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Quantitative analysis of surface
wave patterns of Min proteins

Sabrina Meindlhumer, Jacob Kerssemakers and Cees Dekker*

Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology,
Delft, Netherlands

TheMin protein system is arguably the best-studiedmodel system for biological

pattern formation. It exhibits pole-to-pole oscillations in E. coli bacteria as well

as a variety of surface wave patterns in in vitro reconstitutions. Such Min surface

wave patterns pose particular challenges to quantification as they are typically

only semi-periodic and non-stationary. Here, we present a methodology for

quantitatively analysing such Min patterns, aiming for reproducibility, user-

independence, and easy usage. After introducing pattern-feature definitions

and image-processing concepts, we present an analysis pipeline where we use

autocorrelation analysis to extract global parameters such as the average spatial

wavelength and oscillation period. Subsequently, we describe a method that

uses flow-field analysis to extract local properties such as the wave propagation

velocity. We provide descriptions on how to practically implement these

quantification tools and provide Python code that can directly be used to

perform analysis of Min patterns.

KEYWORDS

min proteins, pattern formation, image analysis, surface protein waves, quantification,
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1 Introduction

Pattern formation is a fascinating basic phenomenon that occurs across many scales,

from galaxy formation all the way down to embryology and beyond. In chemistry and

biology, self-organizing patterns emerge from the combination of specific intermolecular

interactions and molecular transport processes [1]. Acting together, reaction and

diffusion can result in inhomogeneous concentrations of molecules that constitute

spatiotemporal patterns. Such patterns provide useful functions as they impose

directional or positional preferences on processes in cells and tissues [2–5]. Indeed,

pattern formation is of vital importance for the description of a multitude of biological

phenomena, ranging from bacterial and eukaryotic cell division [4], to embryonic

development of multicellular organisms [3, 5], up to entire ecosystems [6].

For example, in E. coli bacteria, a pattern-forming mechanism acts to determine the

central position of the rod-shaped cell, ensuring that the required protein-machinery is

guided to the correct location to start a fully symmetric division into daughter cells. This

particular pattern-forming system, formed by the Min proteins, relies on a reaction-

diffusion mechanism and is widely considered to be the best-studied model system for

intracellular pattern formation [4, 7]. As the moment of cell division approaches, Min

proteins will periodically bind and unbind the inner membrane at the poles of the
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bacterium. When visualized by fluorescent labelling, the Min

proteins are observed to oscillate from pole to pole with a period

of approximately 1 minute. As a result, their temporally averaged

concentration is minimized at the mid-cell location. One

component of the Min system, MinC, exerts an inhibitory

effect on a component of the cell division machinery. As the

lowest concentration of MinC is found at mid-cell, the proteins

that facilitate cell division will preferably bind there, and the cell

gets divided evenly [8].

While MinC is important for this downstream process, the

pattern as such is formed by only two proteins, MinD and MinE.

MinD is an ATPase that upon binding ATP can attach to the

membrane, while MinE is its ATPase activator. MinE can bind to

the membrane upon recruitment by membrane-bound MinD

and subsequently facilitate MinD’s ATP-consuming membrane

detachment [7, 9–11]. The Min proteins thus constitute a

pattern-forming model system with only 2 essential

components, which is appealingly simple for both theoretical

and experimental studies. A wide range of experiments have been

reported that explore particular features of the Min system [9, 12,

13]. A multitude of Min protein models [14, 15] have been

proposed, and continue to be developed as new molecular details

are discovered [10, 16–18].

Arguably, the most iconic images of Min protein patterns

present themselves in in vitro studies of these proteins. Such

experiments typically reconstitute Min proteins on supported

lipid bilayers on a glass slide, with a fraction of Min proteins

carrying a fluorescent label [9]. Min proteins exhibit

mesmerizing dynamic membrane patterns in such an artificial

in vitro environment: Over a wide range of concentrations, one

encounters characteristic patterns such as rotating spirals or

travelling planar wave fronts, with typical wavelengths in the

order of tens of micrometers [9, 12]. An example is given in

Figure 1A, showing a snapshot image for labelled MinE.

