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ABSTRACT
Fast diesel engine models for real-time prediction in dynamic conditions are required to predict engine
performance parameters, to identify emerging failures early on and to establish trends in performance
reduction. In order to address these issues, two main alternatives exist: one is to exploit the physical
knowledge of the problem, the other one is to exploit the historical data produced by the modern
automation system. Unfortunately, the first approach often results in hard-to-tune and very
computationally demanding models that are not suited for real-time prediction, while the second
approach is often not trusted because of its questionable physical grounds. In this paper, the authors
propose a novel hybrid model, which combines physical and data-driven models, to model diesel
engine exhaust gas temperatures in operational conditions. Thanks to the combination of these two
techniques, the authors were able to build a fast, accurate and physically grounded model that
bridges the gap between the physical and data driven approaches. In order to support the proposal,
the authors will show the performance of the different methods on real-world data collected from the
Holland Class Oceangoing Patrol Vessel.
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1. Introduction

Internal combustion engines (ICEs), Diesel Engines (DEs) in
particular, have been the main power provider for shipping
over the past century, since their efficiency made steam
engines obsolete (Curley 2012). While advanced electrical
and hybrid propulsion architectures have changed propulsion
systems over the past decades, the DEs maintain their primary
position, either as a propulsion engine driving the shaft or as a
generator providing electrical power (Geertsma, Negenborn,
Visser and Hopman 2017). However, concerns over hazardous
emissions from shipping on air quality (Viana et al. 2014) and
on global warming (Taljegard et al. 2014) have led to more
stringent regulations on emissions, such as sulfur and NOx

(IMO MARPOL 2011), and the target to reduce annual global
shipping emissions with 50% by 2050 (IMO MEPC 72 2018).
Economic studies suggest that internal combustion engines
will maintain their leading position over the next decades (Tal-
jegard et al. 2014), due to the long operating profiles and the
high energy requirement of transport ships, although alterna-
tive fuels, such as Liquefied Natural Gas (LNG) (Anderson
et al. 2015), methanol (Svanberg et al. 2018; Amma 2019)
and biodiesel (Geng et al. 2017; Hoang et al. 2019) could
reduce the environmental impact of engine emissions.

Hence, keeping DEs functioning and efficient is a critical
issue in the marine industry for reducing the environmental
impact of engine emissions and for maintaining their avail-
ability (Lloyd and Cackette 2001; Xu et al. 2002). While
crews previously performed maintenance on DEs themselves,

the trend to reduce crew size and the increasing complexity
of ship systems have led to an increase in support contracts,
through which the original equipment manufacturers perform
maintenance (Ghaderi 2019). As availability requirements
have also increased (Zahedi et al. 2014; Geertsma, Negenborn,
Visser and Hopman 2017), maintenance needs to be accurately
planned and failures before planned maintenance need to be
prevented (Verbert et al. 2017). In the near future, auton-
omous shipping will requires even more accurate maintenance
planning and increased reliability (Banda et al. 2019; Ghaderi
2019). While work on automatic path planning and collision
avoidance (Liu et al. 2017, 2019) is ongoing and practical
experiments have demonstrated ships sailing autonomously,
the development of reliable power and propulsion systems
and their operating and maintenance concepts is equally
important (Schwartz 2002). Therefore, work is required to
increase the reliability and the efficiency of ships power sys-
tems, in particular the main power providers such as the
ICE, and to develop methods to accurately predict when main-
tenance is required and identify developing failures before they
obstruct reliable operation (Wu et al. 2013; Cipollini et al.
2018b). In this respect, the development of a real-time virtual
model of an ICE, i.e. a digital twin, that can provide accurate
predictions and offer insights regarding operational perform-
ance and health status can be of great importance. This has
been identified both by academia and the industry, with
researchers demonstrating the benefits of this technology in
a wide variety of industrial applications (Bondarenko and
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Fukuda 2020; Liu et al. 2020; Bhatti et al. 2021; Teng et al. 2021;
Xu et al. 2021).

A critical requirement of such a virtual model for an ICE is
the precise reflection of its key characteristics, under all oper-
ating conditions and in real time (Bondarenko and Fukuda
2020). Focusing on the health status of a DE, key diagnostic
parameters are exhaust gas temperatures, as they can provide
valuable insights, with respect to the turbocharging system,
the fuel supply system, and the working medium exchange sys-
tem (Korczewski 2015, 2016). More specifically, exceedingly
high exhaust gas temperatures can lead to severe damage on
the cylinder valves, while exceeding the permissible values in
the turbine inlet cross section can cause severe and irreversible
damage in the turbine blades. Considering marine engines, a
number of operating conditions can potentially lead to
increased exhaust gas temperatures, these include: excessive
load resulting from hull fouling or damaged propeller blades,
malfunction of the water cooling system that cools cylinder
liners, and pollution of the exhaust manifold that is usually
caused by deposits of the products of incomplete combustion.

Unfortunately, taking into account the dimensions and cost
of marine DEs, the process of carrying out experimental cam-
paigns to test the efficiency and to diagnose possible decays
requires significant resources. For this reason, modelling and
simulation techniques are recognised as the most effective
approaches to obtain a cost-efficient and reliable understand-
ing of the engine performance and components’ interactions
(Theotokatos 2010). Numerical models play a pivotal role in
predicting key engine performance parameters, such as the
exhaust gas temperature, to identify emerging failures early
on, and to establish trends in performance degradation (Grim-
melius et al. 2007). The most advanced engine models that are
available in the literature (Reitz and Rutland 1995; Baldi et al.
2015; Xiang et al. 2019) show that the complexity of diesel
combustion requires simulations with many complex, inter-
acting submodels to guarantee high accuracy. However, such
modelling approaches are computationally demanding, and
are unsuitable for accurate and real-time dynamic predictions.
As such, their use is prohibitive in applications which require
real-time simulations to be performed (Khaled et al. 2014) with
strict accuracy requirements under both steady-state and
dynamic conditions. In order to develop accurate models
that can predict engine behaviour real-time, the authors pro-
pose a Hybrid Model (HM) approach, combining both Phys-
ical Models (PMs) and Data-Driven Models (DDMs) to the
problem of modelling DEs exhaust gas temperatures in oper-
ational conditions.

PMs are models in which first principle equations represent
the physical phenomena of the system. The majority of studies
involving PMs (see Section 2.1) report results that are in very
good agreement with measurements taken from shop trial
data, or under static operating conditions with a limited num-
ber of operating points. Such validation approaches might be
sufficient for the purpose of the respective studies, bearing in
mind possible constraints posed by the lack of available data.
Nevertheless, the suitability of each model to predict key per-
formance indicators, and in particular exhaust gas tempera-
tures under transient operating conditions, and in true
operational conditions is not sufficiently demonstrated.

Moreover, the literature does not report the statistic accuracy
under dynamic conditions. Finally, the most effective physical
models require extensive computational time for high accu-
racy results.

DDMs, also called black-box models, contrarily to PMs do
not exploit any first principle equations but they are able to
exploit robust statistical inference procedures and historical
data collected through a logging system, in order to make pre-
dictions about the future behaviour of the modelled system.
DDMs have gained substantial interest with the rapid growth
of ship monitoring systems within the shipping industry,
and several interesting applications can be found in the litera-
ture (see Section 2.2). An advantage of these methods is rep-
resented by the fact that there is no need of any a-priori
knowledge about the underlying physical system. Further-
more, thanks to the nature of these approaches, it is possible
to exploit even data regarding particular phenomena that can-
not be easily modelled with a PM. Despite the impressive accu-
racy that can be obtained, DDMs usually produce non-
parametric models that are not supported by any physical
interpretation; this, despite representing a possible advantage,
as mentioned above, may limit the capability of the models
themselves, without exploiting important knowledge about
the phenomena of interest. Moreover, a great amount of his-
torical data is necessary in order to build reliable models. In
the authors’ opinion, a modelling approach that aims to ident-
ify emerging failures on a DE at an early stage and establish
trends with respect to performance degradation, must be
able to fast and accurately predict the most critical process par-
ameters equally well under static and dynamic operation,
across the entire operating envelope providing also insight
and knowledge about the physical processes.

Therefore, in this paper, an existing DE PM (Geertsma,
Negenborn, Visser, Loonstijn, et al. 2017) is improved by com-
bining PMs and DDMs (Leifsson et al. 2008; Coraddu et al.
2017). The result of this combination is a, recently named
(Coraddu et al. 2018), HM, also referred to as gray-box
model, which allows to exploit both the mechanistic knowl-
edge of the physical principles and historical data. As reported
in Coraddu et al. (2017), this approach provides more accurate
outcomes when compared with the first principle PMs,
requires a smaller amount of data when compared to the
DDMs, and is extremely fast compared to advanced PMs of
comparable performance. For this reason, this work aims to
investigate how a combination of DDMs and PMs can improve
prediction of the engine exhaust gas temperatures, using
extensive measurement data from the Holland Class Ocean-
going Patrol Vessel. In particular, in this paper:

. authors review the performance of a mean value PM in fac-
tory acceptance conditions, in static and dynamic con-
ditions at sea, thus demonstrating that current state-of-
the-art PMs are not suitable for predicting operating par-
ameters in true operational conditions;

. authors test the DDMs to establish whether they can be
used to predict the DE exhaust gas temperatures;

. authors present a novel HM to predict DE exhaust gas
temperature combining the PMs and the DDMs mentioned
above;
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. authors exploit real-world data coming from a Holland
Class Oceangoing Patrol Vessel to assess the accuracy and
effectiveness of the different modelling approaches.

Results will demonstrate that the HM yields a more accu-
rate representation of the DE, which will then be suitable for
use in various aspects of off-line and real-time operational
monitoring.

