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Abstract: Until now, RTK (real-time kinematic) and NRTK (Network-based RTK) have been the
most popular cm-level accurate positioning approaches based on Global Navigation Satellite System
(GNSS) signals in real-time. The tropospheric delay is a major source of RTK errors, especially
for medium and long baselines. This source of error is difficult to quantify due to its reliance on
highly variable atmospheric humidity. In this paper, we use the NRTK approach to estimate double-
differenced zenith tropospheric delays alongside ambiguities and positions based on a complete
set of multi-GNSS data in a sample 6-station network in Europe. The ZTD files published by IGS
were used to validate the estimated ZTDs. The results confirmed a good agreement, with an average
Root Mean Squares Error (RMSE) of about 12 mm. Although multiplying the unknowns makes the
mathematical model less reliable in correctly fixing integer ambiguities, adding a priori interpolated
ZTD as quasi-observations can improve positioning accuracy and Integer Ambiguity Resolution (IAR)
performance. In this work, weighted least-squares (WLS) were performed using the interpolation
of ZTD values of near reference stations of the IGS network. When using a well-known Kriging
interpolation, the weights depend on the semivariogram, and a higher network density is required
to obtain the correct covariance function. Hence, we used a simple interpolation strategy, which
minimized the impact of altitude variability within the network. Compared to standard RTK where
ZTD is assumed to be unknown, this technique improves the positioning accuracy by about 50%. It
also increased the success rate for IAR by nearly 1.

Keywords: tropospheric slant delay; tropospheric zenith delay; double-difference; real-time kinematic;
weighted least-squares; interpolation

1. Introduction

RTK positioning is the most frequently used method of achieving high accuracy
with GNSS technology in (near) real-time, and network-based RTK is far more effective
than single-baseline RTK in providing precise positioning over the entire area covered by
reference stations [1]. The goal of relative positioning is to eliminate or reduce error sources
by computing double differenced GNSS data.

Accuracy problems exist in many RTK systems due to satellite orbit errors, multipath,
signal interference, ionospheric and tropospheric refraction, among others. Appropriate
mitigation measures exist for some components of the RTK error budget. For instance,
multi-frequency observations can be used to decrease or eliminate individual errors such
as ionospheric and multipath errors [2,3]. One way to evaluate the tropospheric delay is to
measure it directly with devices such as radiosondes and water vapor radiometers (WVR).
However, the cost of installing these devices at each station is prohibitive. As another
solution, surface pressure, temperature, and relative humidity measurements can be used
in conjunction with theoretical tropospheric models such as Hopfield [4], Ifadis [5], and
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Mendes [6] to estimate tropospheric delays. These models often do not account for the
vertical and horizontal spatial variations in atmospheric conditions, particularly the vertical
profile of water vapor. Therefore, due to systematic errors caused by the atmosphere, single-
base RTK performance is limited to baselines smaller than 20 km [7]. Several attempts
have been made to improve RTK positioning at longer baselines by accounting for the
atmospheric delay [8–11].

Compared to GPS-only RTK, the availability, reliability, positioning accuracy, and
convergence speed of multi-GNSS RTK can be significantly higher. It was shown that
longer baselines could be handled by increasing the number of observations together with
better tropospheric models [12]. However, the tropospheric error remains one of the most
critical factors in this method. For long baseline RTK, the zenith hydrostatic delay (ZHD)
and the zenith wet delay (ZWD) can be corrected in advance using available models, for
instance, Saastamoinen [13]. Since these models do not account for the whole wet part,
the residual zenith wet delay, which is mismodeled, is usually treated as an unknown
parameter in the positioning model. In this way, water vapor can also be estimated, which
is known as GNSS meteorology. GNSS meteorology is getting popular and has provided
promising results; the required measurements are inexpensive and available in all weather
conditions [14,15]. Bevis was the first to propose this approach using GPS signals [14].
Several studies have evaluated the benefits of using a combination of constellations for
tomography compared to using GPS alone [16,17]. These water vapor estimations can
also improve the production of more accurate weather forecasts using Numerical Weather
Prediction (NWP) models. They led to a 40% reduction in forecast errors compared to
estimates from an NWP model with and without GNSS precipitable water vapor estimate
assimilation [18].

An accurate estimate of the wet tropospheric delay is required to facilitate ambiguity
resolution and precise positioning in the network RTK. GNSS carrier phase data can be
utilized to estimate position, ambiguities, and the tropospheric zenith delay with high
precision [19].

However, treating wet tropospheric delays as unknown parameters makes the mathe-
matical model weaker and increases the observation time required to estimate the correct
ambiguities. To tackle this issue, the weighted least-squares method can be used with the
a priori data of the tropospheric delay of the rover station [20]. Data from a CORS GNSS
network can be interpolated to forecast the tropospheric delays at any other location. These
prediction data can be utilized to improve positioning accuracy, decrease the time to reach
a given level of precision [21], and overcome distance restrictions [22].