FIGURE 1
Min protein surface patterns are dynamic in space and time. Min pattern acquisitions are 3D (x, y, t) matrices, containing the measured
fluorescence intensity values for different coordinates. The information contained within this matrix can be accessed and visualized differently,
dependent onwhat parameters are of interest. (A) Left: example of a real MinE protein surface pattern. Middle: fluorescence intensity over time at the
surface position highlighted by orange cross in the image, for an image stack comprising of 20 frames. Right: fluorescence intensity trace along
surface cross-section highlighted in magenta in the image. (B) 3D view of a Min protein acquisition stack with four example images (standard x-y
slices) shown for demonstration. (C) 3D view of slice from A, resliced along constant y-directions, creating t-x slices. (D) 3D view of slice from A,
resliced along constant x-directions, creating t-y slices.
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Examination of this image reveals various features that are typical

for Min patterns. For example, Min proteins exhibit planar

waves, but these occur only locally and become less correlated

on longer length scales. Min patterns thus organize in surface

domains with one dominating type of pattern, such as spiral or

planar wave fronts travelling in a certain direction. Boundaries

between domains are recognizable by phase shifts.

Thorough quantitative analysis of Min patterns is nontrivial.

While visual inspection is often sufficient to deduce the basic Min

pattern, quantitative information is required to extract trends in

the patterns’ characteristic parameters, such as the average or

local wavelength, oscillation period, or propagation velocity. For

perfectly periodicMin patterns with only one type of pattern with

a set orientation over the entire imaged surface, analysis can

easily be achieved by Fourier analysis. However, this is most often

not possible due to the fact that real Min patterns are usually a

patchwork of domains separated by phase-shift boundaries. The

semi-periodic nature of Min patterns makes image analysis

challenging, and so far there are no clear guidelines or

standards on how to realise this without user bias. Extraction

of quantitative parameters is typically performed by manual

selection of individual surface positions [19], line traces [20],

or rectangular regions-of-interest [12, 21]. Plotting of

fluorescence intensity along a defined axis allows to determine

the pattern’s local wavelength. Similarly, the temporal

characteristics such as its oscillation period and wave

propagation velocity can be measured by monitoring the

intensity versus time at one spot [19], see Figure 1A for an

illustration of these possible practices.

While these approaches are widely used, such manual

selection is cumbersome, prone to user bias, and it underuses

the vast amount of data in videos of Min patterns that could

improve data accuracy. In the example given in Figure 1A, the

intensity profile of denoted line trace (magenta) shows

approximately equidistant peaks that indicate the wavelength.

However, selection of another spot or a slightly different trace

that is not perpendicular to the wave fronts would have led to a

deviating result. Furthermore, note how extending the trace over

the region of the spiral domain would erroneously lead to the

inclusion of shorter or longer wavelengths. Notably, these

domain boundaries do not always remain stationary over the

time of acquisition, and hence line traces would have to be

carefully adapted for every single frame so as to adapt to possible

reorientations of wave fronts (compare for example the domain

variation over time in Supplementary Figure S1A). In view of all

these limitations, we conclude that an automated user-

independent analysis of large regions is preferable, as it allows

to obtain solid statistics on the patterns’ characteristic features.

In this paper, we present a methodology for analysing Min

patterns that aims for thorough quantitation, easy usage,

reproducibility, and user independence. We start by briefly

proposing strategies for image cleaning. After that, we proceed

to presenting strategies for global and local analysis of Min

protein surface patterns. For extracting global parameters, we

rely on calculating autocorrelation maps to examine the average

periodic features of Min patterns, following other groups [16] as

well as our own [18].We treat aMin pattern acquisition stack as a

threedimensional matrix containing information in space and

time (x, y, t), and we propose strategies on how to efficiently

access this information. Subsequently, we introduce an analysis

pipeline which allows to quantify local properties of Min

patterns, such as the wave propagation speed and direction of

propagation. The approach we present here relies on the

identification of individual wave crest points and their

movement from one frame to the next. While other tools

have been used to extract the directional preferences of Min

surface wave propagation [22], our approach allows not only for

obtaining large distributions of parameters, but also for accessing

multiple parameters at the same time. For both global and local

analysis, we offer guidance to researchers who would like to

implement similar strategies for their own applications. Code is

openly available and provided in Python 3 [23].