The rest of the paper is organised as follows. Section 2 gives
an overview of related works. Section 3 gives a brief description
of the system and reports the dataset used for this work. In Sec-
tion 4, the different modelisation approaches are described,
respectively the PM (see Section 4.2), the DDM (see Section
4.3) and the HM (see Section 4.4). Section 5 shows the results
of the three modelling approaches on real data coming from an
Holland Class Oceangoing Patrol Vessel. Finally, Section 6
summarises and concludes the paper with a description of
the future scenarios opened by the authors’ work.

2. Related works

In this section, the authors will review literature that deals with
PMs, DDMs and HMs for DE modelling.

2.1. PMs

Intensive research has been conducted in PMs for DE model-
ling. The works of Grondin et al. (2004), Grimmelius et al.
(2007), and Geertsma, Negenborn, Visser, Loonstijn, et al.
(2017) provide insightful reviews on the extensive work done
on this field, as well as its evolution over the last decades.
The general consensus is that the choice of a suitable model
depends primarily on the requirements of each application
and, of course, the available computational tools (Johnson
et al. 2010). The same is also claimed in Hountalas (2000), in
which the author argues that, due to the uniqueness of marine
DEs and their operation, computer programs for marine appli-
cations must be specifically designed, implying that each appli-
cation needs a different model.

In Grimmelius (2003), modelling approaches for any phys-
ical system are categorised according to different dimensions;
in this work, the authors will address the dimension referred to
as the model level. The model level divides approaches into
three groups, according to the level of detail at which the phys-
ical processes are described: PMs, DDMs and HMs. PMs, or
white-box models, are the most common type adopted to
deal with performance prediction, they are built considering
a set of a-priori equations, defined through the knowledge of
the physical phenomenon governing the DE and its perform-
ance. State-of-the-art approaches in PMs report errors well
within the tolerance margins given by engine manufacturers
in static conditions, however, in dynamic predictions the
reported errors are much larger. Moreover, most predictions
are validated in a limited operating region, mostly the operat-
ing region used for model tuning.

In Baldi et al. (2015), a combined mean value-zero dimen-
sional model was developed and used to investigate the pro-
pulsion behaviour of a handymax-size product carrier under
constant and variable engine speed operations. The modelling

approach was validated against shop trials data, considering
steady-state conditions with a load variation between 50%
and 110%. The reported error was lower than the standard tol-
erance employed by the marine engine manufacturers, with a
simulation time only slightly exceeding the one of the mean
value model. Temperature estimation errors at compressor
outlet, and turbine inlet and outlet averaged 2.7%, 1.9% and
1.5% respectively, with the lowest error margins occurring
around the nominal point. They concluded that their proposed
model provides a favourable time-accuracy trade-off and it can
be used in cases where information, not provided by a mean-
value approach, is needed. Llamas and Eriksson (2018) devel-
oped a control-oriented mean value engine model of a large
two-stroke engine with Exhaust Gas Re-circulation (EGR), to
assess engine performance under transient operation. The
model was validated against operational data from a con-
tainer-ship engine under steady-state and transient operations.
For steady-state conditions 52 operating points were used,
spanning a load between 10% and 90% of the nominal, with
and without EGR. The stationary relative errors were reported
to be in general under 3.35%, for both estimation and vali-
dation data, while the error of the temperature estimation on
the exhaust manifold was recorded at a root mean square
value of 12 K. Dynamic validation was performed for four
different scenarios including load increase and decrease, and
EGR start and stop operations. All of them were focused on
low load operation, as it was the most uncertain operating
area for the model. Results showed that the model was capable
of following the measured engine signals during transients
with low computational times, and the estimation for the
exhaust manifold temperature agreed quite well with the
measurements and could thus be used for control purposes.
Guan et al. (2015) investigated a two-stroke marine DE with
emphasis at part load operating conditions using a zero-
dimensional model. The proposed model was validated against
experimental data obtained from engine shop tests, which cor-
respond to steady-state operating conditions at four different
loads: 25%, 50%, 75% and 100% of the nominal. Very good
accuracy was obtained for the entire operating region, and
for all performance parameters. Relative percentage errors
on the exhaust gas receiver temperature and the exhaust gas
temperature after the turbocharger (TC) were reported to be
0.6% and 2% respectively, and errors of equal order of magni-
tude were observed for all process parameters.

In the work of Sui et al. (2017), a Mean Value First Principle
(MVFP) model was presented with the aim of investigating
performance at preliminary stage design, based on both the
basic and advanced six-point Seiliger process and applicable
to both steady-state and transient-state conditions. The
model was validated using experimental data in three operat-
ing conditions: operation at the nominal point, 50% of nom-
inal speed at 30% of nominal load, and 80% of nominal
speed at 50% of nominal load. Although actual error values
were not reported, graphical illustration of the results of the
in-cylinder process showed good correspondence with the
test data across all process parameters, including in-cylinder
temperatures, with satisfactory accuracy and adaptability to
variable operating conditions. Sapra et al. (2017) studied
back pressure effects on the performance of a marine DE, by
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means of an MVFP model. The model was calibrated under
steady-state conditions, using 9 points along a propeller
curve. It was further validated at the same conditions for
different back pressures. Although quantitative performance
metrics for the model are not given, the graphical represen-
tation of the results indicates average relative percentage errors
of around 4% for the turbine inlet temperature across all oper-
ating conditions.

In Larsen et al. (2015), the zero-dimensional model of Scap-
pin et al. (2012) was further extended and validated for steady-
state conditions within a load range of 25–100% of the nom-
inal. The model showed good agreement with the measure-
ments of the manufacturer across all performance
parameters, with a root mean square deviation of around 1%
for the exhaust gas temperature.

More recently, in Wang et al. (2020) the authors performed
a parametric investigation of a large four-stoke dual-fuel mar-
ine engine in order to identify the pre-injection effects on the
engine combustion, knocking and emissions parameters. Their
modelling approach consisted of the integration of a 1-D
model and a 3-D computational fluid dynamics (CFD)
model utilising the MAN 51/60DF marine engine as a case
study. The authors validated their model under steady-state
conditions in 4 points, within a range of 25–100% of the nom-
inal load. Near-zero deviation was reported for most par-
ameters, whereas the maximum deviation for NOx emissions
was only 2.4%.

Finally, Hao et al. (2021) studies and improves the in-cylin-
der fuel/air mixing process of heavy-duty DEs, utilising a new
device named the ‘fuel split device’. Due to the nature of their
research, detailed modelling of the in-cylinder process was
required, which the authors performed utilising CFDmethods.
To this end, they developed and verified their simulations in
terms of the spray liquid/vapour penetration, heat release
rate and in-cylinder pressures, at a variety of operational and
environmental conditions. Although quantitative performance
metrics are not explicitly given, graphical representations per
crank-angle degree, show very low discrepancy between exper-
imental and simulated results.

In summary, models are available that can accurately pre-
dict process parameters and engine temperatures. However,
the most accurate models in dynamic conditions, zero dimen-
sional models, cannot run real time, which is required to per-
form online condition monitoring, and this is certainly the
case for more detailed CFD simulations. Alternatively, mean
value models can run real time and can be used for control sys-
tem design and evaluation, but lack accuracy over the complete
operating envelope under dynamic conditions, as will be
demonstrated in Section 5.1.

2.2. DDMs

DDMs have proved to be valuable instruments in many marine
applications (Coraddu et al. 2017; Zhang et al. 2017; Cipollini
et al. 2018a, 2018b; Baldini et al. 2018; Gao et al. 2018; Karimi
et al. 2018; Silva et al. 2018; Yang et al. 2018), and in industry
Qi et al. (2018). In particular, an older study of Antonić et al.
(2004) utilised an Adaptive Neuro Fuzzy Inference System
(ANFIS) to model marine DE cylinder dynamics.

Experimental data from a test-bed were used, and the resulting
models presented very low errors, for medium to high loads
(50–100%). Porteiro et al. (2011) developed a multilayer neural
network to provide load estimation and fault identification on
a DE, for different faulty conditions: misfiring, shaft imbal-
ance, clogged intake and leaking start plug, using vibration sig-
nals and exhaust temperature as inputs. The reported
performance of the model, in terms of correctly classified
cases, was roughly 90% using only two vibration signals for
load estimation, and 89.6% for the failure type identifier. How-
ever, the work focused on mechanical failures as opposed to
thermal failures that are the scope for this work. Basurko
and Uriondo (2015) developed a three-layer feed-forward
Artificial Neural Network (ANN) to represent the behaviour
of medium speed DE with the aim of enabling a condition
based maintenance framework for a fishery vessel. More
than 10,000 h of operational data was utilised, with the ANN
to give predictions with the mean squared error spread
between 0.3 and 2.1 depending on the operational parameter.
In the work of Bukovac et al. (2015), an ANN was used to
replace a computationally demanding physical simulation
model, and predict the steady-state performance of a two-
strokes marine DE. They report that the ANN architecture
did provide predictions of the same accuracy as the physical
model (errors of the order of 3% compared to experimental
data), while being 3000 times faster.

