

Delft University of Technology

Code Smells for Machine Learning Applications

Zhang, Haiyin; Cruz, Luis; Deursen, Arie Van

DOI
10.1145/3522664.3528620
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 1st International Conference on AI Engineering - Software Engineering for AI, CAIN 2022

Citation (APA)
Zhang, H., Cruz, L., & Deursen, A. V. (2022). Code Smells for Machine Learning Applications. In
Proceedings - 1st International Conference on AI Engineering - Software Engineering for AI, CAIN 2022 (pp.
217-228). (Proceedings - 1st International Conference on AI Engineering - Software Engineering for AI,
CAIN 2022). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1145/3522664.3528620
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3522664.3528620
https://doi.org/10.1145/3522664.3528620

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Code Smells for Machine Learning Applications

Haiyin Zhang
haiyin.zhang@ing.com

AI for Fintech Research, ING

Amsterdam, Netherlands

Luís Cruz
L.Cruz@tudelft.nl

Delft University of Technology

Delft, Netherlands

Arie van Deursen
Arie.vanDeursen@tudelft.nl

Delft University of Technology

Delft, Netherlands

ABSTRACT

The popularity of machine learning has wildly expanded in recent

years. Machine learning techniques have been heatedly studied

in academia and applied in the industry to create business value.

However, there is a lack of guidelines for code quality in machine

learning applications. In particular, code smells have rarely been

studied in this domain. Although machine learning code is usually

integrated as a small part of an overarching system, it usually

plays an important role in its core functionality. Hence ensuring

code quality is quintessential to avoid issues in the long run. This

paper proposes and identifies a list of 22 machine learning-specific

code smells collected from various sources, including papers, grey

literature, GitHub commits, and Stack Overflow posts. We pinpoint

each smell with a description of its context, potential issues in the

long run, and proposed solutions. In addition, we link them to their

respective pipeline stage and the evidence from both academic and

grey literature. The code smell catalog helps data scientists and

developers produce and maintain high-quality machine learning

application code.

KEYWORDS

Code Smell, Anti-pattern, Machine Learning, Code Quality, Techni-

cal Debt

ACM Reference Format:

Haiyin Zhang, Luís Cruz, and Arie van Deursen. 2022. Code Smells for Ma-

chine Learning Applications. In 1st Conference on AI Engineering - Software

Engineering for AI (CAIN’22), May 16–24, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3522664.3528620

1 INTRODUCTION

Despite the large increase in the popularity of machine learning ap-

plications [3], there are several concerns regarding the quality con-

trol and the inevitable technical debt growing in these systems [16].

Moreover, machine learning teams tend to be very heterogeneous,

having experts from different disciplines that are not necessarily

aware of Software Engineering (SE) practices backgrounds and

there is a limited number of training and guidelines on machine

learning-related software development issues. Hence, software en-

gineering best practices are often overlooked when developing ma-

chine learning applications [12, 17]. Yet, previous research shows

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9275-4/22/05. . . $15.00
https://doi.org/10.1145/3522664.3528620

that practitioners are eager to learn more about engineering best

practices for their machine learning applications [5].

There has been a lot of interest in various machine learning sys-

tem artifacts, including models and data. Researchers make efforts

to improve machine learningmodel quality [10] and data quality [7].

However, the quality assurance of machine learning code has not

been highlighted [12]. Recent work studied the code quality for

machine learning applications in a general way, finding some code

quality issues such as duplicated code [20] and violations of tradi-

tional naming convention [17]. These works highlighted the fact

that the existing code conventions do not necessarily fit the context

of machine learning applications. For example, the typical math

notation in data science tasks clashes with the naming conventions

of Python [20]. Thus, we argue that more research is needed to

accommodate the particularities of data-oriented codebases.

As an important artifact in the machine learning application,

the quality of the code is essential. Low-quality code can lead to

catastrophic consequences. In the meantime, different from tradi-

tional software, machine learning code quality is more challenging

to evaluate and control. Low-quality code can lead to silent pitfalls

that exist somewhere that affect the software quality, which takes

a lot of time and effort to discover [22]. Therefore, it is non-trivial

to improve the code quality during the development process and

consider code quality assurance in the deployment process.

A common strategy to improve code quality is eliminating code

smells and anti-patterns. When we talk about code smells in this

paper, we refer them to the pitfalls that we can inspect at the code

level but not at the data or model level. We use the term "pitfall" to

represent issues that degrade the software quality. Listing 1 shows

an example of such pitfalls using Python and the Pandas library.

In the red (-) part of the listing, an inefficient loop is created. A

better alternative is highlighted in green (+), using Pandas built-in

API to replace the loop, which operates faster. While some alter-

native solutions might lead to improvements in runtime efficiency,

other solutions might be essential to prevent problems in the long

run. For example, previous work shows that code smells affect the

maintainability, understandability, and complexity of software [11].

Listing 1: Coding Pitfall Example from [4]

import pandas as pd

df = pd.DataFrame ([1, 2, 3])

- result = []

- for index , row in df.iterrows ();

- result.append(row[0] + 1)

- result = pd.DataFrame(result)

+ result = df.add (1)

With the concern of improving machine learning application

code quality and easing the machine learning development process,

217

2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN)

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA Zhang, et al.

we conduct an empirical study to collect machine learning-specific

code smells and provide practical recommendations about the qual-

ity in machine learning applications. Thus, we formulate the fol-

lowing research question:What are the recurrent code issues that

may arise from the peculiarities of machine learning applications?

The main contributions of this paper are:

1) A catalog of machine learning-specific code smells.

2) A dataset of 1750 papers, 2170 grey literature entries, 87

GitHub commits and 491 Stack Overflow posts for empirical studies.

The replication package for this study is available at https://gi

thub.com/Hynn01/ml-smells. The website with all the smells is

published at https://hynn01.github.io/ml-smells/.

2 RELATEDWORK

Code smells are common poor code design choices that negatively

affect the systems and violate the best practice or original design

vision [11]. Martin Fowler introduced a general code smell list

in his book [13]. Ever since then, code smells have been widely

discussed in studies. Many empirical studies have linked code smell

proliferationwith decreased code quality, increased error proneness,

and increased maintainability issues in the long term [14, 18, 21].

The prevalence of traditional code smells in machine learning

projects was studied in van Oort et al.’s paper [20]. They ran Pylint

on 74 machine learning projects and concluded the most frequent

traditioal code smells. Yet, they noted that “the fact that Pylint fails

to reliably analyse whether prominent ML libraries are used cor-

rectly, provides a major obstacle to the adoption of Continuous Inte-

gration (CI) in the development environment of ML systems.” This

implies that the context of machine learning applications brings

new challenges to the code quality. Therefore, our work addresses

machine learning-specific code smells.

Even though there are few code smell studies specific to ma-

chine learning application coding, some researchers are studying

refactoring and bugs associated with machine learning, which are

related to machine learning coding patterns. Most relatedly, Tang et

al. studied refactoring in machine learning programs by analyzing

26 projects [19]. They introduced 14 new machine learning-specific

refactorings and seven new machine learning-specific technical

debt. However, some of the machine learning programs they an-

alyzed are machine learning tools, while we focus on machine

learning applications. We argue that the underlying nature of ma-

chine learning libraries and tools is very different from applications.