Kriging interpolation has been used to compute ZTD in various studies. Kriging
interpolation is a method for presenting predictions in the form of a weighted average of
observations obtained at neighboring sites. The weights are chosen such that the resulting
errors are minimal compared to other linear summations. Janssen confirmed that Kriging
interpolation works better for tropospheric delay prediction than polynomial or spline
approaches [23]. Xu et al. used Kriging interpolation to generate slant tropospheric delays
in large-scale interferometric synthetic aperture radars (InSAR) to reduce tropospheric
delay noise [24]. They conclude that when the spatial resolution of the reference stations
is dense enough, Kriging interpolation is most efficient. Ma et al., on the other hand,
show that the benefits of a dense network for the average RMSE over the year are not
significant since the spatial distribution of water vapor is stable over time. Moreover,
accurate predictions of the rover’s ZTD outside the network are mainly determined by the
distance to a nearby reference station and are thus unaffected by the number of reference
stations. In conclusion, Kriging interpolation depends on the distances between unknown
points, all available measurements, and the covariance shown in the semivariogram [25].

It should be noted that, even for network RTK, tropospheric interpolation errors grow
with the baseline length. Moreover, because the ZTD is correlated to the station’s height, the
interpolation accuracy of this value is expected to be significantly lowered when the altitude
difference between the rover and the reference stations is considerable. One strategy is to
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weigh tropospheric delay corrections rather than accounting for them deterministically and
consider them as weighted a priori data in WLS. An extended stochastic model of GNSS
measurements can be used to consider these tropospheric weights. Therefore, one of the
objectives of this research is to evaluate the performance of multi-GNSS long baseline RTK
with WLS using weighted a priori tropospheric data.

In this work, we use tropospheric delay modeling to derive more accurate positions
for rover stations at longer inter-station distances than is currently possible. We shall
use multi-GNSS code and carrier phase observations from GPS, GLONASS, Galileo, and
BeiDou systems, imitating real-time rover positioning. Section 2 presents a typical DD
observation model for RTK positioning with a long baseline, followed by a functional and
stochastic model. Section 3 delves into the tropospheric delay in detail. Section 4 discusses
the least square models for both ZTD-float and ZTD-weighted. Exporting a priori ZWD
values, corrected for the interpolated station heights, is described in Section 5. Finally,
Section 6 discusses the test and its results.

2. Multi-GNSS RTK Data Processing

With the plethora of new satellites and signals, additional observations are becoming
available for high-precision positioning techniques. RTK positioning with instantaneous
ambiguity resolution, as well as Precise Point Positioning (PPP) is the most common
real-time precise positioning approaches. PPP requires a 20-min convergence time [26],
whereas RTK delivers centimeter-level positioning services with a much shorter initializa-
tion time [27].

The DD equations with two stations, A and B, and two satellites, r and s, run as
follows [28]:

Prs
AB, f = ρrs

AB + Trs
AB + Irs

AB, f + ers
AB (1)

Φrs
AB, f = ρrs

AB + λ f Nrs
AB, f + Trs

AB − Irs
AB, f + εrs

AB (2)

here (.)rs
AB = (.)r

A − (.)r
B − (.)s

A + (.)s
B and f is the frequency band ( f = 1, 2, ...). P and

Φ are the pseudo-range code and phase observations, respectively (both in meters). ρ is
the geometric distance between the satellites and receivers, T and I are the troposphere
and ionosphere delays, respectively, all in meters. λ is the wavelength of the GNSS signal,
N is the phase ambiguity, and e and ε are the unmodeled errors of the code and phase
measurements, respectively.

By constructing DD measurement equations with a short baseline (<10 km), satellite
ephemerides, ionosphere, and troposphere errors are effectively eliminated. However, the
elimination of atmospheric delays is more challenging with medium-length baselines.

With even longer baselines, such as around 100 km or greater, the challenges become
intractable. Over a very long baseline, the error terms in the DD equation, such as broad-
cast ephemeris errors, troposphere delays, and earth tides effects, are not negligible. In
the observation, Equations (1) and (2), the error terms must be appropriately modeled.
To exclude the ionosphere effect, dual-frequency measurements joined into a so-called
ionospheric-free (IF) combination is used [29]. Therefore, in the following, by equation, we
mean IF equations. However, one of the most significant error sources, the tropospheric
delay, can be estimated with high precision using GNSS measurements as an unknown
parameter. However, this increase in the number of unknowns would result in a longer
initialization time.

3. Troposphere

Signal delays caused by the lowest layer of the Earth’s atmosphere are referred to as
tropospheric delays. The troposphere can generate zenith pseudorange delays up to 2.5 m
on the GNSS signals in the zenith direction. In contrast, for the satellites at low elevation
angles, namely below 10 degrees, this delay can reach 20 m [13].



