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ABSTRACT
We consider network flow congestion management modelled after

electricity distribution networks. The desired consumption or pro-

duction of the agents that populate such networks are determined

by a higher-level (e.g. national) market mechanism, but this can lead

to congestion locally. We first consider congestion solutions in the

form of curtailment independent of the price set by the higher-level

market. Congestion solutions of this type that satisfy properties

of fairness are described in the literature. We contrast these fair

solutions with curtailment solutions that maximize total welfare,

and we present an algorithmic mechanism that computes such max-

imal welfare solutions. We then combine the two approaches to

compute hybrid congestion solutions where agents can choose to ei-

ther claim their fair share or to participate in a welfare-maximizing

aftermarket. We incentivize aftermarket participation with an indi-

vidually rational pricing scheme, while offering agents’ fair shares

at the higher-level price. Our aftermarket solution provides a bud-

get balanced alternative to locational marginal pricing that gives

agents the choice to claim their fair share at a fair price.

CCS CONCEPTS
• Networks → Network resources allocation; • Hardware →
Smart grid; • Computing methodologies → Multi-agent systems.
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fairness, congestion management, resource allocation, mechanisms
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1 INTRODUCTION
With the changes in the electric grid brought about by the energy
transition new challenges arise, many of which concern flexibility
of users [7, 19, 21, 27]. A central challenge is that of grid congestion,
which traditionally only occurs at the transmission system level,
but now also occurs at the local distribution system level [26]. With

the rapidly increasing penetration of distributed and renewable
energy resources these problems can be expected to extend into
the future [4], especially since research indicates that neither grid
expansion nor storage are solutions on the short to mid term [9, 24].
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A popular congestion management approach at the transmission

system level is locational marginal pricing (LMP), which is part of

the modern standardized market design [15]. LMP determines the

area price based on the marginal cost of producers that can actually

deliver in that area within the transmission network capacity con-

straints. Nevertheless, since the price set at the transmission system

level does not reflect local distribution grid constraints, local con-

gestion management is required [20]. LMP can fill this role as well,

implementing what is essentially scarcity pricing, i.e. raising local

prices until users sufficiently reduce their network usage. However,

LMP is not budget balanced and does little to utilize local flexibility.

In this paper we propose alternative mechanisms for local con-

gestion management. We model capacity constrained distribution

networks as rooted weighted trees whose edge weights represent

line capacities and whose root represents a connection to a higher-

level network, e.g. the transmission system. Such non-cyclic graphs

accurately model the active radial structure of most distribution

networks [23]. The vertices are populated by agents that represent

prosumers: users of the network that can both consume and/or

produce power. Based on the price 𝑝 set by the higher-level market

mechanism, these agents have desired prosumptions that may cause

congestion in the local network. Our congestionmanagement mech-

anisms follow the common approach to active power congestion

management, which is curtailment [2, 12, 22, 25, 26]. Curtailment

entails allocating to agents a prosumption that is a reduction of

their desired prosumption in order to resolve congestion.

Mechanisms for local congestionmanagement can be designed to

focus on different aspects, the most straightforward being economic

efficiency as expressed by utilitarian welfare. Mechanisms such

as LMP aim to achieve this through price signals that result in

allocation of capacity to the most competitive agents. However,

such solutions do not consider another aspect that has become

prominent in energy networks: fairness [10]. Fairness deserves

explicit consideration because, when resolving grid congestion, the

question arises how congestion solutions affect different users, not

just individually but also relative to each other. Since energy has

become a basic need for full participation in modern society, this

issue of fairness between users must be addressed [6].

In this paper we consider both approaches. On the one hand,

congestion solutions should be fair to all users of the network. On

the other hand, congestion implies a market limitation and has

economic consequences for the users. Users may differ in how

they value fairness versus welfare, which suggests that congestion

solutions ideally are able to reconcile these differing viewpoints.

However, since fair congestion solutions consider relative prosump-

tions instead of individual demand curves, it is unlikely that a fair

curtailment solution also maximizes the total (utilitarian) welfare.

We first consider congestion solutions in the form of curtailment

that maximize the agents’ total welfare. We present an algorithmic
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mechanism that computes the maximal welfare curtailment alloca-

tion that is feasible for all agents at the price 𝑝 set by the higher-level

market mechanism. Our algorithm considers the demand curves

that the agents submit to the higher-level market mechanism to

determine maximal welfare, and is purely a curtailment solution in

the sense that it does not send price signals.

For fair congestion solutions we turn to the literature [11, 16].

Rather than defining fairness ourselves we work with the abstract

concept of agents’ ‘fair shares’ that can be determined by any fair

congestion solution of choice. With these generalised fair shares

we then go on to propose an algorithmic mechanism that computes

a hybrid congestion solution that combines fairness and welfare.

Our mechanism provides agents with the choice to either claim

their fair share or to participate in welfare maximization, resulting

in a hybrid congestion solution that focuses on the goals of the two

sets of agents in parallel to each other.

Finally, we provide incentives to organize this hybrid solution.

We present a pricing scheme for the welfare maximization aspect

of our hybrid solution that lets us define a congestion aftermarket.

Our congestion aftermarket operates on top of the fair shares and

the higher-level price 𝑝 , letting agents trade portions of their allo-

cated fair shares at locally marginal prices. This principle of local

aftermarket prices bears similarities to LMP, with the two most

important differences being that our aftermarket is budget balanced

and does not expose agents that choose to claim their fair share

to congestion prices. Our aftermarket incentivizes participation as

we prove that it is individually rational for agents to participate,

but does so without imposing economical consequences on agents

that choose not to participate. Since agents are always free to claim

their fair share at the higher-level price 𝑝 , we argue that our hybrid

congestion management mechanism constitutes a fair mechanism.

The main contribution of this paper is our congestion manage-

ment solution, provided in algorithmic form, that both allows indi-

vidual agents to claim their fair share and simultaneouslymaximizes

welfare for the other agents in our novel congestion aftermarket.

2 RELATEDWORK
Integral network management frameworks, such as that proposed

by [14], generally rely on congestion pricing like LMP. [5] and [8]

address congestion with demand side management which also usu-

ally relies on price signals. [17, 18] focuses on the distribution mar-

ket operator to implement settlement or penalties for congestion

management. [13] consider fairness in energy rates with respect to

how the burden of network overhead costs are divided over pro-

sumers. [20] propose time-slot auctions for EV charging to resolve

congestion and promote fairness among asymmetric parties. [1]

address fairness in EV charging through curtailment with a fair al-

location that is found by optimizing a fair objective function under

feasibility constraints. [11] consider different notions of fairness

for greedy local matching under capacity constraints. [3] evaluate

which factors in power networks, specifically PV, should be subject

to fairness considerations. In comparison to the discussed work,

we propose opt-in fairness alongside welfare maximization and

emphasise self-contained local market resolution of congestion.

3 PRELIMINARIES
In this paper we consider congestion in tree graphs modelled on

electricity distribution grids. Given a situation where the users of

the network collectively cause congestion, we seek solutions for

this congestion. In particular, we investigate both fair and welfare

maximizing solutions. Fair solutions can be given as curtailment of

users, while welfare solutions often involve a market mechanism.

We start by modelling commodity flow in congested tree net-

works populated by agents. Our model resembles a standard source-

sink flow network with edge constraints, except that we have multi-

ple sources and sinks in the form of agents. The agents act as either

consumers or producers of the commodity based on a demand (or

supply) curve that they submit to a higher-level (e.g. national) mar-

ket. The price 𝑝 set by this market then determines each agent’s

desired prosumption. These desired prosumptions may cause con-

gestion in the local network that we consider. We will compute

allocations that resolve congestion given such an initial situation.

We can have two objectives for these allocations: fair division of

capacity over the agents, or welfare expressed by demand curves.

Let a congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) be a rooted weighted

tree (𝑉 , 𝐸) with a set of agents 𝐴 located at the vertices. Let a

virtual edge at the root 𝑟 represent the connection to a virtual par-

ent that represents an external network. Let the edge weights be

strictly positive, representing flow capacities, and denote the weight

of an edge between vertex 𝑣 ∈ 𝑉 and its parent as the capacity 𝐶𝑣 .

Let supply and demand both be represented by prosumption;
respectively by negative and positive prosumption. Let an agent’s

prosumption induce a matching flow from the external network

to the vertex of that agent. Using this terminology, a maximal

production is synonymous with a minimal (negative) flow.

Let each agent 𝑎 ∈ 𝐴 submit a demand curve 𝑑𝑎 (𝑝) which is

a strictly monotonically decreasing function of price 𝑝 . A positive

demand 𝑑𝑎 (𝑝) > 0 indicates a consumer, while a negative demand

𝑑𝑎 (𝑝) < 0 indicates a producer. Given a price 𝑝 let 𝐴+ ⊆ 𝐴 and

𝐴− ⊆ 𝐴 denote the sets of consumers and producers, respectively.

The inverse relation of the demand curve expresses the marginal

price ormarginal𝑚𝑎 (𝑞) of an agent 𝑎, which is a strictly mono-

tonically decreasing function of its prosumption 𝑞. Note that the

marginal𝑚𝑎 (𝑞) of a production, i.e. 𝑞 < 0, represents a marginal

cost. The welfare𝑊𝑎 (𝑝, 𝑞) of an agent 𝑎 is then given by its pro-

sumption surplus

∫ 𝑞

0
𝑚𝑎 (𝑥) − 𝑝 𝑑𝑥 . Note that for a producer this

expression takes the equivalent form

∫
0

𝑞
𝑝 −𝑚𝑎 (𝑥) 𝑑𝑥 .

Since the flow in the entire network is induced by the prosump-

tions of all individual agents, it will be convenient to work with

allocations 𝑌 : 𝐴→ R that allocate a prosumption to each agent.

Because we consider trees, an allocation 𝑌 then defines the flow

over each edge as the sum of prosumptions in the subtree under

that edge. This way, the root flow 𝐹 (𝑌 ) is given by the sum of

allocated prosumptions over all agents, i.e. 𝐹 (𝑌 ) = ∑
𝑎∈𝐴 𝑌 (𝑎).