In addition, they focused on classifying different types of refactor-

ing (e.g., "make algorithms more visible"), but they did not extract

the code patterns that should trigger such a refactoring. We take a

step further by addressing this question. Furthermore, we focus on

code smells that cannot be identified by looking at general-purpose

smells. For example, while it makes sense to have a type of refac-

toring for "duplicate model code", its code pattern is no different

from the traditional smell "duplicated code". Our paper dives deep

into code patterns and examples that are at the machine-learning

library API usage level, which is different from their work.

Zhang et al. conducted an empirical study, mining Stack Over-

flow and GitHub commits to studying the TensorFlow bugs [22].

They proposed several bug patterns, which are helpful when de-

bugging deep learning applications. Islam et al. followed up by

inspecting Stack Overflow blogs and GitHub commits of five deep

learning libraries, including Caffe, Keras, Tensorflow, Theano, and

Torch [8]. They adopted some of the root causes of deep learning

bugs from [22] and added more root causes. Also, they studied

the impacts of bugs, the common patterns of the bugs, and the

evolution of the bugs. Humbatova et al. created a comprehensive

taxonomy of deep learning bugs by mining GitHub, mining Stack

Overflow and interviewing developers [6]. The final taxonomy is

quite thorough and detailed.

Our work differs from these two studies in four main reasons:

1) we formulate practical coding advice in the form of code smells,

to improve the code and avoid potential issues in the long run, 2)

we only focus on issues that can be inspected at the code level,

3) we not only focus on pitfalls that lead to potential bugs but

also on performance, reproducibility, and maintainability issues,

4) we expand the scope of these smells beyond the deep learning

discipline, focusing on other machine learning tasks provided in

the libraries Scikit-Learn, Pandas, NumPy and SciPy.

Rajbahadur et al. collected eight data science project pitfalls

from a paper and used a model-driven method to detect the pitfalls

in the pipeline. Our study differs from theirs by inspecting the

faults in the code level to assure the software quality [15]. Breck

et al. learned from the experience with a wide range of production

machine learning systems at Google and presented 27 machine

learning-specific tests and monitoring needs [1]. However, it does

not provide a concrete coding guideline. We go further by building

a machine learning-specific code smell catalog and guide machine

learning developers towards better coding practices by eliminating

code smells.

3 METHODOLOGY

To collect machine learning-specific code smells, we resort to aca-

demic literature, grey literature, community-based coding Q&A

platforms (with Stack Overflow), and public software repositories

(with GitHub). The general process is depicted in Figure 1. We mine

papers, grey literature, reuse existing bug datasets, and conduct a

complementary Stack Overflow mining. Then we triangulate our

collected smells with the recommendations provided in the offi-

cial documentation of machine learning libraries. In the end, two

authors validate the code smell catalog.

3.1 Paper Mining

Our methodology for paper mining is described as follows, and

shown as Figure 2:

1) Search on Google Scholar search engine: To collect papers

that potentially contain code smells for machine learning projects,

we use terms combining machine learning-related keywords and

code quality-related keywords to search. Machine learning-related

keywords include “Artificial Intelligence”, “Machine Learning”, “Deep

Learning”, “Neural Network” and “Data Science”. Code quality-

related keywords include “Technical Debt”, “Refactoring”, “Code

Smell”, “CodeQuality”, “Coding Best Practice”, “CodingAnti-pattern”

and “Common Coding Mistakes”. We apply these queries (e.g., “Ma-

chine Learning Technical Debt”) in the Google Scholar search en-

gine, as presented in Figure 3. After analyzing papers from the

initial result set, we reach a level of saturation for each query after

218

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

Code Smells for Machine Learning Applications CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

Collect Code Smells

Paper Mining

Grey Literature Mining

Reusing Existing Bug
Datasets

Complementary Stack
Overflow Mining

Validation Code Smell CatalogGitHub Mining

Stack Overflow Mining

Check Library
Documentations

Figure 1: Methodology

1) Search on Google
Scholar search engine 1750 papers

2) Selection based on title
and abstract 33 papers

3) Snowballing 42 papers

4) Full-text reading and
selecting the ones with

potential ML application-
specific code smells

6 papers

Figure 2: Paper Selection Process

consulting the first five pages of the result. Therefore, we consult

the first five pages of the results for each query, i.e., the first 50

results, sorted by relevance at any time by any type. In total, there

are 1750 papers (5 × 7 × 50).

2) Selection based on title and abstract: We observe that

there are many papers studying machine learning for software en-

gineering (ML4SE) and a few are about software engineering for

machine learning (SE4ML). For example, for a paper titled “Com-

paring and experimenting machine learning techniques for code

smell detection”, we identify it as an ML-for-SE paper and exclude

it from our study. When we cannot classify the paper from the

title (e.g., “Toward deep learning software repositories”), we look

into the abstract and decide whether to include it in our study. The

numbers of selected papers under each query are listed in Table 1.

After excluding the duplicated ones, our methodology yields 33

papers.

3) Snowballing: We apply the forward and backward snow-

balling method, i.e., browse the reference list of the 33 papers and

the list where the paper is cited, select the paper based on the title

Artificial Intelligence

Machine Learning

Deep Learning

Neural Network

Data Science

Technical Debt

Refactoring

Code Smell

Code Quality

Coding Best Practice

Coding Anti-pattern

Common Coding
Mistakes

AND

Search
Query

1750
papers

1750
grey

literature
entries

TensorFlow

PyTorch

Scikit-Learn

NumPy

Pandas

Technical Debt

Refactoring

Code Smell

Code Quality

Coding Best Practice

Coding Anti-pattern

Common Coding
Mistakes

SciPy

AND

420
grey

literature
entries

2170
grey

literature
entries

Figure 3: Search Query for Literature and Grey Literature

and abstract as step 2) described, and delete the duplicated papers.

We add nine papers after this step.

4) Full-text reading and selecting the ones with potential

machine learning-specific code smells:We read the full text of

the 42 papers and select the ones with potential machine learning-

specific code smells. After this step, we get six final papers. The

papers that contribute to the code smell catalog are listed as fol-

lows: [1, 4, 6, 8, 15, 22].

3.2 Grey Literature Mining

Many relevant pieces of knowledge about machine learning engi-

neering are being published on the Web by experienced practition-

ers – for example, in the format of blog posts. Hence, we use grey

literature as a relevant source for machine learning-specific coding

advice in this study.

To collect online entries of grey literature, we first resort to

the Google search engine with the same queries used above for

the research literature (cf. Figure 3). We also apply a back-cutting

219

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA Zhang, et al.

Table 1: Number of Selected Papers under Each Query (Duplicates Included)

Technical

Debt
Refactoring

Code

Smell

Code

Quality

Coding

Best Practice

Coding

Anti-pattern

Common

Coding Mistakes

Artificial Intelligence 7 1 0 2 0 2 0

Machine Learning 6 1 0 2 7 3 3

Deep Learning 8 3 0 4 4 1 5

Neural Network 3 0 0 0 0 0 2

Data Science 2 0 0 0 2 1 0

strategy at the end of the fifth page of the result for each query.

Hence, there are 1750 entries for this group of search queries, the

same number as the paper selection queries.

