

Delft University of Technology

Intermittently-powered bluetooth that works

De Winkel, Jasper; Tang, Haozhe; Pawełczak, Przemysław

DOI
10.1145/3498361.3538934
Publication date
2022
Document Version
Final published version
Published in
MobiSys 2022 - Proceedings of the 2022 20th Annual International Conference on Mobile Systems,
Applications and Services

Citation (APA)
De Winkel, J., Tang, H., & Pawełczak, P. (2022). Intermittently-powered bluetooth that works. In MobiSys
2022 - Proceedings of the 2022 20th Annual International Conference on Mobile Systems, Applications and
Services (pp. 287-301). (MobiSys 2022 - Proceedings of the 2022 20th Annual International Conference on
Mobile Systems, Applications and Services). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3498361.3538934
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3498361.3538934
https://doi.org/10.1145/3498361.3538934

Intermittently-Powered Bluetooth that Works
Jasper de Winkel

Delft University of Technology
Delft, The Netherlands
j.dewinkel@tudelft.nl

Haozhe Tang
Delft University of Technology

Delft, The Netherlands
philo.tang@foxmail.com

Przemysław Pawełczak
Delft University of Technology

Delft, The Netherlands
p.pawelczak@tudelft.nl

ABSTRACT
We present an architecture for intermittently-powered wireless
communication systems that does not require any changes to the of-
ficial protocol specification. Our core idea is to save the intermediate
state of the wireless protocol to non-volatile memory within each
connection interval. The protocol state is then deterministically
restored at a predefined (harvested energy-dependent) time, which
follows the connection interval. As a case study for our architec-
ture, we introduce FreeBie: a battery-free intermittently-powered
Bluetooth Low Energy (BLE) mote. To the best of our knowledge
FreeBie is the first battery-free active wireless system that sustains
bi-directional communication on intermittent harvested energy.
The strength of our architecture is articulated by FreeBie consum-
ing at least 9.5 times less power during device inactivity periods
than a state-of-the-art BLE device.

CCS CONCEPTS
• Hardware → Emerging architectures; Wireless devices; •
Networks→Mobile networks; • Computer systems organi-
zation → Embedded systems.

KEYWORDS
Intermittent Computing, Battery-free, Embedded Systems, Blue-
tooth, Mobile Networks, Energy Harvesting
ACM Reference Format:
Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak. 2022. Intermittently-
Powered Bluetooth that Works. In The 20th Annual International Con-
ference on Mobile Systems, Applications and Services (MobiSys ’22), June
25–July 1, 2022, Portland, OR, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3498361.3538934

1 INTRODUCTION
Billions of Internet of Things (IoT) devices, such as the one seen
in Figure 1, will surround us in the coming years [8, 78]. This im-
plies that the batteries (powering the conventional IoT ecosystem)
would need to be regularly replaced, monitored, and recycled [31]—
inducing an environmental impact to our planet and monetary
cost to the consumer [30, 48]. While the search for a battery that
is longer-operational [31], better recyclable [69] and having high-
energy density [93] continues, the road leading to such batteries is
still long [17, 110].

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9185-6/22/06.
https://doi.org/10.1145/3498361.3538934

Figure 1: First battery-free open-source [1] smartwatch with FreeBie:
intermittently-powered bi-directional BLE link.

A dedicated line of research addressing the battery sustainability
problem tries to find out howwe can build (wireless) IoT completely
independent from batteries [50, 80, 88, 91]. In battery-free systems,
a conventional battery is either removed or replaced by a capaci-
tor : an energy reservoir that is cheaper, non-ageing, non-leaking,
lighter,1 less dependent on sparsely-available chemical elements
and temperature-stable. The energy to power such a battery-free
system comes from ambient sources, for example from solar radia-
tion [23] or Radio Frequency (RF) emissions [43]. Nonetheless, the
unique properties of battery-free systems—small storage and unpre-
dictable and intermittent energy—create one-of-its-kind challenges
for the design of IoT wireless communication.

▶ Problem Statement: An IoT sensor requires a wireless link
to communicate. This link needs to be ➊ low-power—to operate
as long as possible on a single energy charge, ➋ belonging to one
of the mainstream wireless standards—to be backward compati-
ble with already deployed networks, ➌ independent from specific
infrastructure, such as RF carrier wave generators to backscatter
on—to be flexibly deployable, and ➍ bi-directional, as opposed to
backscatter IoT tag-to-infrastructure links only—to enable remote
maintenance and firmware updates [7, 12] as already-deployed IoT
devices are severely limited without the ability to reconfigure it
wirelessly. To address requirements ➊ and ➋ plenty of research
has been dedicated to enabling ultra-low-power communication for
popular wireless communication standards—leading to battery-free
operation—through the backscatter principle. Recent examples of
such wireless standard-compliant backscatter-based transmitters
include LoRa [57], BLE [112] and Long Term Evolution (LTE) [22].
These wireless systems however do not address requirement ➌. A
related approach based on a wake-up radio [81] is also not viable
for the same reason. Therefore the only solution to battery-free IoT
that addresses requirement ➌ is an ultra-low-power active radio.
1We note that in the weight-optimised Bluetooth Low Energy (BLE) node, the battery
is its heaviest component [54, Table 1], while in size-optimised designs the BLE node
battery was bigger than the BLE node itself [18, Figure 1].

287

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3498361.3538934
https://doi.org/10.1145/3498361.3538934
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak

System on

CI
CT

N
or

m
al

sy

st
em

Pr
op

os
ed

sy

st
em

System O�

St
or

ed

en
er

gy

Time

State
lost RX TX

TXRE
S

CK
PTRX TXRE
S

CK
PTRX TXRE
S

CK
PTRX TXRE
S

CK
PTRX

TXRX TXRX TXRX TXRX

Power failure

Figure 2: Intermittently-powered device operation. In a non-
protected system even a single power failure causes the network
state to be lost, requiring unnecessary new handshakes. In our pro-
posed system the network state is stored and restored to/from non-
volatile memory enabling to sustain connections. CI: connection
interval, CT: connection timeout, RES: state restore, CKPT: state
checkpoint, RX/TX: reception/transmission. region denotes the
period of devices on time.

However, intermittent operation2 of a battery-free active radio, i.e.,
non-backscatter, IoT node implies that the active radio communica-
tion also becomes intermittent. Unless steps are taken to sustain the
protocol state despite a power interrupt, even a single one will cause
a connection drop, see Figure 2, forcing connection re-establishment
which itself consumes time and energy of a battery-free system.
Therefore, a design of a truly bi-directional (connection-based)
wireless active link for a battery-free IoT sensor—addressing re-
quirement ➍—needs to sustain already established connections
despite frequent power interrupts. Unfortunately, all battery-free
intermittently-powered state-of-the-art active radio platforms avail-
able are connection-less, or require the system to reconnect after
each power failure. This includes broadcast-only (best-effort) BLE
communication [42]. Simply, classical techniques to prolong IoT
life based on duty cycling do not apply: intermittent power sup-
ply takes away the guarantee that the energy will be available at
the scheduled wake-up times of the device [42, Section 7.1]. All
this results in wireless communication being one of the unsolved
challenges in the intermittent computing domain [94, Section 4(b)].
This challenge has not been tackled yet due to complexity of the
problem: system designer needs to simultaneously consider net-
work protocol specification constraints, application needs, energy
demands and energy use. Also, the most common way of dealing
with power interrupts: checkpoining system state and restoring it
as the energy returns [67, Section 3.2], has never been applied to
wireless network protocols. Checkpoints restoration have usually
random duration and have to be placed at a precise point in time
not to break the protocol timing. Therefore, a battery-free IoT that
is useful, i.e., that addresses requirements ➊, ➋, ➌, and ➍, has yet
to be achieved.

▶Contributions: Addressing the above problem we provide
the following contributions:

2For ambient energy-powered battery-free devices on/off times can range from mi-
croseconds [83, Figure 1] to seconds [61, Figure 2(a)] for solar- and Radio Frequency-
powered devices, respectively.

Contribution 1: New intermittently-powered wireless sys-
tems architecture. Our core novelty is a new battery-free net-
worked IoT device state checkpointing system operating on a process
level. Each core class of IoT device processes—application, network
and Operating System (OS)—are checkpointed and stored in non-
volatile memory individually. Checkpoints are triggered by the
process scheduler based on real-time requirements of incoming
processes. Checkpoints triggered by the scheduler protect network
protocol state timing from unnecessary in-between checkpoints.
Moreover, our novel ultra-low power timekeeping architecture al-
lows for microsecond-level time granularity. This enables keeping
track of network protocol state in-between power interrupts and
resuming already established communication when energy condi-
tions allow. Both architectural novelties give rise to a new concept of
time and peripheral abstraction layer : the original network software
stack never sees that the radio is powered off even when the storage
capacitor is fully depleted.

Contribution 2: Implementation of bi-directional active
wireless link powered intermittently. We pick one of the most
ubiquitous IoT wireless system: Bluetooth, and in particular its low
energy configuration BLE [15], and build a BLE system powered
intermittently, called FreeBie, with its hardware and software re-
leased as open-source [1]. With our architecture, a battery-free BLE
node can communicate bi-directionally with any BLE host and can
sustain an already established bi-directional BLE link—even after
multiple power outages at the battery-free BLE node.3

Contribution 3: New battery-free IoT applications. Our
novel architecture enables never before seen IoT applications, in
particular BLE firmware updates performed battery-free on an in-
termittent power and a fully-functional battery-free smartwatch,
shown in Figure 1. Our architecture provides a foundation to con-
nect and communicate bi-directionally for the next generation of
battery-free IoT devices.

2 BACKGROUND, CHALLENGES AND KEY
INSIGHTS

Taking a recent example, long-term experiments with a commercial-
grade battery-free BLE node of [25] demonstrated that time of the
day, orientation, and deployment location can affect the duration
of continuous operation: from almost constant operation to few
transmission activities throughout the day only [61, Section 5].
Therefore, necessary system support for intermittently-powered
devices is needed that takes care of [67, Section 2] (i) control flow—
to guarantee that the device will start from the state right before
the last power failure, (ii) data consistency—to guarantee that the
system will restore correctly from power failure, (iii) environmental
consistency—to guarantee that the time-sensitive data will be han-
dled correctly when data becomes outdated after restoring from
power failure, (iv) concurrency—to enable execution of multiple ac-
tive applications, and (v) undisrupted communication—to enable
wireless communication between (intermittently-powered) devices
and guarantee synchronisation despite power interrupts.

While there are plenty of frameworks available that aim at at-
taining points (i)–(iv), see Table 1 and Section 7 later on, sustaining

3A comparison of battery-free BLE platforms is given in Table 5.

288

Intermittently-Powered Bluetooth that Works MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

InK [109] TICS [63] Coala [68] Capybara [23] MPatch [29] Empire [3] This work

Checkpoint trigger Task end In-code checkpoint Task end Task end Voltage level Voltage level Process end
Checkpoint type Task Checkpoint Task Task Checkpoint Task Process

Requires code instrumentation Yes No Yes Yes No Yes No
Time-deterministic restoration No No No No No No Yes

ARM-based processor architecture No No No Yes Yes No Yes
Dynamic memory allocation No No No No No No Yes

Interrupt support Yes Yes No No Yes No Yes
Peripheral support No No No Yes No Yes Yes

Preemptive scheduling Yes No No No No No Yes

Table 1: Comparison of relevant existing software support systems for intermittently-powered devices. Colour scheme: denotes non-desired
or limiting features from the perspective of wireless communication protocol and denotes the desired features.

a communication of a radio link powered by an intermittent source,
i.e., attaining point (v), is far from being solved.

▶ Infeasible solutions for ‘intermittent’ communication:
Increasing capacitor size or energy harvesting efficiency, is a typical
solution to improve battery-free systems. Sadly, a large capacitor/en-
ergy harvester increases the device’s size and increases charge times.
So all active radio intermittently-powered devices trade-off capaci-
tor and/or harvester size for communication functionality, sending
connection-less data, such as beacons in case of BLE, e.g. [56, 92].
Simply, when the device powers off mid-transmission, the device
will restart and re-send the beacon again. This however is not fea-
sible for connection/handshake-oriented protocols, especially if
they require strict timing to establish and sustain a connection.
Lastly, reconnection costs packet transmissions. For example, for
our smartwatch’s BLE link each reconnection would require about
70 packets to be sent by the BLE client, taking more than 43 s
to reconnect at low (200 lx) ambient light. These packets include
connection establishment, negotiation of connection parameters,
service discovery and notification configuration. Apart from the
above-mentioned connection re-establishment overhead, if the BLE
device needs to re-establish the already-existing connection, one
would have to build much more complex application. Such applica-
tion would have to take care of storing authentication information,
tracking network status, or transfer progress information—all caus-
ing processing overhead, i.e. taking extra time before the existing
connection is re-established.