Congestion occurs when commodity flow induced by an alloca-

tion 𝑌 , e.g. of desired prosumptions 𝑌 (𝑎) = 𝑑𝑎 (𝑝) (𝑎 ∈ 𝐴) given a

price 𝑝 , results in the tree’s edge capacities being exceeded. An allo-

cation𝑌 on a congestion tree𝑇 = (𝑉 , 𝐸,𝐴) is congestion free if for
each vertex 𝑣 the root flow 𝐹𝑣 (𝑌 ) of the subtree 𝑇𝑣 = (𝑉𝑣, 𝐸𝑣, 𝐴𝑣)
with root 𝑣 does not exceed the capacity 𝐶𝑣 , i.e. |𝐹𝑣 (𝑌 ) | ≤ 𝐶𝑣 . An

allocation 𝑌 is desire compatible if each agent 𝑎 is allocated a
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prosumption between zero and its desire 𝑑𝑎 (𝑝). An allocation 𝑌 is

feasible if it is both congestion free and desire compatible. Finally,

we say that a root flow 𝑓 for a congestion tree 𝑇 is feasible if there

exists a feasible allocation 𝑌 on 𝑇 with 𝐹 (𝑌 ) = 𝑓 .

We define a congestion solution 𝑌 as a feasible and Pareto

allocation on 𝑇 . We impose these restrictions since a non-feasible

allocation does not satisfy the boundary conditions of the conges-

tion problem, and if an allocation is not Pareto then it is possible to

improve the allocation for an agent while still resolving congestion.

Congestion only occurs under certain circumstances, and when

no congestion occurs a computed congestion solution will simply

allocate the desired prosumptions. In contrast to the uncertainty of

congestion occurring, the agents always participate in the higher-

level market through their submitted demand curves. Thus, if con-

gestion occurs relatively infrequently, agents’ higher-level market

participation dominates their participation in congestion manage-

ment mechanisms. Therefore, if the higher-level market is incentive

compatible we assume that agents truthfully submit their demand

curves. Independent of this assumption curtailment solutions are

individually rational since, at the same price 𝑝 , any prosumption

less than the desired prosumption still has positive surplus.

4 FAIR SHARE CONGESTION MANAGEMENT
When, for a price 𝑝 , congestion occurs in a congestion tree 𝑇 =

(𝑉 , 𝐸,𝐴) due to agents’ desired prosumptions 𝑑𝑎 (𝑝), there are of-
ten different congestion solutions 𝑌 possible. As stated before, an

allocation 𝑌 must at least be feasible and Pareto to qualify as a

congestion solution. However, an allocation 𝑌 may be required to

have additional desirable properties. One such property is that of

fairness, which may uniquely determine the allocation 𝑌 .

A fair congestion solution 𝑌𝑓 𝑎𝑖𝑟 allocates to each agent a ‘fair

share’ of the available capacity. Previous work considers different

notions of fairness for this setting [11]. Unique fair allocations are

also provided for similar settings, such as by [16]. For the present

work it is only important that a fair allocation is unique, feasible, and

Pareto. Going forward, when we refer to ‘the fair allocation’ or ‘the

fair shares’ we will refer to the egalitarian fair allocation discussed

in [16]. However, any other notion of fairness that constitutes a

unique feasible and Pareto allocation on 𝑇 , such as those from [11],

can be substituted for egalitarian fairness.

5 MAXIMALWELFARE SOLUTIONS
As opposed to fair congestion solutions we may aim to find conges-

tion solutions in the form of allocations that maximize the welfare

of the agents. The problem can be formulated as follows: given a

congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) and a price 𝑝 , find a feasible alloca-

tion 𝑌 that maximizes the total welfare

∑
𝑎∈𝐴𝑊𝑎 (𝑝,𝑌 (𝑎)).

This problem decomposes into local division problems. Consider

a congestion tree𝑇 = (𝑉 , 𝐸,𝐴) consisting of a single vertex 𝑟 . When

consumption congestion (i.e. flow is positive and exceeds capacity)

occurs at 𝑟 then the available capacity𝐶𝑟 has to be divided over the

consumers 𝑎 ∈ 𝐴+. The available consumption capacity 𝐶+ that is
to be divided is given by the capacity𝐶𝑟 increased by the (maximal)

production of the producers 𝑎 ∈ 𝐴−, which can meet local demand,

i.e. 𝐶+ = 𝐶𝑟 +
∑
𝑎∈𝐴− −𝑑𝑎 (𝑝). This means that the aggregated con-

sumption

∑
𝑎∈𝐴+ 𝑌 (𝑎) must equal𝐶+ for the allocation to be Pareto.

Looking at the welfare of the consumers, we see that∑︁
𝑎∈𝐴+

𝑊 (𝑝,𝑌 (𝑎)) =
∑︁
𝑎∈𝐴+

(∫ 𝑌 (𝑎)

0

𝑚𝑎 (𝑥) − 𝑝 𝑑𝑥

)
=

∑︁
𝑎∈𝐴+

(∫ 𝑌 (𝑎)

0

𝑚𝑎 (𝑥) 𝑑𝑥
)
− 𝑝 ·

∑︁
𝑎∈𝐴+

𝑌 (𝑎)

=
∑︁
𝑎∈𝐴+

(∫ 𝑌 (𝑎)

0

𝑚𝑎 (𝑥) 𝑑𝑥
)
− 𝑝 ·𝐶+ .

(1)

Equation (1) tells us that optimization of the total welfare among

consumers does not depend on the price 𝑝 , because it represents

a constant factor independent of the division. Hence, the local

problem reduces to finding a feasible allocation 𝑌 that maximizes∑︁
𝑎∈𝐴+

∫ 𝑌 (𝑎)

0

𝑚𝑎 (𝑥) 𝑑𝑥 s.t.

∑︁
𝑎∈𝐴+

𝑌 (𝑎) = 𝐶+ (2)

The above optimization problem is a standard market efficiency

optimization problem, the solution to which is an allocation that

minimizes the difference between agents’ marginals𝑚𝑎 (𝑌 (𝑎)) at
their allocated prosumptions. Indeed, when for two consumers 𝑎

and 𝑏 we have𝑚𝑎 (𝑌 (𝑎)) > 𝑚𝑏 (𝑌 (𝑏)), that means consumer 𝑎 can

obtain more welfare from a marginal unit of consumption than

consumer 𝑏 does. Therefore, the allocation 𝑌 may be improved

in total welfare by shifting an amount of consumption 𝑥 from

consumer 𝑏 to consumer 𝑎 such that𝑚𝑎 (𝑌 (𝑎) +𝑥) =𝑚𝑏 (𝑌 (𝑏) −𝑥).
A market obtains the unique solution by setting a single (scarcity)

price 𝑝 so that the demands sum up to the available consumption

capacity, i.e. 𝑝 such that

∑
𝑎∈𝐴+ 𝑑𝑎 (𝑝) = 𝐶+. This is the principle

under which locational marginal pricing (LMP) works; increasing

the local price at 𝑟 for all agents there reduces consumption while

ensuring equal marginals among prosumers.

Our approach bears similarities to locational marginal pricing

in that we compute allocations that exactly divide the available

consumption capacity𝐶+ by setting a single marginal 𝑝 among the

consumers. However, we merely use this to compute the allocations

and do not alter the actual price 𝑝 . As stated earlier, the price 𝑝

does not affect the composition of the maximal welfare allocation.

In our setting of congestion trees with multiple nodes, we must

account for possible congestion in subtrees. As such, we may not

be able to find a feasible allocation 𝑌 for which all consumers’

marginals are equal. To solve this problem we will compute feasi-

ble welfare maximizing allocations for both minimal and maximal

local root flows recursively on subtrees of 𝑇 . These minimal and

maximal local flow allocations then define agent-specific bounds of

feasibility for the subtrees of 𝑇 . The initial agent-specific bounds

prior to consideration of subtrees are 0 and the agent’s desired pro-

sumption 𝑑𝑎 (𝑝). This is, respectively, because consumers should

not be allocated production and vice versa, and because the price 𝑝

makes it so that any units of prosumption in excess of the agent’s

desired prosumption 𝑑𝑎 (𝑝) are negative welfare for that agent.
The agent-specific bounds are used to bound the agents’ de-

mand curves. See Figure 1 for a visual representation. The resulting

bounded demand curves 𝑑𝑎 let us determine prosumption levels

based on marginals 𝑝 , within the constraints of feasibility. Given

a set of bounded demand curves 𝑑𝑎 for the consumers 𝑎 ∈ 𝐴+, we
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𝑑 (𝑝)

𝑝

𝑞

Figure 1: A bounded demand curve 𝑑 (red). The dashed lines
indicate the maximum and minimum feasible demands.

can look at the aggregated bounded demand curve to determine

a marginal 𝑝 such that

∑
𝑎∈𝐴+ 𝑑𝑎 (𝑝) = 𝐶+. This way we find the

consumer allocation 𝑌 (𝑎) = 𝑑𝑎 (𝑝) (𝑎 ∈ 𝐴+) that feasibly divides

the available consumption capacity 𝐶+ over the consumers 𝐴+ and
maximizes their total welfare. In this case of consumption conges-

tion the producers would be allocated maximal production within

their individual bounds, i.e 𝑌 (𝑎) = 𝑑𝑎 (𝑝) (𝑎 ∈ 𝐴−).

5.1 Maximal Welfare Congestion Algorithm
Consider a congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) and a price 𝑝 . The recur-

sive algorithm presented here in Algorithm 1 computes for each

agent 𝑎 ∈ 𝐴 a unique lower bound 𝑙𝑎 and upper bound𝑢𝑎 for which

the following is an invariant of subtrees:

Theorem 1. Given a congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) and a price 𝑝 ,
there exists a unique set of lower bounds {𝑙𝑎}𝑎∈𝐴 and upper bounds {𝑢𝑎}𝑎∈𝐴
such that for any feasible root flow 𝑓 , a feasible allocation𝑌 †

𝑓
uniquely

maximizes the welfare among feasible allocations 𝑌𝑓 with root flow 𝑓

if and only if 𝑌 †
𝑓
is given by either

𝑌
†
𝑓
(𝑎) =

{
min(max(𝑑𝑎 (𝑝), 𝑙𝑎), 𝑢𝑎) 𝑎 ∈ 𝐴+

𝑙𝑎 𝑎 ∈ 𝐴−
(3)

for all 𝑎 ∈ 𝐴 or

𝑌
†
𝑓
(𝑎) =

{
𝑢𝑎 𝑎 ∈ 𝐴+

min(max(𝑑𝑎 (𝑝), 𝑙𝑎), 𝑢𝑎) 𝑎 ∈ 𝐴−
(4)

for all 𝑎 ∈ 𝐴, for some marginal 𝑝 .