Complementarily, we select six machine learning-related Python

libraries, namely TensorFlow, PyTorch, Scikit-Learn, Pandas, NumPy,

and SciPy, combine them with the code quality-related keywords

mentioned in Section 3.1 and form a new group of search queries.

Python is widely used for machine learning1 and the six libraries

are the most popular machine learning libraries 2, covering the

two most important steps in machine learning application develop-

ment – data processing and model training. For this group of search

queries, we reach a level of saturation after analyzing the first result

page. Therefore, we consult the first ten results (i.e., first page) the

Google search engine provides. There are 420 entries (6 × 7 × 10)

for this group of search queries. In total, there are 2170 entries for

grey literature mining.

Since not all entries contain actionable coding advice, we select

entries by 1) reading the title, 2) reading the first summary, and 3)

reading the whole article. Many articles mention some common

patterns in machine learning, but most of them are duplicated and

are general advice that do not contain code-level pitfalls.

In the end, we identify eight cornerstone blog posts that con-

tribute to the code smell catalog, as listed in Section A in the Ap-

pendix: (1), (2), (3), (4), (5), (6), (7), (8).

3.3 Reusing Existing Bug Datasets

We reuse the dataset provided in the work by Zhang et al. [22] to

mine code smells in Tensorflow applications. Zhang et al. mined the

Tensorflow application bugs, analyzed the bugs pattern using 88

Stack Overflow posts as well as 87 GitHub commits and provided a

replication package for these bugs (hereinafter called “TensorFlow

Bugs” replication package). We reuse their replication package to

extract recurrent pitfalls that may generalize to other projects and

thus should be documented as code smells.

3.4 Complementary Stack Overflow Mining

After reusing the existing bug datasets, we apply a similar study

method to other machine learning libraries. We only check the

posts on Stack Overflow at this part without GitHub commits. This

is because all the issues have a similar pattern in GitHub and Stack

Overflow, as noted by [8] and verified in the TensorFlow Bugs

replication package [22].

1State of Data Science and Machine Learning 2021. https://www.kaggle.com/kaggle-
survey-2021
215 Python Libraries for Data Science You Should Know. https://www.dataquest.io/blo
g/15-python-libraries-for-data-science/

PyTorch

Scikit-Learn

Pandas

NumPy

SciPy

Error

Bug

Reproducible

Performance

Efficient

Readable

AND AND Answer >= 1 AND NOT

Install

Build

Search
Query

403 posts

library
keyword

Figure 4: Search Query for Stack Overflow Mining

403
SO posts

"TensorFlow Bugs"
replicate package

88
SO posts

87 GitHub
commits

491
SO posts

Figure 5: Total Number of Stack Overflow Posts and GitHub

Commits

1) Library Selection: We use five libraries: PyTorch, Scikit-

Learn, Pandas, NumPy, and SciPy, excluding TensorFlow from the

six libraries mentioned in Section 3.2.

2) Keyword Selection: To retrieve relevant entries from Stack

Overflow we had to redefine our search keywords. We did so be-

cause Stack Overflow seldom hosts discussions that directly men-

tion technical debt, smells or refactorings. Entries are mostly related

to low-level and straight-to-the-point problems – e.g., performance

issues or errors. Hence, keywords had to be adjusted. When collect-

ing posts from Stack Overflow, we use six keywords that are related

to typical software quality issues [2]: Error, Bug, Reproducible,

Performance, Efficient, Readable.

3) Applying Search Terms:We use the notation provided by

Stack Overflow to implement the refined queries listed in Figure 4.

It has the following format:

[library] keyword answer:1 -install -build �

• library refers to the name of the library we are targeting
(e.g., PyTorch, Pandas, etc.).

220

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

Code Smells for Machine Learning Applications CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

• keyword refers to the software quality aspect (e.g., error, bug,
etc.).

• answer:1 refers to the entries having at least one answers.
• -install -build these are terms that we exclude from the

result set. We filter out install and build because they
typically yield results related to configuration and not the

codebase.

Using the keyword “Error” to search gets the maximum number

of posts among all libraries. Therefore, we rank all the posts by their

votes after applying the term in the search engine, selecting the top

50 posts with the “Error” keyword, and selecting the top 10 posts

with each of the rest keywords. If the number of posts is fewer

than 10, we select all the posts. Then, we delete the duplicated

posts for each library. In the end, we get 81, 68, 84, 88, and 82

posts respectively for PyTorch, Scikit-learn, Pandas, NumPy, and

SciPy. Together with the “TensorFlow Bugs” replication package [22],

we have 87 GitHub commits and 491 Stack Overflow posts in our

dataset, as presented in Figure 5.

3.5 Validation

The first author collects all code smells from the empirical study

(including paper, grey literature, GitHub and Stack Overflow min-

ing) and discusses the code smell catalog with the second author.

We conducted discussion meetings consisting of an introductory

discussion of each smell, followed by the analysis of code exam-

ples where the code issue had been identified, and the collection

of further evidence. We look for references in academic and grey

literature that support that particular smell. In total, the first author

collected 31 code smells, from which 9 were dropped.

4 RESULTS

In this section, we describe 22 machine learning-specific code smells

collected from our empirical study. For each smell, we provide a

general description followed by the context of the smell, the prob-

lem of its occurrence, and the solution. In the end, we summarise all

the smells, including the references supporting the smell, the stage

of the machine learning pipeline where they are more relevant, and

the main effect that arises from having those smells.

We use the notation (n) to cite entries from grey literature, as

listed in Appendix A, where n refers to the nth element in the list.

4.1 Unnecessary Iteration

Avoid unnecessary iterations. Use vectorized solutions instead of

loops.

Context Loops are typically time-consuming and verbose, while

developers can usually use some vectorized solutions to replace the

loops.

Problem As stated in the Pandas documentation (14): “Iterating

through pandas objects is generally slow. In many cases, iterating

manually over the rows is not needed and can be avoided”. In (6), it

is also stated that the slicing operation with loops in TensorFlow is

slow, and there is a substitute for better performance.

Solution Machine learning applications are typically data-

intensive, requiring operations on data sets rather than an indi-

vidual value. Therefore, it is better to adopt a vectorized solution

instead of iterating over data. In this way, the program runs faster

and code complexity is reduced, resulting in more efficient and less

error-prone code [4]. Pandas’ built-in methods (e.g., join, groupby)

are vectorized. It is therefore recommended to use Pandas built-

in methods as an alternative to loops. In TensorFlow, using the

tf.reduce_sum() API to perform reduction operation is much faster

than combining slicing operation and loops.

4.2 NaN Equivalence Comparison Misused

The NaN equivalence comparison is different to None comparison.

The result of NaN == NaN is False (40).

Context NaN equivalence comparison behaves differently from

None equivalence comparison.

Problem While None == None evaluates to True, np.nan == np.nan

evaluates to False in NumPy. As Pandas treats None like np.nan for

simplicity and performance reasons, a comparison of DataFrame

elements with np.nan always returns False [4]. If the developer is

not aware of this, it may lead to unintentional behaviours in the

code.

Solution Developers need to be careful when using the NaN com-

parison.

4.3 Chain Indexing

Avoid using chain indexing in Pandas.

Context In Pandas, df[“one”][“two”] and df.loc[:,(“one”,“two”)] give

the same result. df[“one”][“two”] is called chain indexing.

