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Sequential decision making, commonly formalized as optimization of a Markov Decision

Process, is a key challenge in artificial intelligence. Two successful approaches to MDP

optimization are reinforcement learning and planning, which both largely have their own

research communities. However, if both research fields solve the same problem, then we

might be able to disentangle the common factors in their solution approaches. Therefore,

this paper presents a unifying algorithmic framework for reinforcement learning and

planning (FRAP), which identifies underlying dimensions on which MDP planning and

learning algorithms have to decide. At the end of the paper, we compare a variety of well-

known planning, model-free and model-based RL algorithms along these dimensions.

Altogether, the framework may help provide deeper insight in the algorithmic design

space of planning and reinforcement learning.

Keywords: planning, reinforcement learning, model-based reinforcement learning, framework, overview,

synthesis

1. INTRODUCTION

Sequential decision making is a key challenge in artificial intelligence (AI) research. The problem,
commonly formalized as a Markov Decision Process (MDP) (Bellman, 1954; Puterman, 2014),
has been studied in different research fields. The two prime research directions are reinforcement
learning (RL) (Sutton and Barto, 2018), a subfield of machine learning, and planning (also known
as search), of which the discrete and continuous variants have been studied in the fields of
artificial intelligence (Russell and Norvig, 2016) and control theory (Bertsekas, 2012), respectively.
Departing from different assumptions both fields have largely developed their own methodology,
which has cross-pollinated in the field of model-based reinforcement learning (Sutton, 1990;
Hamrick, 2019; Moerland et al., 2020a; Plaat et al., 2021).

However, a unified view on both fields, including how their approaches overlap or differ,
lacks in literature. For example, the classic AI textbook by Russell and Norvig (2016) discusses
(heuristic) search methods in Chapters 3, 4, 10, and 11, while reinforcement learning methodology
is separately discussed in Chapter 21. Similarly, the classic RL textbook by Sutton and Barto
(2018) does discuss a variety of the topics in our framework, but never summarizes these
as a single algorithmic space. Moreover, while the book does extensively discuss the relation
between reinforcement learning and dynamic programming methods, it does not focus on the
relation with the many other branches of planning literature. Therefore, this paper introduces
a Framework for Reinforcement learning and Planning (FRAP) (Table 2), which attempts
to identify the underlying algorithmic space shared by RL and MDP planning algorithms.
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We show that a wide range of algorithms, from Q-learning
(Watkins and Dayan, 1992) to Dynamic Programming (Bellman,
1954) to A⋆ (Hart et al., 1968), fit the framework, simply
making different decisions on a number of subdimensions of the
framework (Table 7).

We need to warn experienced readers that many of the
individual topics in the paper will be familiar to them. However,
the main contribution of this paper is not the discussion of
these ideas themselves, but in the systematic structuring of these
ideas into a single algorithmic space (Algorithm 1). Experienced
readers may therefore skim over some sections more quickly,
and only focus on the bigger integrative message. As a second
contribution, we hope the paper points researchers from one of
both fields toward relevant literature from the other field, thereby
stimulating cross-pollination. Third, we note that the framework
is equally useful for researchers from model-free RL, since to the
best of our knowledge “a framework for reinforcement learning”
does not exist in literature either (“a framework for planning”
does, see Related Work). Finally, we hope the paper may also
serves an educational purpose, for example for students in a
University course, by putting algorithms that are often presented
in different courses into a single perspective.

We also need to clearly demarcate what literature we do
and do not include. First of all, planning and reinforcement
learning are huge research fields, and the present paper is
definitely not a systematic survey of both fields (which would
likely require multiple books, not a single article). Instead, we
focus on the core ideas in the joint algorithmic space and
discuss characteristic, well-known algorithms to illustrate these
key ideas. For the planning side of the literature, we exclusively
focus on planning algorithms that search for optimal behavior
in an MDP formulation, which for example excludes all non-
MDP planning methods, as well as “planning as satistifiability”
approaches, which attempt to verify whether a path from
start to goal exists at all (Kautz et al., 1992, 2006). For the
reinforcement learning side of the literature, we do not focus
on approaches that treat the MDP formulation as a black-box
optimization problem, such as evolutionary algorithms (Moriarty
et al., 1999), simulated annealing (Atiya et al., 2003) or the cross-
entropy method (Mannor et al., 2003). While these approaches
can be successful (Salimans et al., 2017), they typically only
require access to an evaluation function, and do not use
MDP specific characteristics in their solution (on which our
framework is built).

The remainder of this article is organized as follows. After
discussing Related Work (Section 2), we first formally introduce
the MDP optimization setting (Section 3.1), the way we may
get access to the MDP (Section 3.2), and give definitions of
planning and reinforcement learning (Section 3.3). The next
section provides brief overviews of literature in planning (Section
4.1) and reinforcement learning (Section 4.2). Together, Sections
3 and 4 should establish common ground to build the framework
upon. The main contribution of this paper, the framework,
is presented in Section 5, where we systematically discuss
each consideration in the algorithmic space. Finally, Section 6
illustrates the applicability of the framework, by comparing a
range of planning and reinforcement learning algorithms along

the framework dimensions, and identifying interesting directions
for future work.

2. RELATED WORK

The basis for a framework approach to planning (and
reinforcement learning) is the FIND-and-REVISE scheme by
Bonet and Geffner (2003a). FIND-and-REVISE specifies a
general procedure for asynchronous value iteration, where we
first find a new node that requires updating, and subsequently
revise the value estimate of that node based on interaction with
the MDP. Our framework follows as similar pattern, where we
repeatedly find a new state (a root that requires updating), find
interesting subsequent states to compute an improved value
estimate for this state, and subsequently use this estimate to
improve the solution. Our framework is also partially inspired
by the reinforcement learning textbook of Sutton and Barto
(2018), which provides an unified view on the back-up patterns in
planning and reinforcement learning (regarding their depth and
width), and thereby an integrated view on dynamic programming
and reinforcement learning methodology. Similar ideas return
in our framework, but we extend them with several additional
dimensions, and to a wide variety of other planning literature.

However, the main inspiration of our work is trial-based
heuristic tree search (THTS) (Keller and Helmert, 2013; Keller,
2015), a framework that subsumed several planning algorithms,
like Dynamic Programming (Bellman, 1954), MCTS (Kocsis and
Szepesvári, 2006) and heuristic search (Pearl, 1984) methods.
THTS shows that a variety of planning algorithms can indeed
be unified in the same algorithmic space, which we believe
provided a lot of insight in the commonalities of these algorithms.
Our present framework can be seen as an extension and
modification of these ideas to also incorporate literature from
the reinforcement learning community. Compared to THTS, we
first of all add several new categories to the framework, such
as “solution representation” and “update of the solution,” to
accommodate for the various ways in which planning and RL
methods differ in the way they store and update the outcome
of their back-ups. Second, THTS purely focused on the online
planning setting, while we incorporate a new dimension “set
root state” that also allows for different prioritization schemes
in offline planning and learning. Third, we make several smaller
adjustments and extensions, such as splitting up the back-
up dimension in several subdimensions, and using a different
definition of the concept of a trial (which we define as a single
forward sequence of states and actions), which allows us to bound
the computational effort per trial. This also leads to a new “budget
per root” dimension in the framework, which now specifies the
number of trials (width) of the unfolded subtree in the local
solution. We nevertheless invite the reader to also read the THTS
papers, since they are a useful companion to the present paper.

3. DEFINITIONS

In sequential decision-making, formalized as Markov Decision
Process optimization, we are interested in the following problem:
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Algorithm 1: FRAP pseudocode. In planning, there is no global solution, and the orange lines therefore disappear (and g therefore
drops from all functions as well). In model-free RL there are restrictions on the blue lines: we can only select actions and next states
in a single forward trace per root, which indirectly restricts the trial budget per root (to the number of target depths we reweight
over within the trace, which is often set to one) and the way we set the next root (which either has to be a next state we reached
within the trial or a reset to an initial state of the MDP). In model-based RL, all elements of the framework can be active.

Input: MDPM, root_budget (number of root states), trial_budget (number of trials per root), dmax() (rule for maximum depth
of trial).

1: g← INIT_GLOBAL_SOLUTION() ⊲ Section 5.1
2: s← SET_FIRST_ROOT() ⊲ Section 5.2
3: l← INIT_LOCAL_SOLUTION() ⊲ Section 5.1
4: while root_budget left and not converged:
5: while trial_budget left: ⊲ Section 5.3
6: l← VISIT_STATE(s, l, g)
7: g← UPDATE_GLOBAL_SOLUTION(l) ⊲ Section 5.7
8: s← SET_NEXT_ROOT(l, g) ⊲ Section 5.2
9: l← INIT_LOCAL_SOLUTION(l) ⊲ Section 5.1

10: VISIT_STATE(s, l, g):
11: if s is terminal:
12: V̂(s)← 0
13: elif s at dmax(l): ⊲ Section 5.3
14: V̂(s)← BOOTSTRAP(s, g) ⊲ Section 5.5
15: else:
16: a← SELECT_ACTION(s, l, g) ⊲ Section 5.4
17: l ← VISIT_ACTION(s, a, l, g)
18: V̂(s)← BACKUP_POLICY(s, l, g) ⊲ Section 5.6
19: l← UPDATE_LOCAL_SOLUTION(l, V̂(s)) ⊲ Section 5.7
20: return l

21: VISIT_ACTION(s, a, l, g):
22: if (s, a) at dmax(l): ⊲ Section 5.3
23: Q̂(s, a)← BOOTSTRAP(s, a, g) ⊲ Section 5.5
24: else:
25: T(s′|s, a),R(s, a, s′)← QUERY_MDP(s, a) ⊲ Section 3.2
26: s′, r← SAMPLE_OR_SELECT(T(s′|s, a),R(s, a, s′)) ⊲ Section 5.4
27: l← VISIT_STATE(s′, l, g)
28: Q̂(s, a)← BACKUP_DYNAMICS(s, a, r, l) ⊲ Section 5.6
29: l← UPDATE_LOCAL_SOLUTION(l, Q̂(s, a)) ⊲ Section 5.7
30: return l

given a (sequence of) state(s), what next action is best to choose,
based on the criterion of highest cumulative pay-off in the future.
More formally, we aim for context-dependent action prioritization
based on a (discounted) cumulative reward criterion. This is a core
challenge in artificial intelligence research, as it contains the key
elements of the world: there is sensory information about the
environment (states), we can influence that environment through
actions, and there is some notion of what is preferable, now
and in the future. The formulation can deal with a wide variety
of well-known problem instances, like path planning, robotic
manipulation, game playing and autonomous driving.

3.1. Markov Decision Process
The formal definition of a Markov Decision Process (MDP)
(Puterman, 2014) is a tuple M = {S,A, T,R, γ , p0(s)}. The

environment consists of a transition function T :S × A → p(S)
and a reward function R :S × A × S → R. At each timestep
t we observe some state st ∈ S and pick an action at ∈ A.
Then, the environment returns a next state st+1 ∼ T(st+1|st , at)
and associated scalar reward rt = R(st , at , st+1). The first state is
sampled from the initial state distribution p0(s), while γ ∈ [0, 1]
denotes a discount parameter.