Furthermore, in Yu et al. (2018) a recurrent neural network
for a diesel-generator set was presented, aiming at reproducing
the engine output characteristics (namely rotational speed),
under changes of electrical load. The model was trained
using data from steady-state operations, at 25%, 50%, 75%
and 100% of the nominal load. Although quantitative results
were not presented, very low errors were reported across the
entire operating region in steady state operations by means
of graphical representations. Nikzadfar and Shamekhi (2014)
utilised an ANN to study the relative contribution of several
operational parameters to the performance of a DE. More
specifically, the operational parameters included: injected
fuel mass, pilot and main injection mass, main and pilot injec-
tion timing, inlet air pressure and temperature, exhaust
pressure, fuel rail pressure and EGR, and their effects on
brake torque, Soot, SOx, NOx and specific fuel consumption
were investigated. The ANN was built utilising 4000 steady-
state operating points covering the entire envelope of the
DE, generated by means of a simulation model. In this case
too, quantitative results on the performance of the ANN are
not described, however, graphical representations show a rela-
tive difference of around 5% with respect to exhaust gas temp-
eratures. Al-Hinti et al. (2009) studied the effects of inlet air
pressure on DE indicated mean effective pressure and specific
fuel consumption. They introduced ANFIS as an efficient
method for modelling and sensitivity analysis of a DE.
Steady-state experimental data was used to develop the
model, at four different air intake conditions with varying
speed between 50% and 100% of the nominal. Validation
results report average percentage errors of 4%, 0.15%, and
2.43% for efficiency, mean effective pressure and specific fuel
consumption, respectively. Galindo et al. (2005) developed
an ANN to model the combustion of high speed direct
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injection DEs in a transient regime. More specifically, their
aim was to develop a simulation model for the rate of combus-
tion in DEs during transient operating conditions, accurate
and fast enough to be incorporated in a one-dimensional gas
dynamic model for global transient behaviour prediction.
Detailed analysis on the selection of the optimal architecture
of the ANN was presented, with the optimal model resulting
in an R2 value of 0.985.

In the work of Parlak et al. (2006), an ANN was employed
to model exhaust temperatures and specific fuel consumption
as a function of mean effective pressure, engine speed and
injection timing. The ANN was trained using experimental
data at four constant engine speeds within 50–100% of the
nominal speed, while varying load. The results report mean
relative errors of 1.93% and 2.36%, respectively.

Another interesting application was reported in Yuanwang
et al. (2002). The authors developed an ANN to analyse the
effect of cetane number on exhaust emissions from a DE.
The total cetane number, base cetane number and cetane
improver, total cetane number and nitrogen content in the die-
sel fuel were used as inputs, and the emissions studied included
hydrocarbon, carbon monoxide, particulate matter and NOx.
The ANN was trained using 20,000 measurements, and the
relative percentage errors reported ranged between 0.14%
and 2.52% depending on the combination of inputs employed.
Namigtle-Jiménez et al. (2019) developed an arrangement of 3
ANNs for a Fault Detection and Diagnosis scheme (FDD),
based on the extraction of features from the pressure signal
of the injection rail of an ICE. They showed that the proposed
FDD was capable of detecting and isolating accurately the
faulty injector of the electronic fuel injection system, with
offline training results reporting a 100% classification accuracy
in any possible fault scenario, and near 100% accurate classifi-
cation in online scenarios.

A similar study was performed in Wang et al. (2019), in
which the authors presented a Bayesian network-based
approach for fault isolation in a DE fuel injection system,
under the presence of uncertainties. Special consideration
was given in the simplification of the Bayesian network struc-
tures, due to which symptoms under multiple faults could be
decoupled into symptoms corresponding to each individual
fault. This greatly reduced the prior knowledge needed for
the diagnosis, decreased the complexity of the application,
and improved the computational efficiency. Palmer and Bollas
(2019) showed that model-based active Fault Detection and
Isolation (FDI) tests can improve the capability of DDMs to
predict and isolate faults. One of the case studies presented
was the detection of actuator faults and manifold leakage on
a DE. The authors showed that when proper FDI test designs
are selected, even the relatively simple combination of princi-
pal component analysis and k-nearest neighbours classifier
could provide satisfactory results in fault detection. Faults con-
sidered in that study included inlet and exhaust manifold leaks,
variable-geometry turbine, and exhaust gas receiver actuator
valve drifts.

More recently, inWang, Chen, et al. (2021) the authors pro-
posed a random convolutional neural network structure for
health monitoring of DEs, relying on vibration measurements.
More specifically, the authors constructed several individual

convolutional neural networks, and the diagnostic results
from each individual model were fused by a combinatorial
strategy using the Dempster–Shafer evidence theory. They
evaluated their approach by utilising two vibration signal data-
sets from a DE, and they concluded that, compared to tra-
ditional methods based on signal analysis techniques and
shallow classifiers, their approach can automatically learn
high-level representative features from the raw vibration sig-
nals and eliminate the necessity of manual feature extraction.

A similar approach that combines several DDMs for fault
detection of DEs was proposed in Cai et al. (2020). The authors
combined a rule-based algorithm with Bayesian networks, and
utilising experimental data collected from an EV80 DE, they
showed that their approach is able to identify seven different
faults on a DE at a wide variety of rotational speeds, requiring
only with few training samples at a fixed speed.

In Wang, Cai, et al. (2021), the authors proposed a diagnos-
tic framework that integrates variational mode decomposition
and the Rihaczek distribution to acquire time-frequency rep-
resentations of vibration measurements of diesel engines. Uti-
lising these features, a graph regularised bi-directional non-
negative matrix factorisation algorithm was proposed to find
a parts-based representation corresponding to different fault
models. Their approach was compared with several other
methods on an experimental dataset of the 6135G diesel
engine, with a 100% fault identification accuracy, requiring
few training data and high computational efficiency.

A further example is reported in Coraddu et al. (2021), in
which the authors designed and proposed multiple DDMs
for weakly supervised marine duel fuel engines health moni-
toring. The proposed framework relied on a digital twin of
the engine or on novelty detection algorithms, which were
compared against state-of-the-art fully supervised approaches.
Utilising data from the validated simulation model of Stoum-
pos et al. (2020), the authors demonstrated that their approach
can overcome the problematic requirement for a large amount
of labelled samples, that are rarely available, with a decrease in
performance of less than 1% compared to state-of-the-art
fully-supervised approaches.

2.3. HMs

HMs are a quite recent modelling approach in the maritime
field and just very few works showed the advantage of a hybrid
approach with respect to pure PMs and DDMs. For example,
in Coraddu et al. (2017) authors show that it is possible to
effectively predict fuel consumption with HMs. Another
example is the one reported in Miglianti et al. (2019); authors
showed that it is possible to predict the propeller cavitation
noise characteristics via HMs. Finally, in our preliminary
work Coraddu et al. (2018), we attempt to model the engine
exhaust gas temperature with a naive HM.

3. Vessel description and available data

The case study Holland Class Oceangoing Patrol Vessels,
shown in Figure 1, are naval vessels that can perform various
security operations, such as counter terrorism, counter piracy,
counter drug transport, disaster relief and coastguard
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operations. The small crew of 50 people requires a high degree
of automation (Geertsma et al. 2013), but nevertheless main-
tenance load is high for the crew and needs to be reduced Hor-
enberg and Melaet (2013). Reducing the maintenance burden
on DEs using predictive maintenance based on its current sen-
sor fit can contribute to this. The propulsion system of the
vessel consists of two shafts with Controllable Pitch Propellers
(CPP), a gearbox, and one DE per shaft, as shown in Figure 2.
This configuration is typical for multi-function ships that
require silent, maneuverable, highly reliable and low emission
propulsion.

The Patrol vessel is equipped with a data logging system
which is used by the Royal Netherlands Navy both for on-
board monitoring and control and for land-based performance
analysis. For testing the developed PMs, DDMs, and HMs, the
authors use the dataset of one of the two four-stroke, medium
speed DEs on board. The dataset consists of 114 signals, from
the on-board Integrated Platform Management System
(IPMS), with a sample rate of 1/3 Hz that cover a time of
3347 h, totalling 3,988,939 data points. The dataset consists
of several control and monitoring parameters of the engine,
from engine speed and torque, to various operational pressures
and temperatures of engine components such as the crank-
shaft, cylinder and turbo-charger and systems, such as water
cooling, lubricating oil, exhaust-gas, and fuel systems. It
should be noted that the authors consider engine performance
by taking into account the interaction with gearbox, propeller

and ship through the load, which is represented by measured
outputs for shaft torque (Mp) and fuel rack position (Xgov).
Table 1 summarises the subset of the available measurements,
from the IPMS, that have been used in the modelling phase,
while in Figure 3(a) schematic layout of the measured outputs
is reported.

4. Modelisation

In the proposed context, namely modelling DE exhaust gas
temperatures in operational conditions, a general modelisation
framework can be defined, characterised by an input space
X # Rd, an output space Y # R, and an unknown relation
m:X � Y to be learned. For what concerns this work, X is
composed by the features reported in Table 2, while the output
space Y refers to the exhaust gas temperatures reported in
Table 3.

In this context, the authors define as model h:X � Y an
artificial simplification of μ. The model h can be obtained
with different kinds of techniques, for example requiring
some physical knowledge of the problem, as in PMs, or the

Figure 2. Propulsion system layout for the Holland class oceangoing patrol
vessels. (This figure is available in colour online.)

Figure 1. Holland class oceangoing patrol vessels. (This figure is available in col-
our online.)

Table 1. Subset of the available measurements, from the continuous monitoring
system, that have been used in the modelling phase.

