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a b s t r a c t 

Accidents induced by natural disasters at sports sites may cause catastrophic loss of great concern. However, 

previous studies on risk assessments of sports sites have only focused on operational risk and equipment failure. 

With the frequent occurrence of extreme disasters, the risk of domino chains caused by natural disasters at 

large-scale events, such as large-scale winter sports sites, cannot be ignored. In this study, a natural disaster- 

induced accident-chain evolution analysis model (NAEA model) is proposed. Based on the results of the NAEA 

model, a fuzzy Bayesian network for domino accidents triggered by an earthquake at large-scale winter sports 

sites was established. Through sensitivity analysis and scenario analysis, it was found that fire and explosion 

accidents and crowded stampede accidents are the main causes of serious loss in domino disaster chains in large- 

scale sports sites. Simultaneously, improving the early warning capability, reliability of electrical equipment, and 

automatic sprinkler systems are the most effective ways to prevent and control major accidents. In addition, an 

optimal safety strategy improvement analysis was performed to facilitate the decision-making of safety managers 

to prevent serious accidents and reduce accident loss. 
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a

. Introduction 

Large-scale sports events are held every year worldwide. Whether it

s the Olympic Games or the World Cup, they are generally held in the

ity center and attract many spectators. Therefore, the safety of large-

cale sports sites has become a major concern for sponsors. Recently,

ecause of environmental deterioration, natural disasters are occurring

ore frequently. That being said, in addition to their frequency, the

uddenness of disasters also determines the severity of the accidents

hey induce. As large-scale sports sites attract a large number of par-

icipants (spectators, contestants, and on-site staff), and have complex

ypes of equipment, natural disaster-induced accidents at these sites

resent a multi-hazardous situation. For instance, if a natural disas-

er destroys the basic equipment at the stadium or causes it to mal-

unction, the resulting chain reaction (disaster chain) may cause catas-

rophic damage [1] . These accidents exhibit chain transmission under

he action of the domino effect [2] . Thus, because domino effects can

nduce catastrophic consequences [3] , consequence analysis becomes

ore complicated and significant when they are triggered. Due to the

omplexity of the weather system, the limitations of scientific cogni-

ion, and technological limitations, it is difficult to predict natural dis-

sters very accurately [4] . Therefore, we should pay great attention to
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he risk of domino chains caused by natural disasters during large-scale

vents. 

Previous research on the risk assessment of large-scale sports sites is

elatively limited and is mainly divided into three aspects: identification

nd assessment of risk indicators or factors, prevention of accidents and

isasters, and control of public health. In 2010, Wang and Yang used

uzzy analytic hierarchy [5] and the the decision making trial and eval-

ation laboratory (DEMATEL) method [6] to list natural disasters as an

mportant factor affecting sports sites. Jia and Yang built a procedural

isk assessment index system for large-scale sports sites before, during,

nd after a game by building a hybrid neural network [7] . In 2017, Gong

roposed a risk assessment index system that classified natural disasters

s major force factors based on fishbone diagrams [8] . Thereafter, a risk

arly warning safety model for sports sites was constructed by analyz-

ng a back propagation (BP) neural network [9] . A hybrid human fac-

ors analysis and classification system (HFACS)-Bayesian network model

as constructed in 2020 to quantitatively analyze the human and orga-

izational factors in the Beijing 2022 Winter Olympics [10] . Moreover,

esearch on accidents and disasters has mainly focused on the assess-

ent of the risk of fire and explosion accidents (such as gas leakages)

n large-scale sports venues [11] and the evaluation of the effect of fire

rotection design [12] . Studies on public health have mainly focused on
arch 2022 
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Table 1 

Linguistic variables and fuzzy numbers. 

Linguistic variables Trapezoidal fuzzy numbers 

Very High (VH) (0.8,1, 1, 1) 

High-Very High (H-VH) (0.7,0.9,1,1) 

High (H) (0.6,0.8, 0.8,1) 

Fairly High (FH) (0.5,0.65, 0.65,0.8) 

Medium (M) (0.3,0.5, 0.5,0.7) 

Fairly Low (FL) (0.2, 0.35, 0.35,0.5) 

Low (L) (0,0.2,0.2, 0.4) 

Low-Very Low (L-VL) (0,0,0.1,0.3) 

Very Low (VL) (0,0,0,0.2) 
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he control of epidemic diseases, such as the dengue fever virus [13] and

OVID-19 [14] . In previous studies, natural disasters were included in

he risk assessment index system and have been the focus of many schol-

rs. However, it is rare to consider natural disasters as the main research

bject of a study and conduct quantitative risk assessments on them. For

xample, spatial predictions of gale disasters at the Olympic Games have

een made. However, the overall impact of natural disasters on large-

cale sports sites has not been assessed. 

Furthermore, studies such as Natech [15] have focused on the pre-

ention and control of technical accidents induced by natural disasters.

atech risk analysis can be undertaken for risk-based prioritization and

ecisions regarding prevention and preparedness measures. However,

egarding our study, using Natech risk assessment has its limitations. Al-

hough it is particular to accidents induced by natural disasters, it does

ot account for the high level of uncertainty —such as the various equip-

ent categories, large numbers of people, and other factors —found in

ccidents at large-scale sports sites. In addition, many qualitative and

uantitative risk assessment methods have been proposed. In general,

mong the risk assessment methods, qualitative methods are mainly

epresented by analyzing case databases [16] , visiting or interviewing

eople in disaster areas [17] , and using questionnaire surveys [18] .

uantitative methods are mainly represented by fault tree analysis [19] ,

APID-N [20] , the Bayesian network model [21] , Monte Carlo simula-

ion [22] , and geographical information system-based methodologies

23] . These methods not only have a mature theoretical system but are

lso widely applicable, particularly in the field of natural disaster acci-

ent assessment. That being said, Bayesian networks [24] have a wide

ange of adaptations and can better deal with high levels of uncertainty.

hus, this method was preferable for our study. 

As a result, we focused on developing a risk assessment model for a

ypical natural disaster in the context of large-scale winter sports sites

ased on a fuzzy Bayesian network. Furthermore, a NAEA model was

roposed to analyze the domino chain induced by natural disasters.

ection 2 describes the methods used in this study, and Section 3 con-

iders an earthquake as an example to show the establishment process

f the proposed model. Finally, Section 4 presents the results of risk

nalysis, while Section 5 presents our main conclusions. 

. Methodology 

.1. Bayesian network 

Bayesian belief networks (BBN) are advanced graphical models that

escribe probabilistic relationships between variables [25] . A BBN can

erform probabilistic inferences or belief updating based on data or ob-

ervations using Bayes’ theorem [26] . It is a directed acyclic graph. A

etwork diagram contains multiple nodes that are connected by directed

ine segments. Nodes and directed connections represent elements in

he system and the causal relationships between them. In Bayesian net-

orks, there are three types of nodes. The first type is a node without a

arent called the “root node ”. The second node, without children, is the

leaf node ”. The third has both root node and child node and is called

he “intermediate node ” [27] . 