Proof. The proof is by induction. For the induction basis, con-

sider a tree 𝑇 with only one vertex 𝑟 . For the agents 𝑎 ∈ 𝐴 we

define initial lower and upper bounds 𝑙 ′𝑎 and 𝑢 ′𝑎 that ensure desire

compatibility, i.e. 0 and 𝑑𝑎 (𝑝) ordered such that 𝑙 ′𝑎 ≤ 𝑢 ′𝑎 . Consider
a feasible root flow𝑓 . We can formulate three properties of the

feasible allocation 𝑌
†
𝑓
that maximizes the welfare among feasible

allocations with root flow 𝑓 :

• 𝑌
†
𝑓
must be bounded by the bounds 𝑙 ′𝑎 and 𝑢 ′𝑎 to be feasible, i.e.

𝑙 ′𝑎 ≤ 𝑌
†
𝑓
(𝑎) ≤ 𝑢 ′𝑎 (𝑎 ∈ 𝐴),

• Consumers must be allocated maximal consumption or producers

must be allocated maximal production (i.e. minimal flow). If not,

then we can increase both consumption and production by some

amount, which means 𝑌
†
𝑓
is not Pareto,

• Consumer and producer welfare is maximal when the difference

between respective agents’ marginals is minimal, as discussed

earlier in Section 5.

From these three properties we can see that 𝑌
†
𝑓
is given by either

𝑌
†
𝑓
(𝑎) =

{
min(max(𝑑𝑎 (𝑝), 𝑙 ′𝑎), 𝑢 ′𝑎) 𝑎 ∈ 𝐴+

𝑙 ′𝑎 𝑎 ∈ 𝐴−
(5)

for all 𝑎 ∈ 𝐴 or

𝑌
†
𝑓
(𝑎) =

{
𝑢 ′𝑎 𝑎 ∈ 𝐴+

min(max(𝑑𝑎 (𝑝), 𝑙 ′𝑎), 𝑢 ′𝑎) 𝑎 ∈ 𝐴−
(6)

for all 𝑎 ∈ 𝐴, for some marginal 𝑝 . Here, the first property imposes

the minimum of 𝑙𝑎 and maximum of 𝑢𝑎 on all agents 𝑎 ∈ 𝐴, the

second property requires allocating either 𝑙𝑎 to all producers 𝑎 ∈ 𝐴−
or 𝑢𝑎 to all consumers 𝑎 ∈ 𝐴+, and the third property leads to a

single marginal 𝑝 across all other agents.

Now consider 𝑌
†
𝑓max

and 𝑌
†
𝑓min

for the maximal and minimal feasi-

ble root flows 𝑓max and 𝑓min. By Equations (5) and (6) for all agents,

if 𝑓 ≤ 𝑓 ′, then 𝑌
†
𝑓
(𝑎) ≤ 𝑌

†
𝑓 ′
(𝑎) (𝑎 ∈ 𝐴). Thus, for every feasible

root flow 𝑓 we have 𝑌
†
𝑓min

(𝑎) ≤ 𝑌
†
𝑓
(𝑎) ≤ 𝑌

†
𝑓max

(𝑎) (𝑎 ∈ 𝐴). This
means we can take 𝑙𝑎 = 𝑌

†
𝑓min

(𝑎) (𝑎 ∈ 𝐴) and 𝑢𝑎 = 𝑌
†
𝑓max

(𝑎) (𝑎 ∈ 𝐴)
to obtain the unique bounds described by Theorem 1.

For the induction step, assume that the theorem holds for all

subtrees 𝑇𝑐 of 𝑇 with 𝑐 a child of the root vertex 𝑟 . Thus for all

agents 𝑎 not at the root 𝑟 we have lower and upper bounds 𝑙 ′𝑎 and

𝑢 ′𝑎 by the induction hypothesis. For agents 𝑎 at the root 𝑟 we again

define initial lower and upper bounds 𝑙 ′𝑎 and 𝑢 ′𝑎 that ensure desire

compatibility, i.e. 0 and 𝑑𝑎 (𝑝) ordered such that 𝑙 ′𝑎 ≤ 𝑢 ′𝑎 .
From here we follow the same argumentation as for the induction

basis. Since an allocation that feasibly maximizes the welfare on 𝑇

must also maximize the welfare on each subtree for that subtree’s

root flow, amaximal welfare allocation on𝑇 must be bounded by the

bounds 𝑙 ′𝑎 and 𝑢 ′𝑎 . So again, for any feasible root flow 𝑓 , 𝑌
†
𝑓
is given

by either Equation (5) or Equation (6) for somemarginal 𝑝 (minimize

differences across subtrees). The unique bounds are again obtained

by taking 𝑙𝑎 = 𝑌
†
𝑓min

(𝑎) (𝑎 ∈ 𝐴) and 𝑢𝑎 = 𝑌
†
𝑓max

(𝑎) (𝑎 ∈ 𝐴). □

Corollary 2. For {𝑙𝑎}𝑎∈𝐴 and {𝑢𝑎}𝑎∈𝐴 as in Theorem 1,

𝑌𝑤𝑒𝑙 (𝑎) =
{
𝑢𝑎 𝑎 ∈ 𝐴+

𝑙𝑎 𝑎 ∈ 𝐴−
(7)

is the unique feasible allocation that maximizes the total welfare
among all feasible allocations on 𝑇 .

Proof. Since Equation (7) is of the form of Equation (3) for

some marginal 𝑝 (and of the form of Equation (4) for some other

marginal 𝑝), 𝑌𝑤𝑒𝑙 is feasible. In addition, 𝑌𝑤𝑒𝑙 uniquely maximizes

the prosumption of consumers within the bounds (𝑢𝑎) and uniquely

minimizes the prosumption of producers within the bounds (𝑙𝑎).

Thus 𝑌𝑤𝑒𝑙 is the unique feasible maximal surplus allocation. □

Our algorithm essentially implements the proof of Theorem 1.

Each recursion step of the algorithm considers a different sub-

tree 𝑇𝑣 of 𝑇 . We will denote the unique lower and upper bounds

defined by Theorem 1 for direct subtrees 𝑇𝑐 of 𝑇𝑣 , i.e. with 𝑐 a child
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of vertex 𝑣 , as 𝑙 ′𝑎 and 𝑢 ′𝑎 respectively for agents 𝑎 ∈ 𝐴𝑐 . In addition,

for agents 𝑎 located at the vertex 𝑣 , we will similarly denote the

initial bounds as 𝑙 ′𝑎 and 𝑢 ′𝑎 . This way, when considering𝑇𝑣 , we have

𝑙 ′𝑎, 𝑢
′
𝑎 (𝑎 ∈ 𝐴𝑣) denoting the bounds that ensure desire compat-

ibility for all agents and ensure congestion freeness on all strict

subtrees of 𝑇𝑣 . As such, the information contained in these bounds

𝑙 ′𝑎, 𝑢
′
𝑎 lets us focus exclusively on the root capacity 𝐶𝑣 of 𝑇𝑣 when

computing the unique bounds 𝑙𝑎, 𝑢𝑎 defined for 𝑇𝑣 by Theorem 1.

Algorithm 1 presents the algorithmic mechanism that computes

the unique bounds 𝑙𝑎, 𝑢𝑎 for the congestion tree 𝑇 , and with them,

by Corollary 2, the feasible allocation that maximizes the total

welfare on 𝑇 . On Lines 1 to 8 we compute the bounds 𝑙 ′𝑎, 𝑢
′
𝑎 for all

agents 𝑎 ∈ 𝐴; in Lines 1 to 3 for agents at the root by setting the

initial bounds of 0 and their desired prosumption, and in Lines 4

to 8 for all other agents through recursion on subtrees.

On Lines 9 and 10 we introduce a help function for clarity. This

function takes any value 𝑥 and ‘bounds’ it by the summed 𝑙 ′𝑎 and

summed 𝑢 ′𝑎 of a set of agents 𝐵 ⊂ 𝐴. The result is that any value 𝑥

bounded by this function can be computed as the sum (aggregate)

of a set of values that are feasibly allocated to the agents 𝑎 ∈ 𝐵.

In essence, the bounding function lets us apply the information

contained in the 𝑙 ′𝑎, 𝑢
′
𝑎 in a simple and straightforward way.

On Lines 11 to 14 we aggregate the agents’ demand curves into

an aggregated bounded demand and supply curve. The aggregated

bounded demand curve indicates for each marginal 𝑝 what the

combined demand of the consumers is. Because of the bounds,

these aggregated demands are guaranteed to not cause feasibility

or congestion issues in strict subtrees of 𝑇 . See also Figure 1.

On Lines 15 to 22 we compute the bounds 𝑢𝑎 (𝑎 ∈ 𝐴) that
constitute the unique maximal welfare allocation 𝑌

†
𝑓max

that feasi-

bly maximizes the root flow. For the consumers, the aggregated

demand can at most equal the capacity 𝐶𝑟 plus the maximal pro-

duction −∑
𝑎∈𝐴− 𝑙

′
𝑎 , which means a maximal positive flow as seen

on Line 15. If the aggregated demand does not exceed this, i.e. there

is no consumption congestion, then the maximal consumption is

simply

∑
𝑎∈𝐴+ 𝑢

′
𝑎 . This last case is caught by the bounded function.

On Line 16, since the aggregated demand is a continuous decreas-

ing (thus invertible) function that takes values between

∑
𝑎∈𝐴+ 𝑙

′
𝑎

and

∑
𝑎∈𝐴+ 𝑢

′
𝑎 , we can select a marginal 𝑝 that corresponds to the

determined maximum positive flow. Then on Lines 17 and 18 we

compute the upper bounds 𝑢𝑎 for individual consumers𝑎 ∈ 𝐴+ by
breaking down the aggregated demand at the selected marginal 𝑝 .

For the producers, the aggregated supply must at least match

the maximal consumption

∑
𝑎∈𝐴+ 𝑢

′
𝑎 minus the capacity 𝐶𝑟 , which

means a minimal negative flow as seen on Line 19. Again, the

bounded function on Line 19 catches the no congestion case.

On Lines 20 to 22 we select the marginal 𝑝 that corresponds to

the minimal supply (i.e. maximal negative flow) and subsequently

compute 𝑢𝑎 for all producers, analogous to Lines 16 to 18.

Analogously to the bounds 𝑢𝑎 (𝑎 ∈ 𝐴) before, on Lines 23 to 30

we compute bounds 𝑙𝑎 (𝑎 ∈ 𝐴) that constitute the unique maximal

welfare allocation 𝑌
†
𝑓min

that feasibly minimizes the root flow.

