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A B S T R A C T

This paper presents a new formulation for intentional controlled islanding (ICI) of power transmission grids
based on mixed-integer linear programming (MILP) DC optimal power flow (OPF) model. We highlight several
deficiencies of the most well-known formulation for this problem and propose new enhancements for their
improvement. In particular, we propose a new alternative optimization objective that may be more suitable
for ICI than the minimization of load shedding, a new set of island connectivity constraints, and a new set of
constraints for DC OPF with switching, and a new MILP heuristic to find initial feasible solutions for ICI. It is
shown that the proposed improvements help to reduce the final optimality gaps as compared to the benchmark
model on several test instances.
1. Introduction

Intentional controlled islanding (ICI) is an important system in-
tegrity protection scheme (SIPS) aiming to prevent system collapse due
to wide-area instability by separating the system into a set of non-
interacting islands. A typical situation requiring such a control action
is loss of synchronism between some parts of the system, but it can
also be used to limit the spread of cascading outages, or to isolate
unstable parts of the system. The high relevance of this control action is
confirmed by the increasing number of blackouts around the globe [1].

From the mathematical perspective, computing the splitting bound-
ary to separate the system into a number of self-sustained islands
equates to an OPF problem with switching. Such problems are no-
toriously hard to solve, as OPF is nonlinear, and switching decisions
are discrete, which amounts to a mixed-integer nonlinear program
(MINLP). Moreover, ICI must be solved rapidly in real-time as a cor-
rective control action for instability mitigation. For this reason, solving
ICI as a MINLP is not feasible, and MILP reformulations of the original
MINLP are often seen as an acceptable trade-off between accuracy and
computation time.

Although multiple MILP approximations for ICI and optimal trans-
mission switching (OTS) exist in literature (e.g., [2,3]), this paper is
focused on the basic DC OPF ICI model. Our goal is to resolve the
fundamental issues associated with the DC OPF ICI model to devise

∗ Corresponding author.
E-mail address: ilya.tyuryukanov@ieee.org (I. Tyuryukanov).

the efficient computational enhancements that could also be applied
to more advanced MILP-based ICI models [2–4].

We first observe that the conventional ICI objective of minimizing
the total post-splitting load shedding [5,6] may often result in a poor
MIP optimality gap progression if the exact optimal load shedding
is close to zero. To alleviate this issue, we propose to minimize the
total load-generation imbalance in the computed islands while possibly
keeping the load shedding as the secondary optimization objective.
Minimizing the total load-generation imbalance should limit load shed-
ding and additionally limit the value of the rate of change of frequency
(ROCOF) following the system splitting.

Our second contribution aims to improve the modeling of the
islands’ connectedness requirement. The previously published papers
on optimization-based ICI either use artificial commodity flows to
impose connectivity constraints on islands [6] or neglect this require-
ment [2,7]. Our proposal is to model connectivity through directed
spanning trees, which aims to avoid the computationally inefficient big-
M coefficients that accompany the commodity flow based formulation.
This technique has previously been applied to enforce radiality in
distribution networks [8], but our approach differs from [8].

Our third contribution addresses the big-M coefficients that are
normally present in the DC OPF constraints related to switching deci-
sions. We reformulate these constraints as Kirchhoff’s voltage law (KVL)
vailable online 19 July 2022
378-7796/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.epsr.2022.108588
Received 4 October 2021; Received in revised form 17 April 2022; Accepted 2 July
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2022

http://www.elsevier.com/locate/epsr
http://www.elsevier.com/locate/epsr
mailto:ilya.tyuryukanov@ieee.org
https://doi.org/10.1016/j.epsr.2022.108588
https://doi.org/10.1016/j.epsr.2022.108588
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2022.108588&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Electric Power Systems Research 212 (2022) 108588I. Tyuryukanov et al.

g
a
𝑝
A w

l
i
s
m
t
t
f
r
o
w

l
(

equations with additional slack variables to eliminate the uncertain
voltage angle differences across an open line otherwise modeled as
large big-M constants. Cycle inequalities involving KVL have been
previously proposed in [9], but our work differs from [9] in several
aspects. The goal of [9] was to strengthen the LP relaxation of the
conventional DC optimal transmission switching (OTS) model, while
our goal is the elimination of the big-M coefficients. This motivates a
different modeling approach.

Our fourth contribution is a new MILP heuristic to find initial
feasible solutions for DC OPF ICI. For some MIP problems, a feasible
solution can be obtained trivially or in polynomial time, but the OPF
ICI problem combining power flow physics and discrete decisions does
not allow for a simple initialization. Obtaining an early feasible solution
is crucial for the progress of a modern MIP solver, as there are efficient
heuristics that are able to progressively improve the best feasible
solution (e.g., the RINS heuristic). Unfortunately, we could not identify
any published MILP heuristics for OPF ICI, which prompted the design
of a simple yet effective method based on the LP relaxation of DC OPF
ICI.

The following sections describe the above contributions in more
detail. Section 2.2 introduces the used notation and the conventional
benchmark DC OPF ICI model. Section 3 details our proposed model
and cost function. Section 4 introduces the MILP heuristic for OPF ICI
and explains how MILP is solved. Section 5 describes the test cases and
presents the computational results. Section 6 concludes the paper.

2. Overview of previous results

2.1. Notations

A power network consisting of 𝑛 nodes and 𝑚 branches is repre-
sented by a graph with set of nodes  , set of edges  (|| = 𝑚), and
set of arcs  (|| = 2𝑚). Power demand and power generation at
node 𝑖 prior to splitting are denoted as 𝑃 𝑠

𝐿,𝑖 and 𝑃 𝑠
𝐺,𝑖. Load demand and

eneration shedding to satisfy the post-splitting conditions are denoted
s 𝑃𝐿,𝑖 and 𝑃𝐺𝑆,𝑖. Power flow through branch (𝑖, 𝑗) ∈  is defined as
𝑖,𝑗 , its value prior to splitting is 𝑝𝑠𝑖,𝑗 , and its limiting magnitude is 𝑝𝑚𝑎𝑥𝑖,𝑗 .
dmittance of branch (𝑖, 𝑗) is denoted as 𝑏𝑖,𝑗 . As the used model is DC

OPF, reactive power is not modeled.
The splitting configuration is modeled by binary variables 𝑥𝑖,𝑘 (𝑥𝑖,𝑘 =

1 implies that node 𝑖 is assigned to island 𝑘) and 𝑦𝑖,𝑗 (𝑦𝑖,𝑗 = 1 implies that
branch (𝑖, 𝑗) ∈  is open). The total number islands is 𝐾. An important
ICI requirement that promotes transient stability after splitting is to
assign generators from the same coherent group to one island. Coherent
groups are denoted as 1,… ,𝐾 (i.e., each coherent group is supposed
to form a separate island).