The probability of the “root node ” in the Bayesian network diagram

s defined by unconditional probability, thus, the probability is gener-

lly derived from previous statistical data, literature, and expert judg-

ent. The probability of the “leaf node ” and “intermediate node ” is de-

ermined by conditional probability. In other words, the relationship

etween the child and parent nodes is quantified using a conditional

robability table. In a BBN, the joint probability distribution of child

odes can be written as the product of the local conditional probability

f each parent node: 

 

(
𝑉 1 , 𝑉 2 , … , 𝑉 𝐾 

)
= 

𝐾 ∏
1 

𝑃 
(
𝑉 𝑖 ∕ parent 

(
𝑉 𝑖 
))

(1)
264 
here ( V 1 , V 2 ,…, V K ) represents all the child nodes of an event and P ( V 1 ,

 2 ,…, V K ) describes the joint probability of a child node. P ( V i /parent

 V i )) is the conditional probability of every parent node in this node.

iven a new observation or evidence, the prior probability of variables

an be updated. Then, the posterior probability of the variable can be

btained as ( E is the evidence): 

 

(
𝑉 1 , 𝑉 2 , … , 𝑉 𝑛 |𝐸 

)
= 

𝑃 
(
𝑉 1 , 𝑉 2 , …𝑉 𝑛 , 𝐸 

)
𝑃 ( 𝐸 ) 

= 

𝑃 ( 𝑉 , 𝐸 ) ∑
𝑋 𝑃 ( 𝑉 , 𝐸 ) 

(2) 

As a classic risk assessment method, Bayesian networks are widely

sed in various fields, such as chemical parks [28] , natural gas pipeline

etworks [29] , oil and gas pipelines [30] , liquified natural gas (LNG)

31] , and urban underground utility tunnels [32] . 

.2. Fuzzy set theory 

Fuzzy theory with the fuzzy set principle as its core mainly solves

he evaluation situation, which is difficult to judge by specific values,

y introducing the concept of the evaluation degree [33] . The uncer-

ain situation is defuzzified with the help of fuzzy equations and fuzzy

umbers. As a result, evaluation results were obtained [34] . To deal

ith the uncertainty and lack of sufficient data, fuzzy set theory can be

sed to estimate the failure probability of the node. Therefore, a fuzzy

ayesian network is a combination of an expert opinion pool and fuzzy

et theory values formed based on a Bayesian network. Fuzzy Bayesian

ombines the advantages of fuzzy logic, thus, this method is widely used

n safety evaluations and risk assessments of various kinds. For example,

his method can be used to evaluate the risks of gas tunnel construction

35] , railway passenger transportation [36] , and tunnel pipeline dam-

ge [37] . It can also be used to analyze the safety of human behavior

38] , technological processes [39] , and main ignition sources [40] . The

rocess of calculating the prior and conditional probabilities of nodes in

ayesian methods using fuzzy set theory is as follows: 

Step 1: Experts rely on experience using linguistic variables to esti-

ate the probability of the nodes [41] . In this study, to make a more

ccurate assessment of the results, the authors used nine levels of linguis-

ic terms (as shown in Fig. 1 ), namely: “Very High (VH) ”, “High-Very

igh (H-VH) ”, “High (H) ”, “Fairly High (FH) ”, “Medium (M) ”, “Fairly

ow (FL) ”, “Low (L) ”, “Low-Very Low (L-VL) ” and “Very Low (VL) ”.

he fuzzy membership functions are shown in Fig. 2 . Simultaneously,

he linear opinion pool method [42] is used to calculate the weight of

ach expert, denoted by 𝑊 𝑖 . 

Step 2: Convert linguistic variables into trapezoidal fuzzy numbers.

he correspondence between the nine linguistic variables [43] and the

rapezoidal fuzzy numbers is presented in Table 1 . 

Step 3: The aggregated fuzzy numbers are obtained by weighting the

uzzy numbers [44] , as given in Eq. (3) : 

 𝑗 = 

∑
𝑊 𝑖 × 𝐴 ij (3) 

here 𝑀 𝑗 is the “aggregated fuzzy numbers ” of event j , 𝑊 𝑖 is the weight-

ng score of experts i , and 𝐴 𝑖𝑗 is the trapezoidal fuzzy numbers obtained

rom experts i about event j . 
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Fig. 1. Fuzzy membership functions. 

Fig. 2. Function distribution diagram and formulas. 
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Step 4: The center of gravity (COG) [45] method is used to defuzzify

nd calculate the final fuzzy probability [46] . In addition, the calcula-

ion formulas for the fuzzy probability (FPs) and fuzzy probability (FPr)

re as follows: 

Ps = 

(
𝑎 3 + 𝑎 4 

)2 − 

(
𝑎 3 𝑎 4 

)
− 

(
𝑎 1 + 𝑎 2 

)2 + 𝑎 1 𝑎 2 

𝑎 3 + 𝑎 4 − 𝑎 1 − 𝑎 2 
(4)

Pr = 

{ 1 
10 𝑘 

FPr ≠ 0 

0 FPr = 0 
𝐾 = 

(1 − FPs 

FPs 

) 1 
3 × 2 . 301 (5) 

.3. Integrated model of risk assessment 

.3.1. Framework of the integrated model 

An integrated model is proposed for quantitative risk assessment of

ccidents induced by natural disasters that are formed on the basis of

wo sub-models (NAEA model and fuzzy evaluation model) combined

ith Bayesian modeling and analysis theory (shown in Fig. 3 ). First,

 NAEA model was built to determine the structure of the Bayesian
265 
etwork. Second, the prior probabilities and conditional probability ta-

les of the nodes that combine expert judgment and fuzzy set theory

n the Bayesian network were determined. Finally, sensitivity and sce-

ario analysis of the established Bayesian model were conducted using

etica (Netica 4.16, Norsys Software Corp., Vancouver, Canada). Ac-

ording to the above analysis, an accident that led to a huge loss of the

omino disaster chain was found, and the importance ranking of the fac-

ors affecting critical accidents was determined. Furthermore, this study

rovides the optimal improvement ratio to reduce the probability of fire

xplosions or crowded stampede accidents through a safety strategy im-

rovement analysis of the Bayesian network. Based on the foregoing,

he comprehensive optimal improvement ratio of the Bayesian network

s given as is the explored optimal change ratio to provide references

nd suggestions for safety management. 

.3.2. NAEA model 

The suddenness, uncertainty, and catastrophe are the main charac-

eristics of natural disasters. Currently, it is difficult to precisely predict

nd control the time and intensity of natural disasters due to scientific
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Fig. 3. The framework of the integrated model. 

Fig. 4. Public safety triangle theory. 
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nd technological capabilities. Thus, the probability of equipment dam-

ge and loss caused by accidents is uncertain. Regarding casualties and

roperty loss, the damage to the accident chain caused by natural dis-

sters is more serious than that of a single natural disaster or technical

ccident. Therefore, it is necessary to develop a model that can help

sers comprehensively analyze the development of an accident chain

aused by natural disasters and provide emergency measures and sug-

estions. Therefore, a NAEA model was proposed and was developed

sing the public safety triangle theory [47] . In addition, it combines the

omino effect and disaster chain theory. 