The state space can either have an atomic, factorized,
or structured form (Russell and Norvig, 2016). Atomic state
spaces treat each state as a separate, discrete entity, without
the specification of any additional relation between states. In
contrast, factorized states consist of a vector of attributes, which
thereby provide a relation between different states (i.e., the
attributes of states may partially overlap). Factorized state spaces
allow for generalization between states, an important feature of
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learning algorithms. Finally, structured state spaces consist of
factorized states with additional structure beyond simple discrete
or continuous values, for example in the form of a symbolic
language. In this work, we primarily focus on settings with atomic
or factorized states.

The agent acts in the environment according to a policy
π :S → p(A). In the search community, a policy is also known
as a contingency plan or strategy (Russell and Norvig, 2016). By
repeatedly selecting actions and transitioning to a next state, we
can sample a trace through the environment. The cumulative
return of the trace is denoted by: Jt =

∑K
k=0(γ )

k · rt+k, for a trace
of length K. For K = ∞ we call this the infinite-horizon return.
The action-value function Qπ (s, a) is defined as the expectation
of this cumulative return given a particular policy π :

Qπ (s, a) =̇ Eπ ,T

[

K
∑

k=0

γ k · rt+k

∣

∣

∣
st = s, at = a

]

(1)

This equation can be written in a recursive form, better known as
the Bellman equation:

Qπ (s, a) = Es′∼T(·|s,a)

[

R(s, a, s′)+ γ Ea′∼π(·|s′)

[

Qπ (s′, a′)
]

]

(2)

Our goal is to find a policy π that maximizes our expected return
Qπ (s, a):

π⋆ = argmax
π

Qπ (s, a) (3)

In the planning and control literature, the above problem is
typically formulated as a cost minimization problem (Bellman,
1957). That formulation is interchangeable with our presentation
by negating the reward function. The formulation also contains
stochastic shortest path (SSP) problems (Bertsekas and Tsitsiklis,
1991), which are a common setting in the planning literature.
SSP problems are MDP specifications with negative rewards
on all transitions and particular terminal goal states, where we
attempt to reach the goal with as little cost as possible. The
MDP specification induces a graph, which is in the planning
community commonly referred to as an AND-OR graph: we
repeatedly need to choose between actions (OR), and then take
the expectation over the next states (AND). In a search tree these
two operations are sometimes referred to as decision nodes (OR)
and chance nodes (AND), respectively.

3.2. Access to the MDP Dynamics
A crucial aspect in MDP optimization is the way we can interact
with the MDP, i.e., the type of access we have to the transition and
reward function. We will here focus on the type of access to the
transition function, since the type of access to the reward usually
mimics the type of access to the transition function. All MDP
algorithms at some point query the MDP transition function at a

FIGURE 1 | Illustration of different types of access to the MDP transition

dynamics. Rows: We may either have reversible/settable access to the MDP

dynamics, in which case we can query the MDP on any desired state, or

irreversible/resettable access to the MDP, in which case we have to make the

next query at the resulting state, or we can reset to a state from the initial state

distribution. Any type of reversible/settable access to the MDP is usually called

a (known) model. Columns: On each query to the MDP dynamics, we may

either get access to the full distribution of possible next states

(descriptive/declarative access), or only get a single sample from this distribution

(generative access). Note that we could theoretically think of irreversible

descriptive access, in which we do see the probabilities but need to continue

from the next state, but we are unaware of such a model in practice.

particular state-action pair (s, a), and get information back about
the possible next state(s) s′ and associated reward R(s, a, s′).
However, there are differences in the order in which we can make
queries, and in the type of information we get back after a query
(Kearns et al., 2002; Keller and Helmert, 2013).

Regarding the first consideration, reinforcement learning
methods often assume we need to make our next query at the
state that resulted from our last query, i.e., we have to move
forward (similar to the way humans interact with the real world).
We propose to call this irreversible access to the MDP, since we
cannot revert a particular action. In practice, RL approaches often
assume that we can reset at any particular moment to a state
sampled from the initial state distribution, so wemay also call this
resettable access to theMDP. In contrast, planning methods often
assume we can query the MDP dynamics in any preferred order
of state-action pairs, i.e., we can set the query to any state we like.
This property also allows us to repeatedly plan forward from the
same state (like humans plan in their mind), which we therefore
propose to call reversible access to the MDP dynamics. The
distinction between reversible/settable and irreversible/resettable
access is visualized in the rows of Figure 1. Reversible/settable
access to the MDP dynamics is usually referred to as a (known)
model.

Amodel is a type of access to theMDP dynamics that can be queried

in any preferred order of state-action pairs.

A second important distinction concerns the type of information
we get about the possible next states. A descriptive/declarative
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model provides us the full probabilities of each possible next
state, i.e., the entire distribution of T(s′|s, a), which allows us
to fully evaluate the expectation over the dynamics in the
Bellman equation (Equation 2). In contrast, generative access
only provides us with a sample from the next state distribution,
without access to the true underlying probabilities (we may of
course approximate the expectation in Equation (2) through
repeated sampling). These two options are displayed in the
columns of Figure 1).

Together, the two considerations lead to three types of access
to the MDP dynamics, as shown in the cells of Figure 1.
Reversible descriptive access (top-left) is for example used in
Value Iteration (Bellman, 1957), reversible generative access (top-
right) is used in Monte Carlo Tree Search (Kocsis and Szepesvári,
2006), while irreversible generative access (bottom-right) is used
in Q-learning (Watkins and Dayan, 1992). The combination
of irreversible and descriptive access, in the bottom-left of
Figure 1), is theoretically possible, but to our knowledge does
not occur in practice. Note that there is also a natural ordering
in these types of MDP access: reversible descriptive access gives
most information and freedom, followed by reversible generative
access (since we can always sample from distributional access),
and then followed by irreversible generative access (since we can
always restrict the order of sampling ourselves). However, the
difficulty to obtain a particular type of access follows the opposite
pattern: descriptive models are typically hardest to obtain, while
a irreversible generative access is by definition available through
real-world interaction.

3.3. Definitions of Planning and
Reinforcement Learning
We are now ready to give formal definitions of MDP planning
and reinforcement learning. While there are various definitions
of both fields in literature (Russell and Norvig, 2016; Sutton
and Barto, 2018), these are typically not specific enough
to discriminate planning from reinforcement learning. One
possible distinction is based on the type of access to the MDP
dynamics: planning approaches had settable/reversible access to
the dynamics (“a known model”), while reinforcement learning
approaches had irreversible access (“an unknown model”).
However, there is a second possible distinction, based on the
coverage or storage of the solution. This distinction seems known
to many researchers, but is seldomly expicitly discussed in
research papers. On the one hand, planning methods tend to
use local solution representations: the solution is only stored
temporarily, and usually valid for only a subset of all states (for
example repeatedly simulating forward from a current state). In
contrast, reinforcement learning approaches tend to use a global
solution: a permanent storage of the solution which is typically
valid for all possible states.

A local solution temporarily stores solution estimates for a subset of

all states.

A global solution permanently stores solution estimates for all

states.

TABLE 1 | Categorization of planning and reinforcement learning, based on 1) the

presence of a model (settable/reversible access to the MDP to the MDP

dynamics), and 2) the presence of a global/learned solution.

Model Global solution

Planning + -

Reinforcement learning +/- +

Model-free reinforcement learning - +

Model-based reinforcement learning + +

The focus of RL methods on global solutions is easy to
understand: without a model we cannot repeatedly simulate
forward from the same state, and therefore our best bet is to
store a solution for all possible states (we can never build a local
solution beyond size one, since we have to move forward). The
global solutions that we gradually update are typically referred to
as learned solutions, which connects reinforcement learning to
the broader machine learning literature.

Interestingly, our two possible distinctions between planning
and reinforcement learning (model vs. no model, and local vs.
global solution) do not always agree. For example, both Value
Iteration (Bellman, 1966) and AlphaZero (Silver et al., 2018)
combine a global solution (which would make it reinforcement
learning) with a model (which would make it planning). Indeed,
Dynamic Programming has long been considered a bridging
technique between planning and reinforcement learning. We
propose to solve this issue by considering these borderline cases
as model-based reinforcement learning (Samuel, 1967; Sutton,
1990; Moerland et al., 2020a), and thereby let the global vs. local
distinction dominate.

Planning is a class of MDP algorithms that 1) use a model and 2)

only store a local solution.

Reinforcement learning is a class of MDP algorithms that store a

global solution.

The definition of reinforcement learning may then be further
partitioned into model-free and model-based RL:

Model-free reinforcement learning is a class ofMDP algorithms that

1) do not use a model, and 2) store a global solution.

Model-based reinforcement learning is a class of MDP algorithms

that 1) use a model, and 2) store a global solution.

These definitions are summarized in Table 1. We explicitly
introduce these definitions since the boundaries between both
fields have generally remained vague, and a clear separation (for
example between local and global solutions) will later on be useful
in our framework as well.

4. BACKGROUND

Both planning and reinforcement learning are mature research
fields with a large corpus of literature. As mentioned in the
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Introduction, the intention of this paper is not to provide full
surveys of these fields. Instead, the aim of this section is to
provide a quick overview of research directions in both fields,
pointing into the directions of relevant literature.

4.1. Planning
Planning (or search) is a large research field within artificial
intelligence (LaValle, 2006; Russell and Norvig, 2016). A classic
approach in MDP planning is dynamic programming (DP),
of which value iteration (VI) (Bellman, 1966) and policy
iteration (PI) (Howard, 1960) are classic examples. DP algorithms
sweep through the entire state space, repeatedly solving small
subproblems based on the Bellman optimality equation. Dynamic
programming is thereby a bridging technique between planning
and reinforcement learning (since it combines a model and a
global representation of the solution), and would under our
definitions be a form of model-based reinforcement learning.
While guaranteed to converge on the optimal value function,
we typically cannot store the entire solution in tabular form
due to the curse of dimensionality (Bellman, 1966). Sometimes
tables may be stored more efficiently, for example through binary
decision diagrams (BDD) (Akers, 1978; Bryant, 1992), or we can
battle the curse of dimensionality through approximate solutions
(Powell, 2007; Bertsekas, 2011), which we further discuss in the
section on reinforcement learning.

Most planning literature has focused on local solution derived
from traces sampled from some start state, which are often
represented as trees or graphs. Historically this starts with
research on uninformed search, which studied the order of node
expansion in a search tree, like breadth-first search (BFS) (Moore,
1959), depth-first search (Tarjan, 1972), and iterative deepening
(Slate and Atkin, 1983). However, most planning algorithms
follow a pattern of best-first search, where we next expand the
node which currently seems most promising. An early example
is Dijkstra’s algorithm (Dijkstra, 1959), which next expands the
node with the current lowest path cost. Dijkstra also introduced
the notions of a frontier (or open set), which is the set of states
on the border of the planning tree/graph that are still candidate
for expansion, and of an explored states (or closed set), which is
the set of states that have already been expanded. By tracking
a frontier and explored set we turn a tree search into a graph
search, since it prevents the further expansion of redundant paths
(multiple action sequences leading to the same state).