Indices 𝑖 and 𝑗 run over network nodes and pairs of nodes (edges
or arcs). Index 𝑘 runs over islands (𝑘 = 1,… , 𝐾). Superscripts 𝑠, ∗, 𝐿𝑅
denote pre-splitting values, integral solutions of MILP programs, and
linear relaxation (LR) solutions of MILP programs respectively.

2.2. Basic MILP model for DC OPF ICI

Probably the first paper proposing a MILP-based ICI strategy was
[5]. Since then several related models appeared in the literature, of
which the model in [7] is the most compact one. Unlike [5,10,11], the
model in [7] does not use auxiliary binary variables that model the
membership of edge (𝑖, 𝑗) in island 𝑘. Instead, the edge status variables
𝑦𝑖,𝑗 are used directly, which eliminates 𝑂(𝑚𝐾) extra binary variables
and constraints. However unlike most other references, the models
in [2,7] neglect the islands’ connectedness requirement. To avoid the
deficiencies of any single existing model, a combined DC OPF ICI model
is introduced below:

min 𝛽
∑

𝑃𝐿𝑆,𝑖 + 𝛾
∑

𝑃𝐺𝑆,𝑖 + 𝜇
∑

𝑝𝑠𝑖,𝑗𝑦𝑖,𝑗 (1a)
2

𝑖∈ 𝑖∈ (𝑖,𝑗)∈
𝐾
∑

𝑘=1
𝑥𝑖,𝑘 = 1, ∀𝑖 ∈  (1b)

𝑥𝑖,𝑘 = 1, ∀𝑖 ∈ 𝑘, ∀𝑘 (1c)

𝑥𝑖,𝑘 − 𝑥𝑗,𝑘 ≤ 𝑦𝑖,𝑗 ,∀(𝑖, 𝑗) ∈  , ∀𝑘 (1d)

𝑥𝑗,𝑘 − 𝑥𝑖,𝑘 ≤ 𝑦𝑖,𝑗 ,∀(𝑖, 𝑗) ∈  , ∀𝑘 (1e)

𝑥𝑖,𝑘 + 𝑥𝑗,𝑘 + 𝑦𝑖,𝑗 ≤ 2,∀(𝑖, 𝑗) ∈  , ∀𝑘 (1f)
∑

(𝑖,𝑗)∈
𝑝𝑖,𝑗 −

∑

(𝑗,𝑖)∈
𝑝𝑗,𝑖 = 𝑃 𝑠

𝐺,𝑖 − 𝑃𝐺𝑆,𝑖−

𝑃 𝑠
𝐿,𝑖 + 𝑃𝐿𝑆,𝑖, ∀𝑖 ∈  (1g)

𝑃𝑚𝑖𝑛
𝐺𝑆,𝑖 ≤ 𝑃𝐺𝑆,𝑖 ≤ 𝑃𝑚𝑎𝑥

𝐺𝑆,𝑖, ∀𝑖 ∈  (1h)

𝑃𝑚𝑖𝑛
𝐿𝑆,𝑖 ≤ 𝑃𝐿𝑆,𝑖 ≤ 𝑃 𝑠

𝐿,𝑖, ∀𝑖 ∈  (1i)

𝑝𝑖,𝑗 ≤ 𝑝𝑚𝑎𝑥𝑖,𝑗 (1 − 𝑦𝑖,𝑗 ), ∀(𝑖, 𝑗) ∈  (1j)

𝑝𝑖,𝑗 ≥ −𝑝𝑚𝑎𝑥𝑖,𝑗 (1 − 𝑦𝑖,𝑗 ), ∀(𝑖, 𝑗) ∈  (1k)

𝑝𝑖,𝑗 − 𝑏𝑖,𝑗 (𝜑𝑖 − 𝜑𝑗 ) ≤ 𝑀𝜑
𝑖,𝑗𝑦𝑖,𝑗 , ∀(𝑖, 𝑗) ∈  (1l)

𝑝𝑖,𝑗 − 𝑏𝑖,𝑗 (𝜑𝑖 − 𝜑𝑗 ) ≥ −𝑀𝜑
𝑖,𝑗𝑦𝑖,𝑗 , ∀(𝑖, 𝑗) ∈  (1m)

𝜑𝑚𝑖𝑛 ≤ 𝜑𝑖 ≤ 𝜑𝑚𝑎𝑥, ∀𝑖 ∈  (1n)

𝜑𝑟 = 0, 𝑟 ∈  (1o)

𝑓𝑖,𝑗 ≤ (𝑛 − 1)(1 − 𝑦𝑖,𝑗 ), ∀(𝑖, 𝑗) ∈  (1p)

𝑓𝑖,𝑗 ≥ −(𝑛 − 1)(1 − 𝑦𝑖,𝑗 ), ∀(𝑖, 𝑗) ∈  (1q)
∑

(𝑟𝑘 ,𝑗)∈
𝑓𝑟𝑘 ,𝑗 −

∑

(𝑗,𝑟𝑘)∈
𝑓𝑗,𝑟𝑘 =

∑

𝑖∈
𝑥𝑖,𝑘,

𝑟𝑘 ∈ , 𝑘 = 1,… , 𝐾, 𝑥𝑟𝑘 ,𝑘 = 1 (1r)
∑

(𝑖,𝑗)∈
𝑓𝑖,𝑗 −

∑

(𝑗,𝑖)∈
𝑓𝑗,𝑖 = −1, ∀𝑖 ∈  ⧵ (1s)

𝑥𝑖,𝑘 ∈ {0, 1}, ∀𝑖 ∈  , 𝑘 = 1,… , 𝐾 (1t)

𝑦𝑖,𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈  (1u)

The objective of (1) combines the relevant objectives from [5,10,11]
ith different weight factors. The factor 𝛽 is associated with minimal

oad shedding, which is of great importance for ICI. While minimiz-
ng load shedding, it is important to avoid arbitrary large values of
hed or disconnected generation, which is achieved by introducing the
inimization of generation shedding into (1a) with the weight 𝛾. Addi-

ionally, [10,11] use the minimization of total power flow disruption as
heir cost function. In our experience, this choice of cost function allows
or an easier convergence to the optimum, but it cannot well enough
epresent the power balance within islands, which is the main challenge
f ICI. However, a large power flow disruption is undesirable [12],
hich explains its presence in (1a) with the weight 𝜇.