The public safety triangle theory (illustrated in Fig. 4 ) states that

 public safety system is composed of three parts: unexpected events,

ccident carriers, and emergency management. Unexpected events in-

lude natural disasters, accidents, public health incidents, and social se-

urity incidents. Therefore, this theory can be used to analyze accident

hains caused by natural disasters. Any object that can be directly or

ndirectly affected by emergencies, such as people and technical equip-

ent, is called an accident carrier. Emergency management not only
266 
ncludes measures to reduce the loss of life and property, but also mea-

ures to prevent accidents. Matter, energy, and information about an ac-

ident are collectively called disaster factors. Additionally, unexpected

vents, accident carriers, and emergency management influence each

ther through the interaction of disaster factors. 

The overall structure of the NAEA model (shown in Fig. 5 ) is com-

osed of four rings and two dashed circles. The four rings are filled with

ifferent colors, and from inside to outside are the disaster layer, disaster

arrier layer, accident layer, and loss layer, respectively. The natural dis-

ster contained in the disaster layer is a specific type of natural disaster

hat induces an accident chain, which is similar to an unexpected event

n the public safety triangle theory. The disaster carrier layer is com-

osed of several disaster bearings that include all people, equipment, or

ystems that may be directly or indirectly affected after a natural disaster

ccurs. The content of this layer is the refinement and upgrading of the

isaster carrier in the public safety triangle theory. Furthermore, all the

ccidents caused by the disaster bearings were analyzed, and the specific

ccident types were given one by one in the accident layer. A loss layer

as set up on the outermost layer of the NAEA model. Here, the specific

ccident loss is divided into four dimensions: casualties, property loss,

ocial impact, and environmental pollution. The internal elements of the

hree-ring layers from the inside to the outside are connected by straight

ines or curves according to disaster chain theory and the principle of

he domino effect. Domestic and foreign scholars have emphasized the

efinition of a disaster chain. Among them, the concept accepted by

ost people is that the disaster chain is a series of disaster phenomena

aused by certain hazardous factors or ecological environment changes.

dditionally, the domino effect is a series of accident sequences. The

pread of the physical effects of the initial event, such as fire, explosion,

r leakage, leads to secondary accidents in other surrounding devices

r equipment, and the overall consequences are more serious than the

nitial events. The chain relationship from the inside to the outside is

riggered by a natural disaster, as the initial event is based on the prin-

iple of the disaster chain, whereas the transfer of influence between

vents or accidents is based on the domino effect. The two dashed cir-

les in the model represent the disaster prevention circle (light blue) and

isaster mitigation circle (dark blue), respectively. It should be pointed

ut that the disaster prevention circle will cut off the connection, which

efers to the connection between the disaster bearings and the accident,

r between different accident types. When the disaster prevention cir-
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Fig. 5. NAEA model. 
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le cuts a connection, a way to prevent a specific accident is provided.

he meaning of the disaster mitigation circle refers to the situation in

hich an accident has occurred, and analysts consider measures from

our dimensions to mitigate casualties, property losses, social impact,

nd environmental pollution. 

. Case study of earthquake-induced accidents in large-scale 

inter sports sites 

.1. Mapping the Bayesian network from the NAEA model 

The NAEA model is suitable for technical accidents and public

afety accidents induced by natural disasters. This study considered

arthquake-induced accidents at large-scale winter sports sites as an ex-

mple. The evolution results of the NAEA model are presented in Fig. 6 ,

nd the analysis results were used to determine the Bayesian network

tructure. 

To use the NAEA model to analyze the development and results of

his scenario, the specific situation of the disaster carrier layer must

rst be determined. Objects that can be used as disaster bearings for

arthquakes in large-scale winter sports sites can be divided into two

ategories: people (spectators, contestants, and on-site staff) and struc-

ures. Furthermore, this study identifies four representative objects as

he key structures: stadium buildings (including all stadium buildings

uilt on flat ground and mountains), snowdrifts, auxiliary equipment,

nd mountains. For example, an earthquake affects the mountain (which

s intermediate disaster-bearing), thereby affecting the stadium build-

ngs and auxiliary facilities built on the mountain. However, this domino

hain effect is more obvious at large-scale winter sports sites. The aux-

liary facilities mentioned above mainly refer to lifelines, refrigerating

lants, electric equipment, and ski lifts. These devices are all necessary

or large-scale winter sports. 

Next, we analyzed the accident layer of the NAEA model. The pur-

ose of this stage is to analyze the direct and indirect accidents caused

y each disaster-bearing body in the disaster carrier layer. For instance,

t a large-scale winter sports event venue, an earthquake might cause

amage to or collapse of the building, which could lead to trapped

ersonnel, falling high-potential energy snow blocks or avalanches, or

 stampede during evacuation–consequently causing casualties [48] .
267 
oreover, earthquake damage to the lifeline systems (pipelines for wa-

er, electricity, and gas) of the venue may cause sewage, natural gas,

nd other toxic and hazardous substances to leak, which could lead

o poisoning and suffocation accidents or fire and explosion accidents

rom an open flame (refrigeration systems at large-scale winter sports

ites often uses liquid ammonia and carbon dioxide which is highly

ammable and toxic). In addition, these sites use three-level trans-

ormers and regulator power stations that, if damaged, may result in

res or explosions. Lastly, the ski lift is a piece of necessary equip-

ent for alpine ski resorts, which could trap people if damaged by an

arthquake. 

Using the NAEA model, five accidents, at the accident level, were

nalyzed from four aspects. These include casualties, property loss, so-

ial impact, and environmental pollution. It should be noted that all

ccidents at the accident level may cause casualties and property losses.

owever, large-scale winter sports sites are significant because if an ac-

ident occurs, it would most likely generate bad public opinion, which

ould impact a country’s reputation. Serious accidents, such as the leak-

ge of hazardous materials, fires and explosions, cause a certain degree

f environmental pollution. Thus, this is also an aspect that must be con-

idered in the analysis and evaluation of the accident chain caused by

arthquakes. 

The specific natural disasters, disaster bearings, accidents, and losses

nalyzed by the NAEA model will all become the nodes of the Bayesian

etwork of accident chains triggered by the earthquake in the large-

cale sports event context. Simultaneously, the domino effect formed by

he elements becomes the basis for determining the node relationship

f the Bayesian network (Bayesian network diagram shown in Fig. 7 ).

oreover, the three nodes of the automatic sprinkler, earthquake early

arning, and emergency drill are elements of the disaster prevention

ayer in the model because they can effectively cut off the connection

etween the disaster bearing and the accident. “Medical rescue ” is an

lement of the disaster reduction layer and effective on-site rescue work

hat can reduce the possibility of casualties. 

.2. The prior probability and conditional probability table 

Due to the lack of available information, this study used fuzzy

tatistics and expert opinion methods for the prior and conditional prob-
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Fig. 6. The NAEA model of the large-scale 

winter sports sites. 

Fig. 7. Bayesian network of large-scale winter sports sites disaster induced by an earthquake. 

268 
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Table 2 

The prior probabilities obtained from domain experts’ estimation. 