With the output of Algorithm 1, the maximal welfare alloca-

tion 𝑌𝑤𝑒𝑙 on 𝑇 can now be found by taking for each agent 𝑎 ∈ 𝐴
their most extreme bound, i.e. for each consumer 𝑎 ∈ 𝐴+ their

upper bound 𝑢𝑎 and for each producer 𝑎 ∈ 𝐴− their lower bound 𝑙𝑎 .

Algorithm 1: MaxWelfare (𝑇, 𝑝)
Input: A congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) and a price 𝑝
Output: The unique 𝑙𝑎 and 𝑢𝑎 for all 𝑎 ∈ 𝐴
// Initialize with agent desires

1 for agents 𝑎 at root 𝑟 do
2 𝑙 ′𝑎 ← min(0, 𝑑𝑎 (𝑝))
3 𝑢 ′𝑎 ← max(0, 𝑑𝑎 (𝑝))
// Recursion on child vertices

4 for children 𝑐 of root 𝑟 do
5 lowers, uppers← maxwelfare(𝑇𝑐 , 𝑝)
6 for agents 𝑎 ∈ 𝐴𝑐 do
7 𝑙 ′𝑎 ← lowers[𝑎]
8 𝑢 ′𝑎 ← uppers[𝑎]
// Now we have 𝑙 ′𝑎 and 𝑢 ′𝑎 ∀𝑎 ∈ 𝐴
// Add a bounding function for clarity:

9 Function bounded(𝑥, 𝐵)
Input: A value 𝑥 ∈ R and a subset of agents 𝐵 ⊂ 𝐴

Output: The value closest to 𝑥 between the combined
lower and upper bounds of the agent(s) in 𝐵

10 return min(max(𝑥,∑𝑎∈𝐵 𝑙
′
𝑎),

∑
𝑎∈𝐵 𝑢

′
𝑎))

// Aggregate bounded demand curves:

11 Function demand(𝑝)
12 return

∑
𝑎∈𝐴+ bounded(𝑑𝑎 (𝑝), 𝑎)

13 Function supply(𝑝)
14 return

∑
𝑎∈𝐴− bounded(𝑑𝑎 (𝑝), 𝑎)

// Compute maximum flow values in two steps:

// Compute positive 𝑢𝑎 values

15 maxposflow← bounded(𝐶𝑟 −
∑
𝑎∈𝐴− 𝑙

′
𝑎, 𝐴
+)

16 Select marginal 𝑝 s.t. demand(𝑝) = maxposflow
17 for 𝑎 ∈ 𝐴+ do
18 𝑢𝑎 ← bounded(𝑑𝑎 (𝑝), 𝑎)

// Compute negative 𝑢𝑎 values

19 maxnegflow← bounded(𝐶𝑟 −
∑
𝑎∈𝐴+ 𝑢

′
𝑎, 𝐴
−)

20 Select marginal 𝑝 s.t. supply(𝑝) = maxnegflow
21 for 𝑎 ∈ 𝐴− do
22 𝑢𝑎 ← bounded(𝑑𝑎 (𝑝), 𝑎)

// Compute minimum flow values in two steps:

// Compute negative 𝑙𝑎 values

23 minnegflow← bounded(−𝐶𝑟 −
∑
𝑎∈𝐴+ 𝑢

′
𝑎, 𝐴
−)

24 Select marginal 𝑝 s.t. supply(𝑝) = minnegflow
25 for 𝑎 ∈ 𝐴− do
26 𝑙𝑎 ← bounded(𝑑𝑎 (𝑝), 𝑎)

// Compute positive 𝑙𝑎 values

27 minposflow← bounded(−𝐶𝑟 −
∑
𝑎∈𝐴− 𝑙

′
𝑎, 𝐴
+)

28 Select marginal 𝑝 s.t. demand(𝑝) = minposflow
29 for 𝑎 ∈ 𝐴+ do
30 𝑙𝑎 ← bounded(𝑑𝑎 (𝑝), 𝑎)

// Now we have 𝑙𝑎 and 𝑢𝑎 ∀𝑎 ∈ 𝐴
31 return {𝑙𝑎}𝑎∈𝐴, {𝑢𝑎}𝑎∈𝐴
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Theorem 3. Given a congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) and a price 𝑝 ,
Algorithm 1 computes the unique feasible maximal welfare alloca-
tion 𝑌𝑤𝑒𝑙 described by Corollary 2.

Proof. We showed howAlgorithm 1 computes the bounds 𝑙𝑎, 𝑢𝑎
described by Theorem 1. The maximal welfare allocation 𝑌𝑤𝑒𝑙 on

𝑇 is then found by simply taking for each consumer 𝑎 ∈ 𝐴+ their
upper bound 𝑢𝑎 and for each producer 𝑎 ∈ 𝐴− their lower bound 𝑙𝑎 ,
as described by Corollary 2. □

6 A HYBRID SOLUTION WITH A CHOICE
In Sections 4 and 5 respectively, we introduced the fair alloca-

tion 𝑌𝑓 𝑎𝑖𝑟 and the maximal welfare allocation 𝑌𝑤𝑒𝑙 , both of which

are congestion solutions (i.e. feasible and Pareto). Being curtailment

solutions, the price per unit that the agents trade their allocated

prosumptions for is the higher-level market price 𝑝 .

Each agent carries a private preference for one of the two solu-

tions. Such preferences may be principled or based on individual

circumstance. Where the fair solution provides agents with pro-

sumptions that are fair relative to each other at the cost of welfare,

the maximal welfare solution rewards economical efficiency at the

cost of some welfare among less efficient agents. This last situation

can be observed with LMP as well, where scarcity pricing pushes

some less competitive agents out of the market.

In this section we propose a way for the two solutions to exist

in parallel, and for individual agents to choose in which one they

want to participate. We do this by allowing agents to either "claim

their fair share" or participate in a congestion aftermarket. More

specifically, we first curtail agents with the fair allocation 𝑌𝑓 𝑎𝑖𝑟 .

Then the subset𝐴𝑓 𝑎𝑖𝑟 ⊂ 𝐴 of agents that indicate that they want to

participate in the fair solution are allocated as determined by 𝑌𝑓 𝑎𝑖𝑟 .

Subsequently, we compute a feasible maximal welfare allocation

for the remaining agents, with the prosumption already allocated

to the agents in 𝐴𝑓 𝑎𝑖𝑟
fixed. This gives us a hybrid allocation 𝑌ℎ𝑦𝑏 .

Algorithm 2 presents a modified version of Algorithm 1 that

computes the hybrid solution 𝑌ℎ𝑦𝑏 . The modification is small: for

the agents 𝑎 ∈ 𝐴𝑓 𝑎𝑖𝑟
that choose to claim their fair share, we

initialize both their bounds at this fair share on Lines 2 to 4. For the

other agents Algorithm 2 then proceeds identical to Algorithm 1.

Theorem 4. Given a congestion tree𝑇 = (𝑉 , 𝐸,𝐴), a price 𝑝 , a fair
congestion solution 𝑌𝑓 𝑎𝑖𝑟 , and a subset of agents 𝐴𝑓 𝑎𝑖𝑟 , Algorithm 2
computes the unique feasible allocation 𝑌ℎ𝑦𝑏 that allocates the fair
share 𝑌𝑓 𝑎𝑖𝑟 (𝑎) to agents 𝑎 ∈ 𝐴𝑓 𝑎𝑖𝑟 and maximizes the total welfare
of the agents 𝑎 ∈ 𝐴 \𝐴𝑓 𝑎𝑖𝑟 given the fair shares allocated to 𝐴𝑓 𝑎𝑖𝑟 .

Proof. Algorithm 2 initializes 𝑙 ′𝑎 = 𝑢 ′𝑎 = 𝑌𝑓 𝑎𝑖𝑟 (𝑎) for agents 𝑎 ∈
𝐴𝑓 𝑎𝑖𝑟

. If 𝑙 ′𝑎 = 𝑢 ′𝑎 for an agent 𝑎 then 𝑙
′
𝑎 = 𝑙𝑎 = 𝑢𝑎 = 𝑢 ′𝑎 because of the

use of the bounded function when computing 𝑙𝑎 and 𝑢𝑎 . Therefore,

the lower and upper bounds of such an agent will stay constant

through recursive steps of the algorithm. As a result, 𝑌ℎ𝑦𝑏 (𝑎) =
𝑌𝑓 𝑎𝑖𝑟 (𝑎) for 𝑎 ∈ 𝐴𝑓 𝑎𝑖𝑟

.

For agents 𝑎 ∉ 𝐴𝑓 𝑎𝑖𝑟
, the bounds 𝑙𝑎 and 𝑢𝑎 are computed iden-

tically to Algorithm 1. Since the fair shares 𝑌𝑓 𝑎𝑖𝑟 (𝑎) claimed by

agents 𝑎 ∈ 𝐴𝑓 𝑎𝑖𝑟
are part of the feasible allocation 𝑌𝑓 𝑎𝑖𝑟 , we know

that fixing these prosumptions does not render it impossible to

Algorithm 2: Hybrid (𝑇, 𝑝,𝑌𝑓 𝑎𝑖𝑟 , 𝐴𝑓 𝑎𝑖𝑟 )
Input: A congestion tree 𝑇 = (𝑉 , 𝐸,𝐴), a price 𝑝 , a congestion

solution 𝑌𝑓 𝑎𝑖𝑟 and a subset of agents 𝐴𝑓 𝑎𝑖𝑟

Output: Unique 𝑙𝑎 and 𝑢𝑎 for all 𝑎 ∈ 𝐴
// Initialize with fair shares or agent desires

1 for agents 𝑎 at root 𝑟 do
2 if 𝑎 ∈ 𝐴𝑓 𝑎𝑖𝑟 then
3 𝑙 ′𝑎 ← 𝑌𝑓 𝑎𝑖𝑟 (𝑎)
4 𝑢 ′𝑎 ← 𝑌𝑓 𝑎𝑖𝑟 (𝑎)
5 else
6 𝑙 ′𝑎 ← min(0, 𝑑𝑎 (𝑝))
7 𝑢 ′𝑎 ← max(0, 𝑑𝑎 (𝑝))
// Recursion on child vertices

8 for children 𝑐 of root 𝑟 do
9 lowers, uppers← Hybrid(𝑇𝑐 , 𝑝, 𝑌𝑓 𝑎𝑖𝑟 , 𝐴𝑓 𝑎𝑖𝑟 )

