phase 4: given Labels {NOVFL,
TOVEL}.

- Task Scheduling Phase 5: given Labels {CTP, STP}.
We can now determine the total number of options. There

are 4 × 3×3 × 2×2+1=145 possible configurations to try
in LVSiM so it may be difficult for the user to easily deter-
mine which one to use to obtain the optimal power. The
extra added option is the nominal case with only one nom-
inal VFD. Note that, although LVSiM provides more options
for the task priority and core selection during scheduling,
we limited the methods to those mentioned above. This is
because the selected methods produced the best power and
performance numbers for a wide set of applications in our
initial experiments with the tool. Furthermore, limiting the
available configuration options helps reduce the number of
simulation cases while still demonstrating the proposed idea
with a reasonable overall dataset generation time. We built a
database of designs and options that is more representative of
the expected applications to be used in manycore designs.

B. FEATURE SELECTION
The feature selection issue is perhaps the most important and
difficult part of the machine learning task. Since the prob-
lem at hand is very complex with multi-phase optimization,
the important features of an application must be selected
carefully to improve the overall performance of the neural
network. Here we are looking for the application features par-
ticular to the optimization steps. We believe that the optimal
configuration is tied to the characteristics of the task graph
of the application. For instance, any selected features have to
capture properties such as slack, execution time, task graph
width, etc.

Table 2 shows the 13 features under initial consideration.
The first 3 are conventional features used in similar optimiza-
tion cases, namely traffic, critical path time, and parallelism.
The traffic is considered as the number of edges or com-
munication links between tasks. The critical path time is the
processing time of the tasks that lie on the critical path of the
task graph. The parallelism is the sum of all task computation
times divided by the critical path time.

In this work, we propose 10 more features specifically for
power optimization. These features can be extracted after
analyzing the task graph information only. As shown in
Table 2, the Total Slack feature is the sum of the slack of
all tasks within the application. The Total Execution Time is
the sum of execution time of all the tasks of the application.
The Task-GraphWidth is measured by the maximum number
of tasks executed simultaneously within the task graph. The
Core-Task Density is the task graph width divided by the total
number of tasks (i.e. the average number of tasks executed per
core).

TABLE 2. Features ranked in each Optimization Stage.

Given that the only available information is from the task
graph at this point, theVFD is defined by a group of taskswith
the same slack. The density for the VFD is defined as the ratio
of the number of cores divided by the total number of tasks in
that VFD. In other words, it is the maximum number of tasks
(within the VFD) that can run simultaneously divided by the
total number of tasks in that VFD. The VFD Density feature
is calculated as the average densities of all VFDs as shown
below:

VFD Density = mean
(
Number of Cores
Number of Tasks

)
(6)

This feature encapsulates the number of required cores, and
number of tasks for each VFD, i.e. tasks with similar slack
(since tasks with similar slack belong to the same VFD).

The Power-Task Density is the total dynamic power of a
task graph divided by the total number of tasks. The dynamic
power of a task is assumed to be the dynamic power of a core
running this task given the voltage and frequency values to
eliminate its slack. The idle power is unknown at this point
because the application is not mapped to the cores yet.

The maximum and average number of parents of a task are
assumed to be the number of times a given task is a parent of
another task. The maximum and average number of children
are assumed to be the number of times a given task is a child
task. The averages in both cases, i.e. features K and M, are
calculated excluding zero values.

Table 2 also shows the features ranked by their rel-
ative importance, from 1 to 13, for each optimization
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stage. The Infinite Latent Feature Selection algorithm by
Roffo et al., [48], is used to prioritize the features with respect
to each other. As shown, Parallelism, VFD Density, and
Task-Graph Width are the most important features for most
cases. The Core-Task Density seems to be the least important.
FIGURE 8 however shows the correlation matrix of the given
features and J, K, L, andM have high correlations. Hence, the
K, L, andM features were removed during classification after
many trials. The top 10 features A-J were used in our flow.

FIGURE 8. Correlation matrix of the selected features.

C. SUPERVISED LEARNING FLOW
Supervised learning is used to train the artificial neural net-
work using the database generated as described in previous
sections. For the training set, 10 features are used as input to
the ANN. The outputs are binary-encoded values that specify
which of the 145 possible LVSiM configurations was used to
obtain the optimum power. After training, the ANN is used to
predict the proper LVSiM configuration for the applications
in the test set.