Root nodes Expert judgment Aggregation of fuzzy numbers K FPs FPr (%) 

1 2 3 a b c d 

Earthquake less 5 VL-L VL-L M 0.09 0.16 0.23 0.43 3.43 0.2325 0.02 

Earthquake 5 to 7 VL VL L 0 0 0.06 0.26 4.65 0.1083 0 

Earthquake greater than 7 VL VL VL-L 0 0 0.03 0.23 5.23 0.083 0 

Automatic sprinkler VH H VH-H 0.71 0.91 0.94 1 1.19 0.8783 6.45 

Personnel density less than 3 p/m 

2 FH M VH-H 0.5 0.68 0.71 0.83 1.8 0.677 1.59 

Earthquake early warning FH FH VH-H 0.56 0.73 0.76 0.86 1.67 0.7239 2.14 

Emergency drilling VH-H H VH 0.7 0.9 0.94 1 1.2 0.8755 6.3 

Medical rescue VH-H VH-H VH 0.73 0.93 1 1 1.08 0.9057 8.27 
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bilities of all nodes in the Bayesian network [49] . This reflects the wide

pplicability of fuzzy Bayesian networks to objects with limited data.

hus, in this case, the fuzzy Bayesian network is superior to the ordi-

ary Bayesian network. In this Bayesian network, there are six parent

odes and 15 child nodes, including four-leaf nodes and 11 interme-

iate nodes. All child nodes must determine the conditional probabil-

ty. For child nodes with fewer parent nodes, it is easier to use fuzzy

et statistics in the conditional probability table. However, nodes such

s “person trapped ”, “crowded trampling accident ”, and “personal ca-

ualties ”, have a relatively large number of parents, which results in

omplicating fuzzy set statistical method calculation. Therefore, the

uthor created fuzzy operations, a specific fuzzy probability calcula-

ion tool that considerably decreases computing difficulties and saves

ime. 

The prior probability table of the parent node of the Bayesian net-

ork in this study is presented in Table 2 . The contrast upgrade rule

24] can be used for complex conditional probability tables of child

odes. Take the node “personnel trapped ” as an example, because this

ode has five parent nodes, there are 32 conditional probabilities that

eed to be determined. In this case, the “Contrast upgrade rule ” be-

ieves that among the five parent nodes, “earthquake early warning ”

as a fundamental impact on the consequences of the crowded stampede

ccident. In other words, if an earthquake early warning is timely and

ccurate, the safety manager of a large-scale winter sports event can suc-

essfully evacuate the event, which would greatly reduce the possibility

f crowded stampede accidents caused by panic and disorder. Therefore,

n the case of other unchanged conditions, the possibility of personnel

rapped accidents due to ineffective earthquake early warning can be

aised by three levels. Concerning the “Contrast upgrade rule ”, experts

nly need to perform 16 evaluations of the conditional probability of the

personnel trapped ” node, as shown in Table 2 . The remaining 16 eval-

ations, relating to earthquake early warning failures, can be upgraded

n sequence according to the above rules. For example, three experts’

27] opinions in the first row of Table 3 corresponding to the failure

f the earthquake early warning are VH, VH, and VH. As H, VH-H, and

L were upgraded three levels, they reached the highest level of VH.

imilarly, the conditional probabilities of all child nodes are given. Sub-

equently, a complete Bayesian network diagram was obtained based

n an earthquake-induced accident chain at large-scale winter sports

ites after the prior and conditional probabilities were input (shown in

ig. 7 ). 

. Results and discussion 

.1. Sensitivity analysis 

Sensitivity analysis was used to analyze which nodes have a greater

mpact on the lost nodes and take measures to control the occurrence

f accidental nodes, which achieved the goal of reducing loss. In other

ords, in the Bayesian network of this study, the author conducted a
269 
ensitivity analysis of the loss nodes (casualty, social impact, environ-

ental pollution, and economic loss). 

For the casualty node, the occurrence probability of the parent node

trapped personnel, poisoning, fire or explosion, and stampede accident)

orresponding to different casualty states is presented in Fig. 8 . It shows

hat as the state of injury and death becomes more and more serious,

he probability of stampede accidents has the largest change, increasing

rom 27.5 to 59.9%. The probability chances of fire and explosion acci-

ents and personnel trapped accidents are close, being 27.8% (10.4% to

8.2%) and 28.1% (36.5% to 64.6%), respectively. However, the proba-

ility of fire and explosion accidents has increased by nearly four times,

hereas the probability of trapped personnel has doubled. Therefore,

t is reasonable to assume that the sensitivity to fire and explosion is

igher than that of trapped persons. In addition, the probability of acci-

ental poisoning is minimal. The results of this analysis were reasonable.

lthough fire explosions and poisoning suffocations are more harmful

han the other two accidents, the probability of these two types of ac-

idents is lower. In addition, the locations prone to fire, explosion, and

oisoning at large-scale winter sports sites are far away from crowded

ocations. In contrast, crowded stampede accidents occur in places with

 higher density of people. 

Regarding social impact nodes, we study the probability of unaccept-

ble social impact and acceptable social impact in certain parent nodes.

s shown in Fig. 9 , it can be seen that the probability of unacceptable

ocial impact caused by “fire or explosion ” and “poisoning ” accidents

s even higher, at 79.9% and 79.7%, respectively. However, sensitivity

nalysis considers not only the severity of the accident but also the pos-

ibility of an accident. Therefore, taking all these factors into account, a

crowded stampede ” accident is the most sensitive node to “social im-

act ”. 

The sensitivity analysis of the four loss nodes is presented in Table 4 .

he sensitivity analysis results were consistent with the results of the

revious analysis. Comparing the sensitive nodes of different loss nodes,

stampede accident ” and “fire or explosion ” are the most frequently oc-

urring sensitive nodes. This also shows that these two nodes play a key

ole in the degree of loss from other angles. Therefore, it is necessary

o conduct further sensitivity analysis for these two nodes. As shown in

able 4 , improving the early warning capabilities of earthquakes can

ost effectively reduce the likelihood of crowded stampede accidents.

urthermore, enhancing the seismic performance of a lifeline or tak-

ng effective measures to control leakage can reduce the possibility of

eakage of toxic and hazardous substances, thereby preventing fire or

xplosion accidents. 