Problem Using chain indexing may cause performance issues as

well as error-prone code (30)(31)(32). For example, when using

df[“one”][“two”], Pandas sees this operation as two events: call

df[“one”] first and call [“two”] based on the result the previous

operation gets. On the contrary, df.loc[:,(“one”,“two”)] only performs

a single call. In this way, the second approach can be significantly

faster than the first one. Furthermore, assigning to the product of

chain indexing has inherently unpredictable results. Since Pandas

makes no guarantees on whether df[“one”] will return a view or a

copy, the assignment may fail.

Solution Developers using Pandas should avoid using chain in-

dexing.

4.4 Columns and DataType Not Explicitly Set

Explicitly select columns and set DataType when importing data.

Context In Pandas, all columns are selected by default when a

DataFrame is imported from a file or other sources. The data type

for each column is defined based on the default dtype conversion.

Problem If the columns are not selected explicitly, it is not easy

for developers to know what to expect in the downstream data

schema (7). If the datatype is not set explicitly, it may silently

continue the next step even though the input is unexpected, which

may cause errors later. The same applies to other data importing

scenerios.

Solution It is recommended to set the columns and DataType ex-

plicitly in data processing.

4.5 Empty Column Misinitialization

When a new empty column is needed in a DataFrame in Pandas, use

the NaN value in Numpy instead of using zeros or empty strings.

221

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA Zhang, et al.

Table 2: Code Smell Catalog

Code Smell Pipeline Stage Effect Type Literature
Grey

Literature

GitHub

Commits
SO Posts

Unnecessary Iteration Data Cleaning Efficiency Generic [4] (6)(14) (13)

NaN Equivalence Comparison Misused Data Cleaning Error-prone Generic [4]

Chain Indexing Data Cleaning
Error-prone

& Efficiency
API-Specific: Pandas (30) (31)(32)

Columns and DataType Not Explicitly Set Data Cleaning Readability Generic (7)

Empty Column Misinitialization Data Cleaning Robustness Generic (7)

Merge API Parameter Not Explicitly Set Data Cleaning
Readability

& Error-prone
Generic (7)

In-Place APIs Misused Data Cleaning Error-prone Generic [4] (11)

Dataframe Conversion API Misused Data Cleaning Error-prone API-Specific: Pandas (33)

Matrix Multiplication API Misused Data Cleaning Readability API-Specific: NumPy (35) (34)

No Scaling before Scaling-Sensitive Operation Feature Engineering Error-prone Generic (2)(16) (17)

Hyperparameter Not Explicitly Set Model Training
Error-prone

& Reproducibility
Generic [4][1][6]

Memory Not Freed Model Training Memory Issue Generic [6] (5)(19) (20)

Deterministic Algorithm Option Not Used Model Training Reproducibility Generic [1] (9)

Randomness Uncontrolled
Model Training

& Model Evaluation
Reproducibility Generic [1] (1)(5)(9) (26)

Missing the Mask of Invalid Value Model Training Error-prone Generic [22][6] (21)(22)(23)(24)

Broadcasting Feature Not Used Model Training Efficiency Generic (6)

TensorArray Not Used Model Training
Efficiency

& Error-prone
API-Specific: TensorFlow 2 (6)

Training / Evaluation Mode Improper Toggling Model Training Error-prone Generic (36)

Pytorch Call Method Misused Model Training Robustness API-Specific: PyTorch (5)

Gradients Not Cleared before Backward Propagation Model Training Error-prone API-Specific: PyTorch (36)

Data Leakage Model Evaluation Error-prone Generic [4] (8) (27)

Threshold-Dependent Validation Model Evaluation Robustness Generic [15]

Context Developers may need a new empty column in DataFrame.

Problem If they use zeros or empty strings to initialize a new

empty column in Pandas, the ability to use methods such as .isnull()

or .notnull() is retained (7). This might also happens to initializations

in other data structure or libraries.

Solution Use NaN value (e.g. “np.nan”) if a new empty column in

a DataFrame is needed. Do not use “filler values” such as zeros or

empty strings.

4.6 Merge API Parameter Not Explicitly Set

Explicitly specify the parameters for merge operations. Specifically,

explicitly specify on, how and validate parameter for df.merge() API

in Pandas for better readability.

Context df.merge() API merges two DataFrames in Pandas.

Problem Although using the default parameter can produce the

same result, explicitly specify on and how produce better readabil-

ity (7). The parameter on states which columns to join on, and the

parameter how describes the join method (e.g., outer, inner). Also,

the validate parameter will check whether the merge is of a speci-

fied type. If the developer assumes the merge keys are unique in

both left and right datasets, but that is not the case, and he does

not specify this parameter, the result might silently go wrong. The

merge operation is usually computationally and memory expen-

sive. It is preferable to do the merging process in one stroke for

performance consideration.

Solution Developer should explicitly specify the parameters for

merge operation.

4.7 In-Place APIs Misused

Remember to assign the result of an operation to a variable or set

the in-place parameter in the API.

Context Data structures can be manipulated in mainly two differ-

ent approaches: 1) by applying the changes to a copy of the data

structure and leaving the original object intact, or 2) by changing

the existing data structure (also known as in-place).

Problem Some methods can adopt in-place by default, while oth-

ers return a copy. If the developer assumes an in-place approach,

he will not assign the returned value to any variable. Hence, the

operation will be executed, but it will not affect the final outcome.

For example, when using the Pandas library, the developer may not

assign the result of df.dropna() to a variable. He may assume that

this API will make changes on the original DataFrame and not set

the in-place parameter to be True either. The original DataFrame

will not be updated in this way [4]. In the “TensorFlow Bugs” repli-

cation package, we also found an example (11) where the developer

thought np.clip() is an in-place operation and used it without as-

signing it to a new variable.

Solution We suggest developers check whether the result of the

operation is assigned to a variable or the in-place parameter is set in

the API. Some developers hold the view that the in-place operation

will save memory. However, this is a misconception in the Pandas

library because the copy of the data is still created. In PyTorch, the

in-place operation does save GPU memory, but it risks overwriting

the values needed to compute the gradient (10).

4.8 Dataframe Conversion API Misused

Use df.to_numpy() in Pandas instead of df.values() for transform a

DataFrame to a NumPy array.

222

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

Code Smells for Machine Learning Applications CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

Context In Pandas, df.to_numpy() and df.values() both can turn a

DataFrame to a NumPy array.

Problem As noted in (33), df.values() has an inconsistency problem.

With .values() it is unclear whether the returned value would be the

actual array, some transformation of it, or one of the Pandas custom

arrays. However, the .values() API has not been not deprecated

yet. Although the library developers note it as a warning in the

documentation, it does not log a warning or error when compiling

the code if we use .value().

Solution When converting DataFrame to NumPy array, it is better

to use df.to_numpy() than df.values().

4.9 Matrix Multiplication API Misused

When the multiply operation is performed on two-dimensional

matrixes, use np.matmul() instead of np.dot() in NumPy for better

semantics.

Context When the multiply operation is performed on two-

dimensional matrixes, np.matmul() and np.dot() give the same result,

which is a matrix.

Problem In mathematics, the result of the dot product is expected

to be a scalar rather than a vector (39). The np.dot() returns a new

matrix for two-dimensional matrixes multiplication, which does

not match with its mathematics semantics. Developers sometimes

use np.dot() in scenarios where it is not supposed to, e.g., two-

dimensional multiplication.