10 for agents 𝑎 ∈ 𝐴𝑐 do
11 𝑙 ′𝑎 ← lowers[𝑎]
12 𝑢 ′𝑎 ← uppers[𝑎]

// Now we have 𝑙 ′𝑎 and 𝑢 ′𝑎 ∀𝑎 ∈ 𝐴
13 From here proceeds identical to Algorithm 1

find a feasible allocation. In other words, for agents 𝑎 ∉ 𝐴𝑓 𝑎𝑖𝑟
,

Algorithm 2 can be regarded as Algorithm 1 on a congestion tree

with its capacities adjusted for the fair shares 𝑌𝑓 𝑎𝑖𝑟 (𝑎) claimed by

agents 𝑎 ∈ 𝐴𝑓 𝑎𝑖𝑟
. Thus, 𝑌ℎ𝑦𝑏 maximizes the total welfare among

agents 𝑎 ∉ 𝐴𝑓 𝑎𝑖𝑟
given that 𝑌ℎ𝑦𝑏 (𝑎) = 𝑌𝑓 𝑎𝑖𝑟 (𝑎) for 𝑎 ∈ 𝐴𝑓 𝑎𝑖𝑟

. □

The computation of the hybrid solution 𝑌ℎ𝑦𝑏 from a fair alloca-

tion 𝑌𝑓 𝑎𝑖𝑟 gives rise to the difference allocation 𝑌𝑑𝑖 𝑓 𝑓 :

𝑌𝑑𝑖 𝑓 𝑓 (𝑎) = 𝑌ℎ𝑦𝑏 (𝑎) − 𝑌𝑓 𝑎𝑖𝑟 (𝑎) 𝑎 ∈ 𝐴. (8)

This difference allocation indicates how the prosumptions allo-

cated to maximize welfare deviate from the fair shares. Accordingly,

𝑌𝑑𝑖 𝑓 𝑓 (𝑎) = 0 (𝑎 ∈ 𝐴𝑓 𝑎𝑖𝑟 ). 𝑌𝑑𝑖 𝑓 𝑓 essentially tells us how units of

prosumption are transferred between agents relative to their fair

shares, and thus will form the basis for the congestion aftermarket.

For some agents 𝑎 ∈ 𝐴 the change 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) from their fair

share 𝑌𝑓 𝑎𝑖𝑟 (𝑎) to 𝑌ℎ𝑦𝑏 (𝑎) moves them away from their desired pro-

sumption 𝑑𝑎 (𝑝). In order to incentivize these agents to still choose

to participate in welfare maximization we can implement a pric-

ing scheme. In Section 7 we will lay out the specifics of such a

pricing scheme, including computation of agent-specific prices 𝑝𝑎 .

What is important is that we can interpret the difference alloca-

tion 𝑌𝑑𝑖 𝑓 𝑓 as a congestion aftermarket in the following way. Each

agent 𝑎 ∈ 𝐴 gets to trade its allocated fair share 𝑌𝑓 𝑎𝑖𝑟 (𝑎) at the
higher-level market price 𝑝 . Subsequently, agents 𝑎 ∈ 𝐴 can choose

to enter the competitive congestion aftermarket to trade an amount

of prosumption equal to 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) at a certain price 𝑝𝑎 (defined in

Section 7). This may mean either selling a portion of their allocated

fair share or purchasing additional prosumption from other agents

participating in the aftermarket.
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agents 𝑎 in the local network 𝑇 and higher-level network

higher-level market mechanism

demand curves 𝑑𝑎 of agents 𝑎 in the local network 𝑇

does congestion occur in the local network 𝑇 ?

fair solution 𝑌𝑓 𝑎𝑖𝑟 on 𝑇 agents get 𝑑𝑎 (𝑝) at price 𝑝

agents 𝑎 in 𝑇 get 𝑌𝑓 𝑎𝑖𝑟 (𝑎) at price 𝑝

keep fair share participate in aftermarket

hybrid solution 𝑌ℎ𝑦𝑏 on 𝑇 with aftermarket pricing

demand curves 𝑑𝑎

higher-level price 𝑝

desired prosumptions 𝑑𝑎 (𝑝)

yes no

curtailment

agent choice agent choice

nothing changes

get𝑌𝑑𝑖 𝑓 𝑓 (𝑎)
at price 𝑝𝑎

Figure 2: Visualization of the construction of a hybrid con-
gestion solution: a fair curtailment solution with optional
participation in a welfare-maximizing priced aftermarket.

Note that when no congestion occurs, then both 𝑌𝑓 𝑎𝑖𝑟 and 𝑌ℎ𝑦𝑏
simply allocate the desired prosumptions 𝑑𝑎 (𝑝) to all agents 𝑎 ∈ 𝐴.
This means that 𝑌𝑑𝑖 𝑓 𝑓 is zero and hence that the congestion after-

market does not exist. In other words, the congestion aftermarket

only serves to let agents efficiently divide the available capacity

among themselves when congestion occurs. Importantly, the af-

termarket approach does not interfere in the higher-level market

mechanism when no congestion occurs.

Figure 2 visualizes the different steps taken to arrive at the hy-

brid congestion solution 𝑌ℎ𝑦𝑏 with a congestion aftermarket. First

the interaction between the agents’ demand curves 𝑑𝑎 , the higher-

level market and its price 𝑝 , and the desired prosumptions 𝑑𝑎 (𝑝)
is indicated. We then turn our attention to the local network 𝑇

where the desired prosumptions 𝑑𝑎 (𝑝) may cause congestion. If

no congestion occurs in 𝑇 , the higher-level market mechanism can

operate as intended in 𝑇 . If, however, congestion does occur in 𝑇

we must curtail the desired prosumptions 𝑑𝑎 (𝑝), for which we use a

fair congestion solution𝑌𝑓 𝑎𝑖𝑟 . Now, based on agents’ private prefer-

ences, agents 𝑎 ∈ 𝐴 either claim their fair share 𝑌𝑓 𝑎𝑖𝑟 (𝑎) at price 𝑝
or participate in a welfare-maximizing congestion aftermarket. The

resulting hybrid solution 𝑌ℎ𝑦𝑏 provides every agent 𝑎 ∈ 𝐴 with

their fair share 𝑌𝑓 𝑎𝑖𝑟 (𝑎) at the price 𝑝 , but on top of that provides

𝑑𝑏1 (𝑝)
𝑑𝑎1 (𝑝)

𝑑𝑏2 (𝑝)
𝑑𝑎2 (𝑝)

𝑌ℎ𝑦𝑏 (𝑏1)
𝑌ℎ𝑦𝑏 (𝑎1)

𝑌ℎ𝑦𝑏 (𝑏2)

𝑌ℎ𝑦𝑏 (𝑎2)

𝑌𝑓 𝑎𝑖𝑟 (𝑏1)

𝑌𝑓 𝑎𝑖𝑟 (𝑎1)

𝑌𝑓 𝑎𝑖𝑟 (𝑏2)

𝑌𝑓 𝑎𝑖𝑟 (𝑎2)

𝑞

𝑝

𝑝

Figure 3: Two examples of transitions from higher-level mar-
ket to fair curtailment to aftermarket, shown on marginal
functions of two producers 𝑎1, 𝑏1 (blue, left) that share a con-
nection and two consumers 𝑎2, 𝑏2 (red, right) that share a
connection. Indicated values refer to 𝑞-coordinates. Desires
of all four agents have equal (on a horizontal line) marginals,
namely the price 𝑝. Subsequently, the producers are allocated
an equal (on a vertical line) fair share as indicated, as are the
consumers. Finally, the producers return to equal (on a hor-
izontal line) marginals in the aftermarket. The consumers,
however, are constrained by some intermediate capacity in
this example, so in the aftermarket their marginals only ap-
proach each other. The black arrows indicate the sign and
magnitude of aftermarket trades𝑌𝑑𝑖 𝑓 𝑓 , and the hatched areas
indicate the prosumers’ aftermarket surplus. The efficiency
gap between the consumers is shown in gray, with any price
between the two marginals being acceptable for both parties.

those agents 𝑎 ∉ 𝐴𝑓 𝑎𝑖𝑟
that chose to participate in the aftermarket

with a prosumption𝑌𝑑𝑖 𝑓 𝑓 (𝑎) traded at a certain (averaged) price 𝑝𝑎 .

Figure 3 shows howfirst welfare ismaximized bymarket clearing,

then fair shares are allocated to resolve congestion, and finally

welfare is increased again through the congestion aftermarket.

7 AN AFTERMARKET PRICING SCHEME
In Section 6 we discussed a congestion aftermarket where units of

prosumption are traded according to a difference allocation 𝑌𝑑𝑖 𝑓 𝑓
at individual prices 𝑝𝑎 , without specifying these prices. In this

section we present an explicit pricing scheme for the congestion

aftermarket. This pricing scheme will ensure budget balance and

individual rationality. Individual rationality means that it will be

economically beneficial for agents to participate in the aftermarket,

independent of whether they buy or sell units of prosumption there.

Our goal for this pricing scheme is to put prices on trades of

prosumption between agents that are given by the difference al-

location 𝑌𝑑𝑖 𝑓 𝑓 . By putting prices on bilateral trades rather than

on purchases and sales individually, we will automatically satisfy

budget balance. For individual rationality, the price for a trade

should be such that both agents get positive surplus out of each

unit transferred between them in the trade. If the post-aftermarket
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𝑟

𝑣1

𝑣4

𝑣2

𝑣5

𝑣3

𝑣6

−

+
+ −

Figure 4: A congestion tree 𝑇 with three congestion regions.
Edges from 𝑣 towards 𝑟 marked with + indicate 𝐹𝑣 (𝑌 ) = 𝐶𝑣

(red) while − indicates 𝐹𝑣 (𝑌 ) = −𝐶𝑣 (blue). Vertices 𝑣1, 𝑣4, 𝑣5, 𝑣6
are intermediate obstructions, but only 𝑣1, 𝑣4, 𝑣6 are bottle-
necks. {𝑣1, 𝑣2} and {𝑣6} are negative congestion regions while
{𝑣3, 𝑣4, 𝑣5} is a positive congestion region. {𝑟 } is uncongested.

marginals𝑚𝑎 (𝑌ℎ𝑦𝑏 (𝑎)) and𝑚𝑏 (𝑌ℎ𝑦𝑏 (𝑏)) of an aftermarket buyer 𝑎

and seller 𝑏 are equal, then we can put a price equal to that marginal

on the trade between the two agents. In this case the aftermarket

operates as regular unconstrained market-clearing.