.2. Scenario analysis 

Scenario analysis of Bayesian networks involves determining the oc-

urrence of certain key nodes and is an important and effective method

or predicting potential consequences. The optimal path to prevent ac-

idents and reduce loss can be determined by analyzing the relationship

etween and within each scenario. 
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Table 3 

CPT for “personnel trapped ” node. 

precondition 

BN nodes Expert judgment 

FPs 
High potential snowdrift Ski lift Stadium building Personnel density p/m 

2 1 2 3 

Effective early 

earthquake warning 

√ √ √
≤ 3 H VH-H FL 68.63% √ √ √
> 4 VH-H VH M 78.17% √ √
≤ 3 M M FL 45.31% √ √
> 4 FH FH M 60.31% √ √
≤ 3 M FH FL 50.00% √ √
> 4 FH VH-H FH 72.00% √
≤ 3 FH FL FL 46.25% √
> 4 H FH M 65.94% √ √
≤ 3 M FH M 54.69% √ √
> 4 FH H FH 69.69% √
≤ 3 L VL FL 20.52% √
> 4 FL L M 35.00% √
≤ 3 FH VL-L L 31.31% √
> 4 H FL L 47.19% 

≤ 3 VL-L VL VL 8.09% 

> 4 VL-L VL-L VL-L 10.83% 
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.2.1. Multi-hazard scenario analysis 

As shown in the sensitivity analysis of the previous section, “earth-

uakes early warning ” and “toxic material leakage ” are the most sen-

itive nodes and lead to “stampede accident ” and “fire or explosion ac-

ident ” which will cause great loss, respectively. Considering the cou-

ling effects of the above two accident types, six sub-scenarios based on

ctual conditions were designed from a macro perspective. Relating to

he leakage of toxic and hazardous substances, the “refrigerating plant ”

nd the “automatic sprinkler ” were selected as the key nodes in this sec-
270 
ion. Therefore, this part of the scenario analysis sets “earthquake level ”,

earthquake early warning, ” “refrigeration plant ”, and “automatic sprin-

ler ” as the key nodes of scenario analysis. The specific settings of this

cenario are listed in Table 5 , and the probability state of the loss node

orresponding to each scenario is shown in Fig. 10 (i.e., the Bayesian

etwork of scenario one is shown in Fig. 10 ). 

Table 5 shows only one key node’s state is changed at a time in the

rst four sub-scenarios to analyze the influence of each node. Overall,

he first four sub-scenario states developed in the direction of serious
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Fig. 10. Bayesian network of sub-scenario 1. 

Table 4 

The sensitivity of key nodes. 

Analysis node Sensitive node Sensitive proportion (%) 

Casualty Stampede accident 5.06 

Fire or explosion 4.63 

Personnel trapped 4.1 

Poisoning 3.59 

Social impact Stampede accident 10.4 

Fire or explosion 9.47 

Personnel trapped 9.15 

Poisoning 7.58 

environmental pollution Toxic material leakage 51.5 

fire or explosion 20.6 

economic loss lifeline 17 

fire or explosion 12.4 

Stampede accident Earthquake early-warning 9.11 

Earthquake 5.45 

Emergency drilling 2.35 

Fire or explosion Toxic material leakage 14.7 

electrical equipment 12.1 
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n  
oss. An in-depth comparison of the first four sub-scenarios, in terms of

he state of casualties, showed that the transition from sub-scenario 1 to

ub-scenario 2 caused the most obvious change. Under this change, the

robability of moderate and severe casualties doubled, indicating that

arthquake early warning plays a crucial role in controlling casualties.

hen focusing on environmental pollution, the state of environmental

ollution showed a large increase (from 9.77% to 65.8%, the growth

ate was close to seven times) when the transition from sub-scenario
Table 5 

Node settings of multi-hazard scenario. 

Sub-scenarios Earthquake (Magnitude) Earthquake early

1 ≤ 5 effective 

2 ≤ 5 ineffective 

3 ≤ 5 ineffective 

4 ≤ 5 ineffective 

5 5 to 7 effective 

6 > 7 effective 

271 
 to sub-scenario 3 occurred. Damage to refrigeration equipment that

auses toxic and hazardous substances to leak into the environment, re-

ults in serious environmental pollution. Unsurprisingly, the transition

rom sub-scenario 3 to sub-scenario 4 results in the most distinct growth

n the probability of serious economic loss. Furthermore, this accounts

or the severe economic loss that would occur if the refrigeration device

nd the automatic spray system fail simultaneously. Thus, ensuring the

eliability of the automatic sprinkler system can not only reduce the pos-

ibility of explosive and poisonous accidents but also effectively reduce

roperty loss. Concerning social impact, the transition from sub-scenario

 to sub-scenario 2 has the most obvious impact on society. The failure

f early warning drastically increases the number of casualties, which

esults in a devastating social impact. 

To ensure the completeness of the risk analysis, the author also sup-

lemented each specific condition with other magnitudes for an analy-

is based on actual situations. The outcomes of these combinations and

he probability of their loss nodes are shown in Fig. 11 . Moreover, the

ignificance of comparing sub-scenarios 5 and 6 with sub-scenario 1 is

o predict the loss of a high magnitude earthquake. When comparing

ub-scenario five and sub-scenario 1, the probability of serious casual-

ies increased to 1.8 times, the economic loss increased to 2.8 times,

he probability of causing serious environmental pollution increased to

.6 times, and the probability of causing unacceptable social impact in-

reased to 1.8 times. For sub-scenario 6, an earthquake of a magnitude

reater than seven (which is rare), the probability of causing serious ca-

ualties and social impact increases by more than three times, while the

robability of causing large economic loss increases by five times. Fi-

ally, the probability of causing unacceptable environmental pollution
warning Refrigerating plant Automatic sprinkler 

undamaged effective 

undamaged effective 

damaged effective 

damaged ineffective 

undamaged effective 

damaged ineffective 
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Fig. 11. Posterior probabilities of consequences in multi- 

hazard scenario. 

Table 6 

Node settings of explosion and poisoning scenario. 

Sub-scenarios Refrigerating plant Electrical equipment Lifeline Automatic sprinkler 

7 damaged undamaged undamaged effective 

8 undamaged damaged undamaged effective 

9 undamaged undamaged damaged effective 

10 undamaged undamaged damaged ineffective 

11 undamaged damaged undamaged ineffective 

12 damaged undamaged undamaged ineffective 
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Fig. 12. Posterior probabilities of consequences in explosion and poisoning ac- 

cident scenario. 
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ncreases by 8.6 times. However, since the magnitude of the earthquake

s a force majeure factor, we can devote ourselves to post-disaster relief

nd minimize loss. 

.2.2. Explosion and poisoning scenario analysis 

“Fire or explosion ” and “poisoning ” are the most serious accidents in

he accident chain caused by an earthquake during a large-scale sports

vent. In addition, from the sensitivity analysis results in the previous

ection, fire and explosion accidents are the main causes of great loss.

herefore, in this section, the parent node that can cause fire, explo-

ion, or poisoning is listed as the research object, namely “Refrigerat-

ng plant ”, “Electrical equipment ”, “Lifeline ”, and “Automatic sprinkler ”

seen in Table 6 ). Moreover, six sub-scenarios are described in this sec-

ion based on whether the automatic sprinkler system is effective. Thus,

he first three sub-scenarios and the last three sub-scenarios constitute

wo contrasting groups. The principle of the control variables is fully

emonstrated in this way, which is more conducive to the accuracy of

ur scenario analysis. 

The posterior probabilities of “fire or explosion ”, “poisoning ”, and

casualty ” of the above four sub-scenarios are shown in Fig. 12 . 