Other techniques, such as ‘classical’ duty cycling [21] and trans-
mission power control [36], are also infeasible. Duty cycling is
problematic, as the main capacitor may get depleted within the
sleep period resetting connection state, while duty cycling itself
consumes energy during sleep, e.g. for Nordic Semiconductors
NRF52840 BLE module sleep current is 3.16 µA at 3 V [74]. Needless
to say, it is impossible to turn the system off completely and then
wake up: some components like Real Time Clock (RTC) need to
remain powered to wake up the system from sleep. In the case
of transmission power control, the transmitted power reduction
does not translate to significant overall gains for the device. The
same observation applies to system adapting transmitted packet
lengths: reducing packet length would not scale linearly with en-
ergy expenditure, as overhead such as the crystal ramp-up time
and pre- and post-processing remain constant [75]. Thus, the goal
is to create a framework that enables unobstructed communication
on intermittently-powered budget.

Protocol type Implementation Lines of code1

Bluetooth Packetcraft [10] 397 200
TCP/IP LWIP [38] 88 100
Thread OpenThread [47] 250 500

1 Measured with cloc [27] (rounded to 100 lines).
Table 2: C/C++ lines of code of different network protocol implemen-
tations. Compared to the orders of magnitude smaller codebase of
software support systems for intermittent operation, e.g. [68, Table
3], the cognitive burden to analyze and instrument protocol code is
unprecedented.

Framework Requirement 1: Time-aware Checkpoints and
Real-time Restoration.We postulate that if the duration of power
failures is within the allowed connection timeout (see again Fig-
ure 2), the transmitter and the receiver should resume the connec-
tion without the need to restart. This resumption must be supported
by a framework responsible for copying of the protocol state, i.e.,
volatile MCU registers and volatile memory to a non-volatile mem-
ory before the power interrupt, and restoring the last saved state
back to the respective volatile registers.

There exist two classes of frameworks that optimise the amount
of memory to store and resume: task-based, e.g. [68] and checkpoint-
based, e.g. [63]. A task is a section of code with defined input and
output of non-volatile variables. Tasks are connected through these
variables to form a state machine. Sadly, automatic/compiler-based
transformation of a wireless protocol implementation code into
tasks is not feasible due to the large and complex codebase, see
Table 2. This means that the developer would have to do this by
hand—a daunting task to achieve [63, Section 5.4]. A conceptual
counterpart to a task is a checkpoint, i.e., a function inserted manu-
ally or automatically at compile time (to the original codebase) that
stores the program’s state until that checkpoint. Sadly, both tasks
and checkpoints introduce a computation penalty—the store and
restore operation. In other words, checkpoints or tasks will break the
protocol’s timing nullifying their use for wireless networking. Fortu-
nately, state saving and restoration can be triggered not only by the
end of a task or a checkpoint, but also by the internal timer or the
capacitor voltage monitor. However, the timer would have to follow
the protocol state timing precisely, while the voltage-based trigger
does not follow any timing. Finally, the restoration time from the
checkpoint must be constant and time-bounded. Otherwise, the
real-time requirement of the wireless protocol state machine will
be violated.

289

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak

To summarize, the key challenge is that existing checkpoint
and restoration methods, see Table 1, are not suitable for wireless
networking support. Our key insight to solve the challenge is
that the system state checkpoint can be triggered by the end of the
wireless protocol process, i.e., the only atomic operation that must be
executed without interruptions. This way no code instrumentation,
fixed checkpoint timers, and voltage monitors are needed.

Framework Requirement 2: Virtualisation of time and pe-
ripherals. Time and peripheral state would be disrupted by in-
termittent operation. Thus, dedicated software abstraction layer
to mask (virtualize) time and peripherals to network protocol is
needed. The key challenge is that, referring again to Table 1,
no software framework is able to support peripherals and time
(required for time-deterministic restoration). Our key insight to
solve the challenge is the following conjecture. To enable masking
of time and peripherals only one intermittently-powered device com-
ponent, i.e, on-board time reference, must be continuously powered as
long as possible (through a dedicated capacitor). The current draw
of modern low-power RTCs is in the order of nA [5]. As the sleep
mode consumption reaches µA levels, only keeping RTCs on is
about ten times more energy efficient than sleeping.

Framework Requirement 3: Dynamic handling of network
connections. A framework must adapt connection parameters
to available harvested energy. The framework must prioritize an
already-established connection or focus on sustaining on-device
computation and sensing. The system must support preemptive
scheduling (to prioritise network processes over application or
OS processes). The key challenge is that these features are also
not supported by existing systems except for InK [109] (although
InK requires manual code transformation to achieve this), refer to
Table 1. Our key insight to solve the challenge is that network
protocols allow adjustment of the Connection Interval (CI), this
and other parameters can be used as a foundation for connection
adaptation.

3 INTERMITTENTLY-POWEREDWIRELESS
SYSTEM

Driven by Framework Requirements 1, 2 and 3, we propose an archi-
tecture that sustains wireless protocol communication for intermittently-
powered devices, see Figure 3.

3.1 Target Network and Device Architecture
▶Network Topology and Device Capabilities: We consider a

star network topology following a Connection Interval (CI)-oriented
Connection Timeout (CT)-driven wireless communication proto-
col of choice, as exemplified in Figure 2. The host is tethered or
battery-based. The end device, on the contrary, is battery-free and
intermittently-powered (by energy harvester). We assume that both
devices do not share a common signal that can be used to synchro-
nise them, as in e.g., [41]. As with most network protocols, the end
device has to announce its presence to a host for a connection to
be established.

▶ End Device Hardware: We propose a battery-free end de-
vice logically separated into two power domains, see Figure 3: (i)
processor (MCU) power domain and (ii) “always-on” ultra-low-power

Real-time
Scheduler

Real-time Virtualization

Real-time
Sync

Operating
System

Power Control

Processor Power Domain

Ultra-Low Power Domain

DNH: Network
Recovery

Networking
Process

DNH: Dynamic
 Adaptation

Dynamic
Restoration

App-A

App-N

Sleep

Power
OFF

Ext
RTC

SoC RTC SoC Timer SoC RadioNormal
IoT Device

Double Bu�ered

Fast Non-
volatile Memory

Time-aware
Checkpointing

Real-time
Restoration

Energy
Harvesting

TDC

Figure 3: Proposed system architecture for the intermittently-
powered battery-free wireless communication system.

Volatile Memory

Fast Non-volatile Memory

CKPT
Stack

CKPT
Logic

OS 0
DATA
BSS

Stack
Heap

DATA
BSS

Network 0

App-A
DATA
BSS

App-N
DATA
BSS

No Restore
DATA
BSS

DATA
BSS

Network OS
DATA
BSS

Stack
Heap

App-A 0
DATA
BSS

App-A 1
App-N 0

DATA
BSS

App-N 1 OS 1Network 1

Figure 4: Memory map of intermittently-powered wireless network-
ing device. Numbers 0 and 1 for App-𝑥 , Network and OS process
denote buffer numbers of double buffered memory. Colours match
respective processes in Figure 3.

domain—charging on-board capacitors through onboard solar pan-
els, through which processor power domain and external RTC is
powered. The external RTC not only keeps track of time but also
is able to switch the processor power domain off completely, as
proposed in [58].

3.2 System Components
3.2.1 Time-aware Checkpoints and Real-time Restoration. We pro-
pose Time-Deterministic Checkpoint (TDC): a time-aware check-
points and real-time restoration system for intermittently-powered
wireless networking protocols. TDC, addressing Framework Re-
quirement 1, is built as follows.

▶ Process as Atomic Data Structure Checkpoint: We cate-
gorize processes in three groups: (i) network, (ii) OS and (iii) ap-
plication (with one process per concurrently-running application).
Implementation-wise, a process is a hand-picked file/directory part
of a source code. Each process can be classified as requiring real-
time operation or not. Per default the processes network and OS
are real-time processes, the application process(es) can be real-time
or non-real-time.

290

Intermittently-Powered Bluetooth that Works MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

Re
st

or
e

N
et

w
or

k

Re
st

or
e

O
S

Sleep Sleep

RX

Ch
ec

kp
oi

nt

N
et

w
or

k

Ch
ec

kp
oi

nt

O
S

Time

A

B

C
D

E

B

Po
w

er
 c

on
su

m
pt

io
n

TI
FS TX

Figure 5: System events in one network-only cycle (power consump-
tion levels marked as A○– E○); TIFS: Time Inter-Frame Space, 𝑇sync:
RTC time synchronisation moment.

▶ Process Separation and Memory Structure: The memory
separation for all processes is performed by the linker at the code
compilation stage. The developer splits the source code of a com-
plete system into code directories—one per process. Static memory
declared in the source files of each directory is allocated in separate
regions as shown in Figure 4. The registers, stack and heap are
included in the OS process checkpoint.

We assume that the memory from a non-restored process cannot
be read or written to. This can be enforced by a Memory Protection
Unit (MPU), preventing writes and reads to unrestored memory.
Communication between processes occurs through the OS using
Inter-Process Communication (IPC) with dynamically allocated
messages. Finally, we note that the developer can specify variables
(such as a buffer for logging) that do not need to be checkpointed
and restored. For this case, a dedicated region in volatile memory
is allocated; see Figure 4.

▶ Process Checkpoint Scheduling: In modern network pro-
tocol stacks, each networking process, at the end of its execution,
provides information to the device OS when the next networking
process, e.g., beginning of a next connection interval as shown in
Figure 2, occurs. Therefore the core component of our architecture
is a process scheduler handled by the battery-free device’s OS. The
scheduler using the virtualisation layer (defined in Section 3.2.2)
decides on the next moment in time when the battery-free device
powers on again. The power-on moment is determined by the pro-
cess with the earliest deadline in the scheduler’s queue. If more
than one process has the same deadline, than these are served as
first-come first-served. Each running application shares the same
priority and is queued through a scheduling queue, while the net-
work process (through an interrupt) can preempt the application
process residing in the queue’s head.

Considering what processes are at the top positions of the sched-
uler queue pending execution three combinations of processes that
occur during a power-on cycle exist. These are: (i) application only,
(ii) network only, and (iii) combined application and network. In
case (i) and (ii) respectively, the network process or application
process does not have to be checkpointed and restored. Case (iii)
occurs when the application process is scheduled for execution
close to a network process, or when the network process triggers
the application to run. In this case, the application is dynamically
restored by the scheduler. When there is no process awaiting exe-
cution, the MCU is placed either into sleep mode or the processor
power domain is switched off. The decision of whether to switch

No
check-
pointPower

OFF Sleep
Success

Timeout

Sync

Network/Combined
CycleRestore

OS
Restore

Network

Recovery

Dynamic
Restore

Connection recoveredConnection timeout

Execute
Network

App only cycle

Checkpoint

Execute
Application

Check-
point

present

Start

Figure 6: Restoration of a process after power off.

off the processor power domain or to sleep is based on the duration
of the checkpoint and restoration process. In our architecture, we
switch off the processor power domain if the next process event is
scheduled to start later than 𝑇minOff, i.e., as a minimum the com-
bined time of checkpoint and restoration. Otherwise, the MCU is
set into sleep mode. Depending on the implementation 𝑇minOff can
be set to the break even point between additional energy cost of
checkpointing and restoring and the power saved by turning the
processor domain off. Then, the processor domain only switches
off when it is energy-wise beneficial to do so, however, this does
lead to less frequent checkpoints.

Prior to switching off, the state of the system has to be check-
pointed. First, the next power-on time is determined—that particular
step is performed by the time and peripherals virtualisation layer
described in Section 3.2.2. Next, based on the scheduler queue, the
real-time processes that need to be restored during the next cycle are
determined. This information is stored in the next OS checkpoint.
Then, any process combination—either (i), (ii) or (iii)—that has been
executed during the current power-on cycle is checkpointed, fol-
lowed by the OS checkpoint. Finally, the device is switched off.
An illustration of a power cycle consisting of only the networking
process is presented in Figure 5.

▶ Process Checkpoining: Application and network process
checkpoints are always committed with an OS process checkpoint.
This protects from a situation where memory can be dynamically
allocated within an application or network process and then lost
due to an incomplete OS checkpoint. In order to make the system in-
corruptible each checkpoint is double-buffered, with two dedicated
memory regions allocated for each process, as shown in Figure 4.
The OS process checkpoint must be restored after the scheduled
wake-up from power-off as it includes the processor registers, stack,
heap, scheduler, OS functionality (such as timers, queues and IPC),
and the peripheral state.

▶ Process Restoration: Processes can be restored either as
non-real-time or real-time. Non-real-time processes are loaded dy-
namically prior to execution by the scheduler. For non-real-time
checkpoints the restoration time is neither monitored nor compen-
sated.

Unlike non-real-time processes, real-time processes are restored
in advance prior to the scheduler resuming operation. As process

291

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak

checkpoint sizes may vary, we add a margin on top of the pro-
cesses restore time. The allocated time for restoration, including
the margin, is denoted as 𝑇restore.

Upon resuming from the power-off state, the system begins pro-
cess restoration, as shown in Figure 6. With a checkpoint present,
the OS process is restored together with the network processes and
real-time application processes as determined by the scheduler in
advance. Once the virtualisation layer compensates for the power-
off time the system synchronises with the external time source
(refer to Section 3.2.2) and the device resumes operation as nor-
mal, i.e., moving to sleep mode and then executing the networking
process or other application processes. If the device is unable to
power back up at the desired time after switching off, or if the time
synchronisation was unsuccessful, a recovery process is instanti-
ated driven by Dynamic Network Handling (DNH), as explained in
Section 3.2.3. During the first boot, the system is synchronised to
the external time source and starts operation.