However, due to the capacity constraints, not all trades attain

maximal efficiency. For example, consider two consumers 𝑎 and

𝑏 that are curtailed by 𝑌𝑓 𝑎𝑖𝑟 because of a congestion they both

contributed to. Now, consumer 𝑎 would like to purchase a number

of units 𝑥 from consumer 𝑏 because consumer 𝑏 has a smaller

marginal 𝑚𝑏 (𝑌𝑓 𝑎𝑖𝑟 (𝑏)) < 𝑚𝑎 (𝑌𝑓 𝑎𝑖𝑟 (𝑎)). Ideally, this number of

units 𝑥 is such that the two consumers’ marginals become equal, i.e.

𝑚𝑏 (𝑌𝑓 𝑎𝑖𝑟 (𝑏) −𝑥) =𝑚𝑎 (𝑌𝑓 𝑎𝑖𝑟 (𝑎) +𝑥), and consumer 𝑎 would pay a

price per unit equal to that marginal. However, in our example we

have this trade cause new congestion on one of the edges between

the vertices where consumers 𝑎 and 𝑏 are located. Thus, a reduced

number of units is traded. This means that after the trade, the

marginal of consumer 𝑎 will still be higher than that of consumer 𝑏,

i.e.𝑚𝑏 (𝑌𝑓 𝑎𝑖𝑟 (𝑏)) < 𝑚𝑏 (𝑌ℎ𝑦𝑏 (𝑏)) < 𝑚𝑎 (𝑌ℎ𝑦𝑏 (𝑎)) < 𝑚𝑎 (𝑌𝑓 𝑎𝑖𝑟 (𝑎)).
For both consumers, any price between the two marginals results

in a positive surplus. The gap indicates an economic inefficiency

caused by the constraints, shown in Figure 3 for agents 𝑎2 and 𝑏2.

To deal with pricing under these capacity constraints we need to

consider three aspects. First, we need to determine which trades can

happen in which part of the network. Second, we need to determine

what price to put on a trade when multiple prices yield a mutually

beneficial trade. Third, we need to determine which agents trade

with which agents and in what quantity.

For the first aspect, we look at what we call bottlenecks and

congestion regions. In short, a congestion tree𝑇 = (𝑉 , 𝐸,𝐴) consists
of alternating positive and negative congestion regions separated

by congestion bottlenecks, and aftermarket trades are confined to

these congestion regions. There may also be a single uncongested

region containing the root 𝑟 of 𝑇 where all agents 𝑎 are allocated

their desired prosumption 𝑑𝑎 (𝑝) by both 𝑌ℎ𝑦𝑏 and 𝑌𝑓 𝑎𝑖𝑟 , which

therefore does not play a role in the aftermarket. See also Figure 4.

Definition 5. Given a congestion tree𝑇 = (𝑉 , 𝐸,𝐴), a price 𝑝 , and
a congestion solution 𝑌 , we say that a vertex 𝑣 is a positive inter-
mediate obstruction if 𝐹𝑣 (𝑌 ) = 𝐶𝑣 and there exists a consumer 𝑎

with𝑌 (𝑎) ≠ 𝑑𝑎 (𝑝) at a vertex𝑢 ∈ 𝑉𝑣 such that for all vertices𝑤 ≠ 𝑣

on the path from 𝑢 to 𝑣 , 𝐹𝑤 (𝑌 ) < 𝐶𝑤 . Analogously for a negative

intermediate obstruction.

Definition 6. Given a congestion tree𝑇 = (𝑉 , 𝐸,𝐴), a price 𝑝 , and
a congestion solution𝑌 , we say that a positive intermediate obstruc-

tion 𝑣 is a positive bottleneck if not the closest other intermediate

obstruction on the root path of 𝑣 is also a positive intermediate

obstruction. Analogously for a negative bottleneck.

Definition 7. Given a congestion tree𝑇 = (𝑉 , 𝐸,𝐴), a price 𝑝 , and
a congestion solution𝑌 , we say that a subgraph 𝑅+ of𝑇 is a positive

congestion region if it is a connected component of the forest

obtained from 𝑇 by removing all edges between bottlenecks and

their parents, and it contains a positive bottleneck. Analogously for

a negative congestion region 𝑅−.

Lemma 8. Given a congestion tree 𝑇 = (𝑉 , 𝐸,𝐴), a price 𝑝 , and
a congestion solution 𝑌 , all producers in a positive congestion

region 𝑅+ are allocated their desired prosumption. i.e.𝑌 (𝑎) = 𝑑𝑎 (𝑝)
for all 𝑎 ∈ 𝐴− in 𝑅+. Analogously for consumers.

Proof. Assume, without loss of generality, that there is a posi-

tive congestion region𝑅+ and a producer 𝑎 ∈ 𝐴− with𝑌 (𝑎) ≠ 𝑑𝑎 (𝑝)
located at a vertex 𝑢 in 𝑅+. Consider, on the root path of 𝑢, the in-

termediate obstruction 𝑣 closest to 𝑢. Such 𝑣 exists and is in 𝑅+

because a congestion region contains a bottleneck that is on the

root path of every vertex in that congestion region. Since a positive

congestion region, by definition, contains no negative intermediate

obstructions, 𝑣 is a positive intermediate obstruction. Hence there

exists a vertex 𝑢 ′ with a consumer 𝑏 ∈ 𝐴+ for which 𝑌 (𝑏) ≠ 𝑑𝑏 (𝑝)
such that, on the root path of𝑢 ′, 𝑣 is the vertex closest to𝑢 ′ that is at
positive capacity (i.e. 𝐹𝑣 (𝑌 ) = 𝐶𝑣 ). Therefore, since 𝑣 is the closest

intermediate obstruction to both 𝑢 and 𝑢 ′ on their root paths, there

exists an 𝜖 > 0 such that 𝑌 (𝑎) and 𝑌 (𝑏) can be feasibly decreased

and increased, respectively, by 𝜖 without causing congestion on the

root paths of𝑢 and𝑢 ′, and thus anywhere in𝑇 . We conclude that the

congestion solution 𝑌 is not Pareto, which is a contradiction. □

Lemma 9. Given a congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) and a price 𝑝 ,

bottlenecks are independent of the congestion solution 𝑌 .

Proof. The proof is by induction. For the induction basis, con-

sider without loss of generality a positive bottleneck 𝑣 with no

other bottlenecks in its subtree 𝑇𝑣 . Since 𝐹𝑣 (𝑌 ) = 𝐶𝑣 , a congestion

solution 𝑌 ′ for which 𝑣 is not a bottleneck must have 𝐹𝑣 (𝑌 ′) < 𝐶𝑣 .

Since, by Lemma 8, 𝑌 (𝑎) = 𝑑𝑎 (𝑝) (𝑎 ∈ 𝐴−𝑣 ), it must also be that

𝑌 ′(𝑎) = 𝑑𝑎 (𝑝) (𝑎 ∈ 𝐴−𝑣 ) for 𝑌 ′ to be Pareto. Thus it must be that∑
𝑎∈𝐴+𝑣 𝑌

′(𝑎) < ∑
𝑎∈𝐴+𝑣 𝑌 (𝑎). Now we consider two cases.

If there exist no other bottlenecks on the root path of 𝑣 , then

𝑣 connects to an uncongested region 𝑅 where 𝑌 (𝑎) = 𝑑𝑎 (𝑝) (𝑎 in

𝑅). In this case, 𝑌 ′ cannot feasibly allocate more to any agent 𝑎 in

𝑅 than 𝑌 does, i.e. 𝑌 ′(𝑎) = 𝑌 (𝑎) (𝑎 in 𝑅). But 𝑌 ′ allocates less to
consumers 𝑎 ∈ 𝐴+𝑣 than 𝑌 does, so 𝑌 ′ is not Pareto.

If there do exist other bottlenecks on the root path of 𝑣 , then

among these the closest to 𝑣 must be a negative bottleneck 𝑢. 𝑢

is in a negative congestion region 𝑅− that 𝑣 connects to. Since

𝐹𝑢 (𝑌 ) = −𝐶𝑢 and 𝐹𝑣 (𝑌 ′) < 𝐹𝑣 (𝑌 ), it must be that 𝑌 ′ allocates
more to agents in 𝑅− than 𝑌 does, i.e.

∑
𝑎∈𝐵 𝑌

′(𝑎) > ∑
𝑎∈𝐵 𝑌 (𝑎) for

𝐵 the set of agents in 𝑅− (agents 𝑎 ∈ 𝐴𝑢 \ (𝐴𝑣 ∪ 𝐵) are in subtrees

of positive bottlenecks in 𝑇𝑢 ). But because, by Lemma 8, 𝑌 (𝑎) =
𝑑𝑎 (𝑝) (𝑎 ∈ 𝐵+), this means that

∑
𝑎∈𝐵− 𝑌

′(𝑎) > ∑
𝑎∈𝐵− 𝑌 (𝑎). So in

this case not only are the consumers 𝑎 ∈ 𝐴+𝑣 now allocated less (less
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consumption) by 𝑌 ′ than by 𝑌 , also the producers 𝑎 ∈ 𝐵− in 𝑅−

are allocated more (less production) by 𝑌 ′ than by 𝑌 , which means

that 𝑌 ′ is not Pareto.
For the induction step, assume that the lemma holds for all

bottlenecks other than 𝑣 in𝑇𝑣 . Hence we know that 𝐹𝑢 (𝑌 ′) = 𝐹𝑢 (𝑌 )
for any of these other bottlenecks 𝑢, for all congestion solutions 𝑌 ′.
Therefore the can follow the same argumentation as in the induction

basis for the congestion region 𝑅+ containing 𝑣 (instead of 𝑇𝑣 ). □

With these definitions and lemmas we formalized the fact that

congestion trees consist of alternating positive and negative con-

gestion regions invariant across congestion solutions, which are

the only allocations that we are interested in. Differences between

congestion solutions only appear among consumers in positive

congestion regions and producers in negative congestion regions.

Lemma 10. The aftermarket trades 𝑌𝑑𝑖 𝑓 𝑓 in the subtree 𝑇𝑣 of a

bottleneck 𝑣 result in a net-zero root flow, i.e. 𝐹𝑣 (𝑌𝑑𝑖 𝑓 𝑓 ) = 0.

Proof. Since 𝑌𝑑𝑖 𝑓 𝑓 is the difference between two congestion

solutions, 𝑌ℎ𝑦𝑏 and 𝑌𝑓 𝑎𝑖𝑟 , this follows from Lemma 9. □

Lemma 11. The aftermarket trades 𝑌𝑑𝑖 𝑓 𝑓 of all producers in pos-

itive congestion regions 𝑅+ are zero, i.e. 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) = 0 for produc-

ers 𝑎 ∈ 𝐴− in 𝑅+. Analogously for consumers.