In terms of fire and explosion, the accident probability was highest in

ub-scenario 8 (caused by damage to electrical equipment, 21.4%), fol-

owed by sub-scenarios 7 (20.4%) and sub-scenario 9 (17%), in the first

hree sub-scenarios. When the automatic sprinkler system is ineffective,

he probability of fire and explosion accidents caused by the damage

o electrical equipment in an earthquake is highest (90.6%). Simulta-

eously, the possibility of fire and explosion accidents due to damage

o refrigeration devices and lifelines has also doubled (20.4% to 52.8%,

7% to 44%). Thus, during an earthquake, the automatic sprinkler sys-

em can prevent the vaporization of liquid ammonia from causing an

xplosion (to a certain extent), and can also prevent the fire from fur-

her expanding due to electrical equipment and other reasons. In other

ords, if the automatic sprinkler system fails, all fire and explosion acci-

ents or poisoning accidents tend to be uncontrollable. The importance

f the causes of fire and explosion accidents is ranked as follows: power

quipment damage, refrigeration equipment damage, and lifeline dam-
272 
ge. Electrical equipment in the competition area might short-circuit

r get damaged during an earthquake, thus sparking a fire (this is ex-

remely common in earthquakes). As a result, because electrical equip-

ent is the most widely used and largest installation area in large-scale

ports sites, power facilities are also likely to be damaged by fire and

xplosion accidents induced by earthquakes Furthermore, if a refriger-

tion device or lifeline that stores liquid ammonia and carbon dioxide

s damaged in an earthquake, toxic and hazardous substances can cause

re and explosion accidents. 

The toxicity and quantity of toxic and hazardous substances in re-

rigeration devices are greater than those in lifelines. As a result, the

robability of poisoning accidents in sub-scenario 7 (28%) will be higher

han that in sub-scenario 9 (23.4%). When the automatic sprinkler sys-

em is ineffective, the probability of poisoning and suffocation accidents

eading to damage to refrigeration devices and lifelines doubles (28%

o 68.3%, 23.4% to 56.9%). Therefore, the reliable design and mainte-

ance of refrigeration devices and lifelines are key to preventing poi-

oning and suffocation accidents. In addition, controlling the amount of
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Table 7 

Node settings of the stampede and trapped accident scenario. 

Sub-scenarios 

Personnel 

density p/m 

2 

Earthquake 

early-warning 

Emergency 

drilling 

13 ≤ 3 effective effective 

14 ≤ 3 effective ineffective 

15 > 4 effective ineffective 

16 > 4 ineffective ineffective 

Fig. 13. Posterior probabilities of consequences in stampede and trapped acci- 

dent scenario. 
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oxic and hazardous substances in a refrigeration system is also a way

o prevent poisoning accidents. 

Focusing on casualties, in the first three sub-scenarios, sub-scenario

 caused the most serious casualties, and sub-scenario 9 was more se-

ere than sub-scenario 8. The fire, explosion, and poisoning incidents

aused by the damage to the refrigeration device will be higher than all

ther scenarios regarding impact and fatality rate, which are insepara-

le from the number of harmful substances. However, in the last three

ubscenarios, the casualties caused by damaged electrical devices are

he most serious because the probability of fire and explosion accidents

nduced by damaged electrical devices is extremely high. Therefore, im-

roving the reliability and seismic resistance of refrigeration and elec-

rical equipment is the most effective way to reduce casualties. 

.2.3. Stampede and trapped accident scenario analysis 

Stamped accidents are a secondary cause of serious loss. A scenario

nalysis of this accident is presented in this section. In the Bayesian

etwork, “personnel density ”, “earthquake early warning ”, and “emer-

ency drilling ” were the nodes that affected crowd stampede accidents

 Table 7 ). A trapped personnel accident is a fourth largest accident that

auses serious system loss and has an overlapping parent node with a

tampede accident. Therefore, we also analyzed trapped personnel acci-

ents. This section used the scenario-progressive node-setting mode to

nalyze accidents. 

The results of this analysis are shown in Fig. 13 , which shows the

ransition from sub-scenario 13 to sub-scenario 14 increased the acci-

ent probability by 29.8%. The probability increased by 5.8%, from

ubscenario 14 to subscenario 15. Furthermore, an increase of 30.1%

ccurred in the change from sub-scenario 15 to sub-scenario 16. Thus,

he first and third transitions have a greater impact on the occurrence

f accidents and the possibility of stampede accidents will be reduced

ith effective earthquake early warning and adequate emergency drills.

egarding “personnel trapped ”, the third time has the largest change in

robability (32%), and the second time has the second-highest change

n probability (11.9%). In other words, in addition to improving early
273 
arning capabilities, effective evacuation methods and personnel den-

ity control measures can also reduce the possibility of people being

rapped. The changes in the state of casualties are similar to those in

rowded stampede accidents, which also shows that early warnings and

mergency drills can control casualties to a large extent. It should be

oted that the aforementioned points of concern relating to the possi-

ility of accidents occurring, however, the severity of the accident is

lso worth investigating. 

.3. Safety strategy improvement analysis 

In the previous sensitivity analysis and scenario analysis, the “fire

r explosion ” and stampede accidents were identified as the most vi-

al causes of serious loss. Moreover, the influence of the parent node

n the two accident types was also discussed. However, in actual safety

anagement of large-scale winter sports sites, only a quantitatively de-

ailed prevention plan can guide decision making, which cannot be ob-

ained from the previous sections. Thus, this section explores the optimal

hange ratio of parent nodes to prevent fires or explosions, stampede ac-

idents, and the entire system. Finally, the optimal prevention ratio is

rovided as a reference for real safety management. 

.3.1. Safety strategy improvement analysis of fire or explosion 

The sensitivity analysis shows that the most sensitive nodes to the

fire or explosion ” node are “toxic material leakage ” and “electrical

quipment ”. In fact, the prevention of accidents requires intervention

n disaster bearings. Therefore, refrigeration devices and lifelines that

ause poison leakage must be evaluated. In addition, through scenario

nalysis, the importance of the cause of fire or explosion accidents was

anked as follows: “electrical equipment failure ”, “refrigeration device

ailure ”, and “lifeline damage ”. Simultaneously, the scenario analysis

lso shows that the automatic sprinkler system can impact casualties ef-

ectively. According to the sensitivity and influence degree of the four

arent nodes to the “fire or explosion ” node, the changes to the four

arent nodes are biased. Therefore, the largest degree of change in the

arent node of the fire and explosion accident should be electrical equip-

ent, followed by the refrigeration device, lifeline, and automatic sprin-

ler system. This degree of change was set to be consistent with the

lobal sensitivity results of the “fire and explosion ” node. 

The nature of each node is different, thus, the difficulty of chang-

ng different nodes also differs when the degree of change is the same.

he difficulty of change includes the difficulty of technological break-

hroughs, the difficulty of maintaining equipment stability, and the eco-

omic investment required. Therefore, this article defines the “difficulty

oefficient ” (denoted as “d ”) to describe the diversity in the difficulty of

ntervention between different parent nodes. Furthermore, after inves-

igating the data and interviewing experts, it was determined that the

hange difficulty coefficients of the four facilities of electrical equip-

ent, refrigerating plant, lifeline, and automatic sprinkler were 2.3, 3,

.5, and 1, respectively. 