Solution When the multiply operation is performed on two-

dimensional matrixes, np.matmul() is preferred over np.dot() for its

clear semantic (34)(35).

4.10 No Scaling before Scaling-Sensitive
Operation

Check whether feature scaling is added before scaling-sensitive

operations.

Context Feature scaling is a method of aligning features from

various value ranges to the same range (18).

Problem There are many operations sensitive to feature scaling,

including Principal Component Analysis (PCA), Support Vector

Machine (SVM), Stochastic Gradient Descent (SGD), Multi-layer

Perceptron classifier and L1 and L2 regularization (2)(16). Missing

scaling can lead to a wrong conclusion. For example, if one variable

is on a larger scale than another, it will dominate the PCA proce-

dure. Therefore, PCA without feature scaling can produce a wrong

principal component result.

Solution To avoid bugs, whether feature scaling is added before

scaling-sensitive operations should be checked.

4.11 Hyperparameter Not Explicitly Set

Hyperparameters should be set explicitly.

Context Hyperparameters are usually set before the actual learn-

ing process begins and control the learning process [4]. These pa-

rameters directly influence the behavior of the training algorithm

and therefore have a significant impact on the model’s performance.

Problem The default parameters of learning algorithm APIs may

not be optimal for a given data or problem, and may lead to local

optima. In addition, while the default parameters of a machine learn-

ing library may be adequate for some time, these default parameters

may change in new versions of the library. Furthermore, not setting

the hyperparameters explicitly is inconvenient for replicating the

model in a different programming language.

Solution Hyperparameters should be set explicitly and tuned for

improving the result’s quality and reproducibility.

4.12 Memory Not Freed

Free memory in time.

Context Machine learning training is memory-consuming, and

the machine’s memory is always limited by budget.

Problem If the machine runs out of memory while training the

model, the training will fail.

Solution Some APIs are provided to alleviate the run-out-of-

memory issue in deep learning libraries. TensorFlow’s documenta-

tion notes that if the model is created in a loop, it is suggested to use

clear_session() in the loop (19). Meanwhile, the GitHub repository

pytorch-styleguide recommends using .detach() to free the tensor

from the graph whenever possible (5). The .detach() API can prevent

unnecessary operations from being recorded and therefore can save

memory (38). Developers should check whether they use this kind

of APIs to free the memory whenever possible in their code.

4.13 Deterministic Algorithm Option Not Used

Set deterministic algorithm option to True during the development

process, and use the option that provides better performance in the

production.

Context Using deterministic algorithms can improve reproducibil-

ity.

Problem The non-deterministic algorithm cannot produce repeat-

able results, which is inconvenient for debugging.

Solution Some libraries provide APIs for developers to use the

deterministic algorithm. In PyTorch, it is suggested to set torch.use_-

deterministic_algorithms(True) when debugging (9). However, the

application will perform slower if this option is set, so it is suggested

not to use it in the deployment stage.

4.14 Randomness Uncontrolled

Set random seed explicitly during the development process when-

ever a possible random procedure is involved in the application.

Context There are several scenarios involving random seeds. In

some algorithms, randomness is inherently involved in the training

process. For the cross-validation process in the model evaluation

stage, the dataset split by some library APIs can vary depending

on random seeds.

Problem If the random seed is not set, the result will be irrepro-

ducible, which increases the debugging effort. In addition, it will be

difficult to replicate the study based on the previous one. For exam-

ple, in Scikit-Learn, if the random seed is not set, the random forest

algorithm may provide a different result every time it runs, and the

dataset split by cross-validation splitter will also be different in the

next run (8).

Solution It is recommended to set global random seed first for

reproducible results in Scikit-Learn, Pytorch, Numpy and other

223

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA Zhang, et al.

libraries where a random seed is involved (1)(9). Specifically, Dat-

aLoader in PyTorch needs to be set with a random seed to ensure

the data is split and loaded in the same way every time running the

code.

4.15 Missing the Mask of Invalid Value

Add a mask for possible invalid values. For example, developers

should wrap the argument for tf.log() with tf.clip() to avoid the

argument turning to zero.

Context In deep learning, the value of the variable changes during

training. The variable may turn into an invalid value for another

operation in this process.

Problem Several posts on Stack Overflow talk about the pitfalls

that are not easy to discover caused by the input of the log function

approaching zero (21)(22)(23)(24). In this kind of programs, the

input variable turns to zero and becomes an invalid value for tf.log(),

which raises an error during the training process. However, the

error’s stack trace did not directly point to the line of code that the

bug exists [22]. This problem is not easy to debug and may take a

long training time to find.

Solution The developer should check the input for the log function

or other functions that have special requirements for the argument

and add a mask for them to avoid the invalid value. For example,

developer can change tf.log(x) to tf.log(tf.clip_by_value(x,1e-10,1.0)).

If the value of x becomes zero, i.e., lower than the lowest bound

1e-10, the tf.clip_by_value() API will act as a mask and outputs

1e-10. It will save time and effort if the developer could identify

this smell before the code run into errors.

4.16 Broadcasting Feature Not Used

Use the broadcasting feature in deep learning code to be more

memory efficient.

Context Deep learning libraries like PyTorch and TensorFlow sup-

ports the element-wise broadcasting operation.

Problem Without broadcasting, tiling a tensor first to match an-

other tensor consumes more memory due to the creation and stor-

age of a middle tiling operation result (6)(41).

Solution With broadcasting, it is more memory efficient. However,

there is a trade-off in debugging since the tiling process is not

explicitly stated.

4.17 TensorArray Not Used

Use tf.TensorArray() in TensorFlow 2 if the value of the array will

change in the loop.

Context Developers may need to change the value of the array in

the loops in TensorFlow.

Problem If the developer initializes an array using tf.constant()

and tries to assign a new value to it in the loop to keep it growing,

the code will run into an error. The developer can fix this error

by the low-level tf.while_loop() API (6). However, it is inefficient

coding in this way. A lot of intermediate tensors are built in this

process.

Solution Using tf.TensorArray() for growing array in the loop is a

better alternative for this kind of problem in TensorFlow 2. Devel-

opers should use new data types from libraries for more intelligent

solutions.

4.18 Training / Evaluation Mode Improper
Toggling

Call the training mode in the appropriate place in deep learning

code to avoid forgetting to toggle back the training mode after the

inference step.

Context In PyTorch, calling .eval() means we are going into the

evaluation mode and the Dropout layer will be deactivated.

Problem If the training mode did not toggle back in time, the

Dropout layer would not be used in some data training and thus

affect the training result (36). The same applies to TensorFlow

library.

Solution Developers should call the training mode in the right

place to avoid forgetting to switch back to the training mode after

the inference step.

4.19 Pytorch Call Method Misused

Use self.net() in PyTorch to forward the input to the network instead

of self.net.forward().

Context Both self.net() and self.net.forward() can be used to for-

ward the input into the network in PyTorch.

Problem In PyTorch, self.net() and self.net.forward() are not identi-

cal. The self.net() also deals with all the register hooks, which would

not be considered when calling the plain .forward() (5).

Solution It is recommended to use self.net() rather than

self.net.forward().