Proof. This follows from Lemmas 8 and 10. □

Lemmas 10 and 11 show how aftermarket trades are confined

to congestion regions, and that consumers only trade with other

consumers (within the same positive congestion region) while pro-

ducers only trade with other producers (within the same negative

congestion region). Consequently, both consumers and producers

only interact in one of two ways in the aftermarket: they either buy

from, or sell to, agents with the same prosumption sign (±).
For the second aspect (what price to put on a trade when mul-

tiple prices yield a mutually beneficial trade), we distinguish be-

tween two types of aftermarket participants which we call strainers

and relievers. The strainers’ aftermarket trades 𝑌𝑑𝑖 𝑓 𝑓 are aligned

with their prosumption (i.e. 𝑑𝑎 (𝑝) > 0 < 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) or 𝑑𝑎 (𝑝) <

0 > 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) for a strainer 𝑎), moving them closer to their desired

prosumption. Because their prosumption was curtailed by 𝑌𝑓 𝑎𝑖𝑟 to

resolve congestion, thesemovements strain the line capacities. To re-

lieve this strain on capacity, the relievers accept aftermarket trades

that move them further away from their desired prosumption (i.e.

𝑑𝑎 (𝑝) > 0 > 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) or 𝑑𝑎 (𝑝) < 0 < 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) for a reliever 𝑎). In
a positive congestion region 𝑅+, the strainers are consumers 𝑎 ∈ 𝐴+
in 𝑅+ that buy (i.e. 𝑑𝑎 (𝑝) > 0 < 𝑌𝑑𝑖 𝑓 𝑓 (𝑎)) and the relievers are con-
sumers 𝑎 ∈ 𝐴+ in 𝑅+ that sell (i.e. 𝑑𝑎 (𝑝) > 0 > 𝑌𝑑𝑖 𝑓 𝑓 (𝑎)), while in
a negative congestion region 𝑅− the strainers are producers 𝑎 ∈ 𝐴−
in 𝑅− that sell (i.e. 𝑑𝑎 (𝑝) < 0 > 𝑌𝑑𝑖 𝑓 𝑓 (𝑎)) and the relievers are

producers 𝑎 ∈ 𝐴− in 𝑅− that buy (i.e. 𝑑𝑎 (𝑝) < 0 < 𝑌𝑑𝑖 𝑓 𝑓 (𝑎)).
This leads us to choose the marginal of the strainer as the price

for every trade, for two reasons. Firstly and objectively, in the af-

termarket a strainer 𝑎 attains, with 𝑌𝑓 𝑎𝑖𝑟 (𝑎) + 𝑌𝑑𝑖 𝑓 𝑓 (𝑎), at most

its desired prosumption 𝑑𝑎 (𝑝) for which the marginal is 𝑝 for all

agents, while a reliever 𝑎 is bounded by a prosumption of zero for

which the marginal𝑚𝑎 (0) exclusively depends on the submitted de-

mand curve. This makes the strainer’s marginal the most consistent

choice of price since it always reflects the real marginal value in

the aftermarket at its vertex and not a bounded value. Secondly and

subjectively, we established that the role of the relievers is to enable

additional prosumption for strainers by essentially resolving some

congestion. Since any price between the marginals of the reliever

and strainer is acceptable for a trade, we may want to maximally

reward the role that works to resolve congestion by setting the price

at the strainer’s marginal (instead of at for example the midpoint).

For the third aspect (which agents trade with which agents and

in what quantity), we look at the matching of supply and demand

in the aftermarket. When a congestion region contains multiple

strainers and relievers in the aftermarket, it is not yet clear which

strainer trades with which reliever. Note that this matching merely

labels indistinguishable units whose flows are already determined

by𝑌𝑑𝑖 𝑓 𝑓 . Since strainers always pay a price equal to their marginals,

the matching does not impact them. For relievers, however, it can

matter which strainer they are said to trade with. To resolve the am-

biguity, we simply proportionally match all strainers and relievers

that could trade with each other. As a result, relievers’ prices are set

at the proportional average of the accessible strainers’ marginals.

We implement this proportional matching recursively on sub-

trees, which, by Lemma 10, results in matching within congestion

regions. This recursive approach where relievers and strainers in

the aftermarket are maximally matched locally within each subtree

before moving up the tree to larger subtrees (i.e. greedy local-first

matching), is equivalent to our goal of matching every reliever

with every strainer accessible to them. These are equivalent be-

cause if there is a difference in marginals between strainers in a

congestion region, then there must be an intermediate obstruction

between them that necessitates local matching or else 𝑌ℎ𝑦𝑏 would

notmaximizewelfare. If there is no difference between the strainer’s

marginals then all matchings with relievers are equivalent.

Algorithm 3 presents our pricing scheme in accordance with the

three discussed aspects. With information about recursively traded

quantities on subtrees (Lines 1 to 8) we can identify the quantity

that each agent will still trade outside strict subtrees of 𝑇 . On

Line 11 we compute these untraded quantities for each agent 𝑎 ∈ 𝐴.
The untraded quantities tell us the total remaining aftermarket

demand and supply in the subtree 𝑇 , computed on Lines 12 and 13.

The maximal matching of supply and demand, given on Line 14,

determines the portions 𝑞′𝑎 of the untraded quantities that will be

traded within 𝑇 among agents 𝑎 ∈ 𝐴. Note that if the root 𝑟 of 𝑇 is

a bottleneck then, by Lemma 10, 𝐹𝑟 (𝑌𝑑𝑖 𝑓 𝑓 ) = 0, i.e. all aftermarket

supply and demand in 𝑇 is matched and untraded quantities are 0.

On Line 15 we check if any trades can be made in 𝑇 . If not, we

simply return the prices 𝑝𝑎 and quantities 𝑞𝑎 . Otherwise, we can

assign new quantities traded in 𝑇 . On Lines 16 to 19 we propor-

tionally assign quantities of supply and demand. For the supply or

demand side or both, the newly traded quantities 𝑞′𝑎 equal the pre-

viously untraded quantities untraded[𝑎], i.e. we maximally match

aftermarket supply and demand within 𝑇 .

On Lines 20 and 21 we identify which agents are strainers and

which are relievers. Having identified the strainers, we can compute

a single price 𝑝rel for the the reliever side of the newly matched

trades in 𝑇 . Since we want to proportionally match each reliever

with each strainer, we compute this price as the proportional aver-

age of the strainers’ prices 𝑝𝑎 , i.e. their marginals𝑚𝑎 (𝑌ℎ𝑦𝑏 (𝑎)).
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Algorithm 3: PricingScheme (𝑇,𝑌ℎ𝑦𝑏 , 𝑌𝑓 𝑎𝑖𝑟 )
Input: A congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) and the two congestion

solutions 𝑌ℎ𝑦𝑏 and 𝑌𝑓 𝑎𝑖𝑟
Output: For each 𝑎 ∈ 𝐴, a price 𝑝𝑎 and a quantity traded 𝑞𝑎

// Initialize prices and quantities

1 for agents 𝑎 at root 𝑟 do
2 𝑝𝑎 ← 0

3 𝑞𝑎 ← 0

// Recursion on child vertices

4 for children 𝑐 of root 𝑟 do
5 prices, quantities← PricingScheme(𝑇𝑐 , 𝑌ℎ𝑦𝑏 , 𝑌𝑓 𝑎𝑖𝑟 )
6 for agents 𝑎 ∈ 𝐴𝑐 do
7 𝑝𝑎 ← prices[𝑎]
8 𝑞𝑎 ← quantities[𝑎]
// Infer total aftermarket quantities

9 for agents 𝑎 ∈ 𝐴 do
10 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) ← 𝑌ℎ𝑦𝑏 (𝑎) − 𝑌𝑓 𝑎𝑖𝑟 (𝑎)

// Identify still untraded quantities (of 𝑌𝑑𝑖 𝑓 𝑓 )

11 untraded← {𝑌𝑑𝑖 𝑓 𝑓 (𝑎) − 𝑞𝑎}𝑎∈𝐴
// Total still untraded demand and supply

12 demand← ∑
𝑎∈𝐴 max(0, untraded[𝑎])

13 supply← ∑
𝑎∈𝐴 min(0, untraded[𝑎])

// Maximally match untraded demand and supply

14 matching← min(demand,−supply)
15 if matching ≠ 0 then

// Proportionally assign new trade quantities

16 for 𝑎 ∈ 𝐴 with untraded[𝑎] > 0 do
17 𝑞′𝑎 ←

matching
demand · untraded[𝑎]

18 for 𝑎 ∈ 𝐴 with untraded[𝑎] < 0 do
19 𝑞′𝑎 ←

matching
−supply · untraded[𝑎]

// Identify strainers by trades aligned with

prosumption, and relievers as complement

20 strainers← {𝑎 ∈ 𝐴 | untraded[𝑎] · 𝑌ℎ𝑦𝑏 (𝑎) > 0}
21 relievers← {𝑎 ∈ 𝐴 | untraded[𝑎] ≠ 0} \ strainers

// Proportional average of strainers’

marginals sets relief price of new trades

22 𝑝rel ←
(∑

𝑎∈strainers 𝑞
′
𝑎 ·𝑚𝑎 (𝑌ℎ𝑦𝑏 (𝑎))

)
/∑𝑎∈strainers 𝑞

′
𝑎

// Update price and quantity with new trades

23 for 𝑎 ∈ strainers do
24 𝑝𝑎 ←𝑚𝑎 (𝑌ℎ𝑦𝑏 (𝑎))
25 𝑞𝑎 ← 𝑞′𝑎 + 𝑞𝑎
26 for 𝑎 ∈ relievers do
27 𝑝𝑎 ← (𝑝rel · 𝑞′𝑎 + 𝑝𝑎 · 𝑞𝑎)/(𝑞′𝑎 + 𝑞𝑎)
28 𝑞𝑎 ← 𝑞′𝑎 + 𝑞𝑎
29 return {𝑝𝑎}𝑎∈𝐴, {𝑞𝑎}𝑎∈𝐴

We are now ready to set a price 𝑝𝑎 for each agent 𝑎 ∈ 𝐴. For

the strainers, on Lines 23 and 24, the price 𝑝𝑎 always equals their

marginal 𝑚𝑎 (𝑌ℎ𝑦𝑏 (𝑎)) as discussed before. For the relievers, on

Lines 26 and 27, the price of the new trades 𝑞′𝑎 in 𝑇 is set by the

price 𝑝rel (taking the weighted average of new and previous trades).