Variable name ID Unit

Drive shaft torque Ms (Nm)
Fuel flow ṁf (kg/s)
Turbocharger speed – Bank A NtcA (rpm)
Turbocharger speed – Bank B NtcB (rpm)
Engine speed – actuated Nact (rpm)
Engine speed – reference Nref (rpm)
Power margin relative to maximum Pmax

m (%)
Relative charge air pressure pair (bar)
Relative maximum combustion pressure pmax (bar)
Relative pressure before turbine pbtc (bar)
Specific fuel oil consumption sfc (g/kWh)
Temperature charge air Tair (◦C)
Temperature main bearing No. 1 Tb1 (◦C)
Temperature main bearing No. 2 Tb2 (◦C)
Temperature main bearing No. 3 Tb3 (◦C)
Temperature main bearing No. 4 Tb4 (◦C)
Temperature main bearing No. 5 Tb5 (◦C)
Temperature main bearing No. 6 Tb6 (◦C)
Temperature main bearing No. 7 Tb7 (◦C)
Average exhaust gas temperature – Bank A �T

b
tcA (◦C]

Average exhaust gas temperature – Bank B �T
b
tcB (◦C]

Fuel temperature Tfuel (◦C)
High-temperature cooling water temperature after cooler Taht (◦C)
High-temperature cooling water temperature before cooler Tbht (◦C)
Lube oil temperature before engine Tblo (◦C)
Lube oil temperature after engine Talo (◦C)
Low-temperature cooling water temperature after cooler Talt (◦C)
Low-temperature cooling water temperature before cooler Tblt (◦C)
Temperature splash oil compartment 1 Tso1 (◦C)
Temperature splash oil compartment 2 Tso2 (◦C)
Temperature splash oil compartment 3 Tso3 (◦C)
Temperature splash oil compartment 4 Tso4 (◦C)
Temperature splash oil compartment 5 Tso5 (◦C)
Temperature splash oil compartment 6 Tso6 (◦C)
Charge air temperature after compressor – Bank A TaatcA (◦C)
Charge air temperature after compressor – Bank B TaatcB (◦C)
Charge air temperature before compressor – Bank A TabtcA (◦C)
Charge air temperature before compressor – Bank B TabtcB (◦C)
Exhaust gas temperature after turbine – Bank A TatcA (◦C)
Exhaust gas temperature after turbine – Bank B TatcB (◦C)
Exhaust gas temperature before turbine – Bank A TbtcA (◦C)
Exhaust gas temperature before turbine – Bank B TbtcB (◦C)
Fuel rack position Xgov (%)

SHIPS AND OFFSHORE STRUCTURES 1365



acquisition of large amount of data, as in DDMs, or both of
them, as in HMs.

4.1. Performance measures

Independently of the adopted technique, any model h requires
some data in order to be tuned (or learned) on the problem
specificity and to be validated (or tested) on a real-world scen-
ario. For these purposes, two separate sets of data
Dn = {(x1, y1), . . . , (xn, yn)} and T m = {(xt1, y

t
1), . . . , (x

t
m, y

t
m)},

where X[X and Y [Y, need to be exploited, to respectively
tune h and evaluate its performances. It is important to note
that T m is needed since the error that h would commit over
Dn would be too optimistically biased since Dn has been
used to tune h.

Hence, the error that h commits on T m in approximating
the real process is usually measured with reference to different
indexes of performance (Ghelardoni et al. 2013):

. the Mean Absolute Error (MAE) is computed by taking the
absolute loss value of h over T m

MAE(h) = 1
m

∑m
i=1

|h(xti)− yti |; (1)

. the Mean Absolute Percentage Error (MAPE) is computed
by taking the absolute loss value of h over T m in percentage

MAPE(h) = 100
m

∑m
i=1

h(xti)− yti
yti

∣∣∣∣
∣∣∣∣; (2)

. the Pearson Product-Moment Correlation Coefficient
(PPMCC) measures the linear dependency between h(xti)
and yti with i [ {1, . . . , m}

PPMCC(h) =
∑m

i=1 (y
t
i − y)(h(xti)− ŷ)����������������∑m

i=1 (y
t
i − y)2

√ �������������������∑m
i=1 (h(x

t
i)− ŷ)2

√ , (3)

where y = 1
m

∑m
i=1 y

t
i and ŷ = 1

m

∑m
i=1 h(x

t
i).

Other measures of error exist, such as R-squared and the
Mean Square Error. However, in this work the authors con-
sider these three measures because, from a physical point of
view, they give a complete description of the quality of the
model, and adding more measures would make the results
more difficult to interpret while not adding any new insights.

4.2. Physical models (PMs)

The PM used in this work is illustrated in Figure 4. It is a Mean
Value Engine Model (MVEM), and a slightly improved

Figure 3. Schematic layout of the available data. (This figure is available in colour online.)

Table 2. Input space X for the modelisation phase.

Ms ṁf NtcA NtcB Nact Nref
Pmax
m pair pmax pbtc sfc Tair
Tb1 Tb2 Tb3 Tb4 Tb5 Tb6
Tb7 Tfuel Taht Tbht Tblo Talo
Talt Tblt Tso1 Tso2 Tso3 Tso4
Tso5 Tso6 TatcA TatcB TbtcA TbtcB
TacA TacB TbcA TbcB Xgov

Table 3. Output space Y for the modelisation phase.
�T
a
tc = 1

2 (T
a
tcA + TatcB )

�T
b
tc = 1

2 (T
b
tcA + TbtcB )
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version of the one described in Geertsma, Negenborn, Visser,
Loonstijn, et al. (2017). The MVEM was developed to investi-
gate the performance of the ship propulsion system and its
control strategy, with respect to fuel consumption; acceleration
time and minimum air excess ratio, during predefined accel-
eration manoeuvres at varying operating conditions
(Geertsma, Negenborn, Visser and Hopman 2017). As many
other engine models, the MVEM was calibrated against the
Factory Acceptance Test (FAT) protocol and showed a mean
absolute percentage error within 10%, as reported in Figure
6. For the purpose of control strategy evaluation, the MVEM
provided good resemblance with the measured system behav-
iour, but its accuracy was never reported with any statistically
robust measures. For this reason, in Section 5.1, the authors
will re-evaluate the model performance on the large dataset
presented in Section 3, considering the following scenarios:

. Steady state: The data described in Section 3 will be used to
prove the MVEM limitations in predicting exhaust gas
temperature in real world application characterised by
steady-state conditions.

. Transient: the remaining part of the data, described in Sec-
tion 3, will be used to further assess the MVEM limitations
in transient conditions.

In subsequent works, the MVEM was used to evaluate
advanced control strategies for mechanical (Geertsma et al.
2018) and hybrid propulsion architectures (Geertsma, Negen-
born, Visser and Hopman 2017), hybrid propulsion systems,
and hybrid power supply architectures (Kalikatzarakis et al.
2018). As these studies considered benchmark ship
manoeuvres (Geertsma, Negenborn, Visser and Hopman
2017; Geertsma et al. 2018) and fuel consumption over a typi-
cal operating profile (Kalikatzarakis et al. 2018), these studies
exploited the main feature of the MVEM: runtimes between
100 and 2500 times real-time (Geertsma et al. 2018). This
also enables to test the performance of this model on the data-
set described in Section 3 and to develop the HMs detailed in
Section 4.4.

The MVEM consists of three state variables: fuel injection
per cylinder per cycle mf , charge pressure pair and exhaust
receiver pressure pbtc. The inputs of the model are engine
speed Nref and fuel pump set-point Xset, the latter originating
from the speed governor, and the output is engine torque Me.

The model is characterised by six modules, as illustrated in
Figure 4 and described below.

(A) the fuel pump module represents the combined effect of
the fuel pump inertia and the ignition delay;

(B) the air swallow module represents the air swallow charac-
teristics of the engine to establish the air excess ratio la,
the amount of air that is left after all fuel is combusted.
The air excess ratio can be used as an indicator for engine
thermal loading (Sapra et al. 2017) and EGR effectiveness
(Asad and Zheng 2014; Nielsen et al. 2017; Llamas and
Eriksson 2018);

(C) the heat release module represents the heat release during
combustion of fuel during the three combustion stages in
the Seiliger cycle: isochoric, isobaric and isothermal
combustion;

(D) the Seiliger cycle module represents in-cylinder com-
pression, combustion and expansion using the six stage
Seiliger process. It establishes the work produced during
the closed cylinder process wi, the temperature Tb

tc and
pressure p6 at the end of the closed cylinder process,
when the exhaust valve opens;

(E) the exhaust receiver and TC module represents Zinner
blowdown (Zinner 1980) and the Büchi power and flow
balance (Dixon 1998; Stapersma 2010) with variable TC
efficiency, heat release efficiency and slip ratio. This mod-
ule establishes the charge pressure p1 and the exhaust
receiver pressure pbtc. Furthermore, thermal inertias have
been added to account for the effect of the location of
the thermocouples, mounted on the surface of the exhaust
pipes, as reported in Figure 3. The authors have included
thermal inertia effects by means of a first order response
with a thermocouple time constant, ttc, and a constant
bias, btc, to better align the physical prediction with the
actual temperature measurements. The output of the

Figure 4. Schematic representation of the DE model and the interaction of its subsystems, from Geertsma, Negenborn, Visser, Loonstijn, et al. (2017). (This figure is
available in colour online.)
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module are the exhaust gas temperature at TC inlet (a),
Ta
tc and TC outlet (b) Tb

tc

Tb
tc(t)
dt

= (Tb
tc(t − 1)− bbtc)− Tb

tc(t)

tbtc
, (4)

Ta
tc(t)
dt

= (Ta
tc(t − 1)− batc)− Ta

tc(t)
tatc

; (5)

(F) the mechanical conversion module represents the mech-
anical losses due to the conversion from pressure to
rotation and the losses due to driving auxiliary equipment.

For a more detailed description of the modules, the reader is
referred to Geertsma et al. (2018).

In summary, the temperatures of the gas flow in the exhaust
receiver and at the turbine exit, main subjects of this study, are
represented by a system of Algebraic Equations (AE) and
Differential and Algebraic Equations (DAE) featuring the
input variables, state variables and the following mathemat-
ically related parameters: trapped mass in the cylinder m1,
air excess ratio la, isobaric, isochoric and isothermal heat
release q23, q34 and q45, temperature and pressure after expan-
sion of the Seiliger cycle Tb

tc and p6 and induced work during
the Seiliger cycle wi. The original aspect of this model is that
the TC dynamics are represented by the Büchi power and
flow balance between compressor and turbine, and do not
require compressor or turbine maps for calibration. By
neglecting fast dynamics, the model’s run-time is between
100 and 2500 times real-time, much faster than MVEMs
using compressor and turbine maps, such as Nielsen et al.
(2017), Theotokatos and Tzelepis (2015), Sapra et al. (2017),
and Kökkülünk et al. (2016).