3.2.2 Virtualisation of Time and Peripherals. We propose a time
and peripheral virtualisation layer, addressing Framework Require-
ment 2. The virtualization layer is placed logically between the
peripherals and the pre-existing network software stack (see Fig-
ure 3).

Our architecture needs a method to synchronise to external RTC
time for our system to deterministically execute real-time processes.
This synchronisation step needs to occur after real-time process
restoration and prior to the scheduler resuming operation and is
performed as follows. When power is reapplied to the processor
power domain, the MCU starts up and the boot time of the MCU,
denoted as𝑇startUp, is considered consistent. Next, the real-time pro-
cesses are restored, as described in Section 3.2.1 (Process Restoration
paragraph). Finally the system awaits a synchronisation pulse at
𝑇sync, where𝑇sync ≤ 𝑇nextEvent and𝑇nextEvent is the starting time of
the upcoming process event.𝑇sync is the point in time that synchro-
nises the system to the external time and marks the resumption
of real-time operation and scheduling. 𝑇sync should be as close as
possible to 𝑇nextEvent as allowed by the external RTC resolution
to avoid overhead. The next wake-up time is given as 𝑇wakeUp =
𝑇sync −𝑇startUp −𝑇restore. Since 𝑇sync is known prior to turning off,
this value is stored as part of the OS checkpoint and used as a
reference starting value for the MCU timing peripherals during the
next power-on cycle.

3.2.3 Dynamic Handling of Network Connections. Addressing Frame-
work Requirement 3, we introduce DNH—a final component of our
architecture. DNH is responsible for: (i) network recovery and (ii)
dynamic network adaptation. Network recovery is needed when
the device does not turn off according to the schedule but turns
off unexpectedly due to a power failure. As most wireless network
protocols operate based on Connection Timeouts (CT), when a
connection has been established but no packets are received within
the CT window, the connection is dropped (see Figure 2). In our
architecture, if the device after a power failure can harvest enough
energy to turn on before CT is exceeded, connection recovery is ex-
ecuted when the device powers back up before resuming operation.
That is, missed connection events are skipped and the network pro-
cess is scheduled for the next connection event. Dynamic network
adaptation further improves the performance of our system, by

A

B

C

D

G

J

H

I

E

F

Figure 7: FreeBie mote (front side). A total size is 1”×1”. Components
marked as A○– J○ are explained in Section 4.

monitoring the available amount of energy. The Connection Inter-
val (CI) is decreased in the case of abundant energy and increased
when little energy is available. This method allows the system to
adapt to changing energy conditions whilst keeping the connection
alive and increases responsiveness in the case of abundant energy.

4 SYSTEM IMPLEMENTATION: FREEBIE
We proceed with the implementation. As a case study we select
BLE and denote its intermittently-powered version as FreeBie.

4.1 FreeBie Hardware
A fabricated FreeBie is shown in Figure 7, with hardware and soft-
ware open-sourced [1]. Its main blocks are as follows.

▶Wireless Connectivity and Storage: FreeBie is built with
a wireless module [24] containing a nRF52840 BLE ARM-based
MCU [74] (A○ in Figure 7). To store the state of the system in-
between power failures, MB85RS4MT fast non-volatile Ferroelectric
Random Access Memory (FRAM) [39] (G○ in Figure 7) is used and
connected to the MCU using SPI.

▶ Timekeeping: The AM1815 RTC [5] is chosen (B○ in Figure 7)
for its 10ms resolution and low power consumption, i.e., 55 nA at
3V. We did not use hardware timer like the TPL5111 [103] used
by [54], or battery-free timekeeping architectures [28] due to their
inability to sustain the clock accuracy of the BLE specification [15,
CS 5.3], as stated in Section 2.

▶On-board Sensors: FreeBie contains two external sensors: an
OPT3004 luminosity sensor [102] (C○ in Figure 7) and a BMA400 ac-
celerometer [16] (D○ in Figure 7). Both sensors are powered through
the MCU only when required. These sensors are included in FreeBie
to enable the community to build new applications on top of the
FreeBie mote.

▶ EnergyManagement: FreeBie is solely powered by harvested
solar energy using a BQ25570 energy harvester [104] (E○ in Fig-
ure 7). Its boost converter boosts the voltage generated by two
EXL2-1V50 solar panels [65], as seen in Figure 1. The harvested
energy is stored in two parallel 7.5mF capacitors [89] (F○ in Fig-
ure 7). The chosen storage size is dictated by the compatibility with
an Android [46] OS, used as one of the BLE hosts (see Section 5).

292

Intermittently-Powered Bluetooth that Works MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

Android initialises a BLE connection with a CI of 45ms. The chosen
storage must sustain this CI until new connection parameters can
be applied.

The processor domain is powered by energy harvester’s internal
buck converter configured to generate an 1.8 V supply. The energy
harvester switches the buck converter on when the voltage of
the storage capacitors reaches 2.6V and switches it off when it
drops below 2.05V. With the external power switch [106] (H○ in
Figure 7), the external RTC is able to switch off/on power to the
processor power domain. In order to protect the MCU while it is
off, logic/switches prevent always-on signals from reaching the
processor (J○ in Figure 7).

▶Display: We added the option to connect a display to the
FreeBie mote. Specifically, a Sharp 1.28” LCD-TFT [90], connected
through SPI to the MCU (both connectors for the solar panels and
display are present at the back of FreeBie). The display is used in a
smartwatch application and is powered from the main energy stor-
age. The display power can be switched on or off by the MCU and
the on/off state is maintained using a SN74AUP2G79 flip-flop [98]
allowing the display to stay on when the MCU is off (I○ in Figure 7).

4.2 FreeBie Software
The Packetcraft BLE stack [77] was chosen as the basis to imple-
ment FreeBie’s system architecture. Packetcraft implements all
the required Bluetooth standard layers—from layers that configure
the MCU’s registers to high level layers (such as Attribute Proto-
col (ATT) profiles).4

With our architecture only relatively simple modifications are
required to run the BLE networking stack intermittently. First, the
code source files needs to be separated into application, network
and OS processes, allowing for easy checkpointing and restoration.
Second, the scheduler needs to be modified to allow the system
to switch off when idle and compensate for the power-off time of
the device upon restoration. Finally, dynamic connection handling
is build on top of standard BLE features. The implementation is
described in detail below.

4.2.1 Time-aware Checkpoints/Real-time Restoration.

▶ Process Separation Implementation: Process separation de-
scribed in Section 3.2.1 is implemented as follows. Thanks to Pack-
etcraft’s logical separation between OS layer (called Wireless Soft-
ware Foundation (WSF) with its underlying components—Platform
Abstraction Layer (PAL) and the MCU peripheral drivers) and net-
working layer, manual source file separation is straightforward—
WSF together with its underlying components form the OS process
source files. The rest of Packetcraft source files are considered to
belong to the network process. Applications are considered as a
separate third group of process source files. With the separation of
the code into processes, the network, application and OS volatile
memory is split per process. These processes encompass all volatile
memory associated with the process except for dynamically allo-
cated memory that is contained within the OS process.

4We are aware of other open-source implementations of BLE, namely Apache Nim-
ble [6], and Zephyr [111]. From these implementations only Packetcraft supports BLE
5.2, can be deployed on Nordic nRF52 series Microcontroller Units (MCUs), and can be
built with the standard GCC toolchain [9].

▶ Process Checkpoint Scheduling Implementation: The pro-
posed scheduler, introduced in Section 3.2.1 (Process Checkpoint
Scheduling paragraph), is implemented as follows, taking the WSF
scheduler as basis. Normally when the OS scheduler is idle, the
function PalSysSleep() is called and the system sleeps until the
next process event. This function is extended to allow the system
to checkpoint and turn off per the proposed scheduler criteria. In
our implementation 𝑇minOff = 20ms is experimentally determined,
and the type of next on power cycle is determined through the
scheduling queues and MCU’s RTC compare registers. When the
system is able to turn off, first the next power-on time is determined
by the virtualisation layer (its implementation will be described in
Section 4.2.2). Then, real-time processes to be executed are marked
for restoration in the next OS checkpoint. Finally, the currently
restored/active processes are checkpointed, followed by the OS
checkpoint, after which the processor power domain is switched-
off through the virtualisation layer.

Secondly, we introduce a major change to the OS scheduler (func-
tion wsfOsDispatcher())—the notion of restored and non-restored
processes. Non-real-time processes are scheduled in a different
queue than real-time processes, and each process possesses a state
variable that indicates if the process has been restored or not. When
a non-real-time process has not been restored prior to execution,
the process is first restored, then marked as restored and finally
executed. If the process has already been restored, the process is
simply executed. Since all real-time processes for the next power-on
cycle are identified in advance (and restored prior to the scheduler
resuming operation), they are not tracked during operation since
these processes (due to their real-time requirements) cannot be
loaded on demand.

▶ Process Checkpointing Implementation: The checkpoint-
ing framework checkpoints the uniquely defined memory sections
of each process in volatile SRAM and stores the checkpoints in
external FRAM. For the OS checkpoint, the stack size is determined
using the stack pointer register and the heap size is determined by
tracking the total size of the dynamically allocated memory, only
the utilised portions of the reserved space for the stack and heap
are checkpointed. As described in Section 3.2.1 (Process Restoration
paragraph), due to 𝑇restore, variations in checkpoint size and thus
restoration time of the real-time checkpoints are compensated for.

▶ Process Restoration Implementation: When the MCU pow-
ers up, first the external RTC is configured for the synchronisation
point as defined in Section 4.2.2. The time of this point has been
pre-selected before the MCU switches off as defined in Section 3.2.2.
Next, the relevant process checkpoints are restored from FRAM
to SRAM. Directly reading from external memory is not possible
since it is slower than reading from internal SRAM and thus would
influence the timing of the BLE network stack. The restore time
𝑇restore is set to 10ms.

4.2.2 Virtualisation of Time and Peripherals. The real-time virtual-
isation presented in Section 3.2.2 is implemented as follows. Due
to the choice of external RTC, we are limited by a resolution of
10ms. Since 10ms is not an integer multiple of 32.678 kHz tics, i.e.,
the frequency of our external RTC, the 10ms tics source induces
additional jitter (in addition to the jitter of the crystal itself). Due

293

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak

to our strict timekeeping requirements (500 ppm) this is not accept-
able. Hence for synchronisation of the system to the external RTC
time we synchronise to 250ms intervals as synchronisation points,
as this is the smallest integer multiple of 32.678 kHz tics possible
with 10ms resolution. We note that although the resolution of the
external RTC is only 10ms, on integer multiples, such as 250ms,
the timing is mainly only influenced by the jitter of the crystal
itself.

The synchronisation point itself is a hardware signal sent from
the external RTC to the MCU that, in turn, instantly starts the
enabled MCU’s timing peripherals such as the on-board RTC. Since
the synchronisation point is a known moment in time, reads and/or
writes to the on-board MCU’s timing peripherals such as the RTC
(as it starts from zero, and the state is lost during power-off) are
compensated through the virtualisation layer by applying 𝑇sync as
an offset. Any read to the RTC time register through the virtualized
peripheral API returns the compensated time instead of the raw
time. Hereby the effects of intermittency are masked to the running
processes.

Using the definition in Section 3.2.2, the start-up time is com-
puted relative to the nearest synchronisation point. The value of
𝑇startUp = 10ms is experimentally found. By setting the alarm in
the external RTC to 𝑇wakeUp prior to switching off, the system will
turn on at the alarm, as the external RTC can control the proces-
sor domain power via the external power switch. Finally, after the
wake-up alarm is set, using the external RTC, the processor power
domain is switched off.

4.2.3 Dynamic Handling of Network Connections. The design pre-
sented in Section 3.2.3 is implemented as follows. In the Bluetooth
protocol, the host dictates the initial connection parameters. For
intermittently-powered devices these parameters, depending on
the available energy, might not be suitable. Hence after a connec-
tion establishment we automatically request favourable connection
parameters corresponding to the energy available in the system.
If the BLE host forces a connection update, we will immediately
request new connection parameters if the ones chosen by the BLE
host are unsuitable.

During the restoration process we sample the voltage of the
storage capacitors to determine how much energy is available to
FreeBie. For simplicity, we define quantized energy levels as given
in Table 3. According to the Bluetooth Core Specification [15, CS 5.3
(page 2255)] (i) CI shall be a multiple of 1.25ms in the range 7.5ms
to 4 s and (ii) Supervision Timeout (ST) (referred previously as CT)
shall be a multiple of 10ms in the range 100ms to 32 s and it shall
be larger than (1 + SL) × CI × 2, where Slave Latency (SL) specifies
how many connection events may be skipped by the end device,
i.e., with CI of 4 s and SL of 3 allows FreeBie to stay off for almost
16 seconds). At the low energy level we use the maximal allowed
parameters to let FreeBie stay powered off as long as possible. As
more energy becomes available, FreeBie harvests more energy sowe
increase CI and decrease SL accordingly. Table 3 lists the requested
connection parameters corresponding to these energy levels. We
note that since connection update requests are not instantly applied,
if the update is granted—they are applied at a later (specified by the
host) connection event.