Switching constraints (1b)–(1f) ensure the separation of buses be-
onging to different islands from each other through open branches
𝑦𝑖,𝑗 = 1). Here (1f) ensures that lines connecting buses in the same

island are closed, thus precluding line switching inside islands. Because
of (1f), the formulation in (1) becomes easier to solve, as its feasible
region becomes more constrained. From an operational perspective,
requiring both the optimal splitting cutset and optimal line switching
inside of each island may be too complex and impractical during an
emergency condition.

DC OPF constraints (1g)–(1m) describe the physics of DC power
flow. Kirchhoff current law (KCL) is modeled by (1g), which represents
the power balance at each node. Constraints (1j)–(1m) model Ohm’s
law under the presence of switching decisions 𝑦𝑖,𝑗 , which requires the
introduction of the node potential variables 𝜑𝑖, ∀𝑖 ∈  . When branch
(𝑖, 𝑗) is closed, 𝑝𝑖,𝑗 is governed by Ohm’s law. If branch (𝑖, 𝑗) is open,
𝑝𝑖,𝑗 = 0 and the angle difference (𝜑𝑖 − 𝜑𝑗 ) can be arbitrary. Therefore,
the big-M constants 𝑀𝜑

𝑖,𝑗 are needed to allow (𝜑𝑖 − 𝜑𝑗 ) to take some
rather large values. Additionally, the lower and upper bounds 𝜑𝑚𝑖𝑛 and
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𝜑𝑚𝑎𝑥 in (1n) can also be seen as big-M constants, as their values often
cannot be estimated exactly.

Single commodity flow constraints are used to ensure the connect-
edness of each island in the same way as the switching constraints
(1b)–(1e) ensure the separation of islands from one another. For each
coherent group 𝑘, a root node 𝑟𝑘 ∈ 𝑘, 𝑟𝑘 ∈  is selected, whereby 
is the union of root nodes of all groups. Constraint (1r) requires that the
number of units of an artificial commodity produced at 𝑟𝑘 equals the
total number of nodes in island 𝑘 corresponding to 𝑘, while constraints
(1s) demand one unit of commodity to be consumed at each non-root
node. The satisfaction of flow balance (1r)–(1s) requires each island
to be connected. However, the upper bounds of commodity flows for
each branch are not known, which prompts the usage of another big-M
constant 𝑛 − 1 in (1p)–(1q). This big-M constant could be somewhat
lowered through exact calculations, but 𝑛−1 is shown here to simplify
the representation. Unlike [5,10], (1) does not require a separate set of
commodity flow variables for each island, as it appears that a single set
of 𝑚 commodity flows 𝑓𝑖𝑗 can be used for all islands.

3. Proposed MILP model

3.1. DC OPF ICI using cycle-based KVL constraints

A major issue with (1) is the presence of big-M constants 𝑀𝜑
𝑖,𝑗

in (1l)–(1m). While there are methods to bound these coefficients
when the solution is required to contain a single connected component
(e.g., [13]), no bound strengthening method is known for the discon-
nected networks resulting from ICI. Thus, a possibly unrealistically
large value needs to be assumed for 𝑀𝜑

𝑖,𝑗 in order to preserve all feasible
solutions.

An alternative to Ohm’s law form of power flow equations in (1l)–
(1m) is to apply KVL to the entire network, while considering the
switching decisions. The KVL equations are written with respect to a
set of linearly independent cycles in the network, which is known as
cycle basis. For the reasons that become clear below, it is desirable
to compute the cycle basis as quickly as possible, which is achieved
by using as cycle basis fundamental cycles induced by the network’s
minimal spanning tree (MST) [14]. Given cycle basis , the KVL
alternatives of (1l)–(1m) can be formulated as follows:
∑

(𝑖,𝑗)∈𝐶

𝑝𝑖,𝑗
𝑏𝑖,𝑗

sgn(𝑖, 𝑗) ≤ 1
2
𝑀𝐶

∑

(𝑖,𝑗)∈𝐶
𝑦𝑖,𝑗 , ∀𝐶 ∈  (2a)

∑

(𝑖,𝑗)∈𝐶

𝑝𝑖,𝑗
𝑏𝑖,𝑗

sgn(𝑖, 𝑗) ≥ −1
2
𝑀𝐶

∑

(𝑖,𝑗)∈𝐶
𝑦𝑖,𝑗 , ∀𝐶 ∈  (2b)

here 𝐶 ∈  is a cycle formed by undirected edges (𝑖, 𝑗) ∈  , and
function sgn(𝑖, 𝑗) takes the plus sign if edge (𝑖, 𝑗) is aligned with the
clockwise direction of 𝐶 and the minus sign otherwise.

As (1f) precludes line switching inside islands, each cycle is either
onnected or has at least two open lines. Therefore, 𝑀𝐶 is the sum of
𝑝𝑚𝑎𝑥𝑖,𝑗
𝑏𝑖,𝑗

|, (𝑖, 𝑗) ∈ 𝐶 minus the two smallest values of |
𝑝𝑚𝑎𝑥𝑖,𝑗
𝑏𝑖,𝑗

| along 𝐶. Unlike
𝑀𝜑

𝑖,𝑗 , 𝑀𝐶 can be computed exactly, but it may still be quite large for
long cycles. Thus, to additionally strengthen the model, we are adding
some additional KVL constraints (2) associated with cycles shorter
than a certain length. All such cycles can be found in polynomial
time by applying to each node techniques based on recursive node
neighborhood traversal. Short cycles (e.g., up to length 7) can be found
quickly before the start of the MIP solver, but enumerating longer
cycles becomes increasingly computationally inefficient.