Sensors 2022, 22, 5570 4 of 19

Instead of dealing with several independent line-of-sight delays for each satellite-
receiver pair, all delays in the same area can be mapped to a single zenith total delay (ZTD)
value, which, in turn, can be divided into hydrostatic and wet portions:

T = MF · ZTD =

MFH(el) · ZHD + MFW(el) · ZWD + MFg(el) · cot(el) · (GN · cos(α) + GE · sin(α)) (3)

here el and α are the elevation and azimuth angle of a given satellite, respectively. MF is
the mapping function, with MFH and MFW as the hydrostatic and wet mapping function,
respectively. ZTD is the zenith total delay, which can be divided into zenith hydrostatic
delay (ZHD) and zenith wet delay (ZWD). The gradients GN and GE, along with the related
gradient mapping function MFg account for the azimuthally inhomogeneous troposphere
in the north-south and east-west directions, respectively [30,31].

The ZHD, dependent on the dry gas mixture ratio, is roughly 2.3 m. Whereas the
zenith wet delay is on average 0.15 m in the global average. Even though the hydrostatic
delay is greater than the wet delay, empirical models can estimate ZHD with a millimeter
precision due to the reasonably constant gas mixture [13,32,33]. However, due to the lack
of knowledge about the distribution of water vapor in the environment, the wet delay is
far more difficult to model or eliminate.

Many zenith delay models have been proposed [4,13,34]. Different mapping functions
based either on theoretical modeling or empirical data were proposed [32,35–37]; See
Teunissen and Montenbruck for a comprehensive review of the troposphere models and
mapping functions [38]. The Global Mapping Function (GMF) and Vienna Mapping
Functions (VMF) are the two most common in GNSS data processing [39,40].

In this article, the hydrostatic and wet zenith delays are computed based on the
Saastamoinen model using Equations (4) and (5) [13]. Moreover, for the mapping function,
VMF3 was implemented [40].

ZHD = 0.0022768
p

1− 0.00266cos(2φ)− 0.00000028h
(4)

ZWD = 0.0022768(
1255

T
+ 0.05)e (5)

here p and e are the pressure and water vapor pressure in hectopascals, T is the temperature
in degrees Kelvin, and φ and h are the station’s geographic latitude and ellipsoidal height,
respectively. To achieve a priori zenith delays, global pressure and temperature models
(GPT3) were introduced. This model tabulates annual and semi-annual mean values
of atmospheric parameters required to predict ZTD components at a given place and
time [40,41].

The above models can only partly compensate for the variability of wet delays [41,42].
Therefore, residual ZWD must still be treated as an unknown parameter in high-precision
positioning. They can be considered practically constant for several minutes since it is
rather steady in a limited region due to the relatively homogeneous water vapor content
in the atmosphere [39,43,44]. For simplicity, the gradients are ignored as they are at the
millimeter level [43,45]. Finally, to produce the best linear unbiased estimation (BLUE), the
correct functional and stochastic model for the least squares processing should be defined,
taking into account all of the unknowns as mentioned earlier [46].

4. Functional Model

Multi-GNSS positioning helps to increase the number of satellites, which is particularly
beneficial in challenging environments. In the following, we consider a few advanced
models for optimal integration of multi-GNSS observations with unknown parameters.
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4.1. Tropospheric-Float Model

The design of the functional model should take into account that the equations men-
tioned in Section 2 are valid for the Code Division Multiple Access (CDMA)-based systems,
i.e., GPS, Galileo, GLONASS M, BeiDou, and QZSS. Therefore, the functional model related
to CDMA observations is as follows [38]:

E
[

P
Φ

]
=

[
e⊗ G 0 MF
e⊗ G Λ⊗ Im−1 MF

] b
a

δZWD

 (6)

where P and Φ are the vectors containing DD-IF code and phase observables after correc-
tion for hydrostatic and wet zenith delays using Equations (4) and (5), G is the relative
receiver-satellite geometry matrix, ⊗ denotes the Kronecker products, eT = ones(1, f ),
Λ = diag(λ1, ..., λ f ) gives the diagonal matrix of wavelengths for f frequencies. I is the
identity matrix of an order m − 1 where m is the number of satellites, b is the baseline
vector, a is a vector containing the DD integer phase ambiguities, and δZWD is the residual
ZWD. MF contains mapping functions for projecting zenith wet delays to the satellite’s
line-of-sight.

In contrast, the GLONASS system uses FDMA (Frequency Division Multiple Access)
technologies, which means that each GLONASS satellite transmits on a different frequency.
For more information about GLONASS, see [47]. As a result, fixing DD ambiguities can
not be accomplished for the GLONASS in the same way as Equation (6). To address this
problem, Equation (7) may be used to generate the functional model for GLONASS DD
observations, which is quite similar to the DD CDMA model [48].

E
[

P
Φ

]
=

[
e⊗ G 0 MF
e⊗ G Λ⊗ L MF

] b
a

δZWD

 (7)

in which L is a (m− 1)× (m− 1) full rank lower triangular matrix:

Lii = 2848
gi+1

ai+1gi
f or i = 1, ..., m− 1 (8)

Lij = 2848
αja1(i+1)

ai+1gj
f or i = j + 1, ..., m− 1 (9)

The integers αi and βi are given by −αiai+1 + βigi = gi+1 in which ai = 2848 + f i, f i

is the GLONASS satellite channel number, ∈ [−7,+6], and g1 = a1, gi =GCD(a1, ..., ai(1 <
i ≤ m).