If during the restoration no synchronisation pulse is received at
the expected time, recovery is executed. After reading and synchro-
nising to external time, the decision is made based on the current
connection settings if the connection is recoverable. If this is the
case, the next connection event is scheduled and the state of the
network stack is passed on to the future state. The network stack
reattempts transmission of lost packets scheduled during the power
failure. During the restore, prior to synchronisation, all real-time
processes are restored.

4.3 FreeBie Applications
▶ Benefiting Applications: Our architecture is of most benefit

to ultra low power systems requiring bi-directional communication.
We note that most devices require some form of connectivity not
only to send data (like sensor samples), but also for configuration
and firmware updates. Our architecture enables bi-directional com-
munication on these severely energy-restricted devices and allows
the MCU to switch off completely during idle periods, further reduc-
ing power consumption. Examples of such devices include hybrid
(classical/smart) watches, IoT devices or on-body sensors—all oper-
ating on harvested energy. We chose two applications demonstrat-
ing our architecture capabilities: (i) a smartwatch using multiple
BLE services to interact with the host; and (ii) firmware updates.
Specifically, in the case of firmware updates, as the end device
must request and receive firmware fragments from the host while
the host transmits the firmware fragments and waits for reception
confirmation—the firmware update is a stress-test of bi-directional
BLE communication.

▶ Battery-Free Smartwatch: We have developed a battery-
free smartwatch based on two BLE services, (i) the Current Time
Service (CTS) [14] and (ii) the Alert Notification Service (ANS) [13],
operating on top of FreeBie hardware.

The smartwatch, see Figure 1, works as the ATT client [15, CS
5.3] of those two services. For the BLE host we have developed an
application for the Android 11 OS [46] working as the ATT server
of those two services. Once a connection is established, service
discovery is executed to find the CTS and the ANS on the BLE
host. Once successful, the smartwatch enables all notifications of
both services. Then, the BLE host sends the current time to the
smartwatch, which is later on updated independently of the host
through the application process that runs everyminute to increment
time. In addition, the BLE host sends unread email notifications to
the smartwatch which activates its on-screen email icon.

▶ FirmwareUpdate: Wehave also implemented the first battery-
free active-radio over-the-air firmware update. Although successful
demonstrations of battery-free over-the-air reprogramming were
done for backscatter-based nodes [2, 96], battery-free active-radio
firmware updates (to the best of our knowledge) have never been
demonstrated.5

We designed a custom BLE service for our firmware update appli-
cation where FreeBie works as the ATT server of that service. Once
connected, the BLE host should first send the firmware length and
then initiate the update. Once initiated, FreeBie starts requesting a

5We note that this case study aims not to create a novel firmware update application [7,
12] but to evaluate FreeBie.

294

Intermittently-Powered Bluetooth that Works MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

Energy level Luminosity CI SL ST

Very low (dark)/low (dimmed) 200 lx/300 lx 4 s1 3 32 s
Medium (bright) 600 lx 2 s 1 32 s
High (overcast) 10 klx 1 s 0 32 s

1 Real value is 3.998 75 s as reference BLE stack [71] forbids 4 s CI.
Table 3: Requested FreeBie connection parameters. CI: Connection
Interval, SL: Slave Latency, ST: Supervision Timeout.

firmware section by sending the index of the section. Once FreeBie
receives the requested firmware section, it writes this section to
the corresponding address in the inactive firmware region. This
process repeats until FreeBie obtains the complete firmware.

5 FREEBIE EVALUATION
5.1 Evaluation Setup
We evaluated both FreeBie applications at four light conditions in
a controlled environment, 200 lx, 300 lx, 600 lx, 10 klx representing,
respectively, (i) dark indoor light, (ii) dimmed indoor light, (iii)
bright indoor light, and (iv) overcast day.

▶ BLE Host Hardware and Software: For smartwatch, an An-
droid application was built running on Google Pixel 3a [45] with
Android 11 OS [46] acting as BLE host. For firmware update, a
nRF52840 [72] development kit using SoftDevice [71] acts as BLE
host. FreeBie is compared to Packetcraft [77] and SoftDevice [71];
comparison with checkpoint-based systems, e.g. [63], is impossible
as they do not work, see Section 2 and Table 1.

▶ BLE Advertising and Connection Parameters: The adver-
tising interval of FreeBie is fixed at 2 s. For the hosts, per default
Android 11 starts with a Connection Interval (CI) of 45ms, 5 s Su-
pervision Timeout (ST). For the firmware update host, we selected
an initial 2 s CI, 32 s ST.

▶Controlled Test Environment: We put FreeBie at the bottom
of a closed light box. A wirelessly-controlled LED bulb [62] was
installed at the top of the box to create repeatable and controlled
light source. A luminosity meter [105] was placed next to FreeBie
mote to measure the exact luminosity projecting onto FreeBie’s
solar panels.

▶ Long-term Evaluation: For a day-long evaluation we have
collected luminosity values from a modern commercial smartwatch
[32] worn on a wrist. Data was collected when the user6 was per-
forming (mostly outdoor) daily activities. The luminosity trace was
then recreated in the controlled test environment described above.

▶ Power Consumption Measurements: Connection event and
sleep power consumption for the Packetcraft [77], SoftDevice [71]
and FreeBie’s were measured with X-NUCLEO-LPM01A [95]. Free-
Bie’s power consumption whilst the processor domain is off was
measured with Keithley 2450 SMU [59]. Power consumption of
Packetcraft and SoftDevice is measured on the NRF52840 develop-
ment kit [72]; FreeBie power measurements are measured on the

6The data collection was approved by the human ethics committee of the institution
with which the authors of this study are affiliated with.

2.0

2.2

2.4

2.6

St
or

ag
e

(V
)

FreeBie
Packetcraft

0 200 400 600 800 1000 1200 1400

Time (s)

Sy
st

em
O

pe
ra

tio
n

Figure 8: Example BLE connection retention on FreeBie hardware at
200 lx compared against Packetcraft [77]. The system operation bars
(bar colour matches system on the ‘Storage’ plot) indicate when the
system is on.

2.0

2.2

2.4

2.6

St
or

ag
e

(V
)

0 5 10 15 20 25 30

Time (s)

Master
FreeBie

Figure 9: FreeBie power failure recovery. Despite missing several
BLE packets FreeBie can recover the connection. : BLE network
activity by the host, : FreeBie network activity, : FreeBie is actively
powered, : FreeBie power failure.

FreeBie mote. Further details of the evaluation setup are given in
the artifact [1].

5.2 FreeBie Evaluation Results
▶ BLE Connection Retention: First, to demonstrate that our

system can sustain a BLE connection at intermittent power, we
run a basic ≈30min-long BLE connection. The result is presented
in Figure 8. We clearly see that our system consumes less power
operating intermittently and maintains the connection, while the
default Packetcraft network stack [77] powers off below ≈2V and
never resumes the connection.

▶ BLE Connection Recovery: To show that FreeBie can recover
from power failures, we powered FreeBie from a stable power sup-
ply during a BLE connection. Then we turn off the power supply
until FreeBie runs out of power. Then the power supply is resumed
again, triggering the connection recovery. A snapshot of this pro-
cess is presented in Figure 9. We clearly see that FreeBie can recover
before the 32 s ST is reached.

▶Checkpoint and Restoration Overhead: First we measured
code size for both FreeBie applications, split per process. The re-
sults are presented in Table 4. Our firmware application is small,
therefore little is gained during a network-only power cycle by
not restoring the application. During an application-only cycle,
however, where the network process does not have to be restored,

295

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak

Smartwatch Firmware update

Process Data BSS Text Data BSS Text

Application 0 2368 0 12
Network 376 5668 320 5168

OS 292 2392 244 2452
Total 668 10 428 230 120 564 7632 204 797

Table 4: Code size of the FreeBie applications (in bytes).

Firmware update Smartwatch
0

2

4

6

8

Ch
ec

kp
oi

nt
 ti

m
e

(m
s) OS

Network
Application

Figure 10: Average checkpoint time of each process for the two con-
sidered applications.

on average restoration is 21.30% faster compared to a naive check-
pointing implementation where everything is restored. Due to the
reduced overhead, with a more significant application—such as the
smartwatch—not only the application-only cycles are 21.39% faster,
but also the network-only cycles (by 7.76%) compared to the naive
implementation. The average checkpointing times are depicted in
Figure 10.

▶ Smartwatch Evaluation: Figure 11 shows a 2.5min long
trace of smartwatch operation at each luminosity (except 200 lx, as
the screen consumed to much power) from the initial connection
establishment. Note that the operating times of FreeBie are very
short, shown as a very thin green bar. Nonetheless we see that at
each luminosity, FreeBie works despite long power-off intervals.
The more energy is available—the smaller the off intervals—the big-
ger the responsiveness. Zooming in, the execution starts when the
storage capacitor voltage reaches 2.6 V. When the system switches
on, the voltage drops sharply due to the inrush current and the
workload of initialisation but recovers afterwards.

After one round of advertising, FreeBie is connected with the
Android BLE host. Note that since the connection was established,
FreeBie was turned on continuously for a relatively long time (see
‘On/Off’ plots underneath the storage plot) and the voltage also
dropped significantly. This is caused by Android’s initial connec-
tion parameters preventing FreeBie from turning off. When the
requested connection parameters are applied, FreeBie can start
operating intermittently and turn off. For both 300 lx and 600 lx
after 50 s and 25 s respectively, when all ATT services were config-
ured and both BLE peripheral and BLE host started sending empty
packets, SL is applied which further increases the off time.

▶ Firmware Update Evaluation: Figure 13 shows the exe-
cution of firmware update at 600 lx. Comparing this figure with
Figure 11 (center) (smartwatch evaluation at the same luminosity)
FreeBie starts more favourably due to the different initial connec-
tion parameters set by the host (as defined in Section 5.1), hence

2.00

2.25

2.50

St
or

ag
e

(V
)

0 20 40 60 80 100 120 140
On/Off

2.00

2.25

2.50

St
or

ag
e

(V
)

0 20 40 60 80 100 120 140
On/Off

2.00

2.25

2.50

St
or

ag
e

(V
)

0 20 40 60 80 100 120 140

Time (s)

On/Off

Figure 11: FreeBie smartwatch operation at three luminosities (top to
bottom figure: 300 lx, 600 lx, 10 klx). Connection parameters for each
luminosity are given in Table 3.

CI 4s SL 0 CI 4s SL 1 CI 4s SL 2 CI 4s SL 3

Connection parameters

0

200

400

600

800

1000

En
er

gy
 c

on
su

m
ed

 (u
J) Softdevice

Packetcraft
FreeBie
FreeBie-C

Figure 12: Consumed energy during one Connection Interval (CI),
as shown in Figure 5, for four different Slave Latency (SL) values.
FreeBie is compared against Packetcraft [77], SoftDevice [71] and
a modified version of FreeBie (FreeBie-C) with external memory
overhead excluded.

it can keep a higher storage voltage from the start. As expected,
in an application-only cycle (A), no network process is restored or
checkpointed. In network-only cycle (B) no application process is
executed nor restored. In the combined cycle (C) after the network
process execution, the system detects the application process pend-
ing execution in the near future. Hence the system sleeps until
the scheduled time of the application execution, then dynamically
loads the application and executes it, after which no processes are
scheduled in the near future so the system checkpoints and turns
off.

▶ Power Consumption: We characterise FreeBie network-only
cycles and compare the power consumption of FreeBie to (i) Pack-
etcraft with low-frequency clock enabled and logging disabled, and

296

Intermittently-Powered Bluetooth that Works MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

2.00

2.25

2.50

St
or

ag
e

(V
)

0 20 40 60 80 100 120 140 160 180

Time (s)

O
n/

O
ff

(C)(B) (A) - Update Finished

144.82 144.83 144.84 144.85 144.86

(A) Application Only

Sy
st

em
O

pe
ra

tio
n

64.82 64.83 64.84 64.85 64.86

(B) Network Only
174.82 174.83 174.84 174.85 174.86

(C) Combined

Figure 13: Evaluation of firmware update at 600 lx. Colour scheme: OS restore and checkpoint; on time; application restore and checkpoint;
network restore and checkpoint; synchronisation point; network activity.

to (ii) the proprietary Nordic Semiconductor’s BLE stack, i.e., Soft-
Device [71], at one CI value and four values of SL, i.e., 0, 1, 2, and 3.
The results are given in Figure 12.

Thanks to FreeBie’s low power consumption when the processor
domain is switched off (0.8352 µW) it is 9.5 times more efficient
compared to sleep mode (8.0172 µW with SoftDevice). FreeBie ben-
efits from long connection intervals. Compared to Packetcraft, with
a SL of 0 FreeBie’s overhead of additional power consumption due
to checkpointing and restoration is larger than the power saved by
switching the MCU off. However, as the SL increases FreeBie starts
to outperform Packetcraft. At a SL of 1 FreeBie already consumes
less power compared to Packetcraft. Already with a SL of 3 we are
2.46 times more energy efficient than the default Packetcraft stack.