Lastly, in order to compare the real measurements from the
IPMS with the PM outcomes, the authors considered the aver-
age value of the Bank A and B

�T
b
tc =

Tb
tcA + Tb

tcB

2
, �T

a
tc =

Ta
tcA + Ta

tcB

2
. (6)

4.3. Data driven models (DDMs)

The problem considered here, from the data science point of
view, can be mapped to a typical Machine Learning (ML)
regression problem (Vapnik 1998; Shawe-Taylor and Cristia-
nini 2004) in a straightforward approach. In fact, ML tech-
niques aim at estimating the unknown relationship μ
between input and output through a learning algorithm AH
which exploits the data in Dn to learn h and where H is a
set of hyperparameters which characterises the generalisation
performance of A (Oneto 2020).

In this paper, a method from the ML Kernel Methods
family called Kernel Regularised Least Squares (KRLS) has
been adopted in order to estimate the relation between the
input variables of Table 2 and the output variables of Table
3. The idea behind KRLS can be summarised as follows.
During the training phase, the quality of the learned function
h(x) is measured according to a loss function ℓ(h(x), y)

(Rosasco et al. 2004) with the empirical error

L̂n(h) =
1
n

∑n
i=1

ℓ(h(xi), yi). (7)

A simple criterion for selecting the final model during the
training phase could then consist in simply choosing the
approximating function that minimises the empirical error
L̂n(h). This approach is known as Empirical Risk Minimisation
(ERM) (Vapnik 1998). However, ERM is usually avoided in
ML as it leads to severe overfitting of the model on the training
dataset. As a matter of fact, in this case the training process
could choose a model, complicated enough to perfectly
describe all the training samples (including noise, which
afflicts them). In other words, ERM implies memorisation of
data rather than learning from them.

A more effective approach is to minimise a cost function
where the tradeoff between accuracy on the training data
and a measure of the complexity of the selected model is
achieved (Tikhonov and Arsenin 1979), implementing the
Occam’s razor principle

h∗: min
h

L̂n(h)+ lC(h). (8)

In other words, the best approximating function h∗ is chosen
as the one that is complicated enough to learn from data with-
out overfitting them. In particular, C(·) is a complexity
measure: depending on the exploited ML approach, different
measures are realised. Instead, l [ [0, 1) is a hyperparameter,
that must be set a-priori and is not obtained as an output of the
optimisation procedure: it regulates the trade-off between the
overfitting tendency, related to the minimisation of the empiri-
cal error, and the underfitting tendency, related to the mini-
misation of C(·). The optimal value for λ is problem-
dependent, and tuning this hyperparameter is a non-trivial
task, as will be discussed later in this section. In KRLS, models
are defined as

h(x) = wTw(x), (9)

where w is an a-priori defined Feature Mapping (FM) (Shalev-
Shwartz and Ben-David 2014), which strongly depends on the
particular problem under examination and will be described
later in this section, allowing to keep the structure of h(x) lin-
ear. The complexity of the models, in KRLS, is measured as

C(h) = ‖w‖2, (10)

i.e. the Euclidean norm of the set of weights describing the
regressor, which is a standard complexity measure in ML (Sha-
lev-Shwartz and Ben-David 2014). Regarding the loss function,
the square loss is typically adopted because of its convexity,
smoothness, and statistical properties (Rosasco et al. 2004)

L̂n(h) =
1
n

∑n
i=1

ℓ(h(xi), yi) =
1
n

∑n
i=1

[h(xi)− yi]
2. (11)

Consequently, Problem (8) can be reformulated as

w∗: min
w

∑n
i=1

[wTw(x)− yi]
2 + l‖w‖2. (12)
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By exploiting the Representer Theorem (Schölkopf et al. 2001),
the solution h∗ of the RLS Problem (12) can be expressed as a
linear combination of the samples projected in the space
defined by w

h∗(x) =
∑n
i=1

aiw(xi)
Tw(x). (13)

It is worth underlining that, according to the kernel trick, it is
possible to reformulate h∗(x) without an explicit knowledge of
w, and consequently avoiding the course of dimensionality of
computing w, by using a proper kernel function
K(xi, x) = w(xi)

Tw(x)

h∗(x) =
∑n
i=1

aiK(xi, x). (14)

Several kernel functions can be retrieved in literature (Cristia-
nini and Shawe-Taylor 2000; Scholkopf 2001), each one with a
particular property that can be exploited based on the problem
under exam.

The KRLS problem of Equation (12) can be reformulated by
exploiting kernels as

a∗: min
a

‖Qa− y‖2 + laTQa, (15)

where y = [y1, . . . , yn]
T, a = [a1, . . . , an]

T, the matrix Q
such that Qi,j = K(xj, xi), and the identity matrix I [ Rn×n.
By setting the gradient equal to zero w.r.t. a it is possible to
state that

(Q+ lI)a∗ = y, (16)

which is a linear system for which effective solvers have been
developed over the years, allowing it to cope with even very
large sets of training data (Young 2003).

The problems that still have to be faced is how to choose w,
the kernel K, and how to set up the hyperparameter λ. It is
possible to start by setting w and the kernel K. Usually the
Gaussian kernel is exploited in real world applications because
of the theoretical reasons described in Keerthi and Lin (2003)
and because of its effectiveness (Fernández-Delgado et al. 2014;
Wainberg et al. 2016). Basically the Gaussian kernel is able to
implicitly create an infinite dimensional w and thanks to this,
the KRLS are able to learn any possible function (Keerthi and
Lin 2003). The last problem is how to tune the hyperpara-
meters γ, and λ of the proposed method.

Since every ML model is characterised by a set of hyper-
parameters H, influencing their ability to estimate μ, a proper
Model Selection (MS) procedure needs to be adopted (Oneto
2020). Several methods exist for MS purpose but resampling
methods, like the well-known k-Fold Cross Validation
(KCV) (Kohavi 1995) or the nonparametric Bootstrap (BTS)
(Efron and Tibshirani 1994) approaches, representing the
state-of-the-art MS approaches when targeting real-world
applications. Resampling methods rely on the following
method: the original dataset Dn is resampled once or many
(nr) times, with or without replacement, to build two indepen-
dent datasets called the training, and the validation sets,
respectively Lr

l and Vr
v, with r [ {1, . . . , nr}. Note that

Lr
l > Vr

v = ⊘, Lr
l < Vr

v = Dn. Then, in order to select the

best combination the hyperparameters H in a set of possible
ones H = {H1, H2, . . . } for the algorithm AH or, in other
words, to perform the MS phase, the following procedure
has to be applied:

H∗: min
H[H

1
nr

∑nr
r=1

1
v

∑
(xi ,yi)[Vr

v

ℓ(AH,Lr
l
(xi), yi), (17)

whereAH,Lr
l
is a model built with the algorithmA with its set

of hyperparameters H and with the data Lr
l . Since the data in

Lr
l are independent from the ones in Vr

v, the idea is that H∗

should be the set of hyperparameters which allows to achieve
a small error on a data set that is independent from the train-
ing set.

In this work, authors will exploit the BTS procedure and
consequently r=500, if l=n and the resampling must be done
with replacement (Oneto 2020).

4.4. Hybrid models (HMs)

The problem that authors face is how to construct a model able
to take both, the physical knowledge about the problem encap-
sulated in the PMs of Section 4.2 and the information hidden
in the available data as the DDMs of Section 4.3, into account.
For this purpose authors will start from a simple observation: a
HM, based on the previous observation, should be able to learn
from the data without being too different, or too far away, from
the PM.

From the Data Science point of view, this requirement can
be straightforwardly mapped in a typical ML Multi Task
Learning (MTL) problem (Caruana 1997; Baxter 2000; Bakker
and Heskes 2003; Evgeniou and Pontil 2004; Argyriou et al.
2008). MTL aims at simultaneously learning two concepts, in
this case the PM and the available data, through a learning
algorithm AH which exploits the data in Dn to learn a func-
tion h which is both close to the observation, the data Dn

and the PM, namely its forecasts.
Consequently, in this case a slightly different scenario is

presented where the dataset is composed by a triple of points
Dn = {(x1, y1, p1), . . . , (xn, yn, pn)} where pi is the output of
the PM in the point xn with i [ {1, . . . , n}. The target is to
learn a function able to approximate both μ, namely the
relation between the input x [ X and the output y [ Y, and
the PM, namely the relation between the input and the output
of the PM. Two tasks have to be learned. For this purpose,
there are two main approaches: the first approach is called
Shared Task Learning (STL) and the second Independent
Task Learning (ITL). While the latter independently learns a
different model for each task, the former aims to learn a
model that is common between all tasks. A well-known weak-
ness of these methods is that they tend to generalise poorly on
one of the two tasks (Baxter 2000). In this paper, authors show
that an appealing approach to overcome such limitations is
provided by MTL (Caruana 1997; Baxter 2000; Bakker and
Heskes 2003; Evgeniou and Pontil 2004; Argyriou et al.
2008). This methodology leverages on the information
between the tasks to learn more accurate models.