The output of the pricing scheme presented in Algorithm 3 on

the full congestion tree 𝑇 = (𝑉 , 𝐸,𝐴) on which 𝑌𝑓 𝑎𝑖𝑟 and 𝑌ℎ𝑦𝑏
are defined is, for each agent 𝑎 ∈ 𝐴, a price 𝑝𝑎 and a quantity

traded 𝑞𝑎 . This final quantity traded 𝑞𝑎 equals the predetermined

aftermarket trade 𝑌𝑑𝑖 𝑓 𝑓 (𝑎). The price 𝑝𝑎 is the price at which the

agent 𝑎 trades the quantity 𝑞𝑎 on the congestion aftermarket, with

the total amount paid given by 𝑞𝑎 · 𝑝𝑎 = 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) · 𝑝𝑎 .
For the hybrid allocation 𝑌ℎ𝑦𝑏 as a whole, each agent 𝑎 ∈ 𝐴

receives its fair share of prosumption 𝑌𝑓 𝑎𝑖𝑟 (𝑎) at a market clearing

price 𝑝 , and on top of that optionally trades 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) prosumption

in the congestion aftermarket at a price 𝑝𝑎 . The total payment for

the final prosumption𝑌ℎ𝑦𝑏 (𝑎) is given by𝑌𝑓 𝑎𝑖𝑟 (𝑎) ·𝑝+𝑌𝑑𝑖 𝑓 𝑓 (𝑎) ·𝑝𝑎 .

Theorem 12. Given the allocations 𝑌ℎ𝑦𝑏 , 𝑌𝑓 𝑎𝑖𝑟 , and their differ-
ence𝑌𝑑𝑖 𝑓 𝑓 on the congestion tree𝑇 = (𝑉 , 𝐸,𝐴), Algorithm 3 computes
prices 𝑝𝑎 for the aftermarket trades 𝑌𝑑𝑖 𝑓 𝑓 (𝑎) (𝑎 ∈ 𝐴) such that∑︁

𝑎∈𝐴
𝑌𝑑𝑖 𝑓 𝑓 (𝑎) · 𝑝𝑎 = 0 (budget balance)∫ 𝑌ℎ𝑦𝑏 (𝑎)

𝑌𝑓 𝑎𝑖𝑟 (𝑎)
𝑚𝑎 (𝑥) − 𝑝𝑎 𝑑𝑥 ≥ 0 (𝑎 ∈ 𝐴) (individual rationality).

Proof. The aftermarket is easily seen to be budget balanced

since we showed how Algorithm 3 computes the reliever prices

by aggregating and exactly distributing the constrainer prices. We

also showed how we chose constrainer prices to always equal their

marginals in 𝑌ℎ𝑦𝑏 , and how reliever prices are consequently equal

to or better than their marginals in𝑌ℎ𝑦𝑏 . Therefore, each unit traded

between agents in the aftermarket has positive prosumption surplus

for both strainer and reliever, resulting in individual rationality. □

Note that since aftermarket trades only occur between agents in

the same congestion region, as stated by Lemma 10, Theorem 12

also holds for any subtree 𝑇𝑣 of a bottleneck 𝑣 .

8 FULL AFTERMARKET PARTICIPATION
Since it is individually rational for agents to participate in the con-

gestion aftermarket, it may be that all agents choose to participate

in it. In this case, since 𝐴𝑓 𝑎𝑖𝑟
is empty, 𝑌ℎ𝑦𝑏 = 𝑌𝑤𝑒𝑙 . Moreover,

since the aftermarket is budget-balanced and 𝑌𝑤𝑒𝑙 maximizes total

welfare, 𝑌ℎ𝑦𝑏 with the aftermarket also maximizes the total welfare.

The difference between the two is the distribution of the welfare

among the agents. The aftermarket, relative to 𝑌𝑤𝑒𝑙 , increases wel-

fare for some agents while decreasing it for some others.

The deciding factor in how the welfare is redistributed among

the agents between 𝑌𝑤𝑒𝑙 and 𝑌ℎ𝑦𝑏 with the aftermarket is the fair

allocation 𝑌𝑓 𝑎𝑖𝑟 . If 𝑌𝑓 𝑎𝑖𝑟 = 𝑌𝑤𝑒𝑙 then nothing is traded in the after-

market and welfare is distributed identically among agents both

with and without aftermarket, but any other 𝑌𝑓 𝑎𝑖𝑟 results in a re-

distribution of welfare relative to 𝑌𝑤𝑒𝑙 . What is interesting to note

is that the choice of fair shares through 𝑌𝑓 𝑎𝑖𝑟 thus translates to a

choice of welfare distribution among the agents, even if no agent

claims their fair share and all agents participate in the aftermarket.
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Figure 5: An example congestion problem. Shown are mar-
ginal functions for consumers 𝑎 (red), 𝑏 (blue), and 𝑐 (green)
with simple linear demand curves 𝑑𝑎 (𝑝) = 8−2𝑝, 𝑑𝑏 (𝑝) = 8−𝑝,
and 𝑑𝑐 (𝑝) = 14−2𝑝. These consumers share a total capacity of
15, and the higher-level price 𝑝 is currently 1. The consumers’
demands at 𝑝 = 1 lead to a total demand of 6 + 7 + 12 = 25,
exceeding the capacity by 10. LMP sets the local congestion
price at 3 to reduce total demand to 2+5+8 = 15. An equitable
solution allocates a total consumption of 5 + 5 + 5 = 15. A sub-
sequent aftermarket trade at 𝑝 = 4, in which consumer 𝑎 does
not participate, allocates a total consumption of 5+ 4+ 6 = 15.

9 NUMERICAL EXAMPLE
Figure 5 and Table 1 show a simple numerical example illustrating

the benefits of our hybrid solution over straightforward LMP.

10 CONCLUSIONS
In this paper we considered congestion management in systems

modelled after electricity distribution networks. In particular, we

considered the welfare expressed by agents’ demand curves in re-

lation to quantities allocated by congestion-resolving curtailment

mechanisms. We differentiated between congestion solutions fo-

cused on fairness and those focused on maximizing welfare.

We presented an algorithmic mechanism to find such welfare-

maximizing congestion solutions for tree networks populated by

both consumers and producers. Thesemodel e.g. common prosumer-

oriented low- and medium-voltage electricity networks. We then

went on to propose a hybrid congestion solution that provides

agents with the choice between fairness and welfare maximization.

We argued that giving agents the choice to claim a fair share of the

available capacity at the original higher-level market clearing price

is sufficient to constitute a fair congestion management mechanism.

In such a mechanism we can let agents that do not choose to claim

their fair share engage in welfare-maximizing activity amongst

themselves. We achieved this choice-based hybrid congestion solu-

tion by applying our welfare-maximizing mechanism after locking

in the fair shares of agents that decided to claim their fair share.

We then went on to define the welfare-maximizing part of our

hybrid congestion solution as a congestion aftermarket by present-

ing a pricing scheme for the changes relative to the fair solution.

𝑌 𝑌LMP 𝑌𝑓 𝑎𝑖𝑟 𝑌ℎ𝑦𝑏 𝑌 ′
ℎ𝑦𝑏

price 𝑝 1 3 1 1 & 4 1 & 3

consumption𝑎 6 2 5 5 2

consumption𝑏 7 5 5 4 5

consumption𝑐 12 8 5 6 8

consumptiontotal 25 15 15 15 15
payment𝑎 6 6 5 5 -4

payment𝑏 7 15 5 1 5

payment𝑐 12 24 5 9 14

paymenttotal 25 45 15 15 15
surplus𝑎 9 1 8.75 8.75 11

surplus𝑏 24.5 12.5 22.5 23 22.5

surplus𝑐 36 16 23.75 24 26

surplustotal 69.5 29.5 55 55.75 59.5
Table 1: Values corresponding to the example congestion
problem from Figure 5. Allocation 𝑌 is the result of the
higher-level market and is the preferred outcome, but causes
congestion since its total consumption of 25 exceeds the ca-
pacity of 15. The LMP solution 𝑌LMP simply raises the price
to find the efficient allocation of 2, 5, 8. However, the total
payment now exceeds the cost of the total consumption in
the higher-level market, causing a budget imbalance of 30
(i.e. the consumers pay the network). The simple equity allo-
cation 𝑌𝑓 𝑎𝑖𝑟 curtails all three consumers to 5 but keeps the
original price 𝑝 and is therefore budget balanced. However,
𝑌𝑓 𝑎𝑖𝑟 can be improved in terms of efficiency. Our aftermarket,
in which agent 𝑎 chooses not to participate, allows an extra
trade between agents 𝑏 and 𝑐 at a price 𝑝 = 4 which increases
the efficiency while maintaining budget balance (i.e. the con-
sumers pay each other). Finally, 𝑌 ′

ℎ𝑦𝑏
shows full aftermarket

participation (at a price 𝑝 = 3). As we can see, this results in
the maximally efficient allocation 2, 5, 8 that was also found
by LMP. However, the aftermarket has avoided congestion
pricing and drastically reduced consumer’s costs. The differ-
ence in surplus between full aftermarket participation 𝑌 ′

ℎ𝑦𝑏

and 𝑌LMP is exactly the 30 congestion overpayment. Notice
that for 𝑌 ′

ℎ𝑦𝑏
agent 𝑎 bought 5 units at 𝑝 = 1 each and sold 3

units at 𝑝 = 3 each in the aftermarket, netting an income of 4.
A different notion of fairness, e.g. proportional, would affect
aftermarket payments, but 𝑌 ′

ℎ𝑦𝑏
would always allocate 2, 5, 8.

We showed that this pricing scheme makes participation in the

aftermarket an individually rational choice, and defines in a budget-

balanced aftermarket. As a result, in contrast to popular congestion

managementmechanisms such as locational marginal pricing (LMP)

where scarcity prices generate income for the mechanism, our hy-

brid solution gives agents the option of receiving a fair share at a

non-scarcity price while still incentivizing welfare maximization

through participation in a budget-balanced internal market.

Our Theorems 4 and 12, supported by Algorithms 2 and 3 re-

spectively, provide local prosumer networks of arbitrary size with

a way of becoming autarkic in their congestion management by

offering internally-defined fair shares in parallel with a completely

internal congestion aftermarket that feasibly maximizes welfare.
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