On the other hand, due to FRAM store and restore overhead and
FreeBie’s requirement to synchronise with the external RTC, Free-
Bie is not able to compete with SoftDevice’s power consumption.
Simply, utilising external FRAM consumes large amounts of power
and is also slower than even a lower-clocked MCUs’s with on-chip
FRAM [101]. Ideally a MCU with on-board FRAM or MRAM and a
ultra-low power RTC, e.g. the upcoming Ambiq Apollo 4 Blue [4],
would remove this overhead almost completely. Therefore to make
this comparison we have removed the external memory overhead
from FreeBie traces denoting it as FreeBie-C. We see that FreeBie-C
outperforms SoftDevice starting at a SL of 2.

Finally, we report the power consumption at each part of the
network cycle, including checkpointing and restoration, as shown
in Figure 5: FRAM read (restore checkpoint) (A○) is 10.26mW, MCU
sleep current (B○) is 2.41mW, RX current (C○) is 18.86mW, TX
current (D○) is 19.35mW, and FRAM write (checkpoint) (E○) is
12.03mW.

▶ Long-term Execution: Figure 14 shows 24-hour operation of
the FreeBie smartwatch. We see that FreeBie is able to sustain a con-
nection despite power interrupts for extended period of time (see
‘On/Off‘ trace representing FreeBie activity, in particular between
11:00 and 17:00). Moreover, FreeBie is able to sustain a connection
in varying energy availability: during the whole experiment the
BLE link only had to reconnect seven times. If FreeBie receives
more than 300 lx (minimum viable luminosity with the FreeBie
LCD powered on) FreeBie is almost always on, only disconnecting
when insufficient energy is provided for extended time. Note, if a

0
100

101

102

103

104

105

Lu
m

in
es

ce
nc

e
(L

ux
) minimum viable

11:00 14:00 17:00 20:00 23:00 02:00 05:00 08:00

On/Off

Figure 14: 24 hour-long operation of the FreeBie smartwatch.

full day operation of FreeBie is required then increasing the sur-
face area of the solar panels would decrease the minimum viable
luminosity threshold, see Figure 14 (top)—increasing the on time of
the smartwatch.

6 DISCUSSION AND FUTUREWORK
▶Hardware Improvements: As shown in Figure 12, external

FRAM and RTC limit the benefits of our architecture (both in terms
of price, size and energy consumption). The next step is a FreeBie
version build with next-generation System on Chip (SoC) such
as [4] with on-chipMRAM, reducing FreeBie cost/size.More energy-
efficient harvesters, such as [76], as part of a complete SoC would
make FreeBie not only more efficient but also potentially cheaper
than battery-based systems.

▶ Battery-free Host: In our architecture only the end device is
battery-free and intermittently-powered. The next research goal is
an intermittently-powered host. Themain research challengewould
be integrating a synchronisation mechanism such as [41] into a
fully battery-free architecture and efficient wake-up scheduling for
end devices.

▶Delay-tolerantNetworks: Onemight propose a delay-tolerant
network as a solution to the wireless link intermittency prob-
lem [55, 64]. Sadly, considering point-to-point links, protocols such

297

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak

[25] [107] [66] [92] [34] [23] [113] FreeBie2

Size 25 (�) × 5.5mm 4 × 4 cm 20mm (�) 7 35 × 53mm 1 × ≈1.5 cm4 ≈70 × 55mm 5 — 2.54 × 2.54 mm
Capactitor size 0.2 F Unreported 50mF 8 200 `F N/A3 1 F 6 N/A 15mF
Radio chipset CYBLE [26] X-less radio nRF51822 [73] CC2650 [100] Custom CC2650 [100] Custom nRF52840 [74]

Minimum luminosity 100 lx N/A N/A 150 lx N/A Not reported N/A 200 lx
Backscatter-based No No No No Yes No Yes No

Battery-free Yes1 Yes Yes Yes Yes3 Yes No 3 Yes
Intermittent No1 Yes No No No Yes No Yes

Advertising only No No No No Yes — Yes No
Resumes connections No No No No No No No Yes
1 Supercapacitor; 2 This work; 3 Actual implementation was continuously powered; 4 Modulator only, logic driven by signal generator;
5 Size inferred from [23, Figure 7]: comparable in size to Arduino Uno board; 6 Maximum value of capacitor bank taken;
7 Excluding Powercast receiver [82]; 8 Unreported in the paper; a smallest value from Powercast receiver assumed.

Table 5: Comparison of relevant state-of-the-art BLE platforms.

as BLE have strict timing requirements and do not allow any delay
beyond what is specified by the standard.

7 RELATEDWORK
▶ Semi Battery-FreeWireless Networking: Augmenting battery-

based IoTwith backscatter tags was advocated in [79]. Such systems
include [40, 51, 52, 85]. All these networks still need (i) a battery and
(ii) a carrier generation source. A separate class of nodes are based
on wake-up radios [81]. Wake-up radios still consume power when
listening (which increases with receiver sensitivity [81, Figure 12])
and require the same infrastructure investment as backscatter-based
radios. An example of battery-free sensors based on proprietary
low-power wake-up radio technology is [35].

▶ Battery-Free Wireless Networking: Battery-free networks
include backscatter-based LoRa [57] and LTE [22]. An alternative
approach focuses on active radios and includes [3, 42, 86]. Yet an-
other approach is to perform transformations of already existing
protocols to have them failure-resilient [84]. Therein however it was
assumed that a node with a power-off had its all memory flushed
and needs to initialise from zero. The mathematical analysis of the
channel capacity of a intermittent communication point-to-point
link is given in [60]. Another way of providing energy to battery-
free systems is based on wireless power transfer, recent examples
include [53, 70].

Initial studies of duty-cycled bi-directional communication on
intermittent power for IEEE 802.15.4-compliant (i.e., non-Bluetooth)
CC2420 radio [99] has been proposed in [108]. The same work also
proposed to use low-power timing circuit to wake up system to
exchange data with a neighbour [108, Figure 3]. Idea of custom
protocol state preservation in FRAM has been presented in [19].

▶ Battery-Free Bluetooth: All of the battery-free BLE nodes
we are aware of do not operate intermittently when considering
the BLE protocol itself. In each of such nodes one connection-less
beacon transmission can be sent within a single capacitor charge
from harvested energy; the recent examples of non-backscatter
versions of such a systems are [20, 37, 44, 56, 87, 97] (academia)
and [25, 33] (industry). Another (but less popular) approach for
battery-free BLE is based on providing power wirelessly to the
BLE nodes [66]. Except for our work no studies on intermittenly-
powered BLE are presented beyond general calls for such system.
A battery-free BLE node of similar hardware architecture to ours,
i.e., an RTC-driven MCU with external FRAM, has been presented

in [92]. The fundamental difference, however, is that [92] does
not allow for state retention of the intermediate state of the BLE
protocol (and other applications). Commercial implementations of
battery-free BLE include [107]. Refer to Table 5 where a comparison
of battery-free BLE platforms is given.

▶ Federated Energy Storage: A federated storage power sup-
ply architecture [49] ‘splits‘ a large central storage capacitor into
smaller capacitors, each powering individual peripherals (such as
the radio or a temperature sensor). The federated storage aims at
improving system availability. Alternatively, [23] proposed a cen-
tralized architecture where one configurable capacitor array serves
the entire system, allowing for adding or removing individual ca-
pacitors from this array.

▶ Intermittently-Powered Systems Software Frameworks:
Software supporting intermittently-powered operation have al-
ready been comparatively presented in Table 1. Naturally, the list
of such systems is only partial and we refer to extensive surveys
presented in [11, Table 1], [109, Table 1], [29, Table 2].

8 CONCLUSIONS
We presented a new architecture enabling battery-free operation of
a wireless communication protocol. We enable to sustain an already
established wireless connection despite power interruptions. The
proposed architecture was used in developing FreeBie: the first
truly intermittently-powered active Bluetooth Low Energy (BLE)
system that is not based on connection-less (beacon broadcast)
transmissions.

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their useful comments and
Aaron Schulman for shepherding our paper. We would also like
to thank John Hendriks for his TU Delft MSc thesis work on a
related project, and Nowi B.V. for technical feedback and support.
This research was supported by the Netherlands Organisation for
Scientific Research (NWO), partly funded by the Dutch Ministry
of Economic Affairs, through TTW Perspective program ZERO
(P15-06) within Project P1.

REFERENCES
[1] TU Delft Sustainable Systems Lab. 2021. FreeBie Source Code Repository:

Hardware and Software Artifacts. https://github.com/TUDSSL/FreeBie. Last
accessed: Apr. 26, 2022.

298

https://github.com/TUDSSL/FreeBie

Intermittently-Powered Bluetooth that Works MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

[2] Henko Aantjes, Amjad Y. Majid, Przemysław Pawełczak, Jethro Tan, Aaron
Parks, and Joshua R. Smith. 2017. Fast downstream to many (computational)
RFIDs. In Proc. INFOCOM. IEEE, Atlanta, GA, USA, 1–9. https://doi.org/10.1109/
INFOCOM.2017.8056987.

[3] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Campagna, Giacomo Caslini,
Fabio Massimo Centonze, Koustabh Dolui, Andrea Maioli, Erica Barone, Muham-
madHamadAlizai, JunaidHaroon Siddiqui, and LucaMottola. 2020. Battery-Less
Zero-Maintenance Embedded Sensing at the MithræUm of Circus Maximus. In
Proc. SenSys. ACM, Virtual Event, 368–381. https://doi.org/10.1145/3384419.
3430722.

[4] Ambiq Micro, Inc. 2018. Apollo4 Blue Ultra-Low Power Microcontroller. https:
//ambiq.com/apollo4-blue/. Last accessed: Sep. 8, 2021.

[5] Ambiq Micro, Inc. 2021. Artasie AM1815 Real-Time Clock. https://ambiq.com/
artasie-am1815. Last accessed: Sep. 8, 2021.

[6] Apache Software Foundation. 2021. Apache Mynewt Operating System Blue-
tooth Stack Source Code Repository. https://github.com/apache/mynewt-nimble.
Last accessed: Aug. 5, 2021.

[7] Konstantinos Arakadakis, Pavlos Charalampidis, Antonis Makrogiannakis, and
Alexandros Fragkiadakis. 2022. Firmware Over-the-Air Programming Tech-
niques for IoT networks - A Survey. ACM Comput. Surv. 54, 9 (Oct. 2022), 1–36.
https://doi.org/10.1145/3472292.

[8] Rauf Arif. 2021. With An Economic Potential Of $11 Trillion, Internet
Of Things Is Here To Revolutionize Global Economy. Forbes, https:
//www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-
11-trillion-internet-of-things-is-here-to-revolutionize-global-economy. Last
accessed: Jul. 6, 2021.

[9] Arm Limited. 2020. GNU Arm Embedded Toolchain (version 9.3.1 (9-2020-q2-
update)). https://developer.arm.com/tools-and-software/open-source-software/
developer-tools/gnu-toolchain/gnu-rm/downloads. Last accessed: Aug. 19,
2021.

[10] Arm Limited. 2021. Mbed Cordio BLE Solution Official Website. https://os.mbed.
com/docs/mbed-cordio. Last accessed: Aug. 5, 2021.

[11] Abu Bakar, Alexander G. Ross, Kasım Sinan Yıldırım, and Josiah Hester. 2021.
REHASH: A Flexible, Developer Focused, Heuristic Adaptation Platform for
Intermittently Powered Computing. ACM Interact. Mob. Wearable Ubiquitous
Technol. 5, 3 (Sept. 2021), 87:1–87:42. https://doi.org/10.1145/3478077.

[12] Jan Bauwens, Peter Ruckebusch, Spilios Giannoulis, Ingrid Moerman, and Eli
De Poorter. 2020. Over-the-Air Software Updates in the Internet of Things:
An Overview of Key Principles. IEEE Commun. Mag. 58, 2 (Feb. 2020), 35–41.
https://doi.org/10.1109/MCOM.001.1900125.

[13] Bluetooth Special Interest Group, Inc. 2021. Bluetooth Alert Notification
Service. https://www.bluetooth.com/specifications/specs/alert-notification-
service-1-0/. Last accessed: Sept. 14, 2021.

[14] Bluetooth Special Interest Group, Inc. 2021. Bluetooth Current Time Ser-
vice. https://www.bluetooth.com/specifications/specs/current-time-service-
1-1/. Last accessed: Sept. 14, 2021.

[15] Bluetooth Special Interest Group, Inc. 2021. Bluetooth Specifications List. https:
//www.bluetooth.com/specifications/specs. Last accessed: Aug. 8, 2021.

[16] Bosch Sensortec. 2021. BMA400 Triaxial Ultra-low Power Accelera-
tion Sensor. https://www.bosch-sensortec.com/products/motion-sensors/
accelerometers/bma400. Last accessed: Sep. 9, 2021.