When this model is combined with CDMA models, integer ambiguity estimation
becomes possible. As a result, various types of multi-GNSS observations can be merged,
and existing integer ambiguity resolution methods can be applied directly. Some AR tech-
niques for medium and long-baseline RTK have also been published [22,49,50]. The most
well-known of these is LAMBDA [51,52], which includes a reduction stage where the search
space of ambiguities is reduced via decorrelation, followed by one of the ‘smart search’ algo-
rithms to pick candidate ambiguity sets using the integer least-squares (ILS) criterion [53].
However, due to the presence of the matrix L, significant values of conditional variances of
ambiguities for i = 2m− 2 and i = 2m− 3 for the FDMA model are produced [54,55]. As a
result, Partial Ambiguity Resolution (PAR) should be used. It simply means that only a
fraction of the ambiguities are resolved to integer values, while the remainder stays floating.
There are a few conditions to decide whether ambiguity should be fixed. The criteria are,
e.g., the variances of computed ambiguities, the duration of continuous valid data, and
other considerations.

Furthermore, it is not easy to use this approach in its original form in long baseline
RTK, where significant atmospheric residuals contribute to the RTK error budget. As



Sensors 2022, 22, 5570 6 of 19

previously noted, IF linear combinations (LC) are widely employed to remove the iono-
sphere’s effect. On the other hand, the ambiguous term cannot be separated into L1 and L2
terms. As a result, resolving carrier-phase ambiguities to an integer value is challenging
without additional information. Another LC, the Melbourne−Wübbena (MW), which is
usually employed to determine the ambiguities in this situation [56,57], cancels out the
ionosphere term and geometry, including the tropospheric effect. It can restore redun-
dancy and improve position determination through its correlation with the code and phase
measurements. By averaging these LCs, we may estimate wide-line ambiguities. MW
combination for CDMA and FDMA systems is as follows:

LMW = φWL − PNL =
f1φ1 − f2φ2

f1 − f2
− f1P1 + f2P2

f1 + f2
= λWLNWL (10)

in which WL and NL refer to the Wide-Lane and Narrow-Lane combinations, respectively.
Hence, λWL = c/( f1 − f2), indices 1 and 2 refer to the GNSS frequency bands and NWL =
N1 − N2.

In this model, residual DD ZWD must be estimated alongside ambiguities and base-
lines. As a result, the mathematical model becomes less stable in this troposphere-float
model. Including a priori knowledge of tropospheric delays in GNSS data as stochastic
adjustments is one way to improve this model, which is called a troposphere-weighted
model.

4.2. Tropospheric-Weighted Model

Assume that the tropospheric delay information on the rover station is available
in a timely manner. This information can be used to fully compensate for troposphere
delays for all satellites. Tropospheric delays can be calculated using long-term data when
measurements are made within a permanent GNSS network. These estimations can then be
interpolated to the position of a user station within the network, allowing for the correction
of the user measurements. A large number of field tests in previous studies have well
tested and demonstrated this network-RTK approach [25,58].

However, due to the long distances between the reference stations, interpolated and
actual tropospheric delays might differ. As a result, if interpolated delays are not accurate
enough, they may become a stumbling block for ambiguity fixing. The model can use a
priori tropospheric delay as stochastic corrections in this situation. Consequently, residual
tropospheric wet delay corrections are treated as pseudo-observations in the troposphere-
weighted model, and their uncertainty is propagated in the stochastic model using a
(co)variance matrix. A similar approach for ionospheric data was presented in an early
essay by Bock et al. [59].

We include external residual tropospheric wet delay constraints as pseudo-observations
to improve the model’s strength, using weighted least-squares. The amount of unknown
troposphere parameters is as in the traditional RTK. If the a priori ZWD predicted via
interpolation is accurate, the RTK performance with this approach should improve. This
happens due to stochastic weighting, which allows for optimal use of a priori input infor-
mation rather than considering them deterministic.

5. Stochastic Model

As previously stated, in addition to a suitable functional model, a realistic stochastic
model for observables is required to achieve the best linear unbiased estimation of unknown
parameters in the multi-GNSS data processing. Such a model would include various
variances for each observation type, the correlation between different observables, and the
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satellite elevation dependence of the observables’ precision. The following is the stochastic
model for an epoch:

D

 P
Φ

δZWD

 =

Qpp ⊗ R 0 0
0 QΦΦ ⊗ R 0
0 0 QδZWD ⊗ R

 (11)

in which R = DTW−1D and Qpp = 2diag(σ2
p1, σ2

p2), QΦΦ = 2diag(σ2
Φ1, σ2

Φ2), DT =[
−em−1, Im−1

]
. As code and phase pseudo ranges and a priori tropospheric delay measure-

ments are all in the units of length, matrix D is used to convert them to DD. Matrix W is the
diagonal weight matrix, with its entries being based on the elevation of the satellites. The
variances typically grow with decreasing elevation, and this helps to reduce the overall
noise of the solution. The two parameters Qpp and QΦΦ are specific to the stochastic model
for different systems. In most studies, unit weight variances are considered for different
types of equations. To define realistic (co)variance components for each system, the Least-
Squares Variance Component Estimation (LS-VCE) method can be used [20,60,61]. If one
considers the covariance matrix as a linear combination of q (co)variance components, then:

D(y) = Qyy = Q00 +
q

∑
k=1

σkQk (12)

where Q00 is the known part of the variance matrix, σk is an unknown (co)variance com-
ponents, and Qk is known symmetric and positive definite cofactor matrices. The realistic
(co)variance matrix of observations can be constructed using the iterative Equation (13).

σ̂ = N−1l (13)

in which:
nij =

1
2

tr(QiQ−1
yy P⊥A QjQ−1

yy P⊥A ) (14)

are the elements of matrix N, and the components of vector l are defined as follows:

li =
1
2

êTQ−1
yy QiQ−1

yy ê (15)

where ê is the least-squares estimator of residuals, and P⊥A is a projector that projects onto
the range space of A⊥. The iterative process in Equation (13) continues until the differ-
ence between two consecutive solutions is less than the tolerance ε. Using the estimated
(co)variance matrix in the least-squares adjustment allows one to obtain a realistic precision
of the unknowns. Due to the large size of the A matrix, as in [61], the multivariate linear
model was used to reduce the computational load and memory usage for VCE. In other
words, the model is suggested for a number of successive epochs in each group. The final
calculation of the variances will then be based on the mean value of the estimated variances.

We previously noted that we treat δZWD as pseudo-observations. The variances of
all pseudo-observations is assumed to be the same, i.e., σ2

ZWD. Other possible effects, such
as a dependency on the elevation angle or time correlation, have not been considered.
The a priori tropospheric information is considered to be wholly known if σZWD = 0 (or
infinite weight) so that the solution becomes entirely equivalent to that of the troposphere-
fixed model. On the other hand, if σZWD = ∞ (or zero weight), the a priori tropospheric
information does not affect the model’s solution (tropospheric errors are assumed to be
completely unknown), and the result is the same as the troposphere-float model. When a
troposphere-weighted model is employed, the tropospheric adjustments have more space
for uncertainty, allowing for correct ambiguity resolution. For estimating the σZWD value,
the RMSE between the estimated and interpolated values for the permanent stations of the
network around the rover station can be used.
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6. Modified ZTD Interpolation for Height Differences

The DD tropospheric delays are estimated for each baseline in an RTK Network. Each
DD tropospheric delay refers to a pair of stations and a pair of satellites, with mapping
functions used to convert each station’s ZTD to STD. Then, these DD slant tropospheric
delays will be interpolated between the nearest reference stations to the rover position.
For the purposes of such interpolation, the same pair of satellites should be used for all
baselines included in the calculation. Hence, it is preferable to interpolate the ZTD for the
stations in the given RTK network.

Since the ZTD value is a direct function of the station’s height, it is expected that the
interpolation accuracy of ZTD will get worse for pairs of stations with large differences in
altitude. It is also well known that the hydrostatic component directly depends upon the
height, accounting for roughly 90% of the total tropospheric delay.

In [62], a technique that reduces the effect of station height on tropospheric delay
interpolation is proposed. In accordance with this method, the discrepancy between
the altitudes of reference and rover stations is neglected. All the involved stations are
treated as if being at the same level as the rover; to this end, all the tropospheric delays
are “recomputed” to this level. To accomplish this, the reference stations’ altitude and
latitude are imported into the Saastamoinen Equation (4). At each epoch, the dry part of
the tropospheric delay is subtracted from the total tropospheric delay. The wet part of the
tropospheric delay will remain. Then, using the Saastamoinen equation with the latitude of
surrounding reference stations and the height of the rover station, we get the dry delays
as if the reference stations were situated at the same height as the rover station. These
results will be added to the wet delays estimated in the previous step to obtain the total
tropospheric delays under new conditions. The following is a simplified formula:

ZTD′i = ZTDi − 0.0022768
Pi

1− 0.00266cos(2φi)− 0.00000028hi

+0.0022768
Pi

1− 0.00266cos(2φi)− 0.00000028hr

(16)

where ZTD′i and ZTDi are the corrected and estimated ZTD for the ith reference station,
respectively, φi is the latitude of the ith reference station, hi is the reference station’s height,
hr is the rover station height, and Pi is the pressure computed for the ith reference station
using GPT3 model.

Interpolation can be performed after the revised ZTD values have been obtained. The
Linear Combination Model, the Distance-Based Linear Interpolation Method, and Kriging
are some of the methods for interpolating ZTDs [27,63].