We may further improve planning performance through the
use of heuristics (Simon and Newell, 1958), which in planning
are often functions that provide a quick, optimistic estimate
of the value of a particular state. When we apply best-first
search to the sum of the path cost and admissible heuristic, we
arrive at the well-known search algorithm A⋆ (Hart et al., 1968),
which is applicable to deterministic domains. The same approach
was extended to the stochastic MDP setting as AO⋆ (Pohl,
1970; Nilsson, 1971). Another successful idea in the (heuristic)
planning literature is the use of labeling to mark a particular
state as solved (not requiring further expansion) when its value
estimate is guaranteed to have converged (which happens when
the state is either terminal or all of its children have been solved).
Labeling can be challenging due to the potential presence of loops

(which we can expand indefinitely), for which LAO⋆ (Hansen
and Zilberstein, 2001) further extends the AO⋆ algorithm. A
survey of heuristic search is provided by Pearl (1984), while
Kanal and Kumar (2012) discuss the relation of these methods to
branch-and-bound search, which has been popular in operations
research.

A bridging algorithm from the planning to the learning
community was learning real-time A⋆ (LRTA⋆) (Korf, 1990),
which started to incorporate learning methodology in planning
methods (and was as such one of the first model-based RL
papers). This approach was later extended to the MDP setting as
Real-time Dynamic Programming (RTDP) (Barto et al., 1995),
which performs DP updates on traces sampled from a start state
distribution. Labeled-RTDP (Bonet and Geffner, 2003b) extends
RTDP through a labeling mechanism for solved states, with
further improvements of RTDP provided by McMahan et al.
(2005), Smith and Simmons (2006), and Sanner et al. (2009).

Many planning algorithms suffer from high-memory
requirements, since it is typically infeasible to store all
possible states in memory. Several research lines have therefore
investigated planning algorithms that have reduced memory
requirements. Some well-known examples are iterative deepening
depth-first search (Slate and Atkin, 1983), iterative deepening A⋆

(Korf, 1985), Simplified Memory-Bounded A⋆ (SMA⋆) (Russell,
1992) and recursive best-first search (RBFS) (Korf, 1993). For a
more extensive discussion of (heuristic) MDP planning methods
we refer the reader to Kolobov (2012) and Geffner and Bonet
(2013).

A different branch in planning research estimates action
values based on statistical sampling techniques, better known as
sample-based planning. A classic approach isMonte Carlo search
(MCS) (Tesauro and Galperin, 1997), in which we sample a
number of traces for each currently available action and estimate
their value as the mean return of these traces. Sample-based
planning was further extended to sparse sampling (Kearns et al.,
2002), which formed the basis for Monte Carlo Tree Search
(MCTS) (Coulom, 2006; Kocsis and Szepesvári, 2006; Browne
et al., 2012). While MCS only tracks statistics at the root of
the tree search, MCTS recursively applies the same principle at
deeper levels of the tree as well. Exploration and exploitation
within the tree are typically based on variants of the upper
confidence bounds (UCB) rule (Auer et al., 2002). MCTS for
example showed early success in the game of Go (Gelly and
Wang, 2006). In the control community, there is a second branch
of sample-based planning known as rapidly-exploring random
trees (RRTs) (LaValle, 1998). In contrast to MCTS, which samples
in action space to construct a tree, RRTs sample in state space and
try to find an action that connects the new sampled state to the
existing explicit tree in memory.

Planning in continuous state and actions spaces, like in
robotics, is typically referred to as optimal control (Lewis et al.,
2012; Levine, 2018). Here, dynamics functions are often smooth
and differentiable, and many algorithms therefore use a form
of gradient-based planning. In this case, we directly optimize
the policy for the cumulative reward objective by differentiating
through the dynamics function. When the dynamics model is
linear and the reward function quadratic, the solution is actually
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available in analytical form, better known as the linear-quadratic
regulator (LQR) (Anderson and Moore, 2007). In practice,
dynamics are often not linear, but this can be partly mitigated
by repeatedly linearizing the dynamics around the current state
[known as iterative LQR (iLQR) Todorov and Li, 2005]. In the
RL community, gradient-based planning is often referred to as
value gradients (Heess et al., 2015). Alternatively, we can also
write the MDP problem as a non-linear programming problem
(i.e., take the more black-box optimization approach), where
the dynamics function for example enters as a constraint, better
known as direct optimal control (Bock and Plitt, 1984). Another
research line treats planning as probabilistic inference (Toussaint,
2009; Botvinick and Toussaint, 2012; Kappen et al., 2012), where
we construct message-passing algorithms to infer which actions
would lead to receiving a final reward.

A popular approach in the control community is model
predictive control (MPC) (Morari and Lee, 1999), also known as
receding-horizon control (Mayne and Michalska, 1990), where we
optimize for an action up to a certain lookahead depth, execute
the best action from the plan, and then re-plan from the resulting
next state (i.e., we never optimize for the full MDP horizon). Such
interleaving of planning and acting (McDermott, 1978) is in the
planning community often referred to as decision-time planning
or online planning, where we directly need to find an action
for a current state. In contrast, background or offline planning
(Sutton and Barto, 2018) uses planning operations to improve
the solution for a variety of states, for example stored in a global
solution.

4.2. Reinforcement Learning
Reinforcement learning (RL) (Barto et al., 1983; Wiering and
Van Otterlo, 2012; Sutton and Barto, 2018) is a large research
field within machine learning. While the planning literature is
mostly organized in sub-disciplines (as discussed above), RL
literature can best be covered through the range of subtopics
within algorithms that have been studied. A central idea in RL
is the use of bootstrapping (Sutton, 1988), where we plug in a
learned value estimate to improve the estimate of a state that
precedes it. Literature has focused on the way we can construct
these bootstrap estimates, for example distinguishing between
on-policy (Rummery and Niranjan, 1994) and off-policy back-
ups (Watkins and Dayan, 1992). The depth of the back-up has
also received much attention in RL, where estimates of different
depths can for example be combined through eligibility traces
(Singh and Sutton, 1996). We can also use multi-step methods
in the off-policy setting through the use of importance sampling,
where we generally reweight the back-up contribution of the next
step by its probability under the optimal policy. Examples in this
direction are the Tree-backup [TB(λ)] algorithm (Precup, 2000)
and Retrace(λ) (Munos et al., 2016).

Reinforcement learning research has also focused on direct
specification of the solution, in the form of a policy function.
An important result in this direction is the policy gradient
theorem (Williams, 1992; Sutton et al., 2000; Sutton and Barto,
2018), which specifies an unbiased estimate of the gradient of
the objective with respect to policy parameters. Policy search
methods can be stabilized in various ways (Schulman et al.,

2015, 2017), can be integrated with (gradient-based) planning
(Deisenroth and Rasmussen, 2011; Levine and Koltun, 2013), and
have for example shown much success in robotics (Deisenroth
et al., 2013). Note that policy search can also be approached in
a gradient-free way, for example through evolutionary strategies
(Moriarty et al., 1999; Whiteson and Stone, 2006), including the
successful cross-entropy method (CEM) (Mannor et al., 2003).

A central theme in reinforcement learning research is the
use of supervised learning methods to approximate the solution,
which allows information to generalize between similar states
(and in larger problems allow a global solution to fit in
memory). Early results on function approximation include tile
coding (Sutton, 1996) and linear approximation (Bradtke and
Barto, 1996), while state-of-the-art results are achieved by the
use of deep neural networks (Goodfellow et al., 2016), whose
application to RL was pioneerd by Mnih et al. (2015). Surveys of
deep reinforcement learning are provided by François-Lavet et al.
(2018) and Arulkumaran et al. (2017).

Another fundamental theme in RL research is the balance
between exploration and exploitation. Random perturbation
approaches include ǫ-greedy and Boltzmann exploration (Sutton
and Barto, 2018), while other approaches, such as confidence
bounds (Kaelbling, 1993) and Thompson sampling (Thompson,
1933), leverage the uncertainty in an action value estimate.
Another large branch in RL exploration research is intrinsic
motivation (Chentanez et al., 2005), which explores based on
concepts like curiosity (Schmidhuber, 1991), novelty, and model
uncertainty (Guez et al., 2012).

Reinforcement learning and planning have been combined
in the field of model-based reinforcement learning (Hester and
Stone, 2012; Moerland et al., 2020a). In the RL community,
this idea started with Dyna (Sutton, 1990), which uses sampled
data (from an irreversible environment) to learn a reversible
dynamics model, and subsequently makes planning updates
over this learning model to further improve the value function.
Successful model-based RL algorithms include AlphaZero (Silver
et al., 2018), which set superhuman performance in Go, Chess
and Shogi, and Guided Policy Search (Levine and Koltun, 2013),
which was successful in robotics tasks. We can also use a
learned model for gradient-based policy updates, as for example
done in PILCO (Deisenroth and Rasmussen, 2011), while a
learned backward model allows us to more quickly spread new
information over the state space [known as prioritized sweeping
(PS) Moore and Atkeson, 1993]. A full survey of model-based
reinforcement learning is provided by Moerland et al. (2020a).

Reinforcement learning research is also organized around a
variety of subtopics, such as hierarchical/temporal abstraction
(Barto and Mahadevan, 2003), goal setting and generalization
over goals (Schaul et al., 2015), transfer between tasks (Taylor and
Stone, 2009), and multi-agent reinforcement learning (Busoniu
et al., 2008). While these topics are all important, our framework
solely focuses on a single agent in a singleMDP optimization task.
However, note that many of these topics are complementary to
our framework (i.e., they could further extend it). For example,
we may discover higher-level actions (hierarchical RL) to define
a new, more abstract MPD, in which all of the principles of our
framework are again applicable.
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TABLE 2 | Overview of dimensions in the Framework for Reinforcement learning and Planning (FRAP).

Dimension Consideration Choices

1. Solution (Section 5.1) - Coverage Global, local

- Type (Goal-conditioned) value, (goal-conditioned) policy, counts,…

- Method Param. tabular, param. approximate, non/semi-parametric

- Initialization Uniform, random, optimistic, expert

2. Set root state (Section 5.2) - Selection Ordered, initial state, forward sampling, backward sampling, previously visited

3. Budget per root (Section 5.3) - Number of trials (width) 1, n, convergence,∞

- Depth per trial (dmax) 1, n, adaptive,∞

4. Selection in trial

(Section 5.4)

- Next action Ordered, greedy (with heuristic), value-based perturbation (random, means,

uncertainty), state-based perturbation (knowledge-based IM,

competence-based IM)

- Next state Sample, ordered

5. Bootstrap (Section 5.5) - Location State, state-action

- Type Learned, heuristic

6. Back-up (Section 5.6) - Back-up policy Behavioral policy, greedy/max, other policy...

- Policy expectation Sample/partial, expected/full

- Dynamics expectation Sample/partial, expected/full

- Additional characteristics Explored states, convergence label, counts, uncertainty, return distribution

7. Update (Section 5.7) - Loss/objective Squared loss, policy gradient, value gradient, cross-entropy, etc.

- Learning rate Step (η fixed), Replace (η = 1.0 on table), Average (η = 1/n on table), Eligibility

(η = (1− λ) · λ(d−1)), Adaptive (trust region), etc.

Examples for several algorithms are shown in Table 7. IM, Intrinsic Motivation.

To summarize, this section covered some important research
directions within planning and reinforcement learning. Our
treatment was of course superficial, and by no means covered all
relevant literature from both fields. Nevertheless, it does provide
common ground on the type of literature we consider for our
framework. In the next section, we will try to organize the ideas
from both fields into a single framework.

5. FRAMEWORK

We will now introduce the Framework for Reinforcement
Learning and Planning (FRAP). Pseudocode for the framework
is provided in Algorithm 1, while all individual dimensions
are summarized in Table 2. We will first cover the high-level
intuition of the framework, as visualized in Figure 2. FRAP
centers around the notion of root states and trials.