We now review the key steps shown in FIGURE 9. For a
given application (or sample), LVSiM is used to generate the
power consumption of the mapped application onto a many-
core array. All possible combinations of the configuration
options are used in a brute-force approach to find the power
consumption numbers for all configurations. Once the power
numbers are obtained, the sample’s features along with the
power numbers are passed to the data coercion algorithm. The
new coerced datasets are then used to train the ANN.

Finding the proper ANN architecture is another difficult
task. After many trials, we selected a 5-layer ANN with
10 input features, 50 hidden units in layer 2, 30 hidden units
in layer 3, 15 hidden units in layer 4 and 15 binary-encoded
outputs. This is depicted in FIGURE 10. Note that the outputs
of the neural network are associated with Phases 1 to 5 with
an additional output for the default case of a uniform voltage
and frequency for all cores. The outputs for each phase can
be generated by individual neural networks but we found it
to be more efficient using one neural network. The outputs
can be decoded to produce 1-out-of-145 possible configura-
tions associated with the optimal settings, if desired.

The optimization platform is given in FIGURE 11.
As shown, the machine learning prediction platform produces

FIGURE 9. Steps used for the training Phase of the Artificial Neural
Network.

FIGURE 10. Neural Network Architecture.

the recommended options to be used in every step of the
LVSiM optimization flow. One ANN is trained to produce
all LVSiM options at once to be used for optimization.

The main advantage of the proposed system is that the user
does not have to follow a brute-force approach and try all
145 different permutations to reach the one that produces the
minimum power. Thus, the design exploration time is reduced
drastically. All the hard work is done in the ML portion of
the design flow to build the needed expertise into the trained
neural network. The art of selecting the proper architecture
for the ANN is non-trivial but once a workable architecture is
found, it can be re-used as new data is added to the database.
Despite the fact that it takes a long time to generate the needed
database and properly train the network, the new platform can
predict a reasonable configuration in a single run in a shorter
amount of time.

VI. EXPERIMENTS AND ANALYSIS
In this section, we describe the experimental setup.
We present the benchmark characteristics, and runtimes, and
finally analyze and compare the results of with and without
the proposed coercion algorithm.

A. BENCHMARK CHARACTERISTICS AND PLATFORM
SETUP
We used 36,000 Standard Task Graph (STG) benchmarks
created by combining STGs generated by Tobita and
Kasahara [49]. FIGURE 12 shows two features of the used
benchmarks (the two top-rated features of Table 2, namely B
and H). As it is intended to show, the benchmarks are selected
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FIGURE 11. Proposed manycore optimization platform using ML.

FIGURE 12. Characteristics of 36000 Standard Task Graphs benchmarks
generated by Tobita et. al. [49].1 Parallelism versus VFD Density (highest
ranked features), showing the training and the test sets.

to cover a wide range of values for all the given features. The
figure also shows the random nature of the selected training
and test sets.

The dimensions of a manycore design is defined by the
number of columns, rows, and layers or dies. We consider
a 3D manycore architecture with 2 dies stacked on top of
each other. Each layer has a two-dimensional router mesh.
The routers are also connected through a vertical link to
the upper layer to create the xyz Network-on-Chip (NoC)
used by the simulator. The manycore array size is assumed
to be 40 × 40×2=3200 cores. The values of the voltage
levels vary from 0.6V to 1.4V in 0.05V increments, and the
normalized frequencies from 0.15 to 1.0 with steps of 0.05.
Finally, the number of voltages and frequencies permitted in
the design are 2 and 4 respectively, and any unused cores
are switched off completely. The NoC routers and links are
assumed to run at the nominal voltage and frequency without
any voltage/frequency scaling.

B. RESULTS AND ANALYSIS
Our research objectives required an exhaustive set of data to
demonstrate the viability of our new approach. Therefore,

1http://www.kasahara.elec.waseda.ac.jp/schedule/

TABLE 3. Outliers Numbers using the Proposed Method.