In order to apply the MTL approach to this case, it is poss-
ible to modify the KRLS problem of Equation (12) in order to
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simultaneously learn a shared model and a task specific model
which should be close to the shared model. In this way, authors
obtain a model which is able to simultaneously learn the two
tasks. The model that authors are interested in is the shared
model, while the task specific models are just used as a tool.
A shared model is defined as

h(x) = wTw(x), (18)

and two task specific models as

hi(x) = wT
i w(x), i [ {y, p}. (19)

Then, it is possible to state the MTL version of Equation (12),
as follows:

w∗, w∗
y , w

∗
p : min

w,wy ,wp

∑n
i=1

[wTw(x)− yi]
2 + [wTw(x)− pi]

2

+
∑n
i=1

[wT
yw(x)− yi]

2 + [wT
pw(x)− pi]

2

+ l‖w‖2 + u(‖w− wy‖2 + ‖w− wp‖2),
(20)

where λ is the usual regularisation of KRLS and u [ [0, 1),
instead, is another hyperparameter that forces the shared
model to be close to the task specific models. Basically the
MTL problem of Equation (20) is a concatenation of three
learning problems solved with KRLS plus a term which tries
to keep a relation between all the three different problems.

By exploiting the kernel trick as in KRLS, it is possible to
reformulate Problem (20), as follows:

a∗: min
a

Q Q0 0

Q Q0 0

0 0Q 0

0 00 Q

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦a−

y

p

y

p

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥

2

+ aT

(l+ 2u)Q (l+ 2u)Q −uQ −uQ

(l+ 2u)Q (l+ 2u)Q −uQ −uQ

−uQ −uQ uQ 0

−uQ −uQ 0uQ

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦a,

(21)

where p = [p1, . . . , pn]
T. The solution of this problem is again

equivalent to solving a linear system

Q+ (l+ 2u)I Q+ (l+ 2u)I −uI −uI
Q+ (l+ 2u)I Q+ (l+ 2u)I −uI −uI

−uI −uI Q+ uI 0
−uI −uI 0 Q+ uI

⎡
⎢⎢⎣

⎤
⎥⎥⎦a∗

=

y
p
y
p

⎡
⎢⎢⎣

⎤
⎥⎥⎦.

(22)

The function that the authors are interested in, the shared one,
can be expressed as follows:

h(x) = wTw(x) =
∑n
i=1

(ai + ai+n)K(xi, x). (23)

What changes here, with respect to the MS phase of the DDMs
described in Section 4.3, is the MS phase where just λ, γ, and
also θ need to be tuned.

4.5. DDMs and HMs: taking into account the dynamics

The approaches described in Sections 4.3 and 4.4 are quite
effective (as will be shown in Section 5), but naive. Moreover,

Figure 5. How to take into account the dynamics in DDMs and HMs. (a) Input and output variables of the DDMs and the HMs as described in Sections 4.3 and 4.4. (b)
Input and output variables of the DDMs and the HMs as described in Section 4.5. (This figure is available in colour online.)
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they do not take into account all the possible information that
the data has to offer. In fact, the variables reported in Tables 2
and 3 are actually time-series produced by the IPMS. What the
authors described in Sections 4.3 and 4.4 corresponds to the
approach described in Figure 5(a), where all the variables of
Table 2 at time t0 are given as input to the model, and where
one of the variables of Table 3 at time t0 is given as an output
to the model.

This approach is obviously sub-optimal, since at time t0 the
values of all the variables in Tables 2 and 3 are known for each
of the measurement taken before t0. For this reason, as
depicted in Figure 5(b), it is possible to feed the model not
just the variables of Table 2 at time t0 but also all the measure-
ments of these variables in [t0 − D, t0], and the variables of
Table 3 in [t0 − D, t0] as an input. Thanks to this approach
the authors are now able to map a time-series problem again
into a classical multivariate regression problem (Packard
et al. 1980; Takens 1981), and exploit the methods described
in Sections 4.3 and 4.4. Note that Δ is an application specific
parameter that needs to be tuned and its effect will be tested
in Section 5. Note that, the methodology described in Sections
4.3 and 4.4 is a special case of what described in this section,
and correspond to the case when D = 0.

4.6. Feature ranking

Once the models are built it is required to investigate how
these models are affected by the different features used in the
model identification phase to understand if the models have
also a foundation which relies on the underlying phenomena
or if the model just captures spurious correlations (Guyon
and Elisseeff 2003). This procedure is called Feature Ranking
(FR) and allows to detect if the importance of those features,
that are known to be relevant from a physical perspective,
are appropriately taken into account by the learned models.
The failure of the computational model to properly account
for the relevant features might indicate poor quality in the
measurements or spurious correlations. FR therefore rep-
resents an important step of model verification, since it should
generate consistent results with the available knowledge of the
phenomena under exam.

For this purpose, authors will adopt the backward elimin-
ation techniques described in Guyon and Elisseeff (2003).
Note that, when D = 0 (see Section 4.5) the feature ranking
will be the classical one where the authors consider the vari-
ables of Tables 2 and 3 as features. When D . 0 a new concept
of feature ranking will be defined by the authors, where the
entire time-series of the variables of Tables 2 and 3 will be con-
sidered as features.

5. Experimental results

In this section, the authors utilise the data described in Section
3 to test the models developed in Section 4, using the perform-
ance measures described in Section 4.1. To begin with, cali-
bration results of the PM described in Section 4.2 are
reported. Subsequently, the validation of the PM is carried
out, both in steady and dynamic state as reported in Section

5.1. Then a comparison of the performance of PMs, DDMs,
and HMs in operational conditions is reported in Section 5.2.

5.1. PM validation

In line with the standard academic and industrial procedure
(Theotokatos and Tzelepis 2015), the PM has been calibrated
with data provided by the manufacturer, namely the FAT pro-
tocol. The percentage error (PE) between the measured values
during the engine shop trials, and the predicted values by the
PM, is reported in Table 4.

The PM achieved predictions of sufficient accuracy for the
entire speed range. The observed PEs are always lower than
10%, also considering the mean exhaust gas temperature
after and before the turbine. Nevertheless, very high accuracy
(less than 1%) is obtained at the MCR speed, this is attributed
to the fact that the model hyperparameters were tuned specifi-
cally for this point and therefore, deviations of the PM

Table 4. PM FAT validation results.

Speed (rpm) FAT (bar) PM (bar) PE (%)

Charge air pressure – pair
631 1.250 1.287 2.988
795 2.050 2.122 3.535
910 2.980 3.141 5.409
947 3.450 3.560 3.192
1000 4.120 4.117 -0.071
1031 4.480 4.442 -0.850

Relative exhaust gas receiver pressure – pbtc
631 1.205 1.228 1.947
795 1.741 1.842 5.814
910 2.140 2.286 6.811
947 2.490 2.591 4.065
1000 3.060 3.060 -0.004
1031 3.420 3.371 -1.429

Relative maximum combustion pressure – pmax
631 85.000 80.309 −5.519
795 118.000 116.632 −1.159
910 151.000 154.260 2.159
947 168.000 169.063 0.633
1000 188.000 187.949 −0.027
1031 198.000 198.853 0.431

Specific fuel oil consumption – sfc
Speed (rpm) FAT (g/kWh) PM (g/kWh) PE (%)

631 217.9 216.278 −0.745
795 208.2 201.181 −3.371
910 198.1 197.224 −0.442
947 197.4 196.983 −0.211
1000 198.3 198.207 −0.047
1031 202.7 200.162 −1.252

Mean exhaust gas temperature after turbine – �T
a
tc

Speed (rpm) FAT (◦C) PM (◦C) PE (%)
631 545.0 574.039 5.328
795 551.0 513.319 −6.839
910 605.0 585.022 −3.302
947 582.0 573.862 −1.398
1000 574.0 577.620 0.631
1031 595.0 591.461 −0.595

Mean exhaust gas temperature before turbine – �T
b
tc

Speed (rpm) FAT (◦C) PM (◦C) PE (%)
631 464.0 514.5 9.916
795 429.0 409.4 −4.524
910 463.0 434.6 −6.090
947 420.0 407.5 −2.929
1000 386.0 387.5 0.433
1031 386.0 385.2 −0.147
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performance are expected for the lower engine speed region.
However, the PM predictions are satisfactory and the model
can be used for the scope of this work.

Results of the calibration are reported in Figure 6, from
which it can be seen that the PM achieves a mean PE of
±5% for all parameters reported, apart from the mean exhaust
gas temperature before and after turbine. These results are in
agreement with the relevant available literature (Guan et al.
2015; Theotokatos and Tzelepis 2015; Sui et al. 2017). After
the calibration phase, the PM validation was performed
according to the discussion of Section 4.2, at different DE
speeds and loads, to assess model performance with respect
to exhaust gas temperatures on the real world data described
in Section 3, considering steady-state and dynamic conditions
separately.

The results of the steady-state simulations are reported in
Figure 8 and Table 5, while the results of the dynamic operat-
ing conditions are reported in Figure 9 and Table 6. From
Tables 5 and 6, it can be observed that for �T

a
tc the MAPE is sig-

nificantly greater than 10% and significantly higher than the
MAPE for the FAT data points. For example, for �T

b
tc, the

MAPE observed is greater than 20%. This is caused by running
the engine at different operating points than the operating
points at which the model was calibrated. For calibration,

Figure 6. PM FAT validation results: (a) charge air pressure, (b) relative exhaust gas receiver pressure, (c) relative maximum combustion pressure, (d) specific fuel oil
consumption, (e) mean exhaust gas temperature after turbine, (f) mean exhaust gas temperature before turbine. (This figure is available in colour online.)

Table 5. PM steady-state performance measures.