4.20 Gradients Not Cleared before Backward
Propagation

Use optimizer.zero_grad(), loss_fn.backward(), optimizer.step() to-

gether in order in PyTorch. Do not forget to use optimizer.zero_-

grad() before loss_fn.backward() to clear gradients.

Context In PyTorch, optimizer.zero_grad() clears the old gradients

from last step, loss_fn.backward() does the back propagation, and

optimizer.step() performs weight update using the gradients.

Problem If optimizer.zero_grad() is not used before loss_-

fn.backward(), the gradients will be accumulated from all loss_-

fn.backward() calls and it will lead to the gradient explosion, which

fails the training (36).

Solution Developers should use optimizer.zero_grad(), loss_-

fn.backward(), optimizer.step() together in order and should not

forget to use optimizer.zero_grad() before loss_fn.backward().

4.21 Data Leakage

Use Pipeline() API in Scikit-Learn or check data segregation care-

fully when using other libraries to prevent data leakage.

Context The data leakage occurs when the data used for training a

machine learning model contains prediction result information (28).

Problem Data leakage frequently leads to overly optimistic exper-

imental outcomes and poor performance in real-world usage [4].

224

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

Code Smells for Machine Learning Applications CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

Solution There are two main sources of data leakage: leaky pre-

dictors and a leaky validation strategy (29). Leaky predictors are

the cases in which some features used in training are modified or

generated after the goal value has been achieved. This kind of data

leakage can only be inspected at the data level rather than the code

level. Leaky validation strategy refers to the scenario where train-

ing data is mixed with validation data. This fault can be checked

at the code level. One best practice in Scikit-Learn is to use the

Pipeline() API to prevent data leakage.

4.22 Threshold-Dependent Validation

Use threshold-independent metrics instead of threshold-dependent

ones in model evaluation.

Context The performance of the machine learning model can

be measured by different metrics, including threshold-dependent

metrics (e.g., F-measure) or threshold-independent metrics (e.g.,

Area Under the Curve (AUC)).

Problem Choosing a specific threshold is tricky and can lead to a

less-interpretable result [15].

Solution Threshold-independent metrics are more robust and

should be preferred over threshold-dependent metrics.

5 DISCUSSIONS AND IMPLICATIONS

The code smell catalog summarized from the empirical study is

presented in Table 2. We collected 22 code smells in total and linked

the smells to four pipeline stages: Data Cleaning, Feature Engi-

neering, Model Training, and Model Evaluation. Possible impacts

of the smells on application codes include being error-prone, less

efficient, less reproducible, causing memory issues, less readable,

and less robust. In addition, 16 smells are generic smells, while 6

are API-specific smells. Generic smells occur regardless of which

library the developer uses, while API-specific smells depend on a

specific library API design.

The catalog helps understand prevalent flaws in machine learn-

ing application development by investigating recurrent code issues

from various sources. Since many data scientists do not have a

software engineering background and are not up-to-date with the

best practices from the software engineering field, our catalog of

smells mitigates this barrier by providing some guidelines when

developing machine learning applications.

Machine learning libraries are being regularly improved with

new versions. We reused the “TensorFlow Bugs” replication pack-

age and found that many instances have already been deprecated

because TensorFlow has upgraded to version 2. Hence, we expect

that new API-specific code smells will appear with new versions

and library features. In fact, our results showcase that most API-

related smells are only reported by grey literature in general instead

of literature. We argue that collecting a catalog of code smells helps

in promoting a continuous effort between practitioners and aca-

demics.

The ecosystem of AI frameworks is changing very fast, which

means that some smells might become obsolete in the meantime.

In our catalog, we anticipate that three smells can be considered

temporary smells: Dataframe Conversion API Misused, Matrix Mul-

tiplication API Misused and Gradients Not Cleared before Backward

Propagation. While other smells are perceived to last for a long

time, temporary smells might be deprecated in a few years. Yet,

these three smells are important and should be flagged to help

practitioners prevent issues downstream.

5.1 Implications to Data Scientists and Machine
Learning Application Developers

This catalog contains smells from heterogeneous sources, existing

in different stages, and will trigger various effects. For instance, the

Unnecessary Iteration code smell describes the inefficient code struc-

ture and it often occurs at data cleaning stages. Another code smell

Hyperparameter Not Explicitly Set indicates irreproducible code and

it is at model training stage. Data scientists and machine learning

application developers can check these aspects while checking their

code.

Some code smells appear multiple times in different sources –

both from academic and grey literature. For example, Missing the

Mask of Invalid Value is referenced in two instances of academic

literature and four from Stack Overflow posts. Practitioners can

use this as an indication of the relevance of smells and use the

references to learn more about them.

Machine learning application developers, especially data scien-

tists with little software engineering experience, can use the catalog

to build awareness of the pitfalls and best practices highlighted in

this study and strive to prevent these errors from their code. We

assume that knowing code smells can shorten the time of develop-

ment and help assure high-quality software in production. Future

work will validate whether eliminating these code smells will lead

to more accurate results during training, better hyperparameter

optimization, clearer and higher quality code, and less maintenance

effort.

5.2 Implication to Machine Learning Library
Developers

Some smells in the catalog stem from the fact that APIs require

a particular usage pattern that is not intuitive to their users. For

example, the smell Dataframe Conversion API Misused smell could

be eradicated if the API method df.values() would be deprecated

and completely replaced by df.to_numpy(). In another example, the

Gradients Not Cleared before Backward Propagation smell could be

avoided if the API already took care of combining gradient clear and

backward propagation for its users, since this is the commended

approach. Hence, our results show how the design of library APIs

plays an important role in avoiding potential issues in projects.

Some of the smells we identify are reported in the official docu-

mentation of the libraries. Yet, there is still code being created that

does not comply the recommendations. For example, the effect of

index chaining (cf. Section 4.3) appears in code examples provided

by Stack Overflow although it is explained in the Pandas documen-

tation. This indicates that many developers are struggling to follow

the documentation strictly. It might stem from the fast iteration

cycles in the development process of teams or from the developer’s

lack of experience in that particular library. We argue that passively

indicating warnings on documentation might not be sufficient. It

is important that library developers and maintainers are actively

engaging in community forums, such as Stack Overflow, to help

the community avoid non-obvious issues.

225

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA Zhang, et al.

Finally, it is important that library maintainers promote and

reach out to existing projects that aim at helping the development of

machine learning software – i.e., static code analysis tools, testing

tools, quality auditors, experiment trackers, and so on. Library

developers know better than anyone what is the optimal way of

leveraging their libraries. Hence, their contribution is crucial in the

development of coding tools that support best practices.

5.3 Implication to Code Analysis Tool
Developers

As some code smells cannot be addressed by designing better APIs,

the static analysis tool can help promote best practices and warn

pitfalls to the application developers.

This research serves as the base for future work on automated

tools to detect these unwanted code patterns. Automated tools

can minimize the developer’s effort to discover the code smells

and eliminate them, providing support for code quality assurance.

Because humans are occasionally forgetful, it is preferable to have a

technology that expressly checks whether best practices are being

followed.

In addition, we observe that some code smells are related to the

context. This is aligned with previous work that proposes context-

aware code analysis tools for machine learning applications [9].

For example, PyTorch library developers recommend application

developers to use the deterministic option during the development

but not set it in the production code due to the consideration for

performance. Therefore, the automated tool can have different

configuration settings. For example, according to the pipeline stage,

it can have a development setting and a deployment setting.