[17] Rodney Brooks. 2021. The Battery Revolution Is Just Getting Started.
IEEE Spectrum, https://spectrum.ieee.org/energy/batteries-storage/the-battery-
revolution-is-just-getting-started.

[18] Bradford Campbell, JoshuaAdkins, and Prabal Dutta. 2016. Cinamin: A Perpetual
and Nearly Invisible BLE Beacon. In Proc. NextMote Workshop (EWSN 2016
Workshop). ACM, Graz, Austria, 331–332. https://www.ewsn.org/file-repository/
ewsn2016/331_332_campbell.pdf.

[19] Bradford Campbell, Meghan Clark, Samuel DeBruin, Branden Ghena, Neal
Jackson, Ye-Sheng Kuo, and Prabal Dutta. 2016. Perpetual Sensing for the Built
Environment. https://doi.org/10.1109/mprv.2016.66. Pervasive Computing 15, 4
(Oct.–Dec. 2016), 45–55.

[20] Carlo Signer. 2017. Batteryless Bluetooth Low Energy Communication. Bachelor’s
Thesis. ETHZ, Switzerland. https://pub.tik.ee.ethz.ch/students/2017-FS/BA-
2017-03.pdf.

[21] Ricardo C. Carrano, Diego Passos, Luiz C. S. Magalhães, and Célio V. N. Albu-
querque. 2014. Survey and Taxonomy of Duty Cycling Mechanisms in Wireless
Sensor Networks. IEEE Commun. Surv. Tutorials 16, 1 (First Quarter 2014),
181–194. https://doi.org/10.1109/SURV.2013.052213.00116.

[22] Zicheng Chi, Xin Liua, Wei Wang, Yao Yao, and Ting Zhu. 2020. Leveraging
Ambient LTE Traffic for Ubiquitous Passive Communication. In Proc. SIGCOMM.
ACM, Virtual Event, 172–185. https://doi.org/10.1145/3387514.3405861.

[23] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable Energy
Storage Architecture for Energy-harvesting Devices. In Proc. ASPLOS. ACM,
Williamsburg, VA, USA, 767–781. https://doi.org/10.1145/3173162.3173210.

[24] Taiyo Yuden Corp. 2021. EYSKBNZWB BLE Wireless Module. https://www.
yuden.co.jp/eu/product/category/module/bluetooth/EYSKBNZWB.html. Last
accessed: Sep. 9, 2021.

[25] Cypress Semiconductor Corp. 2020. CYALKIT-E02 Solar-Powered BLE Sensor
Beacon Reference Design Kit. https://www.cypress.com/documentation/
development-kitsboards/cyalkit-e02-solar-powered-ble-sensor-beacon-
reference-design. Last accessed: Aug. 4, 2021.

[26] Cypress Semiconductor Corp. 2021. CYBLE-022001-00 BLE Module.
https://www.cypress.com/documentation/datasheets/cyble-022001-00-ez-ble-
creator-module. Last accessed: Aug. 10, 2021.

[27] Al Danial. 2021. cloc - Count Lines of Code Source Code Repository. https:
//github.com/AlDanial/cloc. Last accessed: Aug. 10, 2021.

[28] Jasper de Winkel, Carlo Delle Donne, Kasım Sinan Yıldırım, Przemysław
Pawełczak, and Josiah Hester. 2020. Reliable Timekeeping for Intermittent
Computing. In Proc. ASPLOS. ACM, Lausanne, Switzerland, 53–67. https:
//doi.org/10.1145/3373376.3378464.

[29] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak.
2020. Battery-Free Game Boy. ACM Interact. Mob. Wearable Ubiquitous Technol.
4, 3 (Sept. 2020), 111:1–111:34. https://doi.org/10.1145/3411839.

[30] Maurizio Di Paolo Emilio and Roy Anirban. 2021. Macro Environmental Effect
of Micro Energy Harvesting. https://www.powerelectronicsnews.com/macro-
environmental-effect-of-micro-energy-harvesting. Last accessed: Jul. 27, 2021.

[31] Kristina Edström (Executive Publisher). 2020. Horizon 2020 EU Program Bat-
tery 2030+: Inventing the Sustainable Batteries of the Future: Research Needs
and Future Actions. https://battery2030.eu/digitalAssets/861/c_861350-l_1-
k_roadmap-27-march.pdf. Last accessed: Jul. 7, 2021.

[32] Samsung Electronics. 2021. Galaxy Watch4 Smartwatch. https://www.samsung.
com/us/watches/galaxy-watch4/. Last accessed: Dec. 14, 2021.

[33] EnOcean GmbH. 2020. STM 550B Multisensor Module (BLE) with NFC Inter-
face. https://www.enocean.com/en/products/enocean_modules_24ghz_ble/stm-
550b-multisensor-module. Last accessed: Aug. 4, 2021.

[34] Joshua F. Ensworth and Matthew S. Reynolds. 2015. Every Smart Phone is a
Backscatter Reader: Modulated Backscatter Compatibility with Bluetooth 4.0
Low Energy (BLE) Devices. In Proc. RFID. IEEE, San Diego, CA, USA, 78–85.
https://doi.org/10.1109/RFID.2015.7113076.

[35] Everactive. 2021. Batteryless Eversensors. https://everactive.com/batteryless-
technology. Last accessed: Aug. 5, 2021.

[36] Duarte Fernandes, André G. Ferreira, Reza Abrishambaf, José Mendes, and
Jorge Cabral. 2018. Survey and Taxonomy of Transmissions Power Control
Mechanisms for Wireless Body Area Networks. IEEE Commun. Surv. Tutorials
20, 2 (Second Quarter 2018), 1292–1328. https://doi.org/10.1109/COMST.2017.
2782666.

[37] Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, Luca Benini, and Ra-
jesh K. Gupta. 2018. Pible: Battery-Free Mote for Perpetual Indoor BLE Appli-
cations. In Proc. BuildSys. ACM, Shenzen, China, 168–171. https://doi.org/10.
1145/3276774.3282822.

[38] Free Software Foundation, Inc. 2021. lwIP - A Lightweight TCP/IP stack Website.
https://savannah.nongnu.org/projects/lwip. Last accessed: Aug. 10, 2021.

[39] Fujitsu Semiconductor Limited. 2018. MB85RS4MT 4MB FRAM Memory with
SPI Interface. https://www.fujitsu.com/global/documents/products/devices/
semiconductor/fram/lineup/MB85RS4MT-DS501-00053-1v0-E.pdf. Last ac-
cessed: Jun. 13, 2021.

[40] Ander Galisteo, Ambuj Varshney, and Domenico Giustiniano. 2020. Two to
Tango: Hybrid Light and Backscatter Networks for Next Billion Devices. In Proc.
MobiSys. ACM, Toronto, ON, Canada, 80–93. https://doi.org/10.1145/3386901.
3388918.

[41] Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling. 2019. Shepherd: a
Portable Testbed for the Batteryless IoT. In Proc. SenSys. ACM, New York, NY,
USA, 83–95. https://doi.org/10.1145/3356250.3360042.

[42] Kai Geissdoerfer and Marco Zimmerling. 2021. Bootstrapping Battery-free
Wireless Networks: Efficient Neighbor Discovery and Synchronization in the
Face of Intermittency. In Proc. NSDI. USENIX, Virtual Event, 439–455. https:
//www.usenix.org/system/files/nsdi21-geissdoerfer.pdf.

[43] Shyamnath Gollakota, Matthew S. Reynolds, Joshua R. Smith, and David J.
Wetherall. 2014. The Emergence of RF-Powered Computing. IEEE Computer 47,
1 (Jan. 2014), 32–39. https://doi.org/10.1109/MC.2013.404.

[44] Andres Gomez. 2020. Demo Abstract: On-Demand Communication with the
Batteryless MiroCard. In Proc. SenSys. ACM, Virtual Event, 629–630. https:
//doi.org/10.1145/3384419.3430440.

[45] Google, LLC. 2019. Google Pixel 3a. https://support.google.com/pixelphone/
answer/7158570. Last accessed: May 19, 2022.

[46] Google, LLC. 2021. Android 11 Mobile Operating System (with July 5 2021
security update). https://www.android.com/android-11. Last accessed: Aug. 8,
2021.

[47] Google, LLC. 2021. OpenThread Source Code Repository. https://github.com/
openthread/openthread. Last accessed: Aug. 10, 2021.

[48] Mike Hayes, Giorgos Fagas, Julie Donnelly, Raphaël Salot, Guillaume Savelli,
Peter Spies, Gerd vom Boegel, Mario Konijnenburg, David Stenzel, Aldo Romani,
Claudio Gerbaldi, Francesco Cottone, and Alex Weddell. 2021. Research Infras-
tructure to Power the Internet of Things. https://www.tyndall.ie/contentfiles/
EnABLES_Research_Infrastructure_Position_Paper.pdf. Last accessed: Aug. 3,

299

https://doi.org/10.1109/INFOCOM.2017.8056987
https://doi.org/10.1109/INFOCOM.2017.8056987
https://doi.org/10.1145/3384419.3430722
https://doi.org/10.1145/3384419.3430722
https://ambiq.com/apollo4-blue/
https://ambiq.com/apollo4-blue/
https://ambiq.com/artasie-am1815
https://ambiq.com/artasie-am1815
https://github.com/apache/mynewt-nimble
https://doi.org/10.1145/3472292
https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-global-economy
https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-global-economy
https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-global-economy
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://os.mbed.com/docs/mbed-cordio
https://os.mbed.com/docs/mbed-cordio
https://doi.org/10.1145/3478077
https://doi.org/10.1109/MCOM.001.1900125
https://www.bluetooth.com/specifications/specs/alert-notification-service-1-0/
https://www.bluetooth.com/specifications/specs/alert-notification-service-1-0/
https://www.bluetooth.com/specifications/specs/current-time-service-1-1/
https://www.bluetooth.com/specifications/specs/current-time-service-1-1/
https://www.bluetooth.com/specifications/specs
https://www.bluetooth.com/specifications/specs
https://www.bosch-sensortec.com/products/motion-sensors/accelerometers/bma400
https://www.bosch-sensortec.com/products/motion-sensors/accelerometers/bma400
https://spectrum.ieee.org/energy/batteries-storage/the-battery-revolution-is-just-getting-started
https://spectrum.ieee.org/energy/batteries-storage/the-battery-revolution-is-just-getting-started
https://www.ewsn.org/file-repository/ewsn2016/331_332_campbell.pdf
https://www.ewsn.org/file-repository/ewsn2016/331_332_campbell.pdf
https://doi.org/10.1109/mprv.2016.66
https://pub.tik.ee.ethz.ch/students/2017-FS/BA-2017-03.pdf
https://pub.tik.ee.ethz.ch/students/2017-FS/BA-2017-03.pdf
https://doi.org/10.1109/SURV.2013.052213.00116
https://doi.org/10.1145/3387514.3405861
https://doi.org/10.1145/3173162.3173210
https://www.yuden.co.jp/eu/product/category/module/bluetooth/EYSKBNZWB.html
https://www.yuden.co.jp/eu/product/category/module/bluetooth/EYSKBNZWB.html
https://www.cypress.com/documentation/development-kitsboards/cyalkit-e02-solar-powered-ble-sensor-beacon-reference-design
https://www.cypress.com/documentation/development-kitsboards/cyalkit-e02-solar-powered-ble-sensor-beacon-reference-design
https://www.cypress.com/documentation/development-kitsboards/cyalkit-e02-solar-powered-ble-sensor-beacon-reference-design
https://www.cypress.com/documentation/datasheets/cyble-022001-00-ez-ble-creator-module
https://www.cypress.com/documentation/datasheets/cyble-022001-00-ez-ble-creator-module
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3411839
https://www.powerelectronicsnews.com/macro-environmental-effect-of-micro-energy-harvesting
https://www.powerelectronicsnews.com/macro-environmental-effect-of-micro-energy-harvesting
https://battery2030.eu/digitalAssets/861/c_861350-l_1-k_roadmap-27-march.pdf
https://battery2030.eu/digitalAssets/861/c_861350-l_1-k_roadmap-27-march.pdf
https://www.samsung.com/us/watches/galaxy-watch4/
https://www.samsung.com/us/watches/galaxy-watch4/
https://www.enocean.com/en/products/enocean_modules_24ghz_ble/stm-550b-multisensor-module
https://www.enocean.com/en/products/enocean_modules_24ghz_ble/stm-550b-multisensor-module
https://doi.org/10.1109/RFID.2015.7113076
https://everactive.com/batteryless-technology
https://everactive.com/batteryless-technology
https://doi.org/10.1109/COMST.2017.2782666
https://doi.org/10.1109/COMST.2017.2782666
https://doi.org/10.1145/3276774.3282822
https://doi.org/10.1145/3276774.3282822
https://savannah.nongnu.org/projects/lwip
https://www.fujitsu.com/global/documents/products/devices/semiconductor/fram/lineup/MB85RS4MT-DS501-00053-1v0-E.pdf
https://www.fujitsu.com/global/documents/products/devices/semiconductor/fram/lineup/MB85RS4MT-DS501-00053-1v0-E.pdf
https://doi.org/10.1145/3386901.3388918
https://doi.org/10.1145/3386901.3388918
https://doi.org/10.1145/3356250.3360042
https://www.usenix.org/system/files/nsdi21-geissdoerfer.pdf
https://www.usenix.org/system/files/nsdi21-geissdoerfer.pdf
https://doi.org/10.1109/MC.2013.404
https://doi.org/10.1145/3384419.3430440
https://doi.org/10.1145/3384419.3430440
https://support.google.com/pixelphone/answer/7158570
https://support.google.com/pixelphone/answer/7158570
https://www.android.com/android-11
https://github.com/openthread/openthread
https://github.com/openthread/openthread
https://www.tyndall.ie/contentfiles/EnABLES_Research_Infrastructure_Position_Paper.pdf
https://www.tyndall.ie/contentfiles/EnABLES_Research_Infrastructure_Position_Paper.pdf

MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Jasper de Winkel, Haozhe Tang, and Przemysław Pawełczak

2021.
[49] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of the

Coulombs: Federating Energy Storage for Tiny, Intermittently-Powered Sen-
sors. In Proc. SenSys (Nov. 1–4). ACM, Seoul, South Korea, 5–16. https:
//doi.org/10.1145/2809695.2809707.