A root state is a state for which we attempt to improve the solution

estimate.

A trial is a sequence of forward actions and next states from a

root state, which is used to compute an estimate of the cumulative

reward from the root state.

The central idea of FRAP is that all planning and reinforcement
learning algorithms repeatedly 1) fix root states, 2) make trials
from these root states, 3) improve their solution based on the
outcome of these trials, and 4) use this improved solution to
better direct new trials and better set new root states. FRAP
therefore consists of an outer loop (the while loop on Algorithm
1, line 4), in which we repeatedly set new root states, and an
inner loop (the while loop on Algorithm 1, line 5), in which we
(repeatedly) make trials from the current root state to update our
solution. We will briefly discuss both loops.

A schematic illustration of the outer loop is shown on the left
side of Figure 2. The algorithm starts by potentially initializing
a global solution (for all states), and subsequently fixing a new
root state. Then, we initialize a local solution for the particular
root, and start making trials from the root, which each update
the local solution. When we run out of trial budget for this root,
we may use the local solution to update the global solution (when
used). Afterwards, we fix a next root state, and initialize a new
local solution, in which we may reuse information from the last
local solution (Algorithm 1, line 9). The outer loop then repeats
for the new root state.

The inner loop of FRAP consists of trials, and is schematically
visualized on the right of Figure 2. A trial starts from the root
node, and consists of a forward sequence of actions and resulting
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FIGURE 2 | Graphical illustration of framework (Algorithm 1). Left: Algorithm outer loop (Algorithm 1, line 4), illustrating the interplay of global and local solutions with

trials. After possibly initializing a global solution, we repeatedly fix a new root state for which we want to improve our solution. Then, we initialize a new local solution for

the particular root, and make one or multiple trials (trial budget), where each trial updates the local solution. After the budget is expanded, we may use the local

solution to update the global solution and/or set the next root state and/or reuse information for the next local solution. The process then repeats with setting a new

root, possible based on the global and/or local solution. Right: Algorithm inner loop (Algorithm 1, line 5), illustrating an individual trial. A trial starts from a root node,

from which we repeatedly select actions, query the MDP at the specific state-action pair, and then transition to a next state. We repeat this process dmax times, after

which we start the back-up phase, consisting of dmax back-ups. When budget is available, we start another trial from the same root node.

next states and rewards, which are obtained from queries to
the MDP dynamics. This process repeats dmax times, where the
specification of dmax depends on the local solution and differs
between algorithms. The forward phase of the trial then halts,
after which we possibly bootstrap to estimate the remaining
expected return from the leaf state, without further unfolding the
trial. Then, the trial proceeds with a sequence of one-step back-
ups, which process the acquired information from the forward
phase.We repeat the trial process until we run out of budget, after
which we fix a new root state (Algorithm 1, line 8).

Action selection in FRAP not only happens within the trial
(Algorithm 1, line 16), but is in many algorithms also part of next
root selection (Algorithm 1, line 8). It is important to mention
that in the case of model-free RL, where we have irreversible
access to theMDP dynamics, these two action selection moments
are actually equal by definition. For example, a model-free RL
agent may fix a root, sample a trial from this root, and use it to
update the global solution. However, because the environment
is irreversible, the next root selection has to use the same action
and resulting next state as was taken within the trial. Model-
free RL agents therefore have some specific restrictions in the
FRAP pseudocode, as illustrated on the blue lines of Algorithm
1 (the trial budget per root is for example also by definition equal
to one).

FRAP is therefore really a conceptual framework, and
practical implementations may differ from the pseudocode in
Algorithm 1. For example, many planning methods store an
explicit frontier, i.e., the set of nodes that are candidate for
expansion. Practical implementations would directly jump to the
frontier, and not first traverse the known part of the tree from
the root, as happens in each trial of Algorithm 1. However, it
is conceptually useful to still think of these forward steps, since

they will be part of the back-up phase (we are eventually looking
for a good decision at the root). Another example would be a
model-free RL agent that uses a Monte Carlo return estimate.
Practical implementations may sample a full episode, compute
the cumulative reward starting from each state in the episode,
and jointly update the solution for all these states. However,
conceptually every state in the episode has then been a root state
once, for which we compute an estimate. In FRAP, we would
therefore see this as sampling the actual episode only once from
the first root, store it in the local solution, and then repeatedly
set new roots along the states in the episode, where we keep
reusing the local solution from the last root (Algorithm 1 line 9).
In summary, all algorithms conceptually fit FRAP, since they all
fix root states for which they compute improved estimates of the
cumulative return and solution, but some algorithms may take
implementation shortcuts.

We are now ready to discuss the individual dimensions of
the framework, i.e., describe the possible choices on each of the
lines in Algorithm 1. These dimensions are: how to represent
the solution, how to set the next root state, which trial budget
to allocate per root state, how to select actions and next states
within a trial, how to back-up information obtained from the trial,
and how to update the local and global solution based on these
back-up estimates. The considerations of FRAP are summarized
in Table 2, while the comments on the right side of Algorithm 1
indicate to which lines each dimension is applicable.

5.1. Solution Representation
We first of all have to decide how we will represent the
solution to our problem. The top row of Table 2 shows the four
relevant considerations: the coverage of our solution, the type of
function we will represent, the method we use to represent this
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function, and the way we initialize the chosen method. The first
item distinguishes between local/partial (for a subset of states)
and global (for all states) solutions, a topic which we already
extensively discussed in Section 3.3. Note that FRAP always
builds a local solution: even a single episode of a model-free
RL algorithm is considered a local solution that estimates the
value of states in the trace. A local solution therefore aggregates
information from one or more trials, which may then itself be
used to update a global solution (when we use one) (Algorithm 1,
line 1).

For both local and global solutions we next need to decide
what type of function to represent. The most common choices
are to represent the solution as a value function V :S→ R, state-
action value function Q :S×A→ R, or policy function π :S→

p(A). Some algorithms combine value and policy solutions, better
known as actor-critic algorithms (Konda and Tsitsiklis, 1999).We
may also store the uncertainty around value estimates (Osband
et al., 2016; Moerland et al., 2017), for example using counts
(Kocsis and Szepesvári, 2006), or through convergence labels
that mark a particular value estimate as solved (Nilsson, 1971;
Bonet and Geffner, 2003b). Some methods also store the entire
distribution of returns (Bellemare et al., 2017; Moerland et al.,
2018), or condition their solution on a particular goal (Schaul
et al., 2015) (i.e., store a solution for multiple reward functions).

After deciding on the type of function to represent, we next
need to specify the representation method. This is actually a
supervised learning question, which we can largely break up in
parametric and non-parametric approaches. Parametric tabular
representations use a unique parameter for the solution at each
state-action pair, which is for example used in the local solution
of a graph search, or in the global solution of a tabular RL
algorithm. For high-dimensional problems, we typically need
to use parametric approximate representations, such as (deep)
neural networks (Rumelhart et al., 1986; Goodfellow et al., 2016).
Apart from reduced memory requirement, a major benefit of
approximate representations it their ability to generalize over the
input space, and thereby make predictions for state-actions that
have not been observed yet. However, the individual predictions
of approximate methods may contain errors, and there are
indications that the combination of tabular and approximate
representations may provide the best of both worlds (Silver et al.,
2017; Wang et al., 2019; Moerland et al., 2020b). Alternatively,
we may also store the solution in a non-parametric way, where
we simply store exact sampled traces (e.g., a search tree that
does not aggregate over different traces), or semi-parametric
way (Graves et al., 2016), where we may optimize a neural
network to write to and read to a table (Blundell et al., 2016;
Pritzel et al., 2017), sometimes referred to as episodic memory
(Gershman and Daw, 2017).

Finally, we also need to initialize our solution representation.
Tabular representations are often uniformly initialized,
for example setting all initial estimates to 0. Approximate
representations are often randomly initialized, which provides
the tie breaking necessary for gradient-based updating. Some
approaches use initialization to guide exploration, either through
optimistic initialization (when a state has not been visited yet, we
consider its value estimate to be high) (Bertsekas and Tsitsiklis,

TABLE 3 | Overview of notation.

Back-up estimate Local solution Global solution

Tabular V̂ (s), Q̂(s, a) V l (s), Ql (s, a) Vg(s), Qg (s, a), πg (a|s)

Approximate (-) (-) V
g
θ (s), Q

g
θ (s, a), π

g
θ (a|s)

Each trial provides new back-up estimates V̂ (s) and Q̂(s, a) at the states and actions that

appear in the trial. These estimates are aggregated in the local solution V l (s) and Ql (s, a)

(i.e., the local solution can be influenced by multiple trials). The local solution may itself be

used to update the global solution Vg (s), Qg (s, a) and/or πg (a|s). When the global solution

is stored in approximate form (which is often the case), we denote them by V
g
θ (s), Q

g
θ (s, a)

and/or π
g
θ (a|s) (where θ denotes the parameters of the approximation). Back-up estimates

and local solutions are in practice never represented in approximate form.

1996) or expert initialization (where we use imitation learning
from (human) expert demonstrations to initialize the solution)
(Hussein et al., 2017). We will further discuss exploration
methods in Section 5.4.

An overview of our notation for the different local/global
and tabular/approximate solution types is shown in Table 3.
We will denote local estimates with superscript l, e.g., V l(s)
or Ql(s, a), and global solutions with superscript g, e.g., Vg(s),
Qg(s, a) or πg(a|s). In practice, only global solutions are learned
in approximate form, which we indicate with a subscript θ (for
parameters θ).

As you will notice, Table 3 contains a separate entry for the
back-up estimate, V̂(s) or Q̂(s, a), which are formed during every
trial. Especially researchers from a planning backgroundmay find
this confusing, since in many algorithms the back-up estimate
and local solution are actually the same. However, we should
consider these two different quantities, for two reasons. First of
all, in some algorithms, like the roll-out phase of MCTS, we do
make additional MDP queries (the trial continues) and back-ups,
but the back-up estimate from the last part of the trial is never
stored in the local solution (the local solution expands with only
one new node per trial). Second, many algorithms use their local
solution to aggregate cumulative reward estimates from different
depths, which is for example used in eligibility traces (Sutton
and Barto, 2018). For our conceptual framework, we therefore
consider each cumulative reward estimate the result of a single
trial, and the local solution may combine the estimate of trials
in multiple ways. We will discuss ways to aggregate back-up
estimates into the local solution in Section 5.7.

5.2. Set a Root State
The next consideration in our framework is the selection of a
root state (Algorithm 1, line 2 and 8), for which we will attempt
to improve our solution (by computing a new value estimate).
The main considerations are listed in the second row of Table 2.
A first approach is to select a state from the state space in an
ordered way, for a example by sweeping through all possible
states (Howard, 1960; Bellman, 1966). A major downside of this
approach is that many states in the state space are often not
even reachable from the start state (Figure 3), and we may spend
much computational effort on states that will never be part of the
practical solution.