Obviously, any cycle basis of the disconnected network contains less
cycles than the cycle basis of the original network. As only a small
fraction of edges is opened for ICI, the majority of fundamental cycles of
the disconnected network coincide with the initial fundamental cycles.
However, in some cases the original fundamental cycles do not fully
describe the cycle basis of the disconnected network. Thus, for each
integer solution obtained during the solution process, cycles violating
3

(2) need to be identified, and the corresponding inequalities (2) added
to the model by using MIP solver callbacks. A possible computationally
efficient way to achieve this is as follows:

(1) Compute the MST of the original network and the associated
fundamental cycle basis 0.

(2) Assign close-to-zero weights to the network edges belonging to
the MST.

(3) Once an integer solution is found, compute its minimal spanning
forest and the associated fundamental cycle basis 𝑖 (𝑖 is the
solution number). The previously assigned small edge weights
should promote the alignment of the newly computed cycle basis
with the original one.

(4) Check the solution for conformity with (2) (i.e., ∑

(𝑖,𝑗)∈𝐶
𝑝∗𝑖,𝑗
𝑏𝑖,𝑗

sgn(𝑖, 𝑗) = 0, ∀𝐶 ∈ 𝑖).
(5) If any cycles in 𝑖 violate (2), use them to add new KVL

constraints (2) to the model.

Besides strengthening the model, the abovementioned KVL con-
traints based on extra short cycles also improve the satisfaction of (2)
or the intermediate integer feasible solutions.

.2. Island connectivity constraints

The single commodity flow constraints that are most commonly
sed to enforce islands’ contiguity [5,6,10] have the drawback of
ntroducing at least 𝑚 auxiliary variables and large big-M constants
hat may lead to loose LP relaxations. In [11], two alternative methods
ased on multicommodity flows and network cutsets are proposed.
owever, these alternatives may often underperform the simple single
ommodity flow approach. At least the multicommodity flow method
as largely theoretical importance due to the very large number of
uxiliary variables that it requires [15]. The cutset-based method re-
uires solving many max-flow min-cut problems to identify cutsets that
iolate connectivity, which has the time complexity of 𝑂(𝑚𝑛2) for a

single max-flow min-cut run.
In this section, a different approach to islands’ connectivity is pro-

posed that does not involve big-M coefficients and allows to quickly
find strong inequalities that ensure network connectivity. This ap-
proach is related to the studies on radiality constraints in distribution
networks (e.g., [8,16]), but has some application-specific features and
computational improvements. One of conditions for network connect-
edness is that there exists a spanning tree with 𝑛 − 1 edges that spans
all of its nodes. In general, for a network with 𝑘 connected components
there exists 𝑘 spanning trees (one for each component) forming a
spanning forest that includes 𝑛−𝑘 edges. This observation motivates the
following connectivity formulation based on rooted directed spanning
trees:
∑

(𝑖,𝑗)∈
𝑧𝑖,𝑗 = 𝑛 − 𝑘 (3a)

𝑗,𝑟 = 0, ∀(𝑗, 𝑟) ∈ , ∀𝑟 ∈  (3b)
∑

(𝑟,𝑗)∈
𝑧𝑟,𝑗 ≥ 1, ∀𝑟 ∈  (3c)

∑

(𝑗,𝑖)∈
𝑧𝑗,𝑖 = 1, ∀𝑖 ∈  ⧵ (3d)

𝑖,𝑗 + 𝑧𝑗,𝑖 ≤ 1 − 𝑦𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐶 (3e)

𝑖,𝑗 + 𝑧𝑗,𝑖 = 1 − 𝑦𝑖,𝑗 , ∀(𝑖, 𝑗) ∈  ⧵ 𝐶 (3f)
∑

(𝑖,𝑗)∈𝐶
𝑧𝑖,𝑗 ≤ |𝐶| − 1, ∀𝐶 ∈  (3g)

𝑖,𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈  (3h)

here 𝑧𝑖,𝑗 and 𝑧𝑗,𝑖 represent the status of arcs (𝑖, 𝑗) and (𝑗, 𝑖) ∈  (𝑧𝑖,𝑗 = 1
ff (𝑖, 𝑗) is enabled).
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The equalities in (3b)–(3c) define the root nodes of 𝐾 coherent
generator groups as root nodes of 𝐾 trees each spanning one island.
According to (3b)–(3c), each root node should have no incoming arcs
and at least one outgoing arc. Conversely, each non-root node should
have one incoming arc according to (3d). Constraints (3e)–(3f) link 𝑧
and 𝑦 variables. For the edges that participate in network cycles (i.e., in
the cycle basis described in Section 3.1), (3e) is valid. For the rest of
the edges, the stronger version (3f) can be used instead of (3e). The
number of enabled arcs is constrained by (3a).

Combined constraints (3a)–(3f) can define 𝑘 connected components
spanned by 𝑘 directed trees, or more than 𝑘 connected components. In
the latter case, the additional components will form directed cycles to
satisfy (3a)–(3f). Therefore, cycle breaking constraints (3g) are needed
to only allow spanning forests as solutions, where  is the set of
all directed cycles in the network and 𝐶 is a sequence of arcs in 
forming a directed cycle. As there are exponentially many cycles in the
network, all constraints in (3g) cannot be simultaneously added to the
model. Instead, only the violated inequalities (3g) are added in MIP
solver callbacks that are available in most of modern MIP solvers (see
Section 3.5).

3.3. Extra strengthening cycle inequalities

To further strengthen the cycle-based ICI formulation, the following
triangle inequalities (e.g., see [17]) are added for all known cycles of the
minimal length:

𝑦𝑖,𝑗 −
∑

(𝑝,𝑞)∈𝐶
(𝑝,𝑞)≠(𝑖,𝑗)

𝑦𝑝,𝑞 ≤ 0, ∀𝐶 ∈ , |𝐶| = 3,∀(𝑖, 𝑗) ∈ 𝐶 (4)

.4. Minimization of load-generation imbalance

Minimal load shedding is often chosen as the cost function of ICI, as
t is highly important for utilities to minimize the loss of load. However,
hedding an exact amount of load at exact bus at exact moment in time
o realize the outcome of (1) may be sometimes quite challenging with
he available equipment. Moreover, the optimal load shedding can be
ero, in which case it will be impossible to provide a non-zero lower
ound, and the integrality gap of the MIP solver will be close to 100%
uring the whole optimization.