Taking a total change of 10% as an example, the specific prior

robability changes (denoted as “C ”) of the four nodes are deter-

ined according to the change degree requirements of different par-

nt nodes, as shown in the first column of Table 8 (if the overall

nvestment increases, the probability of fire and explosion accidents

ill increase exponentially when the same node changes the propor-

ion). For Case 1, the amount of change in the prior probability is

 1 ∶ C 2 ∶ C 3 ∶ C 4 = 4 ∶ 3 ∶ 2 . 5 ∶ 0 . 5 
Based on the value of the original prior probability (as shown in

ig. 7 ), the updated prior probabilities for electrical equipment (denoted

s “Ele ”), refrigeration devices (denoted as “Ref ”), lifelines (denoted

s “Lif ”) and automatic sprinkler systems (denoted as “Aut ”) are pre-

ented in columns 3 to 6 of Table 8 . In addition, there are 11 cases in

able 8 where the prior probability of the four parent nodes changes

roportions, and each case has a different difficulty index (denoted
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Table 8 

Improvement cases of fire or explosion. 

Case Change ratio Difficulty index Ele Ref Lif Aut P K 

1 4:3:2.5:0.5 2.825 30.3 31.1 30.1 88.3 19.3 54.52 

2 4:3:2:1 2.7 30.3 31.1 30.6 88.8 19.2 51.84 

3 4:3.5:1.5:1 2.675 30.3 30.6 31.1 88.8 19.2 51.36 

4 4.5:3:1.5:1 2.65 29.8 31.1 31.1 88.8 19.1 50.62 

5 4.5:3.5:1.5:0.5 2.75 29.8 30.6 31.1 88.3 19.2 52.8 

6 5:2.5:1.5:1 2.625 29.3 31.6 31.1 88.8 19.2 50.4 

7 5.5:2:1.5:1 2.6 28.8 32.6 31.1 88.8 19.2 49.92 

8 5.5:2.5:1.5:0.5 2.7 28.8 31.6 31.1 88.3 19.1 51.57 

9 6:2.5:1:0.5 2.65 28.3 31.6 31.6 88.3 19.1 50.62 

10 6.5:2:1:0.5 2.625 27.8 32.1 31.6 88.3 19.1 50.14 

11 7:1.5:1:0.5 2.6 27.3 32.6 31.6 88.3 19.0 49.4 
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𝐾  
s “D ”). The definition of the difficulty index is given in Eq. (1) . 

 𝑗 = 

4 ∑
𝑖 =1 

𝐶 𝑖 × 𝑑 𝑖 𝑗 = 1 , 2 , … , 11 (1A) 

After updating the prior probabilities of the four parent nodes and

utputting the posterior probability of fire and explosion accidents, de-

oted as “P ” in Table 8 , this paper introduces a comprehensive evalu-

tion index “K ” to evaluate the optimization of 11 different schemes,.

he comprehensive evaluation index is defined as the product of the dif-

culty index (D) and posterior probability (P) of the fire and explosion

odes ( Eq. (2) ). 

 𝑗 = 𝐷 𝑗 × 𝑃 𝑗 𝑗 = 1 , 2 , … , 11 (2A) 

When the difficulty index and accident probability are considered

qually important, the lower the comprehensive evaluation index, the

etter the optimization effect. According to Table 8 , the comprehensive

valuation index of case 11 is the minimum, the accident probability

s the lowest, and the difficulty index is also the lowest. Thus, it is the

ptimal ratio to prevent accidents: C 1 ∶ C 2 ∶ C 3 ∶ C 4 = 7 ∶ 1 . 5 ∶ 1 ∶ 0 . 5 . 
Based on the above results, disaster-bearing and disaster prevention

easures in the domino chains where the fire and explosion nodes are

ocated are prevented and controlled. As shown in Table 8 , 70% of all the

fforts (including manpower, material, and financial resources) should

e assigned to electrical equipment, 15% to refrigeration equipment,

0% to changing the lifeline system, and 5% to the automatic sprinkler

ystem. 

.3.2. Safety strategy improvement analysis of stampede accident 

Regarding stampede accidents, there are four parent nodes in a

ayesian network. However, because the magnitude cannot be changed,

he probability of “personnel density ”, “earthquake early warning ”, and

emergency drills ” can be intervened. It can be seen from the sensi-

ivity analysis and scenario analysis above that the early warning of

arthquakes has the most significant impact on stampede accidents, fol-

owed by emergency drills, and finally, the density of people. There-

ore, the amount of change in the prior probability should also follow

he above principles to ensure that the amount of change in the earth-

uake early warning is the largest, followed by emergency drills and

ersonnel density. In this section, we consider the a priori probability

hange of 10% as an example. According to the above principles, all

he possible change ratios of the three parent nodes are listed in the

rst column of Table 9 , and the updated posterior probabilities of the

hree parent nodes are shown in the third to fifth columns of Table 9 . In

ddition, the difficulty coefficients of “earthquake early warning ” (de-

oted as “E-w ”), “emergency drilling ” (denoted as “E-d ”), and “person-

el density ” (denoted as “P-d ”) are 7, 1, 2, respectively. The calculation

esults of the difficulty index (D) are listed in the second column of

able 9 . The comprehensive evaluation index (K) after outputting the

osterior probability of a stampede accident is shown in Table 9 . By

omparing the comprehensive evaluation indexes of the 11 schemes,
274 
t is known that the lowest evaluation index is K 

∗ = 144.99. Therefore,

he change ratio of the prior probability of the parent node correspond-

ng to this index was the optimal change path. As shown in case 11 in

able 9: C 1 ∶ C 2 ∶ C 3 ∶ C 4 = 5 ∶ 4 . 5 ∶ 0 . 5 . 
By combining the above analysis results, the actual prevention and

ontrol of stampede accidents show that the best tendency to change

s: 50% of the effort (including manpower, material, and financial re-

ources) being used to improve the earthquake early warning capa-

ility, 45% being used to implement emergency drills, and the re-

aining 5% used to control the density of personnel. Under such

hanges, the effect of preventing and controlling stampede accidents is

ptimal. 

.3.3. Safety strategy improvement analysis of overall network 

The first two sections analyze the optimization methods for fire or

xplosion’ and stampede accidents. This section aims to optimize the

ntire network based on the optimal change ratio of the priority prob-

bility obtained in the first two sections. Although the two types of ac-

idents occur in a Bayesian network, they are relatively independent

f each other. Therefore, this study determines the optimal change ra-

io under the coupling effect of the two accidents. This section selects

he two representative nodes of “earthquake early warning ” and “power

quipment ” as the coupled connection nodes. Taking a change of 20%

s an example, the prior probabilities of the two representative nodes

re adjusted separately, and the other nodes are adjusted accordingly to

he optimal change ratio obtained above. Then, all possible allocation

atios are shown in the first column of Table 10 . Furthermore, the values

re assigned according to the proportion of change in Table 10 , and the

rior probabilities of the seven parent nodes are updated. Thereafter,

he loss status (i.e., probability of unacceptable states) of each case is

etermined (the values of “casualty ” (denoted as “C ”), “environmental

ollution ” (denoted as “P ”), “social impact ” (denoted as “S ”) and “eco-

omic loss ” (denoted as “E ”) in Table 10 . Considering that the nature of

ach loss node is different, this study stipulates the weights of the four

oss nodes. Among the four types of losses, casualties are the most im-

ortant, followed by economic loss, environmental pollution, and social

mpacts. Therefore, the weight ratios of “casualty ” (w 1 ), “environmen-

al pollution ” (w 2 ), “social impact ” (w 3 ), and “economic loss ” (w 4 ) are

et to: w 1 ∶ w 2 ∶ w 3 ∶ w 4 = 5 ∶ 1 . 5 ∶ 1 ∶ 2 . 5 . The weighted calculation results

f the four types of loss nodes are referred to as the comprehensive loss

ndex, denoted as “L ” in Table 10 . 