Ordinary Kriging, one of the most common Kriging interpolation methods, was used in
this study. It implies that the attribute has a constant mean across the entire spatial domain,
which is reasonable for the wet delay in a local area, but the mean value is unknown. It is
also assumed that the unknown point’s predictor is a weighted linear function of all the
data. Ordinary Kriging’s covariance can be defined by a single covariance function valid for
the entire spatial domain. The covariance function accounts for the variation of observed
data because the values at two neighboring sites are highly correlated, whereas values at
two positions far apart are not. If the tropospheric ZWD estimations at the stations are
used as the Kriging interpolation’s known values zi, and wi is the ordinary Kriging weight
of the ith station’s ZWD, the purpose is to determine the unknown variable z0 (ZWD at
user stations), as in Equation (17):

zi = ∑
i

wiz0 (17)

The following linear equations can be used to compute the weight, using hji as the
distance between the known points, hj0 is the distance between a known point j and an
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unknown point, C(hji) is the data-to-data covariance function, and C(hj0) is the data-to-
estimation point covariance function.

Σiwi − C(hji)− C(hjo) = 0

Σiwi = 1
(18)

The following equation can be used to derive a variogram function γji from the covariance
function:

γji = C(0)− C(hji) (19)

The weight wi is known to be dependent on the spatial fluctuations of all measured
points as well as the distances between the measured points and predicted location. As
a result, the spatial correlations must be measured using a covariance function on the
network’s stations. The theoretical variogram model is a function that describes spatial
relationships between the measured values and the projected location. The variogram
model in this study is a Gaussian model [64]:

C(hji) = bexp(−
h2

ji

a2 )
(20)

Initial values in the ideal solution are sensitive to the variogram fitting procedure. The
variogram fitting procedure will begin with automatic initial values b = max(γ) and
a = max(h) ∗ 2/3), if initial values are unknown. The Newton–Raphson method is utilized
to obtain the optimum values of these parameters with least squares [65]. It should be
noted that the distances between two points, i and j, are calculated as Euclidean distances
since the stations are practically on a flat surface. Because this is a regional area, the
spheroidal distances are ignored for simplification. The unknown variable can be obtained
via Equation (17) after the weights wi have been determined, and its variance is provided
by:

var(z0) = C(0)∑
i

wiC(h0i) (21)

As previously stated, the distance-based Kriging method is the most well-known
interpolation method. However, it is dependent on the semivariogram. As a result, when
the covariance function is not known, the Low-Order Surface Model (LSM), which is more
straightforward, can be used [66]. This method is characterized by fitting a low-level
surface to the datasets. The corrected ZTDs of at least four stations specified with the i
index can be used to interpolate the ZTD values of the rover station using Equation (22),
where X, Y, and Z are the station’s coordinates.

ZTDi = Xiα + Yiβ + Ziγ + δ (22)

The least squares can evaluate the fitted surface coefficients, and then by replacing the
coordinates of the rover station, the interpolated ZTD for the user can be achieved.

7. Results and Analysis

To find out how this method works, rinex daily observations for five IGS stations that
correspond to 3−9 January 2021 were chosen as an example. The geographical locations
and altitude of these stations can be seen in Figure 1. Four of these stations (DLF1, WSRT,
BRUX, and TIT2) were taken as reference stations, while KOS1 was treated as the rover
station. In total, six baselines between reference stations as well as a baseline DLF1-KOS1
are involved in this analysis. These baselines are between 100 and 200 km. The purpose of
selecting one of the IGS stations as a rover station was to compare the results and efficiency
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of the suggested methods by comparing our results to the known ZTD values and precise
positions of IGS stations. The Rinex files contained measurements of four constellations:
GPS, Galileo, GLONASS, and BeiDou satellites. The selected options of our processing
strategy are summarized in Table 1.

Figure 1. Position of the stations with their heights.

Table 1. Summary of the strategy of data processing.

Item Strategy/Value

Positioning mode Static/Kinematic
Constellation Frequency GPS (L1&L2)

GLONASS (G1&G2)
Galileo (E1&E5)
BeiDou (B1&B2)

Satellite orbits/clocks IGS(Code)
Combination Ionosphere free
Observation Double difference
Unknowns δX, δY, δZ, δZWD, N

Ambiguity Resolution Fixed (Partial resolution with the success rate criterion 0.995)
Elevation cutoff angle 10◦

Interval 30 s
Weighting Strategy Elevation-dependent

The actions we have taken to prepare and process raw data and to estimate ZTD
values using the least squares approach are depicted in a schematic representation below
(Figure 2).
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(a) (b)

Figure 2. Simple flowchart for the estimation producer: (a) Tropospheric-float model; (b)
Tropospheric-weighted model.