When the MDP definition includes the notion of a start state
distribution, this information may be utilized to improve our
selection of root states, by only sampling root states on traces
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FIGURE 3 | Venn diagram of total state space. Only a subset of the entire state space is reachable from the start state under any policy. An even smaller subset of the

reachable set is eventually relevant, in the sense that they are reachable from the start state under the optimal policy. Finally, a subset of the relevant state are of course

all start states. Figure extended from Sutton and Barto (2018).

from the start. This ensures that new roots are always reachable,
which may strongly reduce the number of states we will update
in practice (illustrated in Figure 3). In Table 2, we list this as the
forward sampling approach to selecting new root states. Note that
this generally also involves an action selection question (in which
direction dowe set the next root), which wewill discuss in Section
5.4.

The next option is to select new root states in the reverse
direction, i.e., through backward sampling (instead of forward
sampling). This approach does require a backwards model
p(s, a|s′), which specifies the possible state-action pairs (s, a)
that may lead to a next state s′. The main idea is to
set next root states at the possible precursor states of a
state whose value has just changed much, better known as
prioritized sweeping (Moore and Atkeson, 1993). We thereby
focus our update budget on regions of the state space
that likely need updating, which may speed-up convergence.
Similar ideas have been studied in the planning community as
backward search or regression search (Nilsson, 1982; Bonet and
Geffner, 2001; Alcázar et al., 2013), which makes prioritized
sweeping an interleaved form of forward and backward
search.

Finally, we do not always need to select the next root state
from the current trace. For example, we may track the set of
previously visited states, and select our next root from this set.
This approach, which is for example part of Dyna (Sutton, 1990),
gives greater freedom in the order of root states, while it still
ensures that we only update reachable states. To summarize,
we need to decide on a way to set root states, which may for
example be done in an ordered way, through forward sampling,
through backward sampling, or by selecting previously visited
states (Table 2, second row).

5.3. Budget per Root
After we fixed a root state (a state for which we will
attempt to improve the solution), we need to decide on 1)

the number of trials from the particular root (Algorithm 1,
line 5), and 2) when a trial itself will end, i.e., the depth
dmax of each forward trial (Algorithm 1, line 13 & 22).
These possible choices on each of these two considerations
are listed in the third row of Table 2. Note that since every
trial consists of a single forward beam, the total number
of trials is actually a good measure of the total width
of the local solution (Figure 6). The joint space of both
considerations is visualized in Figure 4, which we will discuss
below.

Regarding the trial budget per root state, a first possible choice
is to only run a single trial. This choice is characteristic for
model-free RL algorithms (Sutton and Barto, 2018). Algorithms
that have access to a model may also run multiple trials
per root state. This budget can for example be specified
as a fixed hyperparameter, as is often the choice in MCTS
(Browne et al., 2012). When we interact with a real-world
environment, the trial budget may actually be enforced by
the time until the next decision is required. In the planning
community, this is referred to as decision time planning or
online planning. In offline approaches, we may also provide
an adaptive trial budget, for example until some convergence
criterion is met (often in combination with an admissible
heuristic, which may reduce the required number of trials
to convergence a lot) (Nilsson, 1971; Hansen and Zilberstein,
2001; Bonet and Geffner, 2003b). Finally, we may also
specify an infinite trial budget, i.e., we will repeat trials until
all possible sequences (for the specified depth) have been
expanded.

The second decision involves the depth of each individual
trial. A first option is to use a trial depth of one, which is
for example part of value/policy iteration (Bellman, 1966) and
temporal difference learning (Sutton, 1988; Watkins and Dayan,
1992; Rummery and Niranjan, 1994). We may also specify a
fixed multi-step depth, which is the case for n-step methods,
or specify a full depth (∞), in which case we unroll the trail
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FIGURE 4 | Possible combinations of width (trial budget) and depth (dmax) per trial from a root state. Practical algorithms reside somewhere left of the left dotted line,

since full with combined with full depth (exhaustive search) is not feasible in larger problems. Figure extended from Sutton and Barto (2018).

until a terminal state is reached (in practice we often still limit
the trial by a large depth). The latter is also known as a Monte
Carlo roll-out, which is for example used in MCTS. Finally, many
algorithmsmake use of an adaptive trial depth, which depends on
the current local solution (i.e., note that dmax(l) depends on l in
Algorithm 1, lines 13 and 22). For example, several (heuristic)
planning algorithms terminate a trial once we reach a state or
action that did not appear in our current local solution yet
(Hart et al., 1968; Nilsson, 1971). As another example, we may
terminate a trial once it reaches a state in the explored set or
makes a cycle to a duplicate state, which are also examples of
an adaptive dmax(l). To summarize, the trial budget and depth
of each trial are important considerations in all planning and RL
algorithms.

5.4. Selection Within a Trial
Once we have specified the trial budget and depth rules from
a particular root state, we have to decide how to actually select
the actions and states that will appear in each individual trial
(they may unroll in different directions). In other words, we have
specified the overall shape of all trials in Figure 4, but not yet
how this shape will actually be unfolded. We will first discuss
action selection, which happens in Algorithm 1 line 16 and in
many algorithms also at line 8, when we set the next root through
forward sampling. Afterwards, we will discuss next state selection,

which happens in line 26 of Algorithm 1. The considerations
that we discuss for both topics are listed in the fourth row of
Table 2.
Action selection The first approach to action selection is to pick
actions in an ordered way, where we select actions independently
of our interaction history with the MDP. Examples include
uninformed search methods, such as iterative deepening. A
downside of ordered action selection is that it may spend much
time on states with lower value estimates, which typically makes
it infeasible in larger problems. Most methods therefore try to
prioritize actions in trials based on knowledge from previous
trials. A first category of approaches prioritize actions based on
their (current) value estimate, which we will call value-based
selection. The cardinal example of value-based selection is greedy
action selection, which repeatedly selects actions with the highest
current value estimate. This is the dominant approach in the
heuristic search literature (Hart et al., 1968; Nilsson, 1971; Barto
et al., 1995; Hansen and Zilberstein, 2001), where an admissible
heuristic may guarantee that greedy action selection will find the
optimal solution.

Note that heuristic search algorithms in practice usually
maintain a frontier (Figure 5), and therefore do not actually need
to greedily traverse the local solution toward the best leaf state.
However, as Schulte and Keller (2014) also show, any ordering
on the frontier can also be achieved by step-wise action selection
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FIGURE 5 | Frontier-based exploration in planning (left) and reinforcement learning (right, intrinsic motivation). Left: Frontier and explored set in a graph. Blue denotes

the start state, red a final state, green denotes the explored set (states that have been visited and whose successors have been visited), orange denotes the frontier

(states that have been visited but whose successors have not all been visited). Methods without a frontier and explored set (like random perturbation, which is used in

most RL approaches) may sample many redundant trials that make loops in the left part of the problem, because they do not find the narrow passage. Right: In large

problems, it may become infeasible to store the frontier and explored set in tabular form. Part of intrinsic motivation literature (Colas et al., 2020) tracks global (sub)goal

spaces (red line) in global, approximate form. We may for example sample new goals from this space based on novelty, and subsequently attempt to reach that goal

through a goal-conditioned policy, effectively mimicking frontier-based exploration in approximate, global form.

from the root, and frontiers therefore conceptually fully fit into
our framework (although the practical implementation may
differ). The notion of frontiers is important, because algorithms
that use a frontier often switch their action selection strategy once
they reach the frontier. For example, a heuristic search algorithm
may greedily select actions within the known part of the local
solution, but at the frontier expand all possible actions, which is
a form of ordered action selection. For some algorithms, we will
therefore separately mention the action selection strategy before
the frontier (BF) and after the frontier (AF).

Without an admissible heuristic greedy action selection is not
guaranteed to find the optimal solution. Algorithms therefore
usually introduce a form of exploration. A first option in this
category is random perturbation, which is in the RL community
usually referred to as ǫ-greedy exploration (Sutton and Barto,
2018). Similar ideas have been extensively studied in the planning
community (Valenzano et al., 2014), for example in limited
discrepancy search (Harvey and Ginsberg, 1995), k-best-first-
search (KBFS) (Felner et al., 2003) and best-first width search
(BFWS) (Lipovetzky and Geffner, 2017). We may also make the
selection probabilities proportional to the currentmean estimates
of each action, which is for discrete and continuous action spaces
for example achieved by Boltzmann exploration (Cesa-Bianchi
et al., 2017) and entropy regularization (Peters et al., 2010).

A downside of random perturbation methods is their inability
to naturally transition from exploration to exploitation. A
solution is to track the uncertainty of value estimate of each
action, i.e., uncertainty-based perturbation. Such approaches have
been extensively studied in the multi-armed bandit literature
(Slivkins, 2019), and successful exploration methods from RL
and planning (Kaelbling, 1993; Kocsis and Szepesvári, 2006; Hao
et al., 2019) are actually based on work from the bandit literature
(Auer et al., 2002). Note that uncertainty estimation in sequential
problems, like the MDP formulation, is harder than the multi-
armed bandit setting, since we need to take the uncertainty
in the value estimates of future states into account (Dearden
et al., 1998; Moerland et al., 2017). As an alternative, we may

also estimate uncertainty in a Bayesian way, and for example
explore through Thompson sampling (Thompson, 1933; Osband
et al., 2016). Note that optimistic initialization of the solution,
already discussed Section 5.1, also uses optimism in the face of
uncertainty to guide exploration, although it does not track the
true uncertainty in the value estimates.

In contrast to value-based perturbation, we may also use state-
based perturbation, where we inject exploration noise based on
our interaction history with the MDP (i.e., independently of the
extrinsic reward). As a classic example, a particular state might
be interesting because it is novel, i.e., we have not visited it
before in our current interaction history with the MDP. In the
reinforcement learning literature, this approach is often referred
to as intrinsic motivation (IM) (Chentanez et al., 2005; Oudeyer
et al., 2007). We already encountered the same idea in the
planning literature through the use of frontiers and explored set,
which essentially prevent expansion of a state that we already
visited before. In the RL (intrinsic motivation) literature, we
usually make a separation between knowledge-based intrinsic
motivation, which marks states or actions as interesting because
they provide new knowledge about the MDP, and competence-
based intrinsic motivation, where we prioritize target states based
on our ability to reach them. Examples of the knowledge-based
IM include intrinsic rewards for novelty (Brafman et al., 2003;
Bellemare et al., 2016), recency (Sutton, 1990), curiosity (Pathak
et al., 2017), surprise (Achiam and Sastry, 2017), and model
uncertainty (Houthooft et al., 2016), while we may also provide
intrinsic motivation for the content of a state, for example a
saliency for objects (Kulkarni et al., 2016). Competence-based IM
may for example prioritize (goal) states of intermediate difficulty
(which we manage to reach sometimes) (Florensa et al., 2018), or
on which we are currently making learning progress (Lopes et al.,
2012; Baranes and Oudeyer, 2013; Matiisen et al., 2017).

As mentioned above, there is clear connection between
the use of frontiers in planning literature and the use of
intrinsic motivation in reinforcement learning literature, which
we illustrate in Figure 5. On the one hand, the planning literature
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TABLE 4 | Overview of action selection methodology within a trial.