[50] Josiah Hester and Jacob Sorber. 2017. The Future of Sensing is Batteryless,
Intermittent, and Awesome. In Proc. SenSys. ACM, Delft, The Netherlands, 21:1–
21:6. https://doi.org/10.1145/3131672.3131699.

[51] Pan Hu, Pengyu Zhang, Mohammad Rostami, and Deepak Ganesan. 2016.
Braidio: An Integrated Active-Passive Radio for Mobile Devices with Asymmet-
ric Energy Budgets. In Proc. SIGCOMM. ACM, Florianopolis, Brazil, 384–397.
https://doi.org/10.1145/2934872.2934902.

[52] Ivar in ’t Veen, Qingzhi Liu, Przemysław Pawełczak, Aaron Parks, and Joshua R.
Smith. 2016. BLISP: Enhancing Backscatter Radio with Active Radio for
Computational RFIDs. In Proc. RFID. IEEE, Orlando, FL, USA, 1–4. https:
//doi.org/10.1109/RFID.2016.7488010.

[53] Vikram Iyer, Elyas Bayati, Rajalakshmi Nandakumar, Arka Majumdar, and
Shyam Gollakota. 2017. Charging a Smartphone Across a Room Using Lasers.
ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 4 (Dec. 2017), 143:1–143:21.
https://doi.org/10.1145/3161163.

[54] Vikram Iyer, Maruchi Kim, Shirley Xue, AnranWang, and Shyamnath Gollakota.
2020. Airdropping Sensor Networks from Drones and Insects. In Proc. MobiCom.
ACM, London, United Kingdom, 813–826. https://doi.org/10.1145/3372224.
3419981.

[55] Sushant Jain, Michael Demmer, Rabin Patra, and Kevin Fall. 2005. Using Redun-
dancy to Cope with Failures in a Delay Tolerant Network. In Proc. SIGCOMM.
ACM, Philadelphia, PA, USA, 109–120. https://doi.org/10.1145/1080091.1080106.

[56] Kang Eun Jeon, James She, Jason Xue, Sang-Ha Kim, and Soochang Park. 2019.
LuXbeacon—A Batteryless Beacon for Green IoT: Design, Modeling, and Field
Tests. IEEE Internet Things J. 6, 3 (June 2019), 5001–5012. https://doi.org/10.
1109/JIOT.2019.2894798.

[57] Mohamad Katanbaf, Anthony Weinand, and Vamsi Talla. 2021. Simplifying
Backscatter Deployment: Full-Duplex LoRa Backscatter. In Proc. NSDI. USENIX,
Virtual Event, 955–972. https://www.usenix.org/system/files/nsdi21spring-
katanbaf.pdf.

[58] Giannis Kazdaridis, Nikos Sidiropoulos, Ioannis Zografopoulos, Polychronis
Symeonidis, and Thanasis Korakis. 2020. Nano-things: Pushing Sleep Current
Consumption to the Limits in IoT Platforms. In Proc. IoT. ACM, Malmö, Sweden,
1–8. https://doi.org/10.1145/3410992.3410998.

[59] Keithley Instruments, LLC. 2021. 2450 SourceMeter SourceMeasurement Unit In-
strument. https://download.tek.com/datasheet/1KW-60904-2_2450_Datasheet_
072021.pdf. Last accessed: Sep. 11, 2021.

[60] Mostafa Khoshnevisan and J. Nicholas Laneman. 2017. Intermittent Com-
munication. IEEE Trans. Inf. Theory 63, 7 (July 2017), 4089–4102. https:
//doi.org/10.1109/TIT.2017.2692239.

[61] Daeyong Kim, Junick Ahn, Jun Shin, and Hojung Cha. 2021. Ray Tracing-based
Light Energy Prediction for Indoor Batteryless Sensors. ACM Interact. Mob.
Wearable Ubiquitous Technol. 5, 1 (March 2021), 17:1–17:27. https://doi.org/10.
1145/3448086.

[62] Koninklijke Philips N.V. 2021. Hue Smart Light Bulb White Ambiance
E27. https://www.philips-hue.com/en-gb/p/hue-white-ambiance-1-pack-e27/
8718699673147. Last accessed: Aug. 19, 2021.

[63] Vito Kortbeek, Kasım Sinan Yıldırım, Abu Bakar, Jacob Sorber, Josiah Hester,
and Przemysław Pawełczak. 2020. Time-sensitive Intermittent Computing
Meets Legacy Software. In Proc. ASPLOS. ACM, Lausanne, Switzerland, 85–99.
https://doi.org/10.1145/3373376.3378476.

[64] Yong Li, Pan Hui, Depeng Jin, and Sheng Chen. 2015. Delay-Tolerant Network
Protocol Testing and Evaluation. https://doi.org/10.1109/MCOM.2015.7010543.
IEEE Communications Magazine 53, 1 (Jan. 2015), 258–266.

[65] Lightricity Limited. 2021. EXL2-1V50 Solar Panel Module. https://lightricity.co.
uk/excelllight-exl2-1v50-1. Last accessed: Sep. 9, 2021.

[66] Qingzhi Liu, Wieger IJntema, Anass Drif, Przemysław Pawełczak, Marco Zuniga,
and Kasım Sinan Yıldırım. 2021. Perpetual Bluetooth Communications for the
IoT. IEEE Sens. J. 21, 1 (Jan. 2021), 829–837. https://doi.org/10.1109/JSEN.2020.
3012814.

[67] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent Computing: Challenges and Opportunities. In Proc. SNAPL.
Schloss Dagstuhl, Alisomar, CA, USA, 8:1–8:14. https://drops.dagstuhl.de/opus/
volltexte/2017/7131/pdf/LIPIcs-SNAPL-2017-8.pdf.

[68] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng, Alexei Colin,
Kasım Sinan Yıldırım, Brandon Lucia, and Przemysław Pawełczak. 2020. Dy-
namic Task-based Intermittent Execution for Energy-harvesting Devices. ACM
Trans. Sens. Netw. 16, 1 (Feb. 2020), 5:1–5:24. https://doi.org/10.1145/3360285.

[69] Neeru Mittal, Alazne Ojanguren, Markus Niederberger, and Erlantz Lizundia.
2021. Degradation Behavior, Biocompatibility, Electrochemical Performance,
and Circularity Potential of Transient Batteries. Advanced Science 8, 2004814
(May 2021), 1–26. https://doi.org/10.1002/ADVS.202004814.

[70] Noor Mohammed, Rui Wang, Robert W. Jackson, Yeonsik Noh, Jeremy Gumme-
son, and Sunghoon Ivan Lee. 2021. ShaZam: Charge-Free Wearable Devices via
Intra-Body Power Transfer from Everyday Objects. ACM Interact. Mob. Wearable
Ubiquitous Technol. 5, 2 (June 2021), 75:1–75:25. https://doi.org/10.1145/3463505.

[71] Nordic Semiconductor ASA. 2019. S140 BLE protocol stack (SoftDevice) for the
nRF52811, nRF52820, nRF52833 and nRF52840 SoCs. https://www.nordicsemi.
com/Products/Development-software/s140. Last accessed: Sep. 9, 2021.

[72] Nordic Semiconductor ASA. 2020. nRF52840 DK BLE, Bluetooth Mesh, Near
Field Communication (NFC), Thread and Zigbee Single Board Development Kit
for the nRF52840 SoC. https://www.nordicsemi.com/Products/Development-
hardware/nRF52840-DK. Last accessed: Sep. 9, 2021.

[73] Nordic Semiconductor ASA. 2021. nRF51822 BLE and 2.4GHz SoC. https:
//infocenter.nordicsemi.com/topic/struct_nrf51/struct/nrf51822.html. Last ac-
cessed: Sep. 9, 2021.

[74] Nordic Semiconductor ASA. 2021. nRF52840 Multiprotocol Bluetooth 5.2
SoC supporting BLE, Bluetooth mesh, NFC, Thread and Zigbee. https://www.
nordicsemi.com/Products/nRF52840. Last accessed: Dec. 5, 2021.

[75] Nordic Semiconductor ASA. 2021. Online Power Profiler for Bluetooth
LE. https://devzone.nordicsemi.com/power/w/opp/2/online-power-profiler-
for-bluetooth-le. Last accessed: Dec. 5, 2021.

[76] NOWI B.V. 2021. NH2D0245 Energy Harvesting Power Management Integrated
Circuit. https://www.nowi-energy.com/products-nh2. Last accessed: Sep. 9,
2021.

[77] Packetcraft, Inc. 2021. Packetcraft Protocol Software Source Code Repository.
https://github.com/packetcraft-inc/stacks. Last accessed: Aug. 5, 2021.

[78] Arielle Pardes. 2020. The WIRED Guide to the Internet of Things. WIRED,
https://www.wired.com/story/wired-guide-internet-of-things. Last accessed:
Jul. 6, 2021.

[79] Carlos Perez-Penichet, Fredrick Hermans, Ambuj Varshney, and Thiemo Voigt.
2016. Augmenting IoT Networks with Backscatter-Enabled Passive Sensor Tags.
In Proc. HotWireless. ACM, New York City, NY, USA, 23–27. https://doi.org/10.
1145/2980115.2980132.

[80] Matthai Philipose, Joshua R. Smith, Bing Jiang, Alexander Mamishev, Sumit
Roy, and Kishor Sundara-Rajan. 2005. Battery-Free Wireless Identification
and Sensing. IEEE Pervasive Comput. 4, 1 (Jan.–Mar. 2005), 37–45. https:
//doi.org/10.1109/MPRV.2005.7.

[81] Rajeev Piyare, Amy L. Murphy, Csaba Kiraly, Pietro Tosato, and Davide Brunell.
2017. Ultra Low Power Wake-Up Radios: A Hardware and Networking Survey.
IEEE Commun. Surv. Tutorials 19, 4 (Fourth Quarter 2017), 2117–2157. https:
//doi.org/10.1109/COMST.2017.2728092.

[82] Powercast Corp. 2018. P2110 Powerharvester Evaluation Board. https://www.
powercastco.com/products/development-kits/#P2110-EVB. Last accessed: Aug.
10, 2021.

[83] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System
Support for Long-running Computation on RFID-scale Devices. https://doi.org/
10.1145/1950365.1950386. In Proc. ASPLOS. ACM, Newport Beach, CA, USA,
159–170.

[84] David Richardson, Arshad Jhumka, and Luca Mottola. 2021. Protocol Transfor-
mation for Transiently Powered Wireless Sensor Networks. In Proc. SAC. ACM,
Virtual Event, 1112–1121. https://doi.org/10.1145/3412841.3441985.

[85] Mohammad Rostami, Jeremy Gummeson, Ali Kiaghadi, and Deepak Ganesan.
2018. Polymorphic Radios: A New Design Paradigm for Ultra-low Power Com-
munication. In Proc. SIGCOMM. ACM, Budapest, Hungary, 446–460. https:
//doi.org/10.1145/3230543.3230571.

[86] Michel Rotteluthner, Thomas C. Schmidt, and Matthias Wählisch. 2021. Sense
Your Power: The ECO Approach to Energy Awareness for IoT Devices. ACM
Trans. Embed. Comput. Syst. 20, 3 (March 2021), 24:1–14:23. https://dl.acm.org/
doi/10.1145/3441643.

[87] Nurani Saoda and Bradford Campbell. 2019. No Batteries Needed: Providing
Physical Context with Energy-Harvesting Beacons. In Proc. ENSSys. ACM, New
York, NY, USA, 15–21. https://doi.org/10.1145/3362053.3363489.

[88] Mahadev Satyanarayanan, Wei Gao, and Brandon Lucia. 2019. The Computing
Landscape of the 21st Century. In Proc. HotMobile. ACM, Santa Cruz, CA, USA,
45–50. https://doi.org/10.1145/3301293.3302357.