Among practitioners, the notion of balanced islands with good load-
eneration balance is no less popular than the idea of minimal load
hedding. Islands with good power balance would naturally limit load
hedding without the need of picking specific buses, while also limiting
he ROCOF value after splitting. At the same time, the total power
mbalance of all islands is always non-zero and can be much easier
ounded from below. Based on (1), the minimization of load generation
mbalance can be formulated as follows:

in
𝐾
∑

𝑘=1
𝑃𝛥,𝑘 (5a)

𝑃𝛥,𝑘 ≥
∑

𝑖∈
(𝑃 𝑠

𝐺,𝑖 − 𝑃 𝑠
𝐿,𝑖)𝑥𝑖,𝑘, ∀𝑘 (5b)

𝛥,𝑘 ≥
∑

𝑖∈
(𝑃 𝑠

𝐿,𝑖 − 𝑃 𝑠
𝐺,𝑖)𝑥𝑖,𝑘, ∀𝑘 (5c)

(1b)–(1u)

where 𝑃𝛥,𝑘 represents the power imbalance of island 𝑘.
The inequalities in (5b)–(5c) are constraining the absolute value

|

∑

𝑖∈ (𝑃
𝑠
𝐺,𝑖 − 𝑃 𝑠

𝐿,𝑖)𝑥𝑖,𝑘| from below for each 𝑘, while the minimization
requirement (5a) constrains it from above.
4

Algorithm 1 Generation of cycle breaking constraints
Input: 𝑧∗𝑖,𝑗 ,  , 𝐾
Output: Set of violating directed cycles 

1: 𝐺( ,𝐺) ← directed graph induced by 𝑧∗𝑖,𝑗
2: 𝐹 ( ,𝐹 ) ← 𝚜𝚙𝚊𝚗𝚗𝚒𝚗𝚐_𝚏𝚘𝚛𝚎𝚜𝚝(𝐺)
3:  ← 𝚌𝚘𝚗𝚗𝚎𝚌𝚝𝚎𝚍_𝚌𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝𝚜(𝐹 )
4: if || = 𝐾 then return ∅
5: end if
6: 𝐶 ← 𝐺 ⧵𝐹
7: for 𝑎𝑖,𝑗 ∈ 𝐶 do
8: 𝑃 ← 𝚜𝚑𝚘𝚛𝚝𝚎𝚜𝚝_𝚙𝚊𝚝𝚑( , source=𝑗, target=𝑖)
9: 𝐶 ← 𝑃 ∪ 𝑎𝑖,𝑗
0:  ←  ∪ 𝐶
1: end for
2: return 

3.5. Overall solution process

The ideas from Sections 3.2–3.1 can be combined together into the
following novel DC OPF ICI formulation:

min 𝛼
𝐾
∑

𝑘=1
𝑃𝛥,𝑘 + 𝛽

∑

𝑖∈
𝑃𝐿𝑆,𝑖 + 𝛾

∑

𝑖∈
𝑃𝐺𝑆,𝑖 + 𝜇

∑

(𝑖,𝑗)∈
𝑝𝑠𝑖,𝑗𝑦𝑖,𝑗

(1b)–(1k)

(2a)–(2b) (6)
(3a)–(3h), (4), (5b)–(5c)

The above formulation requires MILP callbacks for cycle breaking
constraints (3g) to be solved efficiently. In our implementation, the
violated cycle breaking constraints are easily separated using Algorithm
1 for each new integer solution.

Given an integer solution 𝑧∗𝑖,𝑗 , it can be considered as directed graph
𝐺. For this graph, the spanning forest 𝐹 can be computed by using the
standard spanning tree algorithms with loglinear time complexity. If
𝐹 has 𝑘 connected components, the solution is accepted, and the best
integer solution gets updated. Otherwise, Algorithm 1 finds arcs that
are in 𝐺, but not in 𝐹 . Each such arc corresponds to a directed cycle,
which allows to retrieve the full set of cycles  that violate (3g) in
loglinear time.

In addition to cycle breaking constraints (3g), we are adding di-
rected cutset constraints between the root node of each group and the
remaining generators of the same group using the same 𝑧𝑖,𝑗 variables.
These constraints are convenient for enforcing connectivity of a defined
set of terminal nodes to the root node. A detailed description of these
constraints including improvements like back cuts and creep flow can be
found in [15] and several other references.

The cycle breaking constraints in (3g) also combine well with the
cycle-based DC OPF ICI formulation in (2). To apply (2), a cycle basis
and optionally some additional network cycles need to be found. From
these precomputed cycles, the shorter ones (e.g., with the length less
than 6–8 edges) can be used to strengthen the initial model formulation
with some constraints of type (3g).

4. MILP heuristics

When solving (6), no feasible solution could be found within the
optimization time limit for several larger instances. In practice, it is
highly beneficial to obtain an initial feasible solution as early as possi-
ble because this would increase the available time to improve the upper
bound of (6) using various efficient techniques available in the modern
MIP solvers. As the practice has shown that multiple MILP heuristics
available in Gurobi [18] often cannot retrieve a feasible solution, a new
problem-specific heuristic had to be proposed to improve the solvability
of (1) and (6). This heuristic is outlined in Algorithm 2.
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Algorithm 2 MILP heuristic for initialization of DC OPF ICI.
Input: 𝑥𝐿𝑃𝑖,𝑘 ,  ,  , , K
Output: 𝑥∗𝑖,𝑘, 𝑦∗𝑖,𝑗 , 𝑧