Action selection method Characteristic examples

Ordered Value iteration Bellman, 1966

Iterative deepening Korf, 1985

Value-based

- Greedy (with heuristic) AO⋆ Nilsson, 1971

RTDP Barto et al., 1995

- Random perturbation ǫ-greedy Sutton and Barto, 2018

Gaussian noise Van Hasselt and Wiering, 2007

- Mean perturbation Boltzmann Cesa-Bianchi et al., 2017

Entropy regularization Peters et al., 2010

- Uncertainty perturbation Upper confidence bounds Kaelbling, 1993

Posterior sampling Thompson, 1933

State-based

- Knowledge-based IM Novelty Brafman et al., 2003

Suprise Achiam and Sastry, 2017

- Competence-based IM Learning progress Péré et al., 2018

Goal-reaching success Florensa et al., 2018

At the highest level, we may either prioritized actions in an ordered way (independent of

our interaction history with the MDP), in a value-based way (based on obtained rewards in

our interaction history with the MDP), or in astate-based (based on our interaction history

with the MDP, but independent of the value). The table shows possible subcategories,

and some characteristic examples in the right column.

has many techniques to track and prioritize frontiers, but these
tabular approaches do suffer in high-dimensional problems. In
contrast, in RL methods that do not track frontiers (but for
example use random perturbation) many trials may not hit
a new state at all (Ecoffet et al., 2021). Intrinsic motivation
literature has studied the use of global, approximate frontiers (i.e.,
global, approximate sets of interesting states to explore), which
is typically referred to as intrinsically motivated goal exploration
processes (IMGEP) (Colas et al., 2020). A successful example
algorithm in this class is Go-Explore (Ecoffet et al., 2021),
which achieved state-of-the-art performance on the sparse-
reward benchmark taskMontezuma’s Revenge. However, IMGEP
approaches have their challenges as well, especially because it is
hard to track convergence of approximate solutions, and our goal
space may for example be off, or we do encounter a novel region
but after an update of our goal-conditioned policy we are not
able to get back. Tabular solutions from the planning literature
do not suffer from these issues, and we conjecture that there
is much potential here in the combination of ideas from both
research fields.

As mentioned in the beginning, action selection often also
plays a role on Algorithm 1 line 8, when we select next root
states through forward sampling from the previous root (as
discussed in Section 5.2). In the planning literature, this is
often referred to as the recommendation function (Keller and
Helmert, 2013) (what action do we recommend at the root
after all trials and back-ups). When we want to maximize
performance, action recommendation is often greedy. However,
during offline learning, we may inject additional exploration
into action selection at the root, for example by planning to

FIGURE 6 | Example local solution patterns. (A) Local solution consisting of a

single trial with depth 2. Total queries to the MDP = 2. Example: two-step

temporal difference learning. (B) Local solution consisting of four trial with

depth 1. Total queries to the MDP = 4. Example: value iteration. (C) Local

solution consisting of three trials, one with depth 1 and two with depth 2. Total

queries to the MDP = 4. Example: Monte Carlo Tree Search.

explore (the trials in a learned model direct the agent toward
interesting new root state in the true environment) (Sekar et al.,
2020). We will refer to this type of action selection as next root
(NR) selection, and note that some algorithms therefore have
three different action selection strategies: before the frontier (BF)
within a trial, after the frontier (AF) within a trial, and to set
the next root (NR) for new trials. An overview of the discussed
action selection methods, with some characteristic examples, is
provided in Table 4.

State selection After our extensive discussion of action
selection methods within a trial, we also need to discuss next
state selection, which happens at line 26 of Algorithm 1. The
two possible options here are ordered and sample selection.
Ordered next state selection is for example used in value and
policy iteration, where we simply expand every possible next
state of an action. This approach is only feasible when we have
settable, descriptive access to the MDP dynamics (see Section
3.2), since we can then decide ourselves which next state we
want to make our next MDP query from. The second option is
to sample the next state, which is by definition the choice when
we only have generative access to the MDP dynamics. However,
sampled next state selection may even be beneficial when we do
have descriptive access (Sutton and Barto, 2018).

To summarize this section on action and next state selection
within a trial, Figure 6 illustrates some characteristic trial
patterns. On the left of the figure we visualize a local solution
consisting of a single trial with dmax = 2, which is for example
used in two-step temporal difference (TD) learning (Sutton,
1988). In the middle, we see a local solution consisting of four
trials, each with a dmax of 1. Each action and next state is selected
in an ordered way, which is for example used in value iteration
(Bellman, 1966). Finally, the right side of the figure shows a local
solution consisting of three trials, one with dmax = 1 and two
with dmax = 2, which could for example appear in Monte Carlo
Tree Search (Kocsis and Szepesvári, 2006).With themethodology
described in this section, we can construct any other preferred
local solution pattern. In the next section we will discuss what to
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do at the leaf states of these patterns, i.e., what to do when we
reach the trial’s dmax.

5.5. Bootstrap
The main aim of trials is to provide a new/improved estimate of
the value of each action at the root, i.e., the expected cumulative
sum of rewards from this state-action (Equation 1). However,
when we choose to end a trial before we can evaluate the entire
sum, we may still obtain an estimate of the cumulative reward
through bootstrapping. A bootstrap function is a function that
provides a quick estimate of the value of a particular state or state-
action. When we decide to end our trial at a state, we need to
bootstrap a state value (Algorithm 1, line 14), and whenwe decide
to end the trial at an action, we need to bootstrap a state-action
value (Algorithm 1, line 23). A potential benefit of a state value
function is that it has lower dimension and might be easier to
learn/obtain, while a state-action value function has the benefit
that it allows for off-policy back-ups (see Section 5.6) without
additional queries to the MDP. Note that terminal states have a
value of 0 by definition.

The bootstrap function itself may either be obtained from
a heuristic function, or it can be learned. Heuristic functions
have been studied extensively in the planning community. A
heuristic is called admissible when it provides an optimistic
estimate of the remaining value for every state, which allows for
greedy action selection strategies during the search. Heuristics
can be obtained from prior knowledge, but much research has
focused on automatic ways to obtain heuristics, often by first
solving a simplified version of the problem. When the problem is
stochastic, a popular approach is determinization, where we first
solve a deterministic version of the MDP to obtain a heuristic for
the full planning task (Hoffmann and Nebel, 2001; Yoon et al.,
2007), or delete relaxations (Bonet and Geffner, 2001), where we
temporarily ignore the action effects that remove state attributes
(which is only applicable in symbolic states spaces). A heuristic is
called ’blind’ when it is initialized to the same value everywhere.
For an extensive discussion of ways to obtain heuristics we refer
the reader to Pearl (1984) and Edelkamp and Schrodl (2011).

The alternative approach is to learn a global state or state-
action value function. Note that this function can also serve
as our solution representation (see Section 5.1). The learned
value function can be trained on the root value estimates of
previous trials (see Section 5.7), and thereby gradually improve
its performance (Sutton, 1988; Korf, 1990). A major benefit of
learned value functions is 1) their ability to improve performance
with more data, and 2) their ability to generalize when learned
in approximate form. For example, while Deep Blue (Campbell
et al., 2002), the first computer programme to defeat a human
Chess world champion, used a heuristic bootstrap function, this
approach was later outperformed by AlphaZero (Silver et al.,
2018), which uses a deep neural network to learn a bootstrap
function that provides better generalization.

5.6. Back-Up
Bootstrapping ends the forward phase of a trial, after which we
start the back-up phase (Figure 2, right). The goal of back-ups is
to process the acquired information of the trial. We will primarily

focus on the value back-up, where we construct new estimates
V̂(s) and Q̂(s, a) for states and actions that appear in the trial.
At the end of this section, we will also briefly comment on other
types of information we may include in the back-up.

Value back-ups are based on the one-step Bellman equation,
as shown in Equation 2. The first expectation of this equation,
over the possible next states, shows the dynamics back-up: we
need to aggregate value estimates for different possible next states
into an state-action value estimate for the state-action that may
lead to them. The second expectation, over the possible actions,
shows the policy back-up: we want to aggregate state-action values
into a value estimate at the particular state. We therefore need
to discuss how to deal with width (expectations) over the policy
and dynamics. In Algorithm 1, policy and dynamics back-ups
happen at line 18 and 28, while we will now discuss the relevant
considerations for these back-ups, as listed in the sixth row of
Table 2.

For the policy back-up, we first need to specify which back-
up policy we will actually employ. A first option is to use the
current behavioral policy (which we used for action selection
within the trial) as the back-up policy, which is in RL literature
usually referred to as on-policy back-ups. An alternative is to use
another policy than the behavioral policy, which is referred to as
off-policy. The most common off-policy back-up is the greedy or
max back-up, which puts all probability on the action with the
highest current value estimate. The greedy back-up is common
in tabular solutions, but can be unstable when combined with
a global approximate solutions and bootstrapping (Van Hasselt
et al., 2018). Note that off-policy back-ups do not need to be
greedy, and we may also use back-up policies that are more
greedy than the exploration policy, but less greedy than the max
operator (Coulom, 2006; Keller, 2015).

We next need to decide whether we will make a full/expected
policy back-up, or a partial/sample policy back-up. Expected
back-ups evaluate the full expectation over the policy
probabilities, and therefore need to expand all child actions
of a state. In contrast, sample back-ups only back-up the value
from a sampled action, and therefore do not need to trial all child
actions (and are therefore called “partial”). Sample back-ups are
less accurate but computationally cheaper, and will move toward
the true value over multiple samples.

The same consideration actually applies to the back-up over
the dynamics, which can also be full/expected back-up, or
partial/sample. Which type of dynamics back-up we can make
also depends on the type of access we have to the MDP. When
we only have generative access to the MDP, we are forced to
make sample back-ups. In contrast, when we have descriptive
access to the MDP, we can either make expected or sample
back-ups. Although sample back-ups have higher variance, they
are computationally cheaper and may be more efficient when
many next states have a small probability (Sutton and Barto,
2018). We summarize the common back-up equations for policy
and dynamics in Table 5, while Figure 7 visualizes common
combinations of these as back-up diagrams.

Many algorithms back-up additional information to improve
action selection in future trials. We may want to track the
uncertainty in the value estimates, for example by backing-up
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FIGURE 7 | Types of 1-step back-ups. For the back-up over the policy (columns), we need to decide on i) the type of policy (on-policy or off-policy) and ii) whether we

do a full or partial back-up. For the back-up over the dynamics (rows), we also need to decide whether we do a full or partial back-up. Note that for the greedy/max

back-up policy the expected and sample back-ups are equivalent. Mentioned algorithms: Value Iteration (Bellman, 1966), Expected SARSA (Van Seijen et al., 2009),

SARSA (Rummery and Niranjan, 1994), MCTS (Kocsis and Szepesvári, 2006), Q-learning (Watkins and Dayan, 1992), and AO⋆ (Nilsson, 1971).

TABLE 5 | Equations for the policy and dynamics back-up, applicable to

Algorithm 1 line 18 and 28, respectively.

Equation

Policy

Sample back-up V̂ (s)← Q̂(s, a), for a ∼ π (·|s′)

Expected back-up V̂ (s)← Ea∼π (·|s)[Q̂(s, a)]

Greedy back-up V̂ (s)← maxa[Q̂(s, a)]

Dynamics

Sample back-up Q̂(s, a)←R(s, a, s′)+ γ · V̂ (s′), for s′ ∼ T (·|s, a)

Expected back-up Q̂(s, a)← Es′∼T(s′ |s,a)[R(s, a, s′)+ γ · V̂ (s′)]

visitation counts (Browne et al., 2012), by backing-up entire
uncertainty distributions around value estimates (Dearden et al.,
1998; Deisenroth and Rasmussen, 2011), or by backing-up the
distribution of the return (Bellemare et al., 2017). Some methods
back-up labels that mark a particular value estimate as “solved”
when we are completely certain about its value estimate (Nilsson,
1971; Bonet and Geffner, 2003b). As mentioned before, graph
searches also back-up information about frontiers and explored
sets, which can be seen as another kind of label, one that removes
duplicates and marks expanded states. The overarching theme
in all these additional back-ups is that they track some kind of
uncertainty about the value of a particular state, which can be
utilized during action selection in future trials.