Further, the difficulty of changing two representative nodes was

ompared and the ratio of the two change coefficients was set to 2:3.

herefore, the remaining five nodes were adjusted according to the

ptimal change ratio to obtain the coupling optimization prior prob-

bility change ratio: d 1 ∶ d 2 ∶ d 3 ∶ d 4 ∶ d 5 ∶ d 6 ∶ d 7 = 2 ∶ 2 7 ∶ 
4 
7 ∶ 3 ∶ 

18 
5 ∶ 

21 
5 ∶ 

6 
5 . The

ifficulty index for each program was calculated using Eq. (1) . Sub-

equently, the comprehensive evaluation index was calculated using

q. (3) . 

 

′
𝑗 
= ( 𝐿 𝑗 ∗ 𝐷 𝑗 )∕100 𝑗 = 1 , 2 , … , 9 (3A)
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Table 9 

Optimization cases of stampede accident. 

Case Change ratio Difficulty index E-w E-d P-d probability K 

1 4:3.5:2.5 3.65 76.4 91.1 70.2 36.3 132.495 

2 5:3:2 4.2 77.4 90.6 69.7 36.1 151.62 

3 5:3.5:1.5 4.15 77.4 91.1 69.2 36 149.4 

4 5:4:1 4.1 77.4 91.6 68.7 35.9 147.19 

5 5:4.5:0.5 4.05 77.4 92.1 68.2 35.8 144.99 

6 6:3:1 4.7 78.4 90.6 68.7 35.8 168.26 

7 6:3.5:0.5 4.65 78.4 91.1 68.2 35.7 166.005 

8 6:2.5:1.5 4.75 78.4 90.1 69.2 35.9 170.525 

9 7:2:1 5.3 79.4 89.6 68.7 35.7 189.21 

10 7:2.5:0.5 5.25 79.4 90.1 68.2 35.6 186.9 

11 8:1.5:0.5 5.85 80.4 89.1 68.2 35.5 207.675 

Table 10 

Optimization cases of overall network. 

Case Change ratio D E-w E-d P-d Ele Ref Lif Aut C P S E L K’ 

1 2:1.8:0.2:18: 3.9:2.6:1.3 85.15 74.4 89.4 67.9 16.3 30.2 30 89.1 33.4 33.9 37.6 28.4 32.65 27.80 

2 4:3.6:0.4:16: 3.4:2.3:1.1 80.48 76.4 91.2 68.1 18.3 30.7 30.3 88.9 33.2 34.5 37.4 28.8 32.72 26.33 

3 6:5.4:0.6:14: 3:2:1 76.29 78.4 93 68.3 20.3 31.1 30.6 88.8 33 35.1 37.1 29.3 32.8 25.02 

4 8:7.2:0.8:12: 2.6:1.7:0.9 72.09 80.4 94.8 68.7 22.3 31.5 30.9 88.7 32.7 35.8 36.8 29.7 32.83 23.66 

5 10:7.2:1:10: 2.1:1.4:0.7 66.91 82.4 100.2 68.9 24.3 32 31.2 88.5 32.3 36.4 36.2 30.2 32.78 21.93 

6 12:7.2:1.2:8: 1.7:1.1:0.6 42.20 84.4 102 69.1 26.3 32.4 31.5 88.4 32.3 37 36.1 30.6 32.96 13.91 

7 14:7.2:1.4:6: 1.3:0.9:0.4 57.80 86.4 103.8 70.1 28.3 32.8 31.7 88.2 32.2 37.6 35.9 31 33.08 19.12 

8 16:7.2:1.6:4: 0.9:0.6:0.3 53.09 88.4 105.6 70.3 30.3 33.2 32 88.1 32.1 38.2 35.8 31.4 33.21 17.63 

9 18:7.2:1.8: 2:0.4:0.3:0.1 47.91 90.4 118.2 70.5 32.3 33.7 32.3 87.9 32.1 38.8 35.7 31.9 33.42 16.01 
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As the comprehensive evaluation index is the overall measure-

ent value of the difficulty of the scheme and the probability of

ccidents, the expected scheme can be considered low in difficulty

nd probability. When comparing all schemes in Table 10 , the mini-

um comprehensive index is K 

∗ = 36.66. Therefore, the optimal a pri-

ri probability adjustment ratio of the overall network is from Case 6:

 1 ∶ C 2 ∶ C 3 ∶ C 4 ∶ C 5 ∶ C 6 ∶ C 7 = 12 ∶ 7 . 2 ∶ 1 . 2 ∶ 8 ∶ 1 . 7 ∶ 1 . 1 ∶ 0 . 6 . 
When considering the Bayesian network system of all large-scale

inter sports sites, based on the above analysis results, we see that

he focus should be on improving earthquake early warning capabil-

ties, power equipment, and emergency drills. Specifically, 37.7% of

ll available efforts (including manpower, material, and financial re-

ources) should be used to improve earthquake early warning capabili-

ies, of which 25.2% of efforts should be used to improve the reliability

f electrical equipment, and 22.6% of energy should be used to practice

mergency drills. 

. Conclusion 

In this study, a NAEA model is proposed to analyze the domino ac-

ident chains induced by natural disasters at large-scale winter sports

ites. Using an earthquake as an example, sensitivity analysis, scenario

nalysis, and safety strategy improvement analysis for large-scale win-

er sports sites were carried out by integrating fuzzy set theory and the

ayesian network. The main conclusions are as follows: 

(a) The NAEA model was established based on the public safety trian-

le theory, disaster chain, and domino theory to analyze typical Natech

vents and safety events caused by natural disasters. By determining

he hazard carrier and considering disaster prevention and mitigation

easures, the possible accidents, evolution chains, and chain-broken

easures are determined. 

(b) The results of the sensitivity analysis indicate that “Stampede

ccident ” and “Fire or explosion ” are the dominant causes of significant

oss, which should be given more attention to improving early warning.

(c) When the automatic sprinkler system fails in large-scale winter

ports sites, the posterior probability of fire and explosion accidents

ill increase from 17% to 44%, and that of poisoning accidents from

3.4% to 56.9%. Simultaneously, the number of serious casualties also
275 
ncreases by 12.7 %. Therefore, the reliability of automatic spraying de-

ices should be a priority. 

(d) To quantitatively optimize the allocation of safety resources

manpower, material resources, and financial resources), a safety strat-

gy improvement analysis of different targets was conducted by com-

rehensively considering the difficulty and effect of changing the parent

odes. For example, 70% of all the efforts (including manpower, mate-

ial, and financial resources) should be assigned to electrical equipment,

5% to refrigeration equipment, 10% to changing the lifeline system,

nd 5% to the automatic sprinkler system. 
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