∗
𝑖,𝑗

1: 𝑜𝑛 ← ∅
2: for 𝑘 = 1,… , 𝐾 do
3: for (𝑖, 𝑗) ∈  do
4: if 𝑥𝐿𝑃𝑖,𝑘 > 0.9 ∧ 𝑥𝐿𝑃𝑗,𝑘 > 0.9 then 𝑜𝑛 ← 𝑜𝑛 ∪ (𝑖, 𝑗)
5: end if
6: end for
7: end for
8:  ← 𝚌𝚘𝚗𝚗𝚎𝚌𝚝𝚎𝚍_𝚌𝚘𝚖𝚙𝚘𝚗𝚎𝚗𝚝𝚜(𝐺( , 𝑜𝑛))
9:  ← ∅ // Set of partial islands

10: for 𝐶𝐶 ∈  do
11: 𝑟 ←  ∩ 𝐶𝐶
12: if |𝑟| = 0 then continue
13: else if |𝑟| ≥ 2 then return ∅
14: else  ←  ∪ 𝐶𝐶
15: end if
16: end for
17: if

∑

𝑃∈ |𝑃 |
𝑛 ≥ 0.8 then

8: Fix 𝑥𝑖,𝑘, 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗 according to  and solve the reduced MILP
(e.g., (1)) with more than 80% fixed buses.

19: end if
20: return The solution of reduced MILP 𝑥∗𝑖,𝑘, 𝑦∗𝑖,𝑗 , 𝑧

∗
𝑖,𝑗

The LR of 𝑥𝑖,𝑘 is taken as input and analyzed in lines 2–7 to identify
the edges that are considered to be closed by the current LR. Then
these edges are used to build an undirected graph 𝐺 in line 8, and
the connected components of that graph are identified. Next, each
connected component is analyzed for the presence of a root node 𝑟 ∈ 
in it. If a root node is present is the component, it is saved to the set
of partial islands  . Finally, the 𝑥𝑖,𝑘 variables of the nodes belonging
to contiguous partial islands are fixed, and the values of the remaining
node variables are obtained by solving the initial problem as MILP with
the majority of discrete variables being fixed. Because of a high degree
of reduction of discrete variables, the reduced MILP is usually solved in
a fraction of a second. However, it is important to find connected partial
islands, as just rounding the LR will very often result in infeasibility.

The heuristic in Algorithm 2 is only run until a feasible solution
becomes available, as modern MILP solvers are able to apply more
efficient heuristics to consistently improve the existing solution.

5. Computational results

5.1. Test setup

This section1 presents a comparison of the proposed formulation in
(6) to the known benchmark model in (1). The results are produced
for a number of test networks from the MATPOWER toolbox [19].
As publicly available power system test cases do not include coherent
generator groupings that are required in (1c), those were obtained with
the generator coherency algorithm from [20] for every test case. For the
MATPOWER test cases lacking the dynamic generator data it was fitted
from [21].

Three test cases from MATPOWER were selected to evaluate the
proposed formulation: case89pegase, case1354pegase, and case1888rte.
The 89 bus test case was selected because it posed some difficulties for
the MILP solver despite its moderate size, while the 1354 and 1888 bus
test cases are examples of large-scale networks.

1 The code implementation can be found at https://github.com/
tyuryukanov/power_network_clustering under .papers/PSCC_2022.
5

Table 1
Load shedding minimization using (1).
𝑛 𝐾 𝑈𝐵, 𝑔, % 𝑃𝐿𝑆 , 𝑃𝛥, 𝑃𝐺𝑆 , 𝑝𝛴𝑖𝑗 ,

p.u. 𝑇 , s p.u. p.u. p.u. p.u.

89 2 6.4089 47% 5.02 11.4 6.4 13.3
89 3 8.3011 46% 5.02 11.4 6.4 32.2
89 4 13.844 64% 10.2 21.9 11.6 34.9
89 5 13.876 70% 10.2 21.9 11.6 35.2

1354 2 2.3878 0.5 s −0.00 16.6 16.6 22.2
1354 3 4.6645 100 s −0.00 16.6 16.6 45
1354 4 3.3921 1 s −0.00 16.6 16.6 32.3
1354 5 8.3761 20% −0.00 16.6 16.6 82.1
1354 6 12 12% 0.03 16.7 16.7 118
1354 7 13.631 14% 0.01 16.7 16.6 135
1354 8 21.148 33% 1.58 19.8 18.2 194

1888 2 0.4949 0.8 s −0.00 9.81 9.81 3.97
1888 3 11.38 51% 0.08 9.81 9.88 112
1888 4 4.5363 11% −0.00 9.81 9.81 44.4
1888 5 7.0738 14% −0.00 9.81 9.81 69.8
1888 6 9.2755 10% 0.02 9.85 9.83 91.5
1888 7 16.976 40% 0.17 9.94 9.97 167
1888 8 12.457 17% −0.00 9.81 9.81 124

All computations were performed using Gurobi v. 9.1. [18] on a
PC with an Intel® Core™ i7 2.20 GHz CPU with 6 cores and 16 Gb
of RAM running on Windows 10. The reported solution times include
the presolve and MILP solver time, but exclude the model preparation
time, which is polynomial. The time limit for the test cases with less
than 500 buses has been set to 480 s and to 720 s for the test cases
with more than 500 buses. In all the experiments, the default Gurobi
solver settings were used. The maximal time to be spent in the MILP
heuristic from Section 4 is set to 3% of the time limit. For simplicity,
the auxiliary MILP model in Algorithm 2 is based on (1) for all test
cases. The solution was considered optimal if its MIP optimality gap
was less than 1%.

5.2. Minimization of load shedding

The first set of test results is related to minimizing the known
objective in (1a). The objective weights are set as follows: 𝛼 = 0, 𝛽 = 1,
𝛾 = 0.01, 𝜇 = 0.1. The relatively high value of 𝜇 is selected mainly to
ensure non-zero lower bounds in all cases and thus a more informative
progression of the MIP optimality gap during the optimization. The
big-M coefficients 𝑀𝜑

𝑖,𝑗 in (6) are set to 2𝜋, 𝜑𝑚𝑖𝑛 is set to −𝜋, 𝜑𝑚𝑎𝑥 is
set to 𝜋, and the power flow limitation 𝑝𝑚𝑎𝑥𝑖𝑗 is assumed to be equal to
𝑏𝑖,𝑗𝜋∕4, ∀(𝑖.𝑗) ∈  .