[89] Seiko Instruments Inc. 2021. CPX3225A752D Chip-type Electric Dou-
ble Layer Capacitor. https://www.sii.co.jp/en/me/datasheets/chip-capacitor/
cpx3225a752d. Last accessed: Sep. 9, 2021.

[90] Sharp Corporation. 2016. LS013B7DH03 1.28” TFT-LCD Mod-
ule. https://www.sharpsde.com/fileadmin/products/Displays/Specs/
LS013B7DH03_25Apr16_Spec_LD-28410A.pdf. Last accessed: Sep. 8,
2021.

[91] Esther Shein. 2021. A Battery-Free Internet of Things. Commun. ACM 64, 7
(2021), 16–18. https://doi.org/10.1145/3464937.

[92] Lukas Sigrist, Rehan Ahmed, Andres Gomez, and Lothar Thiele. 2020.
Harvesting-Aware Optimal Communication Scheme for Infrastructure-Less
Sensing. ACM Trans. Internet Things 1, 4 (Oct. 2020), 22:1–22:26. https:
//doi.org/10.1145/3395928.

300

https://doi.org/10.1145/2809695.2809707
https://doi.org/10.1145/2809695.2809707
https://doi.org/10.1145/3131672.3131699
https://doi.org/10.1145/2934872.2934902
https://doi.org/10.1109/RFID.2016.7488010
https://doi.org/10.1109/RFID.2016.7488010
https://doi.org/10.1145/3161163
https://doi.org/10.1145/3372224.3419981
https://doi.org/10.1145/3372224.3419981
https://doi.org/10.1145/1080091.1080106
https://doi.org/10.1109/JIOT.2019.2894798
https://doi.org/10.1109/JIOT.2019.2894798
 https://www.usenix.org/system/files/nsdi21spring-katanbaf.pdf
 https://www.usenix.org/system/files/nsdi21spring-katanbaf.pdf
https://doi.org/10.1145/3410992.3410998
https://download.tek.com/datasheet/1KW-60904-2_2450_Datasheet_072021.pdf
https://download.tek.com/datasheet/1KW-60904-2_2450_Datasheet_072021.pdf
https://doi.org/10.1109/TIT.2017.2692239
https://doi.org/10.1109/TIT.2017.2692239
https://doi.org/10.1145/3448086
https://doi.org/10.1145/3448086
https://www.philips-hue.com/en-gb/p/hue-white-ambiance-1-pack-e27/8718699673147
https://www.philips-hue.com/en-gb/p/hue-white-ambiance-1-pack-e27/8718699673147
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1109/MCOM.2015.7010543
https://lightricity.co.uk/excelllight-exl2-1v50-1
https://lightricity.co.uk/excelllight-exl2-1v50-1
https://doi.org/10.1109/JSEN.2020.3012814
https://doi.org/10.1109/JSEN.2020.3012814
https://drops.dagstuhl.de/opus/volltexte/2017/7131/pdf/LIPIcs-SNAPL-2017-8.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/7131/pdf/LIPIcs-SNAPL-2017-8.pdf
https://doi.org/10.1145/3360285
https://doi.org/10.1002/ADVS.202004814
https://doi.org/10.1145/3463505
https://www.nordicsemi.com/Products/Development-software/s140
https://www.nordicsemi.com/Products/Development-software/s140
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK
https://infocenter.nordicsemi.com/topic/struct_nrf51/struct/nrf51822.html
https://infocenter.nordicsemi.com/topic/struct_nrf51/struct/nrf51822.html
https://www.nordicsemi.com/Products/nRF52840
https://www.nordicsemi.com/Products/nRF52840
https://devzone.nordicsemi.com/power/w/opp/2/online-power-profiler-for-bluetooth-le
https://devzone.nordicsemi.com/power/w/opp/2/online-power-profiler-for-bluetooth-le
https://www.nowi-energy.com/products-nh2
https://github.com/packetcraft-inc/stacks
https://www.wired.com/story/wired-guide-internet-of-things
https://doi.org/10.1145/2980115.2980132
https://doi.org/10.1145/2980115.2980132
https://doi.org/10.1109/MPRV.2005.7
https://doi.org/10.1109/MPRV.2005.7
https://doi.org/10.1109/COMST.2017.2728092
https://doi.org/10.1109/COMST.2017.2728092
https://www.powercastco.com/products/development-kits/#P2110-EVB
https://www.powercastco.com/products/development-kits/#P2110-EVB
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/3412841.3441985
https://doi.org/10.1145/3230543.3230571
https://doi.org/10.1145/3230543.3230571
https://dl.acm.org/doi/10.1145/3441643
https://dl.acm.org/doi/10.1145/3441643
https://doi.org/10.1145/3362053.3363489
https://doi.org/10.1145/3301293.3302357
https://www.sii.co.jp/en/me/datasheets/chip-capacitor/cpx3225a752d
https://www.sii.co.jp/en/me/datasheets/chip-capacitor/cpx3225a752d
https://www.sharpsde.com/fileadmin/products/Displays/Specs/LS013B7DH03_25Apr16_Spec_LD-28410A.pdf
https://www.sharpsde.com/fileadmin/products/Displays/Specs/LS013B7DH03_25Apr16_Spec_LD-28410A.pdf
https://doi.org/10.1145/3464937
https://doi.org/10.1145/3395928
https://doi.org/10.1145/3395928

Intermittently-Powered Bluetooth that Works MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA

[93] Patrice Simon, Yury Gogotsi, and Bruce Dunn. 2014. Where Do Batteries
End and Supercapacitors Begin? Science 343, 6176 (March 2014), 1210–1211.
https://doi.org/10.1126/science.1249625.

[94] Sivert T. Sliper, Oktay Cetinkaya, Alex S. Weddell, Bashir Al-Hashimi, and
Geoff V. Merrett. 2020. Energy-driven Computing. Phil. Trans. R. Soc. A. 378,
2164 (Feb. 2020), 1–18. https://doi.org/10.1098/rsta.2019.0158.

[95] STMicroelectronics N.V. 2018. X-NUCLEO-LPM01A 1.8 V to 3. V Programmable
Power Supply Source (version 2.0). https://www.st.com/en/evaluation-tools/x-
nucleo-lpm01a.html. Last accessed: Sep. 11, 2021.

[96] Jethro Tan, Przemysław Pawełczak, Aaron Parks, and Joshua R. Smith. 2016.
Wisent: Robust Downstream Communication and Storage for Computational
RFIDs. In Proc. INFOCOM. IEEE, San Francisco, CA, USA, 1–9. https://doi.org/
10.1109/INFOCOM.2016.7524574.

[97] Pietro Tedeschi, Kang Eun Jeon, James She, Simon Wong, Spiridon Bakiras, and
Roberto Di Pietro. 2021. Privacy-Preserving and Sustainable Contact Tracing
Using Batteryless BLE Beacons. https://arxiv.org/pdf/2103.06221.pdf.

[98] Texas Instruments, Inc. 2012. SN74AUP2G79 Low-Power Dual Positive-Edge-
Triggered D-Type Flip-Flop. https://www.ti.com/product/SN74AUP2G79. Last
accessed: Sep. 9, 2021.

[99] Texas Instruments, Inc. 2013. CC2420 Single-Chip 2.4GHz IEEE 802.15.4 Com-
pliant and ZigBee Ready RF Transceiver. https://www.ti.com/lit/ds/symlink/
cc2420.pdf. Last accessed: May 19, 2022.

[100] Texas Instruments, Inc. 2016. CC2650 32-bit Arm Cortex-M3 Multiprotocol
2.4 GHz wireless MCU with 128 kB Flash. https://www.ti.com/product/CC2650.
Last accessed: Aug. 10, 2021.

[101] Texas Instruments, Inc. 2017. MSP430FR59xx Mixed-Signal Microcontrollers
(Rev. F). http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf. Last accessed:
Sep. 13, 2021.

[102] Texas Instruments, Inc. 2018. OPT3004 Digital Ambient Light Sensor with
Increased angular IR Rejection. https://www.ti.com/product/OPT3004. Last
accessed: Sep. 9, 2021.

[103] Texas Instruments, Inc. 2018. TPL5111 Ultra Low Power System Timer (35 nA)
for Power Gating in Duty Cycled Applications. https://www.ti.com/product/

TPL5111. Last accessed: Sep. 9, 2021.
[104] Texas Instruments, Inc. 2021. BQ25570 Ultra Low Power Harvester power

Management IC with Boost Charger and Nanopower Buck Converter. https:
//www.ti.com/product/BQ25570. Last accessed: Sep. 9, 2021.

[105] Uni-Trend Technology Co. Limited. 2020. UT383 Mini Light Me-
ter. https://www.uni-trend.com/html/product/Environmental/Environmental_
Tester/Mini/UT383.html. Last accessed: Aug. 19, 2021.

[106] Vishay Siliconix. 2020. SIP32432 Ultra Low Leakage and Quiescent Current
and Load Switch with Reverse Blocking. https://www.vishay.com/docs/66597/
sip32431.pdf. Last accessed: Sep. 9, 2021.

[107] Wiliot. 2021. Wiliot Battery Free IoT Pixel BLE Tags. https://www.wiliot.com/
product/iot-pixel. Last accessed: Jul. 22, 2021.

[108] Lohit Yerva, Brad Campbell, Apoorva Bansal, Thomas Schmid, and Prabal Dutta.
2012. Grafting Energy-Harvesting Leaves onto the Sensornet Tree. https://doi.
org/10.1145/2185677.2185733. In Proc. IPSN. ACM, Beijing, China, 197–208.

[109] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemysław Pawełczak, and Josiah Hester. 2018. InK: Reactive Kernel for Tiny
Batteryless Sensors. In Proc. SenSys. ACM, Shenzhen, China, 41–53. https:
//doi.org/10.1145/3274783.3274837.

[110] G. Pascal Zachary. 2016. The Search for a Better Battery. IEEE Spectrum, https:
//spectrum.ieee.org/at-work/innovation/the-search-for-a-better-battery. Last
accessed: Jul. 7, 2021.

[111] Zephyr Project. 2021. Zephyr Real-Time Operating System Source Code Repos-
itory. https://github.com/zephyrproject-rtos/zephyr. Last accessed: Aug. 5,
2021.

[112] Maolin Zhang, Si Chen, Jia Zhao, and Wei Gong. 2021. Commodity-Level BLE
Backscatter. In Proc. MobiSys. ACM, Virtual Event, 402–414. https://doi.org/10.
1145/3458864.3466865.

[113] Pengyu Zhang, Mohammad Rostami, Pan Hu, and Deepak Ganesan. 2016. En-
abling Practical Backscatter Communication for On-body Sensors. In Proc. SIG-
COMM. ACM, Florianopolis , Brazil, 370–381. https://doi.org/10.1145/2934872.
2934901.

301

https://doi.org/10.1126/science.1249625
https://doi.org/10.1098/rsta.2019.0158
https://www.st.com/en/evaluation-tools/x-nucleo-lpm01a.html
https://www.st.com/en/evaluation-tools/x-nucleo-lpm01a.html
https://doi.org/10.1109/INFOCOM.2016.7524574
https://doi.org/10.1109/INFOCOM.2016.7524574
https://arxiv.org/pdf/2103.06221.pdf
https://www.ti.com/product/SN74AUP2G79
https://www.ti.com/lit/ds/symlink/cc2420.pdf
https://www.ti.com/lit/ds/symlink/cc2420.pdf
https://www.ti.com/product/CC2650
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
https://www.ti.com/product/OPT3004
https://www.ti.com/product/TPL5111
https://www.ti.com/product/TPL5111
https://www.ti.com/product/BQ25570
https://www.ti.com/product/BQ25570
https://www.uni-trend.com/html/product/Environmental/Environmental_Tester/Mini/UT383.html
https://www.uni-trend.com/html/product/Environmental/Environmental_Tester/Mini/UT383.html
https://www.vishay.com/docs/66597/sip32431.pdf
https://www.vishay.com/docs/66597/sip32431.pdf
https://www.wiliot.com/product/iot-pixel
https://www.wiliot.com/product/iot-pixel
https://doi.org/10.1145/2185677.2185733
https://doi.org/10.1145/2185677.2185733
https://doi.org/10.1145/3274783.3274837
https://doi.org/10.1145/3274783.3274837
https://spectrum.ieee.org/at-work/innovation/the-search-for-a-better-battery
https://spectrum.ieee.org/at-work/innovation/the-search-for-a-better-battery
https://github.com/zephyrproject-rtos/zephyr
https://doi.org/10.1145/3458864.3466865
https://doi.org/10.1145/3458864.3466865
https://doi.org/10.1145/2934872.2934901
https://doi.org/10.1145/2934872.2934901

	Abstract
	1 Introduction
	2 Background, Challenges and Key Insights
	3 Intermittently-Powered Wireless System
	3.1 Target Network and Device Architecture
	3.2 System Components

	4 System Implementation: FreeBie
	4.1 FreeBie Hardware
	4.2 FreeBie Software
	4.3 FreeBie Applications

	5 FreeBie Evaluation
	5.1 Evaluation Setup
	5.2 FreeBie Evaluation Results

	6 Discussion and Future Work
	7 Related Work
	8 Conclusions
	References