TABLE 4. Prediction Results.

we carried out a comprehensive set of simulations to cre-
ate a large data pool. Each STG benchmark was simulated
145 times to select the best configuration. The 36000 bench-
marks required a total of 36000 × 145=5,220,000 sim-
ulations. To carry out these simulations, we deployed a
high-performance computing (HPC) environment.

Although this scale of simulation is needed in this work to
demonstrate the proposed approach over a wide set of appli-
cations, it may not be needed in general. The data generation
time can be reduced to a manageable level when focusing
on applications within a single domain. The benchmarks can
be selected carefully targeting a specific domain so that the
total number of simulations is kept to a minimum (especially
if the runtime for each configuration is high). This requires
domain knowledge about the application and the tool itself.
In addition, the tool should be mature and stable (such is the
case for LVSiM) so that the data set generation process need
only be performed once. The HPC environment and runtime
characteristics are provided in a section to follow.

As mentioned, the sample pool was divided into two sets:
the training set with 24000 samples (66.7%), and the test
set with the remaining 12000 (33.3%) samples. The data
coercion algorithm was performed on the training set to
identify the true and mutable outliers. Table 3 shows the total
number of outliers with and without coercion. As shown, the
number of outliers is almost 52% of the data, which is a very
high number due to process variation. Applying the proposed
method reduced the number of outliers to a very reasonable
percentage in the single digits (7.9%) as shown in the table.
Several iterations of unsupervised learning and data coercion
were performed until a consistent set of clusters was obtained.

Two ANNs were trained using the training data with and
without data coercion. Table 4 shows the results of the predic-
tion step on the training set. The standard figures ofmerit such
as the correlation accuracy, precision, recall, and F1 scores
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are listed, all using their corresponding multi-class versions.
As shown, the numbers improve considerably using the new
method. When the ANNs were used for inference on the test
set, we computed only the resulting power from LVSiM and
compared it to the optimal case. The average power increase
across all samples is 3.9% for the proposedmethod, while it is
7% for the approach without data coercion (see Table 4 ). The
runtime cost is the sum of the neural network forward pass
plus the optimization time which is 1.4x longer on average.

The 3.9% power increase is expected and hard to mitigate
because of process variation. As discussed in earlier sections,
consider an application mapped to the cores with process
variation profiles 1 and 2. The configurations that produce
the optimal power are going to be different for the two
process variation profiles. In fact, the power consumption
difference between the two profiles is going to be within the
given margin, i.e. 3.9%. Furthermore, having two different
applications as opposed to one (even with similar features)
adds another complexity dimension to the problem at hand.
This was observed and confirmed during experimentation.

C. HEURISTIC ALTERNATIVE TO ML
An alternate way to quickly find an optimal configuration is
to use a heuristic approach. We describe this approach and
compare it to our method. The heuristic approach is defined
by selecting the top power saving configurations as a subset of
the total number of 145 possible configurations. For example,
the top 10 power saving configurations can be identified
based on the training set, and then used on the test set. Which
one to use is not clear so all 10 must be attempted.

Two more figures of merit are introduced to better cap-
ture the efficacy of the heuristic method, namely the Aver-
age Power Increase (API), and the Optimization-Time Ratio
(OTR). The API and OTR refer to the average power increase
and the optimization time compared to the optimal. The
acceptable but suboptimal case obtained using the heuristic
approach is to try all optimization configurations in the subset
(i.e. 10 in this case) for a given application and then selecting
the one that produces the highest power savings. The opti-
mization time ratio is the ratio of the total sum of the times
taken to explore all optimization configurations in the subset
compared to the optimal method. The API and OTR values
are calculated considering the samples in the test set.

FIGURE 13 shows the API and OTR values considering
the top power configurations ranging from NC = 1 to 10.
As explained earlier, all configurations in the selected subset
are tried to see which one obtained the best power num-
ber. This is going to increase the design space exploration
time. For instance, if the selected subset has ten possible
methods, then, ideally, the optimization time should be ten
times. Thus as shown in FIGURE 13, as NC increases, the
optimization time increases but the resulting power decreases.
That is, increasing the number of possible methods improves
the chances of finding a lower power consumption method.
In fact, including all possiblemethods (i.e. 145 cases) is going
to take very long time to finish the design exploration, but it is

FIGURE 13. The API and OTR results of the heuristic method using a
number of the top power saving configurations (NC), starting from 1 to
10 different configurations.

going to obtain the optimal method. This behavior is clearly
visible in FIGURE 13, as the number of possible methods
(i.e. NC) increases, the optimization time increases and the
power consumption number is reduced.