First, the results for the baseline formulation in (1) are presented in
Table 1. The table header can be read as follows: 𝑈𝐵 is the best MIP
objective value (i.e., the upper bound), 𝑔 is the final optimality gap,
𝑇 is the solution time, 𝑃𝐿𝑆 , 𝑃𝛥, 𝑃𝐺𝑆 , 𝑝𝛴𝑖𝑗 are the final values of load
shedding, total power imbalance, generator shedding, and power flow
cut respectively. In Table 1, 𝑔 and 𝑇 are included interchangeably: if 𝑔
is less than the optimality tolerance then 𝑇 is included, otherwise 𝑔 is
shown, as 𝑇 equals to the time limit.

Next, in the formulation in (1) the flow-based connectivity con-
straints (1p)–(1s) are replaced with (3) and the MILP heuristic is
enabled. The results obtained after this modification are summarized in
Table 2. Finally, the results of our complete formulation in (6) with the
MILP heuristic enabled for the given cost function are given in Table 3.

As it can be seen, the results in Tables 2–3 in terms of the MIP
optimality gap and solution time usually exceed those in Table 1, which
demonstrates the efficacy of the proposed improvements.

5.3. Minimization of total power imbalance

To complement Section 5.2, the same test cases are recomputed with

the main objective of power imbalance minimization. The objective

https://github.com/ityuryukanov/power_network_clustering
https://github.com/ityuryukanov/power_network_clustering
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Table 2
Load shedding minimization using (1) and (3).
𝑛 𝐾 𝑈𝐵, 𝑔, % 𝑃𝐿𝑆 , 𝑃𝛥, 𝑃𝐺𝑆 , 𝑝𝛴𝑖𝑗 ,

p.u. 𝑇 , s p.u. p.u. p.u. p.u.

89 2 6.4089 49% 5.02 11.4 6.4 13.3
89 3 8.3011 46% 5.02 11.4 6.4 32.2
89 4 13.844 65% 10.2 21.9 11.6 34.9
89 5 13.876 68% 10.2 21.9 11.6 35.2

1354 2 2.3878 0.5 s −0.00 16.6 16.6 22.2
1354 3 4.6645 80 s −0.00 16.6 16.6 45
1354 4 3.3921 1.1 s −0.00 16.6 16.6 32.3
1354 5 8.1682 16% −0.00 16.6 16.6 80
1354 6 12 12% 0.03 16.7 16.7 118
1354 7 13.453 13% 0.03 16.7 16.7 133
1354 8 20.278 30% 0.29 17.2 16.9 198

1888 2 0.4949 1 s −0.00 9.81 9.81 3.97
1888 3 9.0864 39% 0.01 9.82 9.81 89.8
1888 4 4.5119 10% −0.00 9.81 9.81 44.1
1888 5 7.0672 14% −0.00 9.81 9.81 69.7
1888 6 9.3695 12% −0.00 9.81 9.81 92.7
1888 7 14.329 28% −0.00 9.81 9.81 142
1888 8 12.158 15% 0.00 9.81 9.81 121

Table 3
Load shedding minimization using (6).
𝑛 𝐾 𝑈𝐵, 𝑔, % 𝑃𝐿𝑆 , 𝑃𝛥, 𝑃𝐺𝑆 , 𝑝𝛴𝑖𝑗 ,

p.u. 𝑇 , s p.u. p.u. p.u. p.u.

89 2 6.4089 57% 5.02 11.4 6.4 13.3
89 3 8.3011 57% 5.02 11.4 6.4 32.2
89 4 11.254 64% 5.9 13.2 7.28 52.9
89 5 11.096 62% 5.9 13.2 7.28 51.3

1354 2 2.3878 0.5 s −0.00 16.6 16.6 22.2
1354 3 4.6645 55 s −0.00 16.6 16.6 45
1354 4 3.3921 1.1 s −0.00 16.6 16.6 32.3
1354 5 8.1682 17% −0.00 16.6 16.6 80
1354 6 12 11% 0.03 16.7 16.7 118
1354 7 13.441 13% −0.00 16.6 16.6 133
1354 8 18.420 21% 0.24 17.1 16.9 180

1888 2 0.4949 0.6 s −0.00 9.81 9.81 3.97
1888 3 11.876 33% −0.00 9.81 9.81 118
1888 4 4.5116 590 s −0.00 9.81 9.81 44.1
1888 5 7.0534 9% −0.00 9.81 9.81 69.6
1888 6 9.275 11% 0.02 9.85 9.83 91.5
1888 7 14.163 26% −0.00 9.81 9.81 141
1888 8 12.16 13% −0.00 9.81 9.81 121

weights are set as follows: 𝛼 = 1, 𝛽 = 0.01, 𝛾 = 0.01, 𝜇 = 0.01. Now the
ighest priority is given to generation-load imbalance minimization,
ith load shedding being included with a small weight. As the initial
ower imbalance is nearly always substantially higher than zero after
he network is split, non-zero lower bounds can be produced without
ssigning an increased value to 𝜇.

The results comparison follows the same route as in Section 5.2. The
esults of minimizing the new objective with the formulation in (1) are
isted in Table 4. The outcome of the exchange of (1p)–(1s) with (3) is
llustrated in Table 5. Finally, the results of our formulation in (6) are
hown in Table 6.

As it can be seen from Table 4, with the change of the objective
unction more cases fail to compute at least a feasible solution with
he basic formulation (1). Thus, the role of feasibility MILP heuristics
ecomes larger. In fact, the proposed MILP heuristic is enabled for the
esults in Tables 5–6, and feasibility is achieved for all the test cases.
he performance is also improved with the proposed enhancements,
hich can be seen by comparing the 4th columns of Tables 4–6.

An additional important observation can be made by comparing the
pper bounds of case89pegase across Tables 4–6. Although the optimal
olution could be reached in all cases, the optimal value is better with
ur complete formulation (6). This is explained by the absence of big-
6

constraints in (6), the values for which must be selected. Thus, (6)
Table 4
Islands’ power imbalance minimization using (1).
𝑛 𝐾 𝑈𝐵, 𝑔, % 𝑃𝐿𝑆 , 𝑃𝛥, 𝑃𝐺𝑆 , 𝑝𝛴𝑖𝑗 ,

p.u. 𝑇 , s p.u. p.u. p.u. p.u.