5.4 Implication to Students

As mentioned by [4], many graduates in the industry do not have

formal education on machine learning application development

since it requires a combination of software engineering and data

science practices. Students can use this catalog to learn more about

the common anti-patterns in machine learning application devel-

opment and prepare for future jobs.

6 THREATS TO VALIDITY

In our study, the first author performs manual code smell inspec-

tions, which can be biased due to the different understanding of

machine learning code. To alleviate this threat, the second author re-

views all instances of code smells, followed by a discussion between

the first two authors.

In both the academic and grey literature survey, the initial selec-

tion of keywords in the search query might miss relevant entries.

To mitigate this threat, we iteratively refine the search keywords

based on retrieved relevant content. In addition, we apply forward

and backward snowballing to complement the search.

Moreover, since we use a back-cutting strategy on the grey lit-

erature search, the quality of the search results depends on the

accuracy of the Google search engine’s relevance sorting algorithm,

which is beyond our control. The results are collected from the

first author’s Google account, and they might vary across users.

However, we believe that this has minimal impact on the result set

of our study.

When mining Stack Overflow entries and GitHub commits, we

inspect 88 GitHub commits and 491 Stack Overflow posts in total.

It is unclear how generalizable our results are. To cover the most

common mistakes in the machine learning application practice in

a generalizable way, we use the “highest voted” criteria to select

instances from Stack Overflow. We anticipate that less-voted in-

stances may also contain machine learning code issues. Increasing

the result set would not be feasible in a manual inspection. Yet,

we argue that the highest voted instances provide an interesting

snapshot with the most relevant issues.

This study focuses on six Python machine learning libraries

and frameworks. There are several other machine learning frame-

works that might lead to particular code smells. However, it would

not be feasible to apply our methodology in all the libraries out

there. Hence, we reduce this threat by selecting the most popular

frameworks.

Finally, we acknowledge that there are more warnings within

libraries documentation that can become code smells. However, we

only consider warnings that have allegedly led to real code issues,

as observed in other sources (e.g., Stack Overflow).

7 CONCLUSION AND FUTUREWORK

In this paper, we conducted an empirical study to collect the code

smell specific for machine learning applications. We collected the

code smells from various sources, including mining 1750 papers,

mining 2170 grey literature entries, using the existing bugs datasets

including 88 Stack Overflow posts and 87 GitHub commits and

gathering 403 complementary Stack Overflow posts. We analyzed

the pitfalls mentioned in the posts and decided whether to take it

as a code smell. We collected 22 code smells, including general and

API-specific smells. We also classified the code smell by different

pipeline stages and its effect. We want to raise the discussion about

machine learning-specific code smell and help improve code quality

in the machine learning community in this way.

Future work will include a quantitative large-scale validation of

the code smell catalog. We would like to interview machine learn-

ing practitioners and mine code changes in GitHub repositories

to validate and improve the catalog. In addition, we plan to imple-

ment a static analysis tool that automatically detect these smells to

promote best practices in machine learning code. Finally, it would

be interesting to study the prevalence of these code smells in real-

world machine learning applications and explore the benefits of

using a catalog of machine learning-specific code smells.

ACKNOWLEDGMENTS

This work was partially supported by ING through the AI for Fin-

tech Research Lab with the Delft University of Technology.

REFERENCES
[1] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D Sculley. 2017. The

ML test score: A rubric for ML production readiness and technical debt reduction.
In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 1123–1132.

[2] International Organization for Standardization/International Electrotechni-
cal Commission et al. 2001. ISO/IEC 9126–Software Engineering–Product Qual-
ity.

[3] Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan. 2020. The
State of the ML-universe. Proceedings of the 17th International Conference on
Mining Software Repositories (2020). https://doi.org/10.1145/3379597.3387473

226

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

Code Smells for Machine Learning Applications CAIN’22, May 21-22 2022, Pittsburgh, PA, USA

[4] MPA Haakman. 2020. Studying the Machine Learning Lifecycle and Improving
Code Quality of Machine Learning Applications. (2020).

[5] Mark Haakman, Luís Cruz, Hennie Huijgens, and Arie van Deursen. 2021. AI
lifecycle models need to be revised. Empirical Software Engineering 26, 5 (2021),
1–29.

[6] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning sys-
tems. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. 1110–1121.

[7] Nick Hynes, D Sculley, and Michael Terry. 2017. The data linter: Lightweight,
automated sanity checking for ml data sets. In NIPS MLSys Workshop.

[8] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on deep learning bug characteristics. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 510–520.

[9] Jai Kannan, Scott Barnett, Andrew Simmons, Luís Cruz, and Akash Agarwal.
2022. MLSmellHound: A Context-Aware Code Analysis Tool. In 2022 IEEE/ACM
44th International Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER).

[10] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, Vol. 14. Montreal, Canada, 1137–1145.

[11] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc.
2020. Code smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software 167 (2020), 110610.

[12] Valentina Lenarduzzi, Francesco Lomio, Sergio Moreschini, Davide Taibi, and
Damian Andrew Tamburri. 2021. Software Quality for AI: Where we are now?.
In International Conference on Software Quality. Springer, 43–53.

[13] Kent Beck Martin Fowler. 2018. efactoring: Improving the Design of Existing Code.
[14] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco

Oliveto, and Andrea De Lucia. 2017. On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (2017), 1188–1221. https://doi.org/10.1007/s10664-
017-9535-z

[15] Gopi Krishnan Rajbahadur, Gustavo Ansaldi Oliva, Ahmed E Hassan, and Juer-
gen Dingel. 2019. Pitfalls Analyzer: Quality Control for Model-Driven Data
Science Pipelines. In 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems (MODELS). IEEE, 12–22.

[16] D. Sculley, Gary Holt, D. Golovin, Eugene Davydov, Todd Phillips, D. Ebner, Vinay
Chaudhary, M. Young, J. Crespo, and Dan Dennison. 2015. Hidden Technical
Debt in Machine Learning Systems. In NIPS.

[17] Andrew J Simmons, Scott Barnett, Jessica Rivera-Villicana, Akshat Bajaj, and
Rajesh Vasa. 2020. A large-scale comparative analysis of Coding Standard confor-
mance in Open-Source Data Science projects. In Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). 1–11.

[18] Dag I.K. Sjøberg, Aiko Yamashita, Bente C.D. Anda, Audris Mockus, and Tore
Dybå. 2013. Quantifying the Effect of Code Smells on Maintenance Effort. IEEE
Transactions on Software Engineering 39, 8 (2013), 1144–1156. https://doi.org/10
.1109/TSE.2012.89

[19] Yiming Tang, Raffi Khatchadourian, Mehdi Bagherzadeh, Rhia Singh, Ajani Stew-
art, and Anita Raja. 2021. An Empirical Study of Refactorings and Technical Debt
in Machine Learning Systems. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 238–250.

[20] Bart van Oort, Luís Cruz, Maurício Aniche, and Arie van Deursen. 2021. The
Prevalence of Code Smells in Machine Learning projects. In 2021 IEEE/ACM 1st
Workshop on AI Engineering - Software Engineering for AI (WAIN). 1–8. https:
//doi.org/10.1109/WAIN52551.2021.00011

[21] Aiko Yamashita and Leon Moonen. 2013. To what extent can maintenance
problems be predicted by code smell detection? – An empirical study. Information
and Software Technology 55, 12 (2013), 2223–2242. https://doi.org/10.1016/j.infs
of.2013.08.002

[22] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An empirical study on TensorFlow program bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 129–140.