Even though this research is performed in post-processing mode, its strategies are
fully customized for real-time applications. However, the construction of functional and
stochastic models covering all possible signal options available with four constellations
still needs to consider a few more issues as follows:

First is the cycle slips, which happens when the receiver tracking loops lose the
lock of the signal. Cycle slips enter the processing as uncompensated jumps of phase
measurements on one or more signals. To achieve cm-level accuracy, such undesirable
events must be detected and handled before the carrier phase observations are used.
Although multiple algorithms have been proposed to detect and repair cycle slips [67], error-
free functioning and high sensitivity of such algorithms remain a challenge. In particular,
the wide-lane cycle slip detection method was proposed [67,68]. A long-wavelength
(such as 86.2 cm for GPS L1-L2 wide-lane) allows direct cycle slip detection at any epoch
when proper code measurements are available. However, at low satellite elevation, the
pseudorange noise may be significantly higher than in normal conditions due to multipath
or ionospheric disturbances. In such circumstances, small cycle slips such as one or two
cycles could pass undetected. To address this challenge, we used an additional cycle slip
detection method [68]. In accordance with this method, the geometry free (GF) equation
and ionospheric-free observation corrected for the computed geometrical distance (IF-
OMC Ionospheric free Observed Minus Calculated) should be calculated for DD phase
observations. The simultaneous use of these two formulas compensates for each other’s
shortcomings [68].

After this step, DIA is done. Teunissen developed the DIA method for detecting,
identifying, and adapting incorrectly modeled errors in GNSS data processing, and it has
been used in a variety of GNSS applications [28]. A real-time DIA technique is used in this
contribution to detect outliers, particularly those induced by tropospheric delays. After the
problems are identified, those observations are removed.

After removing cycle slips and blunders, the functional and stochastic models for
multi-GNSS processing could be defined. In this way, the results will be more accurate. The
variances of different observations was calculated using the LS-VCE method to achieve the
BLUE of unknowns. The data of these baselines are divided into 288 groups (ten consecutive
epochs in each group) for each day’s implementation of LS-VCE, which increases the
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number of estimates to be sufficient for more reliable results. This is done to properly weigh
the observations and come up with a realistic stochastic model. However, a group may
be empty due to primary criteria such as a low elevation angle, outlier identification, or
even the absence of satellites. For some days, there might be fewer computed (co)variances.
Finally, the observation variances are provided as the mean value of these calculated
variances for each group of 10 successive epochs. The weekly set of Rinex files of these
stations were processed to ensure these values. The mean results are provided in Table
2. Using these estimated variances in the stochastic model allows us to derive a realistic
stochastic description of the unknowns.

Table 2. Estimated STD of phase and code observations (meter).

System σ̂P σ̂φ σ̂MW

GPS 0.41 0.0017 0.08
GLONASS 0.70 0.0024 0.15

Galileo 0.26 0.0017 0.06
BeiDou 0.37 0.0011 0.09

The epoch-wise least-squares adjustment for whole days was applied after defining
the functional and stochastic models based on the equations discussed previously. It should
be noted that the reference satellite for double differencing was chosen separately for each
constellation. The number of DD equations that were made for each system in baseline
BRUX-DLF1 is shown in Figure 3. It is easy to see how much multi-GNSS might improve
redundancy.

Figure 3. Number of DD equations for each system for baseline BRUX-DLF1 for 3-Jan-2021 (G: GPS,
R: GLONASS, E: Galileo, C: BeiDou).

Furthermore, LAMBDA’s partial ambiguity resolution method was employed to fix the
float ambiguities to integer numbers, keeping the less precise GLONASS observations as the
float. The remaining unknown parameters, such as position components and tropospheric
delay, can be accurately estimated once the phase ambiguities are resolved to integer values.
The δZWD and position in float and fixed solutions were computed for the rover station.

The IGS ZTD files are used to evaluate the estimated tropospheric delays for all
the baselines. When comparing the ZTD results obtained from the troposphere-float
model treating δZWD as an unknown to the IGS ZTD products, the mean RMSE for all
the baselines was about 11.95 mm. At the same time, it was equal to 14.02 mL without
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considering the δZWD. It means that the computed tropospheric delay matches the IGS
results more closely when δZWD compensates for biases in the Saastamoinen modeling.
Table 3 shows the findings for both situations over a period of seven days.

Table 3. The RMSE between IGS ZTD and: (a) Estimated ZTD with δZWD and (b) Estimated ZTD
without δZWD.

(a)

Baseline
Day 1 2 3 4 5 6 7

1 12.86 12.82 12.88 12.70 12.81 12.84 12.91
2 12.67 12.64 12.62 12.66 12.54 12.60 12.64
3 11.76 11.67 11.62 11.70 11.60 11.65 11.76
4 13.39 13.26 13.30 13.39 13.29 13.47 13.27
5 10.57 10.52 10.41 10.46 10.48 10.38 10.53
6 10.79 10.70 10.74 10.80 10.74 10.91 10.73

Mean 12.00 11.935 11.93 11.95 11.91 11.975 11.97

Total Mean 11.95

(b)

Baseline
Day 1 2 3 4 5 6 7

1 14.93 14.98 15.00 14.91 14.98 14.92 14.99
2 13.38 13.39 13.35 13.35 13.29 13.35 13.37
3 12.96 12.95 12.96 12.92 12.84 12.88 12.97
4 14.96 14.97 15.01 14.98 14.89 14.99 14.97
5 15.43 15.41 15.46 15.45 15.39 15.38 15.41
6 12.54 12.48 12.51 12.56 12.51 12.55 12.56