89 2 7.8621 5 s 3.09 6.24 4.47 55.5
89 3 8.0531 33 s 3.09 6.24 4.47 74.6
89 4 14.807 13 s 8.77 11.1 10.1 66.6
89 5 14.809 16 s 8.77 11.1 10.1 66.9

1354 2 17.023 0.5 s −0.00 16.6 16.6 22.2
1354 3 17.272 11 s −0.00 16.6 16.6 47.1
1354 4 17.124 1.7 s −0.00 16.6 16.6 32.3
1354 5 17.684 580 s −0.00 16.6 16.6 88.3
1354 6 – – – – – –
1354 7 – – – – – –
1354 8 – – – – – –

1888 2 9.9447 1.2 s −0.00 9.81 9.81 3.97
1888 3 – – – – – –
1888 4 10.427 23 s −0.00 9.81 9.81 52.2
1888 5 10.603 94 s −0.00 9.81 9.81 69.8
1888 6 10.896 120 s −0.00 9.81 9.81 99.1
1888 7 – – – – – –
1888 8 – – – – – –

Table 5
Power imbalance minimization using (1) and (3).
𝑛 𝐾 𝑈𝐵, 𝑔, % 𝑃𝐿𝑆 , 𝑃𝛥, 𝑃𝐺𝑆 , 𝑝𝛴𝑖𝑗 ,

p.u. 𝑇 , s p.u. p.u. p.u. p.u.

89 2 7.8621 13 s 3.09 6.24 4.47 55.5
89 3 8.0531 85 s 3.09 6.24 4.47 74.6
89 4 14.807 13 s 8.77 11.1 10.1 66.6
89 5 14.809 15 s 8.77 11.1 10.1 66.9

1354 2 17.023 0.6 s −0.00 16.6 16.6 22.2
1354 3 17.32 19 s −0.00 16.6 16.6 51.9
1354 4 17.123 1.5 s −0.00 16.6 16.6 32.3
1354 5 17.72 90 s 0.07 16.6 16.7 89.6
1354 6 18.001 220 s −0.00 16.6 16.6 120
1354 7 18.162 410 s −0.00 16.6 16.6 136
1354 8 18.628 1.1% 0.00 16.6 16.6 183

1888 2 9.9447 1 s −0.00 9.81 9.81 3.97
1888 3 11.135 3.5% −0.00 9.81 9.81 123
1888 4 10.374 36 s −0.00 9.81 9.81 46.9
1888 5 10.688 280 s −0.00 9.81 9.81 78.3
1888 6 10.897 280 s 0.02 9.85 9.83 93.8
1888 7 11.301 170 s −0.00 9.81 9.81 140
1888 8 11.211 1.1% −0.00 9.81 9.81 131

can be certain to achieve the true optimal solution. In the present
case study, it is possible to achieve the same optimum using (1) if the
angular big-M constraints are substantially increased (e.g., by a factor
of 10).

6. Conclusions

This paper has proposed several computational enhancements to
the DC OPF ICI problem. The main idea was to eliminate the big-M
constants that are present in the most existing formulations in order to
tighten the linear relaxation of DC OPF ICI. The big-M constants present
in island connectivity constraints have been removed by replacing the
popular single commodity flow based connectivity model with the new
model based on directed spanning forests, which does not require any
large coefficients. The big-M constants associated with ICI switching
decisions and DC OPF in general have been excluded by replacing the
DC OPF switching constraints based on Ohm’s law with the new ones
based on KVL.

Besides of handling of all the three types of big-M constants in the
standard DC OPF ICI formulation, it has also been observed that the
existing ICI objective functions may not fully correspond to the prac-
tical requirements associated with system splitting. To ameliorate this,
the new objective function minimizing the load-generation imbalance
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Table 6
Islands’ power imbalance minimization using (6).
𝑛 𝐾 𝑈𝐵, 𝑔, % 𝑃𝐿𝑆 , 𝑃𝛥, 𝑃𝐺𝑆 , 𝑝𝛴𝑖𝑗 ,

p.u. 𝑇 , s p.u. p.u. p.u. p.u.

89 2 7.6364 19 s 2.43 6.24 3.81 55.5
89 3 7.8258 52 s 2.43 6.24 3.81 74.4
89 4 13.485 12 s 4.88 11.1 6.26 66.6
89 5 13.488 12 s 4.88 11.1 6.26 66.9

1354 2 17.023 0.4 s −0.00 16.6 16.6 22.2
1354 3 17.38 11 s −0.00 16.6 16.6 57.9
1354 4 17.123 1.0 s −0.00 16.6 16.6 32.3
1354 5 17.604 76 s −0.00 16.6 16.6 80.3
1354 6 18.089 180 s −0.00 16.6 16.6 129
1354 7 21.668 17% 1.42 19.5 18.1 155
1354 8 18.565 350 s −0.00 16.6 16.6 176

1888 2 9.9447 0.5 s −0.00 9.81 9.81 3.97
1888 3 10.821 65 s −0.00 9.81 9.81 91.7
1888 4 10.431 6.7 s 0.03 9.87 9.84 45.1
1888 5 10.68 79 s −0.00 9.81 9.81 77.5
1888 6 10.92 170 s −0.00 9.81 9.81 101
1888 7 11.298 150 s −0.00 9.81 9.81 139
1888 8 11.208 283 s −0.00 9.81 9.81 131

after splitting has been introduced. With this objective, situations when
the MIP solver cannot find an initial feasible solution have become
more common. To fix this, a new MILP heuristic for DC OPF ICI has
been proposed as well. In general, the solution process was noticeably
influenced by the type of objective function. Thus, it could be possible
to choose ‘‘convenient’’ objective functions to quickly find feasible
initial solutions.

Finally, the proposed enhancements have been tested against the
compact and efficient baseline DC ICI OPF model from the literature,
and it has been found that the novel ICI model produces better results
in most of cases. In the future, it is planned to apply the findings of this
paper to more complex and accurate ICI models and possibly to other
transmission switching problems.
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