5.7. Update
The last step of the framework involves updating the local
solutions (V l(s) and Ql(s, a)) based on the back-up estimates

(V̂(s) and Q̂(s, a)), and subsequently updating the global
solution (Vg(s) and/or Qg(s, a) and/or πg(a|s)) based on the
local solution. In Algorithm 1, the updates of the local
solution happen in lines 19 and 29, while the update of
the global solution (when used) occurs in line 7. The main
message of this section is that we can write both types of
updates, whether it concerns updates of nodes in a planning
tree or updates of a global policy network, as gradient
descent updates on a particular loss function. We hope this
provides further insight in the similarity between planning
and learning, since planning updates on a tree/graph can
usually be written as tabular learning updates with a particular
learning rate.

We will first introduce our general notation. A loss function
is denoted by L(θ), where θ denotes the parameters to
be updated. In case of a tabular solution, the parameters
are simply the individual entries in the table (like Ql(s, a)))
(see Section 5.1 and Table 3 for a summary of notation),
and we will therefore not explicitly add a subscript θ .
When we have specified a solution and a loss function, the
parameters can be updated based on gradient descent, with
update rule:

θ ← θ − η · ∇θL(θ), (4)

where η ∈ R
+ is a learning rate. We will first show which loss

function and update rules are common in updating of the local
solution, and subsequently discuss how they reappear in updates
of the global solution based on the local solution. An overview of
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TABLE 6 | Overview of common loss functions and update rules.

Loss Update

Local update

Value

Squared loss L(Ql (s, a)|s, a) = 1
2

(

Q̂(s, a)− Ql (s, a)
)2

Ql (s, a)← Ql (s, a)+ η · [Q̂(s, a)−Ql (s, a)]

Replace update (η = 1) Ql (s, a)← Q̂(s, a)

Average update (η = 1
n
) Ql (s, a)← Ql (s, a)+ 1

n
· [Q̂(s, a)−Ql (s, a)]

Eligibility update Ql (s, a)← Ql (s, a)+ (1− λ) · λ(d−1) · [Q̂d (s, a)− Ql (s, a)]

Global update

Value

Squared loss L(θ |s, a) = 1
2

(

Ql (s, a)−Q
g
θ (s, a)

)2
θ ← θ + η · [Ql (s, a)−Q

g
θ (s, a)] · ∇θQ

g
θ (s, a)

Cross-entropy softmax loss L(θ |s) = −softmax(Ql (s, a))T · logsoftmax(Qg
θ (s, a)) θ ← θ + η · ∇θ [softmax(Ql (s, a))T · logsoftmax((Qg

θ (s, a))]

Policy

Policy gradient L(θ |s, a) = − lnπ
g
θ (a|s) · Q

l (s, a) θ ← θ + η · Q
l (s,a)

π
g
θ (a|s)
· ∇θπ

g
θ (a|s)

Determ. policy gradient L(θ |s, a) = −Q
g
ψ (s,π

g
θ (a|s)) (Q

g
ψ trained on Ql ) θ ← θ + η · ∇aQ

g
ψ (s, a) · ∇θπ

g
θ (a|s)

Value gradient L(θ |s) = −V l (s) θ ← θ + η · ∇θV
l (s) (Figure 8)

Cross-entropy loss L(θ |s) =
∑

a∈A lnπθ (a|st )
(

nl (st ,a)
∑

b∈A
nl (st ,b)

)

θ ← θ − η ·
∑

a∈A

(

nl (st ,a)
∑

b∈A
nl (st ,b)

)

· 1

π
g
θ (a|s)
· ∇θπ

g
θ (a|s)

Top: Local update, where we use back-up values V̂ (s) and/or Q̂(s, a) to update the local solution V l (s) and/or Ql (s, a). The special cases of replace update and average update are explicitly

shown. Bottom: Global update, where we use the local solution estimates V l (s) and/or Ql (s, a) to update global (approximate) solutions V
g
θ (s), Q

g
θ (s, a) and/or π

g
θ (a|s). Parameters of the

global solution are denoted by θ (when the global value solution is tabular each θ in the table can be read as Qg (s, a)). Note that the table illustrates some characteristic examples, but

other losses and update rules are possible. Q̂d (s, a) denotes an estimate from a trial of depth d.

common loss functions and update rules is provided in Table 6,
which we will now discuss in more detail.
Local solution update Here we will focus on the update of
state-action values Ql(s, a) (Algorithm 1, line 29), but the same
principles apply to state value updating (Algorithm 1, line 19).
We therefore want to specify an update of Ql(s, a) based on a
new back-up value Q̂(s, a). A classic choice of loss function for
continuous values is the squared loss, given by:

L
(

Ql(s, a)|s, a
)

=
1

2

[

Q̂(s, a)− Ql(s, a)
]2
. (5)

Differentiating this loss with respect to Ql(s, a) and plugging it
into Equation (4) (where Ql(s, a) are the parameters) gives the
well-known tabular learning rule:

Ql(s, a)← Ql(s, a)+ η ·
[

Q̂(s, a)− Ql(s, a)
]

. (6)

Intuitively, we move our estimate Ql(s, a) a bit in the direction of
our new back-up value Q̂(s, a). In the tabular case, η is therefore
restricted to [0, 1]. Most planning algorithms use special cases of
the above update rule. A first common choice is to set η = 1.0,
which gives the replace update:

Ql(s, a)← Q̂(s, a). (7)

This update completely overwrites the estimate in the local
solution by the new back-up value. This is the typical approach in
heuristic planning (Hart et al., 1968; Nilsson, 1971; Hansen and

Zilberstein, 2001), where an admissible heuristic often ensures
that our new estimate (from a deeper unfolding of the planning
tree) provides a better informed estimate than the previous
estimate. Although one would typically not think of such a
replace update as a gradient-based approach, these updates are
in fact all connected.

When we do not have a good heuristic available (and we
therefore need to bootstrap from a learned value function or use
deep roll-outs to estimate the cumulative reward), estimates of
different depths may have different reliability (known as the bias-
variance trade-off) (Sutton and Barto, 2018).Wemay for example
equally weight the contribution of estimates of different depths,
which we will call an averaging update (which uses η = 1

n , where
n denotes the number of trials/back-up estimates for the node):

Ql(s, a)← Ql(s, a)+
1

n
· [Q̂(s, a)− Ql(s, a)] (8)

This is for example used in MCTS implementations that use
bootstrapping instead of rollouts (Silver et al., 2018).

While the above update gives the value estimate from each
trial equal weight, we may also make the contribution of a trial
estimate dependent on the depth of the trial, as is for example
done in elegibility traces (Schulman et al., 2016; Sutton and Barto,
2018). In this case, we essentially set η = (1 − λ) · λ(d−1), where
λ ∈ [0, 1] is the exponential decay and d is the length of the trace
on which we update. More sophisticated reweighting schemes of
the targets of different trials are possible as well (Munos et al.,
2016), for example based on the uncertainty of the estimate at
each depth (Buckman et al., 2018). In short, the local solution
may combine value estimates from different trials (with different
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FIGURE 8 | Illustration of gradient-based planning. When we have access to a differentiable transition function T(s′|s, a) and differentiable reward function R(s, a, s′),

and we also specify a differentiable policy πθ (a|s), then a single trial generates a fully differentiable computational graph. The figure shows an example graph for a trial

of depth 3. The black arrows show the forward passes through the policy, dynamics function and rewards function. In the example, we also bootstrap from a

differentiable (learned) value function, but this can also be omitted. We may then update the policy parameters by directly differentiating the cumulative reward

(objective, green box) with respect to the policy parameters, effectively summing the gradients over all backwards path indicated by the red dotted lines.

depths) in numerous ways, as summarized in the top part of
Table 6.
Global solution update When our algorithm uses a global
solution, we next need to update this global solution (Vg and/or
Qg and/or πg) based on the estimates from our local solution
(V l and/or Ql) (Algorithm 1, line 7). For a value-based solution
that is tabular, we typically use the same squared loss (Equation
5), which leads to the global tabular update rule Qg(s, a) ←
Qg(s, a) + η · [Ql(s, a) − Qg(s, a)], which exactly resembles the
local version (Equation 6), apart from the fact that we now update
Qg(s, a), while Ql(s, a) has the role of target. This approach is
the basis of all tabular RL methods (Sutton and Barto, 2018).
[For (model-free) RL approaches that directly update the global
solution after a single trial, we may also imagine the local solution
does not exist, and we directly update the global solution from the
back-up estimates].

We will therefore primarily focus on the function
approximation setting, where we update a global approximate
representation parametrized by θ . Table 6 shows some example
loss functions and update rules that appear in this case. The
most important point to note is that there are many ways
in which we may combine a local estimate, such as Ql(s, a),
and the global solution, such as Qg(s, a) or πg(a|s), in a loss
function. For value-based updating, we may use the squared
loss, but other options are possible as well, like a cross-entropy
loss over the softmax of the Q-values returned from planning
(the local solution) and the softmax of the Q-values from a
global neural network approximation (Hamrick et al., 2020a).
For policy-based updating, well-known examples include the
policy gradient (Williams, 1992; Sutton et al., 2000; Sutton and
Barto, 2018) and deterministic policy gradient (Silver et al., 2014;
Lillicrap et al., 2015) loss functions. Again, other options have
been successful as well, such as a cross-entropy loss between the
normalized visitations counts at the root of an MCTS (part of the
local solution) and a global policy network, as for example used
by AlphaZero (Silver et al., 2017). In short, various objectives are

possible (and more may be discovered), as long as minimization
of the objective moves our global solution in the right direction
(based on the obtained information from the trial).

An important other class of approaches is gradient-based
planning, also known as value gradients (Fairbank and
Alonso, 2012; Heess et al., 2015). These approaches require
a (known or learned) differentiable transition and reward
model (and a differentiable value function when we also include
bootstrapping). When we also specify a differentiable policy, then
each trial generates a fully differentiable graph, in which we can
directly differentiate the cumulative reward with respect to the
policy parameters. This idea is illustrated in Figure 8, where we
aggregate over all gradient paths in the graph (red dotted lines).
Gradient-based planning is popular in the robotics and control
community (Todorov and Li, 2005; Anderson and Moore, 2007;
Deisenroth and Rasmussen, 2011), where dynamics functions
are relatively smooth and differentiable, although the idea can
also be applied with discrete states (Wu et al., 2017).