A GREY LITERATURE REFERENCES
(1) Christian Haller. My Machine Learning Model Is Perfect. URL: https://toward

sdatascience.com/my-machine-learning-model-is-perfect-9a7928e0f604
(2) Cheng-Tao Chu. Machine Learning Done Wrong. URL: https://ml.posthaven

.com/machine-learning-done-wrong
(3) What are common mistakes when working with neural networks? URL: https:

//www.kaggle.com/general/196487
(4) Top 10 Coding Mistakes Made by Data Scientists. URL: https://www.kdnugg

ets.com/2019/04/top-10-coding-mistakes-data-scientists.html

(5) Igor Susmelj, Lucas Vandroux, Daniel Bourke (2022). A PyTorch Tools, best
practices & Styleguide. URL: https://github.com/IgorSusmelj/pytorch-
styleguide

(6) EffectiveTensorflow. URL: https://github.com/vahidk/EffectiveTensorflow
(7) Josh Levy-Kramer (2021). Pandas Style Guide. URL: https://github.com/joshl

k/pandas_style_guide
(8) Scikit-Learn Documentation. URL: https://scikit-learn.org/stable/common_p

itfalls.html
(9) PyTorch Documentation. Reproducibility. URL: https://pytorch.org/docs/stabl

e/notes/randomness.html
(10) Alexandra Deis. In-place Operations in PyTorch. URL: https://towardsdatasci

ence.com/in-place-operations-in-pytorch-f91d493e970e
(11) GitHub Commit. URL: https://github.com/bamos/dcgan-completion.tensorflo

w/commit/e8b930501dffe01db423b6ca1c65d3ac54f27223
(12) Samual Sam (2018). Inplace operator in Python. URL: https://www.tutorialsp

oint.com/inplace-operator-in-python
(13) Github Commit – Tensor Flow. URL: https://github.com/tensorflow/models/c

ommit/90f63a1e1653
(14) Pandas Documentation. Essential basic functionality – Iteration. URL: https:

//pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#iteration
(15) Vectorization, Part 2: Why and What? URL: https://www.quantifisolutions.c

om/vectorization-part-2-why-and-what/
(16) Scikit-Learn Documentation. URL: https://scikit-learn.org/stable/modules/p

reprocessing.html
(17) Stack Overflow. GridSearchCV extremely slow on small dataset in scikit-learn.

URL: https://stackoverflow.com/questions/17455302/gridsearchcv-extremely-
slow-on-small-dataset-in-scikit-learn/23813876#23813876

(18) Feature scaling. URL: https://en.wikipedia.org/wiki/Feature_scaling
(19) TensorFlow Documentation. Backend: clear_session. URL: https://www.te

nsorflow.org/api_docs/python/tf/keras/backend/clear_session
(20) Stack Overflow. Tensorflow OOM on GPU. URL: https://stackoverflow.com/

questions/42495930/tensorflow-oom-on-gpu
(21) Stack Overflow. Tensorflow NaN bug? URL: https://stackoverflow.com/questi

ons/33712178/tensorflow-nan-bug
(22) Stack Overflow. TensorFlow’s ReluGrad claims input is not finite. URL: https:

//stackoverf low.com/questions/33699174/tensorf lows-relugrad-claims-
input-is-not-finite

(23) Stack Overflow. Tensorflow - Convolutionary Net: Grayscale vs Black/White
training. URL: https://stackoverflow.com/questions/39487825/tensorflow-
convolutionary-net-grayscale-vs-black-white-training

(24) Stack Overflow. Implement MLP in tensorflow. URL: https://stackoverflow.co
m/questions/35078027/implement-mlp-in-tensorflow

(25) Weight Initialization Techniques in Neural Networks. URL: https://toward
sdatascience.com/weight-initialization-techniques-in-neural-networks-
26c649eb3b78

(26) Stack Overflow. Best practices for generating a random seeds to seed Pytorch?
URL: https://stackoverf low.com/questions/57416925/best-practices-for-
generating-a-random-seeds-to-seed-pytorch

(27) Stack Overflow. Keras Regression using Scikit Learn StandardScaler with
Pipeline and without Pipeline. URL: https://stackoverflow.com/questions/43
816718/keras-regression-using-scikit-learn-standardscaler-with-pipeline-
and-without-pip/43816833#43816833

(28) Ask a Data Scientist: Data Leakage. URL: https://insidebigdata.com/2014/11/
26/ask-data-scientist-data-leakage/

(29) Data Leakage. URL: https://www.kaggle.com/alexisbcook/data-leakage
(30) Pandas Documentation. URL: https://pandas.pydata.org/pandas-docs/stable/

user_guide/indexing.html#indexing-view-versus-copy
(31) Stack Overflow. Extrapolate values in Pandas DataFrame. URL: https://st

ackoverf low.com/questions/22491628/extrapolate-values- in-pandas-
dataframe/35959909#35959909

(32) Stack Overflow. Why does one use of iloc() give a SettingWithCopyWarning,
but the other doesn’t? URL: https://stackoverflow.com/questions/53806570/w
hy-does-one-use-of-iloc-give-a-settingwithcopywarning-but-the-other-
doesnt/53807453#53807453

(33) Stack Overflow. Convert pandas dataframe to NumPy array. URL: https:
//stackoverf low.com/questions/13187778/convert-pandas-dataframe-to-
numpy-array/54508052#54508052

(34) Stack Overflow. Does np.dot automatically transpose vectors? URL: https:
//stackoverf low.com/questions/54160155/does-np-dot-automatically-
transpose-vectors/54161169#54161169

(35) Linear Algebra (numpy.dot). NumPy Documentation. URL: https://numpy.or
g/doc/stable/reference/generated/numpy.dot.html#numpy.dot

(36) Yuval Greenfield. Most Common Neural Net PyTorch Mistakes. URL: https:
//medium.com/missinglink-deep-learning-platform/most-common-neural-
net-pytorch-mistakes-456560ada037

(37) Stack Overflow. Is this a right way to train and test the model using Pytorch?
URL: https://stackoverflow.com/questions/67066452/is-this-a-right-way-
to-train-and-test-the-model-using-pytorch/67067242#67067242

227

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

CAIN’22, May 21-22 2022, Pittsburgh, PA, USA Zhang, et al.

(38) Why does detach reduce the allocated memory? URL: https://discuss.pytorch.
org/t/why-does-detach-reduce-the-allocated-memory/43836

(39) Dot product. Wikipedia. URL: https://en.wikipedia.org/wiki/Dot_product
(40) Stack Overflow. What is the rationale for all comparisons returning false for

IEEE754 NaN values? URL: https://stackoverflow.com/questions/1565164/wh

at-is-the-rationale-for-all-comparisons-returning-false-for-ieee754-nan-
values

(41) Broadcasting the good and the ugly URL: https://effectivemachinelearning.c
om/PyTorch/3._Broadcasting_the_good_and_the_ugly

228

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 12:17:14 UTC from IEEE Xplore. Restrictions apply.