Symbol MAE (◦C) MAPE (%) PPMCC

Tatc 38.4 15.8 0.85
Tbtc 74.9 33.2 0.87
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the FAT operating points were used, all on the theoretical pro-
peller curve and above 650 rpm engine speed, while Figure 7
demonstrates that in static and dynamic operating conditions,
the engine is running at speeds below 650 rpm and the control
system forces the engine to run at loads below the theoretical
propeller curve. The FAT measurement at 650 rpm already
showed an error of +10% for temperature prediction, while
the results in Figures 7 and 8 demonstrate that the greatest pre-
diction errors are below 700 rpm and between 150 and 350◦C
and appear to get worse with further reducing loads and
speeds. These large errors are clearly caused by the fact that
the model was not calibrated for low speeds and low powers
and by the modelling assumptions. Furthermore, the results
in Figures 7(a) and 8(b) also illustrate the two different control
modes with two different combinator curves that lead to two
distinct areas in the scatter plots.

Moreover, comparing the results from Tables 5 and 6 with
the scatter plots reported in Figures 8 and 9, interesting obser-
vations can be made that cannot be established from the
MAPE. While the prediction of the temperature in static con-
ditions appears to be fairly consistent, and could possibly be
predicted more accurately with more accurate assumptions,
higher order dynamics appear to have a great effect on temp-
erature prediction that cannot be captured by the PM. In par-
ticular, the model’s predictions of �T

a
tc are acting as a low-pass

filter. In conclusion, the PM in this case is first characterised by
highly biased predictions, as reported in the scatter plots of
Figures 8 and 9, and second is acting as a low-pass filter for
dynamic operations. This indicates that the Seiliger cycle mod-
ule (module D in Figure 4) needs to be improved to accurately
capture operation over the complete operating profile and pre-
sents limitations in dynamic operating conditions.

5.2. Models performance comparison

In this section, the authors will compare the performance of
PMs, DDMs, and HMs, described in Section 4, in operational
conditions using the data described in Section 3.

In order to build Dn and T m, the authors split the data in
different temporal slots in such a way that data belonging to
Dn corresponds to a different temporal slot with respect to

T m. The two data sets consist of various different manoeuvres
using the two control modes described in Geertsma, Negen-
born, Visser and Hopman (2017):

. Manoeuvre Mode (MM): combinator curve with relative
low pitch, high engine speed and fast acceleration rates;

. Transit Mode (TM): combinator curve with higher pitch,
lower engine speed and slow acceleration rates.

The error metrics reported in Tables 8 and 9, refer to T m.
Figures 10–14 have been included purely for illustrative pur-
poses, and correspond to a subset of T m, which covers 24 h
of continuous operation of the DE in a healthy mix of
steady-state and dynamic conditions, as described in Table 7.

As reported in Section 4.2, PMs are limited to only handling
the case with D = 0. More precisely, D . 0 does not improve
the model. When it comes to the DDMs, the custom algorithm
described in Section 4.3 will be exploited. The set of hyperpara-
meters tuned during the MS phase are H = {g, l} chosen in
H = {10−4.0, 10−3.8, . . . , 10+4.0}× {10−4.0, 10−3.8, . . . , 10+4.0}.

Eventually, the HMs custom algorithm described in Section
4.4 will be exploited. The set of hyperparameters tuned during
the MS phase are H = {g, l, u} chosen in
H = {10−4.0, 10−3.8, . . . , 10+4.0}× {10−4.0, 10−3.8, . . . , 10+4.0}
×{10−4.0, 10−3.8, . . . , 10+4.0}.

All the tests have been repeated 30 times, and the average
results are reported together with their t-student 95% confi-
dence interval, to ensure the statistical validity of the results.

5.2.1. PM results
As indicated by the error metrics of Tables 8 and 9, the PM
does not predict the exhaust gas temperatures at turbine
inlet (�T

b
tc) and outlet (�T

a
tc) to a satisfactory degree, regardless

of the operating (steady-state or dynamic) conditions. As
shown in Table 5 and Figure 8, the PM is characterised by
low bias and high variance in predicting �T

a
tc, and by high

Figure 7. PM steady state operating conditions: (a) engine power and speed, (b) mean exhaust gas temperature before turbine. (This figure is available in colour
online.)

Table 6. PM Dynamic operating conditions performance measures.

Symbol MAE (◦C) MAPE (%) PPMCC

Tatc 33 10.9 0.86
Tbtc 64 22.1 0.89
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bias and high variance in predicting �T
b
tc. The same applies to

dynamic conditions, according to Table 6, and Figure 9. For
the sake of clarity, a representative time-series sample of the
PMs’ predictions is reported in Figure 10 for �Ta

tc.
On one hand, these discrepancies can be attributed to the

following assumptions and simplifications (Geertsma, Negen-
born, Visser, Loonstijn, et al. 2017):

Table 8. Indexes of performances (MAE, MAPE, and PPMCC) of the different
models (PMs, DDMs, and HMs) for different D [ {0, 10, 20, 30} for �T

a
tc. Note

that D = 0 means that the authors do not exploit time series information from
the past, for D . 0 there is no PM result as described in Section 4.

Δ Model MAE (◦C) MAPE (%) PPMCC

0 PM 33.0+ 1.7 11.7+ 0.5 0.86+ 0.05
DDM 7.9+ 0.4 2.1+ 0.1 0.99+ 0.05
HM 5.6+ 0.3 1.5+ 0.1 0.99+ 0.05

10 DDM 10.3+ 0.5 2.7+ 0.1 0.98+ 0.05
HM 8.8+ 0.4 2.3+ 0.1 0.98+ 0.05

20 DDM 4.8+ 0.2 1.3+ 0.1 1.00+ 0.05
HM 2.4+ 0.1 0.6+ 0.1 1.00+ 0.05

30 DDM 12.7+ 0.6 3.3+ 0.2 0.97+ 0.05
HM 12.0+ 0.5 3.1+ 0.1 0.97+ 0.04

Table 9. Indexes of performances (MAE, MAPE and PPMCC) of the different
models (PMs, DDMs, and HMs) for different D [ {10, 20, 30} for �Tbtc. Note that
D = 0 means that the authors do not exploit time series information from the
past, for D . 0 there is no PM result as described in Section 4.

Δ Model MAE (◦C) MAPE (%) PPMCC

0 PM 64.2+ 1.2 22.3+ 0.4 0.89+ 0.05
DDM 8.8+ 0.4 2.3+ 0.1 0.98+ 0.04
HM 6.4+ 0.4 1.7+ 0.1 0.99+ 0.06

10 DDM 11.1+ 0.5 2.9+ 0.1 0.98+ 0.05
HM 9.6+ 0.5 2.5+ 0.1 0.98+ 0.05

20 DDM 5.6+ 0.3 1.5+ 0.1 0.99+ 0.06
HM 3.2+ 0.2 0.8+ 0.1 1.00+ 0.05

30 DDM 13.5+ 0.6 3.5+ 0.1 0.96+ 0.04
HM 12.8+ 0.6 3.3+ 0.2 0.97+ 0.05

Figure 8. PM steady-state operating condition: (a) mean exhaust gas temperature after turbine and (b) mean exhaust gas temperature before turbine. (This figure is
available in colour online.)

Figure 9. PM dynamic operating condition: (a) mean exhaust gas temperature after turbine and (b) mean exhaust gas temperature before turbine. (This figure is
available in colour online.)

Table 7. Testing dataset operational description – illustrative subset.

Time (h) Mode Revolutions (rpm) Engine load (%)

13 TM 760 50 to 55
3 MM various speeds up to 850 various load from idle to 50
2 TM 780 55 to 60
1 3
4 MM low 500 to 600 up to 20

1 1
2 TM 400 to 550 low Load

1
4 TM increasing from 400 to 780 increasing from 10 to 60
2 1
2 TM 780 55 to 60
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. Pressure losses in the inlet duct, filter and air cooler are
neglected.

. Heat transfer effects along the air and exhaust-gas paths are
neglected, namely, heat losses in the inlet duct, filter and
intercooler.

. Regarding the combustion process, the constant volume
portion of combustion increases linearly with engine
speed, and the temperature portion of combustion increases
proportionately to fuel injection.

. Fuel injection time delay is constant.

. Scavenge efficiency is constant and equal to unity.

. Heat loss modelling during the expansion and blowdown
processes has been simplified.

. Namely, the heat release efficiency is inversely related to
engine speed.

. Air temperature at the start of compression is constant.

. Combustion efficiency is constant.

. The expansion in the turbine is polytropic.

. The polytropic efficiency between compressor and turbine
has been split equally.

. Turbine efficiency is a quadratic function with respect to
charge pressure.

. Air and exhaust gas properties have been kept constant
throughout.

. The lower heating value of the fuel is equal to 42,700 [kJ/
kg], according to ISO standards.

The model calibration and more advanced assumptions
could enable significant improvement to the PM, but only if
sufficient calibration data is available over the complete engine
operating envelop. On the other hand, the aforementioned
assumptions and simplifications enabled the PM to reach a
good trade-off between accuracy (in steady-state) and compu-
tational time, making the model’s run-time close to 2500 times
real-time, much faster than MVEMs characterised by the pres-
ence of the compressor and turbine maps (Theotokatos and
Tzelepis 2015; Sapra et al. 2017). For the reasons discussed
above, although the PM is suitable for real-time applications,
its accuracy is not sufficient for accurate temperature predic-
tion in dynamic conditions that allows early identification of
emerging failures.

5.2.2. DDMs results
The proposed DDMs are more accurate in predicting both �T

a
tc

and �T
b
tc compared to the PM, even without considering past

information (D . 0). Of course, when this information is
also taken into account, the error metrics drop by around
50% (e.g. MAPE reduces from 2.1%+ 0.5% to

Figure 10. Scatter plot (measured vs predicted) and trend in time for �T
a
tc using a PM with D = 0. (This figure is available in colour online.)