Table 6 summarizes some of the common loss functions we
discussed. The examples in the table all have analytical gradients,
but otherwise we may always use finite differences to numerically
estimate the gradient of an objective. The learning rate in these
update equations is typically tuned to a specific value (or decay
scheme), although there are more sophisticated approaches that
bound the step size, such as proximal policy optimization (PPO)
(Schulman et al., 2017). Moreover, we did not discuss gradient-
free updating of a global solution, because these algorithms
typically do not exploit MDP-specific knowledge (i.e, they do
not construct and back-up value estimates at states throughout
the MDP, but only sample the objective function based on traces
from the root). However, we do note that gradient-free black-box
optimization can also be successful in MDP optimization, as for
example show for evolutionary strategies Moriarty et al. (1999),
Whiteson and Stone (2006), Salimans et al. (2017), simulated
annealing (Atiya et al., 2003) and the cross-entropy method
Mannor et al. (2003).
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This concludes our discussion of the dimensions in the
framework. An overview of all considerations and their possible
choices is shown in Table 2, while Algorithm 1 shows how
all these considerations piece together in a general algorithmic
framework. To illustrate the validity of the framework, the next
section will analyze a variety of planning and RL methods along
the framework dimensions.

6. COMPARISON OF ALGORITHMS

Having discussed all the dimensions of the framework, we will
now zoom out and reflect on its use and potential implications.
The main point of our framework is that MDP planning and
reinforcement learning algorithms occupy the same solution
space. To illustrate this idea, Table 7 shows for a range of well-
known planning (blue), model-free RL (red) and model-based
RL (green) algorithms the choices they make on the dimensions
of the framework. The list is of course not complete (we could
have included any other preferred algorithm), but the table
illustrates that the framework is applicable to a wide range of
algorithms.

A first observation from the table is that it reads like a
patchwork. On most dimensions the same decisions appear
in both the planning and reinforcement learning literature,
showing that both fields actually have quite some overlap in
developed methodology. For example, the depth and back-
up schemes of MCTS (Kocsis and Szepesvári, 2006) and
REINFORCE (Williams, 1992) are exactly the same, but they
differ in their solution coverage (MCTS only uses a local
solution, REINFORCE updates a global solution after every
trial) and exploration method. Such comparisons provide
insight into the overlap and differences between various
approaches.

The second observation of the table is therefore that all
algorithms have to make a decision on each dimension. Therefore,
even though we often do not consciously consider each of the
dimensions when we come up with a new algorithm, we are still
implicitly making a decision on each of them. The framework
could thereby potentially help to structure the design of new
algorithms, by consciously walking along the dimensions of the
framework. It also shows what we should actually report about
an algorithm to fully characterize it.

There is one deeper connection between planning and tabular
reinforcement learning we have not discussed yet. In our
framework, we treated the back-up estimates generated from
a single model-free RL trial as a local solution. This increases
consistency (i.e., allows for the pseudocode of Algorithm 1),
but we could also view model-free RL as a direct update of
the global solution based on the back-up estimate (i.e., skip
the local solution). With this view we see another relation
between common planning and tabular learning algorithms, such
as MCTS (planning) and Monte Carlo reinforcement learning
(MCRL). Both these algorithms sample trials and compute back-
up estimates in the same way, but MCTS writes these to a local
tabular solution (with learning rate η = 1

n ), while MCRL writes
these to a global tabular solution (with fixed learning rate η).

These algorithms from different research fields are therefore
strongly connected, not only in their back-up, but also in their
update schemes.

We will briefly emphasize elements of the framework, or
possible combinations of choices, that could deserve extra
attention. First of all, the main success of reinforcement learning
originates from its use of global, approximate representations
(Silver et al., 2017; Ecoffet et al., 2021), for example in the form
of deep neural networks. These approximate representations
allow for generalization between similar states, and planning
researchers may therefore want to emphasize global solution
representations in their algorithms. The other way around, a
main part of the success of planning literature comes from
the stability and guarantees of building local, tabular solutions.
Combinations of both approaches show state-of-the-art results
(Levine and Abbeel, 2014; Silver et al., 2017; Hamrick et al.,
2020a), and each illustrate that we can be very creative in the way
learned global solutions can guide new planning iterations, and
the way planning outputmay influence the global solution and/or
action selection. Important research questions are therefore how
action selection within a trial can be influenced by the global
solution (Algorithm 1, line 16), how a local solution should
influence the global solution (i.e., variants of loss functions,
Algorithm 1, line 7), and how we may adaptively assign planning
budgets per root state (Algorithm 1, line 5). A recent systematic
study of design considerations in planning in the context
of model-based deep reinforcement learning is provided by
Hamrick et al. (2020b).

Another important direction for cross-pollination is the study
of global, approximate frontiers. On the one hand, planning
research has extensively studied the benefit of local, tabular
frontiers, a crucial idea which has been ignored in most RL
literature. On the other hand, tabular frontiers do not scale
to high-dimensional problems, and in these cases we need to
track some kind of global approximate frontier, as studied in
intrinsically motivated goal exploration processes (Colas et al.,
2020). Initial results in this direction are for example provided
by Péré et al. (2018) and Ecoffet et al. (2021), but there appears
to be much remaining research in this field. Getting back to the
previous point, we also believe semi-parametric memory and
episodic memory (Blundell et al., 2016; Pritzel et al., 2017) may
play a big role for global approximate solutions, for example
to ensure we can directly get back to a recently discovered
interesting state.

A third interesting direction is a stronger emphasis on the
idea of backward search (planning terminology) or prioritized
sweeping (RL terminology). In both communities, backward
search has received considerable less attention than forward
search, while backward approaches are crucial to spread acquired
information efficiently over a (global) state space (by setting root
states in a smarter way, see Section 5.2). The major bottleneck
seems the necessity of a reverse model (which state-actions may
lead to a particular state), which is often available in smaller,
tabular problems, but not in large complex problems where
we only have a simulator or real world interaction available.
However, we may learn an approximate reverse model from
data, which could bring these powerful ideas back into the
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TABLE 7 | Comparison of algorithms (columns) along the framework dimensions (rows).

Dimension Consideration Value iteration

Bellman, 1966

LAO⋆ Hansen and

Zilberstein, 2001

Labeled RTDP

Bonet and

Geffner, 2003b

Monte Carlo search Tesauro

and Galperin, 1997

MCTS Kocsis and

Szepesvári, 2006

Q-learning Watkins and

Dayan, 1992

TD(λ) Sutton and Barto,

2018

MDP access Settable

descriptive

Settable

descriptive

Settable

descriptive

Settable generative Settable generative Resettable generative Resettable generative

Solution - Coverage Global Local Local Local Local Global Global

- Type V (s) V (s) V (s) Q(s, a) Q(s, a) Q(s, a) V (s)

- Method Tabular Tabular Tabular Tabular Tabular Tabular Tabular

- Initialization Uniform Heuristic Heuristic Uniform Optimistic Uniform Uniform

Root - Selection Ordered Forward sampling Forward sampling Forward sampling Forward sampling Forward sampling Forward sampling

Budget - # trials per root up to |A| · |S| till convergence up to |A| · |S| n n 1 dmax

- Depth 1 1..n 1 ∞ ∞ 1 1..dmax

Selection - Next action Ordered BF: Greedy, AF:

Ordered, NR:

Greedy

BF: Greedy, AF:

Ordered, NR:

Greedy

BF: Ordered AF: Baseline BF: Uncertainty AF:

Baseline NR: Greedy

Random pert. Random pert.

- Next state Ordered Ordered Sample Sample Sample Sample Sample

Bootstrap - Location State State State - - State-action State

- Type Learned Heuristic Heuristic - - Learned Learned

Back-up - Back-up policy Greedy/max Greedy/max Greedy/max On-policy On-policy Greedy/max On-policy

- Policy exp. - - - Sample Sample - Sample

- Dynamics exp. Expected Expected Expected Sample Sample Sample Sample

- Add. back-ups - Convergence label Convergence label - Counts - -

Update - Loss (Squared) (Squared) (Squared) (Squared) (Squared) (Squared) (Squared)

- Update type Replace (η = 1.0) Replace (η = 1.0) Replace (η = 1.0) Average (η = 1/n) Average (η = 1/n) Fixed step Eligibility

(Continued)
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TABLE 7 | Continued

Dimension Consideration REINFORCE

Williams, 1992

DQN Mnih et al.,

2015

Prioritized

sweeping Moore

and Atkeson,

1993

Dyna Sutton, 1990 PILCO Deisenroth and

Rasmussen, 2011

AlphaGo Silver et al., 2017 Go-Explore (policy-based)

Ecoffet et al., 2021

MDP access Resettable

generative

Resettable

generative

Resettable

generative

Resettable generative Resettable generative Settable generative Resettable generative

Solution - Coverage Global Global Global Global Global Global Global

- Type π (a|s) Q(s, a) Q(s, a) Q(s, a) π (a|s) π (a|s), V (s) π (a|s,g), V (s)

- Method Tabular Approximate (NN) Tabular Tabular Approximate (GP) Approximate (NN) Approximate (NN)

- Initialization Uniform Random Uniform Uniform Random Random Random

Root - Selection Forward Forward Forward +

backward

Forward + visited states Forward Forward Forward

Budget - # trials per root 1 1 1 1 1 1600 dmax

- Depth ∞ 1 1 1 ∞ MCTS: 1..n

NR:∞

1..dmax

Selection - Next action Rand. pert. (stoch.

policy)

Rand. pert.

(ǫ-greedy)

State-based

(novelty)

State-based (novelty) +

Mean pert. (Boltzmann)

Rand. pert. (stoch. policy) BF/AF: Uncertainty NR:

Rand. pert.

BF: Novelty + Mean pert.

(entropy), AF: Rand. pert.

- Next state Sample Sample Sample Sample Sample Sample Sample

Bootstrap - Location - State-action State-action State-action - State State

- Type - Learned Learned Learned - Learned Learned

Back-up - Back-up policy On-policy Max/greedy Max/greedy On-policy On-policy On-policy On-policy

- Policy exp. Sample - Max Sample Sample Sample Sample

- Dynamics exp. Sample Sample Expected Sample Sample Sample Sample

- Add. back-ups - - Priorities, counts Counts Uncertainty Counts Counts

Update - Loss Policy gradient Squared (Squared) (Squared) Value gradient Cross-entropy (policy) +

squared (value)

Policy gradient (PPO) +

squared (value)

- Learning rate Fixed step Fixed step Fixed step Fixed step Fixed step Local: Average Global: fixed

step

Local: eligibility Global:

adaptive

Blue, red and green color denote planning, model-free RL and model-based RL algorithms, respectively (although Value Iteration is technically model-based RL under our definitions in Section 3, we still list it as first entry since it is a

core algorithm). All methods that use a global solution also use a local solution (which we did not explicitly write in the table). Regarding action selection, when applicable we discriminate before frontier (BF) action selection, after frontier

(AF) action selection, and next root (NR) action selection. When the squared loss is written between brackets, it means that the algorithm uses a direct tabular update rule and the squared loss is therefore never explicitly part of the

algorithm. NN, neural network; GP, Gaussian Process, PPO = Proximal Policy Optimization (Schulman et al., 2017).
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picture. Initial (promising) results in this direction are provided
by Corneil et al. (2018), Edwards et al. (2018), and Agostinelli
et al. (2019).

In summary, the framework for reinforcement learning
and planning (FRAP), as presented in this paper, shows that
both planning and reinforcement learning algorithms share the
same algorithmic space. This provides a common language for
researchers from both fields, andmay help inspire future research
(for example by cross-pollination). Finally, we hope the paper
also serves an educational purpose, for researchers from one
field that enter into the other, but particularly for students, as
a systematic way to think about the decisions that need to be
made in a planning or reinforcement learning algorithm, and as
a way to integrate algorithms that are often presented in disjoint
courses.
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