If the API values shown in FIGURE 13 are compared to the
proposed method, as shown in Table 4, the NC= 10 seems to
produce similar results (3.9% for the proposed method versus
4.1% for the heuristic method with NC = 10). The OTR in
this case is around 11.6x for the heuristic method compared
to 1.4x for our ANN method. This means that the speedup is
about 8.4x to reach the same power saving numbers. Further,
the speedup of the ANN approach over brute-force is about
145x, i.e. trying all 145 possible methods.

D. COMPUTATIONAL ENVIRONMENT AND RUNTIMES
The HPC facilities shown in Table 5 were used to cre-
ate the dataset. As mentioned earlier, our dataset contained
36,000 applications. Each application was simulated using
LVSiM on all 145 configurations. This amounted to a total of
5,220,000 LVSiM simulations. The total time taken to gen-
erate the dataset was roughly 1-2 months, using the available
HPC facilities, which allowed up to roughly 700 processors
to run in parallel. For each of the 36,000 applications, the best
configuration in terms of power was extracted.

TABLE 5. HPC Facilities Used to Generate the Dataset.

The MATLAB software tool was used as the ML devel-
opment environment. The extracted relevant data was passed
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to MATLAB. The commands patternnet and train were used
to create and train the ML model. The time taken to perform
unsupervised learning and data coercion on the 24,000 data
points of the training set was about 20 hours to generate
the clusters and clean the data. Supervised training to build
the ML model required about 1 hour. The prediction time
performed to generate the 12,000 configurations of the test
set took only few minutes. All these steps were performed on
a Macbook pro with 2.5GHz processor and 16GB of RAM.
From an end-user’s perspective, the time required to predict
one configuration and execute the LVSiM code once is equal
to the prediction time, i.e. few minutes, plus the optimization
time taken by the predicted method (i.e. anywhere from 1 to
24 hours of simulation time depending on the configuration).
Clearly, there is a significant savings in time for the user due
to ML.

VII. CONCLUSION
In this paper, we proposed a methodology for manycore
design space exploration under process variation. In con-
trast to reinforcement learning used in previous approaches,
we use a combination of unsupervised and supervised
machine learning procedures to automatically determine the
best optimization methods to be used in LVSiM based on the
features of the application. A key contribution of this work is
a novel data coercion approach used along with unsupervised
learning to manage outliers. The proposed algorithm attempts
to reduce outliers in the dataset in order to improve the
performance of supervised learning.

A large database was generated for this purpose but over
50% of the data were deemed to be outliers. The pro-
posed data coercion algorithm was used to separate true
outliers from other mutable outliers. The mutable outliers
were coerced into the label of the cluster majority to make
these clusters more uniform at the cost of slightly more
power. The outlier percentage was reduced to 8% thereby
producing a more homogenous dataset. In other words, the
proposed method is an outlier identification and reduction
approach to improve the ANN performance in the case of
noisy datasets. This proposed approach can be applied in any
situation where lots of outliers exist in the data and a cost
function can be developed to decide whether or not coercion
should be carried out. The overall proposed methodology can
be applied in EDA to improve the ease-of-use of complex
tools by providing the expertise in terms of a trained neural
network.

There are some limitations of the ML approach described
herein. It is suitable for tools with a large but finite set of
options. The configurations should be limited in number and
the same applies to the number of benchmarks. Otherwise,
the data generation time may be significant. Of course, the
data is generated only once but the total runtime must still
be kept to an acceptable level. Other possible limitations of
the approach are that the data must have mutable outliers for
which choosing a different label is possible and the cost of
choosing a different label is small. If the degree of process

variations is significant, the approach may not be as effective
since the number of outliers may dominate the data set.
Aside from these issues, using the proposed ML flow and
data coercion algorithm produced better power numbers than
without data coercion, and a much faster optimization time
compared to brute-forcemethods (∼100x) or a more heuristic
approach (∼10x).
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