Figure 11. Scatter plot (measured vs predicted) and trend in time for �T
a
tc using a DDM with D = 0. (This figure is available in colour online.)
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1.3%+ 0.1%) as reported in Tables 8 and 9. In Figures 11 and
13, representative time-series of the predictions of �Ta

tc are
shown.

From Figures 11 and 13, it is possible to observe that DDMs
are capable of fully capturing the thermodynamic transients of
the exhaust gases, both in steady-state and dynamic con-
ditions, as shown in Table 7. From Figures 11–13, it can be
observed that the DDMs are characterised by both lower
bias and lower variance, with respect to the PM. The optimal
time window (Δ) is found for a value equal to 20 s. For this
value, minimal error metrics among all DDMs occur. Accord-
ing to Table 8, for this time window, the MAPE for �T

b
tc is as low

as 1.3%+ 0.1%, whereas for �T
a
tc, the MAPE is 1.5%+ 0.1%,

as reported in Table 9. Furthermore, from the scatter plot of
Figure 13, it can be observed that minimum variance is also
achieved.

It should be noted that, although DDMs are computation-
ally demanding in the training phase, they are characterised by
lower computational complexity in the feed-forward phase, as
they just require matrix manipulation methods, in contrast
with the solution of a system of DAEs that the PM requires.
The combination of both accurate and fast predictions,
makes DDMs an ideal candidate for real-time performance
and condition estimation. However, the necessary data to
reach this level of performance is rather high (Cipollini et al.

2018a, 2018b), which makes this type of models applicable
only after extensive measurement campaigns have been under-
taken. Finally, another disadvantage of DDMs is the lack of
interpretability as it is not supported by any physical interpret-
ation (Shawe-Taylor and Cristianini 2004).

5.2.3. HMs Results
To overcome the limitations discussed in Sections 5.2.1 and
5.2.2 for the PMs and DDMs, respectively, the authors have
proposed the use of HMs. These allow the exploitation of
both the mechanistic knowledge of the underlying physical
principles from the PM, and any available measurements
taken during the operation of the vessel.

The novelty introduced by the HMs led to more accurate
predictions of both �T

a
tc and �T

b
tc compared to the rest of the

models, regardless of the time window considered (Δ), as
can be seen from Tables 8 and 9. Furthermore, the same tables
reveal that the optimal model is an HM with a time window of
20 s, which achieves MAPEs of 0.6%+ 0.1% for �T

b
tc, and

0.8%+ 0.1% for �T
a
tc. This is also supported by Figures 12

and 14, which show representative time-series of the predic-
tions of �T

a
tc for time windows of 10 and 20 s, respectively. It

can be seen that the variance has been completely eliminated,
whereas the bias has been reduced to near-zero levels.

Figure 12. Scatter plot (measured vs predicted) and trend in time for �T
a
tc using an HM with D = 0. (This figure is available in colour online.)

Figure 13. Scatter plot (measured vs predicted) and trend in time for �Tatc using a DDM with D = 20 which is the best one as shown in Table 9. (This figure is available in
colour online.)
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An advantage of the HMs is their ability to exploit the
coarse, but physically supported, predictions of the PM. There-
fore, they have much smaller requirements regarding the use
of actual measurements for the learning phase (Coraddu
et al. 2017). While they will still require a measurement cam-
paign in order to be deployed, they can be reliably used already
after a few months worth of measurements, in contrast with
pure DDMs that would require at least half a year of available
data, before they can be exploited.

5.2.4. Features ranking results
In Tables 10 and 11, the top ranked features are reported for
the top performing models, namely the DDMs and HMs for
every time window. Starting from D = 0, it can be seen that
the DDM model ranks the relevant features consistently with
respect to engineering knowledge. As expected, the high-temp-
erature (HT) and low-temperature (LT) cooling water temp-
eratures after the coolers (Ta

ht, T
a
lt), in combination with the

temperatures for main bearing 4 and 5 (Tb4 , Tb5 ), have the
highest predictive power for �T

a
tc, according to Table 10. This

is to be expected because both the lube oil system (where bear-
ings 4 and 5 carry the highest load) and the cooling water sys-
tem absorb the largest part of the overall heat rejection of the
engine, which is tightly coupled with the power output of the
engine and serves as an overall indicator for the average temp-
erature increase at each of the measurement points as shown in
Figure 3. Moreover, the charge air temperature after compres-
sor (Bank A – Column 6) Ta

cA, the charge air temperature
before turbine (Bank B – Column 8) Ta

cB, and the turbine

speed NtcB (Bank B – Column 7) have influence on the predic-
tion. It should be noted that to compare the real measurements
from the IPMS with the PM outcomes, the authors considered
the average value of the Banks A and B. For this reason, in
Table 10, Bank A and Bank B contribution cannot be captured
independently by the DDMs and HMs. The same conclusion
can be drawn from Table 11.

Considering the HM’s feature ranks from Table 10, it
should be highlighted that they use as inputs �T

a
tc and �T

a
tc

from the PM. Highest predictive power is observed for
�T
a
tc(PM), a result that acts as a sanity check on the feature rank-

ing procedure’s robustness. The same features discussed for
the DDMs are the most important ones also for the HMs.
Nevertheless, non-linear correlations between the different
features lead to a slight variation in the features’ position.
When time windows are also employed (models with
D . 0), the most important feature for the prediction of
each temperature, as expected, is the time-history of the temp-
erature itself as reported in Sections 5.2.3 and 5.2.4, and
depicted in Figure 5(b).

It can be noted that the models rank approximately the
same features among the different time windows. From a phys-
ical point of view, this can be considered as a sanity check for
the reliability and robustness of the model.

6. Conclusion and discussion

In this work, the authors developed novel hybrid approaches
to model diesel engine exhaust gas temperatures in operational

Figure 14. Scatter plot (measured vs predicted) and trend in time for �Tatc using an HM with D = 20 which is the best one as shown in Table 9. (This figure is available in
colour online.)

Table 10. Top 10 feature inX , ranked in descending importance, of the different models (DDMs and HMs) for different D [ {0, 10, 20, 30} for �Tatc. Note that, for D . 0,
the importance does not refer to the single feature in X but the entire past temporal series.

Ranked position

Δ Model 1 2 3 4 5 6 7 8 9 10

0 DDM Taht Talt Tair TabtcA Tblo TacA NtcB TabtcB Pmax
m Tb5

HM �T
a
tc (PM) Tair Pmax

m Tb4 pair TabtcB Tso4 Tb7 Tso2 NtcB
10 DDM �T

a
tc Tblt TabtcB TacA Tb4 Tb3 Tb5 Tso4 Tbht Tso2

HM �T
a
tc

�T
a
tc (PM) Tb3 Tair pair Tbht Talt TacA TabtcB Taht

20 DDM �Tatc TabtcB TabtcA Tb3 Tb4 Taht Tblt pair Tblo Tair
HM �T

a
tc

�T
a
tc (PM) TabtcB TacA Tbht Tb4 Tb3 pair Tso2 Pmax

m
30 DDM �T

a
tc TabtcB Tbht Tso4 Pmax

m Tb7 Taht TacA pair Tso2
HM �T

a
tc

�T
a
tc (PM) Taht Tb7 Tblo TabtcA Tb3 pair NtcB Pmax

m
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conditions. With this purpose in mind, a hybrid modelling
approach is introduced, to build a robust and reliable diesel
engine model suitable for real-time performance assessment
and condition monitoring applications. A state-of-the-art Ker-
nel method has been presented, able to exploit the information
provided by on-board measurements from one Holland Class
Oceangoing Patrol Vessel, provided by the Royal Netherlands
Navy and Damen Schelde Naval Shipbuilding.

To define the improvements brought by the proposed
methodology, the authors first applied the standard approach
used by industry experts and academics, by using and evaluat-
ing a first-principle-equation-based diesel engine model that is
capable of providing real-time predictions. However, results in
Section 5 show the following: while the calibration results indi-
cated an adequate model that can capture the behaviour of the
engine within 10% when using data from the factory accep-
tance test at operating points on the theoretical propeller
curve, validation with real measurements revealed that the per-
formance of the model over the true operating envelope is
much worse. This greater error, up to 30% MAPE, is caused
by running the engine at much lower loads and speeds, and
due to the control strategy that forces the engine to other oper-
ating points than the theoretical propeller curve.

On the other hand, the data-driven models proposed in Sec-
tion 4.3, are adequate in predicting the behaviour of the diesel
engine, with a focus on exhaust gas temperatures. Classically,
these exhaust gas temperatures would be approached by first
principle thermodynamic and heat transfer equations, requir-
ing very detailed design information and possibly lab scale
tests to experimentally determine principle heat transfer coeffi-
cients. However, due to their nature, these data-driven models
are hard to interpret.

To overcome the limitations of both the physical and the
data-driven models, the authors developed a hybrid approach
that can take into consideration past information, are capable
of improving accuracy, are easily interpreted, and have low
computational time requirements. These hybrid models can
improve average errors by a factor 2 over purely data-driven
models. These hybrid models can potentially also be used to
improve accuracy of predictions for operation in other con-
ditions than the measured ones, as purely data-driven models
cannot be used for extrapolation, but the physical model con-
tribution will improve hybrid model performance during
extrapolation. While the hybrid approach will still require a
measurement campaign in order to be deployed, this approach
can be reliably used based on a significantly smaller dataset in
comparison with the pure DDMs, for the same average error,

as shown in Section 5.2.3. Moreover, the proposed method-
ology can also be applied to other industries facing problems
of similar nature. Automotive, aviation, railway and process
industries are potential candidates for the application of
these types of models.

Next steps of the research will consider the utilisation of a
more extensive data set containing engines of different vessels,
the application of the proposed method to other systems
installed on-board, and more importantly the application of
the methodology for early fault detection and isolation.
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