Mean 14.03 14.03 14.05 14.03 13.98 14.01 14.04

Total Mean 14.02

In the next phase, for the tropospheric-weighted model, the ZTD of the four reference
stations was interpolated using Equation (22) to obtain the interpolated ZTD for the rover
station. This technique was carried out on a daily basis for this week. Because the results
for all days were somewhat similar, only the first day’s result is reported. The RMSE
value compared to the IGS ZTD for the rover station was estimated to be equal to 5.4 mm.
Then the ZTDs of the reference stations were corrected for the height differences using the
method explained in Section 6 and Equation (16). The LSM interpolation of these corrected
ZTD has an RMSE of 3.4 mm. To evaluate the performance of the Kriging interpolation,
data from the mentioned week for these four stations were interpolated [69]. The sample
variogram was computed and presented in Figure 4. Kriging interpolation results in a 4.3
mm RMSE. Based on these findings, it can be concluded that the LSM approach produced
better interpolation results when the height-corrected ZTD was used. Figure 5 shows a
comparison of the interpolated ZTD for the rover station.
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Figure 4. Sample variogram for the network (squares symbols) with the fitted model (solid curve).

Figure 5. IGS Zenith tropospheric delays for rover station compared to the interpolated values.

We mentioned that the interpolated tropospheric delays could be added to the model
to improve it. The ZTD of the reference station DLF1 and the corrected interpolated ZTD for
the rover station are entered as stochastic corrections to the tropospheric delays in the WLS
processing. The difference between the IGS and interpolated ZTDs can be treated as the
standard deviation for these a priori data (σZWD = 3.4 mm) in defining the stochastic model.
Figure 6 shows the rover’s mean position error for a week after fixing the ambiguities in
an epoch-wise method with LS and WLS. As the mean and standard deviations of the
coordinates show, adding a priori information of the residual ZWD improves the rover
station’s position in the case of a long baseline.
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Figure 6. NEU values for the rover station for fixed least-squares and weighted least-squares solutions
with their means and standard deviations for 3−9 January 2021.

Furthermore, the success rate can be another criterion for evaluating the LS and WLS
performance. Table 4 shows the average success rate for integer ambiguity resolution in
both cases for each day. While the LS average success rate for integer ambiguity resolution
is 0.976, the WLS success rate is 0.999.

Table 4. Integer ambiguity resolution success rate.

Method Day Mean
1 2 3 4 5 6 7

LS 0.996 0.990 0.986 0.981 0.989 0.991 0.984 0.988
WLS 0.999 1 0.998 0.999 1 1 0.998 0.999

In Figure 7, the ZTD for the rover station from IGS files is compared to the sum of the
zenith hydrostatic, wet, and residual wet delays computed from LS and WLS methods, as
well as the sum of ZHD and ZWD, calculated with the Saastamoinen model. As can be
seen, the WLS-calculated ZTD is comparable to the IGS values; their RMSE value amounts
to 2 mm, while the RMSE for LS-calculated ZTDs goes up to 8 mm.
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Figure 7. Zenith Tropospheric Delay from IGS and computed with LS and WLS.

8. Conclusions

When multi-constellation GNSS is utilized, the number of visible satellites increases.
Degrees of freedom and geometry strength can be enhanced by processing their observation
equations. Hence, it is no surprise that Multi-GNSS positioning services are now being used
worldwide. Using proper modeling for these code and phase observations, the ionosphere’s
impact can be largely minimized. The troposphere, on the other hand, affects GNSS signals.
The troposphere structure should be modeled to improve positional accuracy. The DD
tropospheric delay is calculated by combining DD measurements from multiple positioning
systems such as GPS, GLONASS, Galileo, and Beidou and estimating the unknowns using
the least-squares approach. Thus the estimated ZTDs compare well to the tabulated IGS
ZTD values. These findings suggest that the computed ZTD values are reliable. Hence,
they can be employed in the weighted least-squares approach, meteorology prediction, and
tropospheric tomography as a priori known troposphere zenith delays.

To acquire a valid ZTD for the rover station, the interpolation of ZTD from nearby IGS
stations corrected for height with the LSM method can be used. This approach does not
presuppose a covariance function such as the Kriging interpolation technique. Moreover,
this method is less computationally intensive than NRTK. Furthermore, ZTD information
for IGS stations can be obtained reasonably through IGS products or near real-time services,
such as E-GVAP (http://egvap.dmi.dk (accessed on 20 April 2022)), and it does not require
specialized software. A priori ZTD of both reference and rover stations would strengthen
the model in WLS. Thus the estimated rover position is up to 50% more accurate compared
to the least-squares with the troposphere float model. It also has a better success rate for the
IAR, close to one, owing to the closeness of the interpolated ZTDs to tabulated IGS ZTD
values.
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