2 Image processing methodology

Min patterns are phenomena that occur at lipid membranes.

Accordingly, the most suitable forms of microscopy for

in vitro experiments are those that acquire an image along the

membrane-coated surface. Examples are total internal reflection

fluorescence (TIRF) microscopy [12, 16, 19, 24], laser scanning

confocal microscopy [20–22, 25] or spinning disc confocal

microscopy [18, 26]. Epifluorescence microscopy [27] is

generally not suitable as it leads to high background signal

from the fluorescent molecules in the bulk, significantly

reducing the pattern’s quality or even making it unrecognizable.

“Image cleaning” includes procedures and operations

performed on microscope data that improve the overall quality

of the image by making the features of interest better recognizable,

while not distorting or removing essential components. Good image

cleaning, where background and spurious contributions are

removed, is important for successful quantitative analysis of Min

protein patterns, as insufficient cleaning can lead the algorithms to

fail to recognize the pattern as such. There are multiple imaging

artefacts that need to be corrected. For example, local fluorescent

impurities such as protein aggregates may give a static signal that is

not part of the Min pattern. Depending on the microscope,

illumination is typically inhomogeneous across the field-of-view.

In many cases, researchers are interested in the time-dependent

behavior of Min patterns, and for this, they acquire images at the

same spatial positions at regular time intervals ranging from seconds

to minutes. Consequently, Min proteins may bleach due to

prolonged imaging [18]. Flow-cell setups with constant bulk flow

may pose additional challenges in the form of objects entering and

passing through the field-of-view or adhering to and spontaneously

detaching from the surface [26]. We empirically found that the
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occurrence of imaging artefacts can vary strongly, depending on the

experimental setup (specifically, the type of sample chamber and the

surface preparation), protein concentration (higher concentrations

may result in more aggregates), and experiment duration (the

longer, the more aggregates occur).

With image cleaning, we aim to tackle all of these issues.

Here, we propose a sequence of standard actions that we found to

yield overall good results for a time series (several frames of the

same sample position saved sequentially in an image stack) of

images Imovie of in vitro Min surface patterns. Our protocol

involves the following steps:

− Correct for fluorescence bleaching by normalizing each

frame to its mean intensity value.

− Create an ‘illumination correction map’ Iillum by smoothing

and averaging all movie images, and normalizing the images

to their maximum intensity.

− Create a static background image Istat by averaging over all

the moving (surface pattern) features of all images in the stack.

This background image then only contains static fluorescent

features such as local specks, holes, and scratches.

− Correct each image via the following image operation: Icor =

(Imovie − Istat)/Iillum.

− At this point, there may still be some artefacts left, for

example, those that appeared during the acquisition time and

might thus not have been included in the static background

image. Therefore, remaining bright or dark artefacts can be

removed manually or by thresholding.

− Images can finally be slightly smoothed to diminish effect of

sharp edges and artefacts from the latter cropping.

In cases where it is required to explore Min patterns across very

large areas, it may furthermore be of interest to stitch multiple fields-

of-view ofMin patterns into larger images [26, 28]. If themicroscope’s

software does not offer an automatized solution for this, stitching can

be achieved by good bookkeeping and a few lines of code. When

planning to stitch images, it can be helpful to choose individual field-

of-views in such a way that there is a bit of an overlap (e.g. 5% of the

width) between adjacent areas, as this makes it easier to correctly

reassemble the full image afterwards. Note that in general, adjoining

areas may not have exactly the same median intensity. Therefore,

differences inmedian intensity levels between individual field-of-views

need to be corrected for when assembling the stitched image. This

way, the resulting large image will appear more homogeneous in

brightness and stitching borders will be less visible.

3 Pattern analysis strategies

3.1 Global parameters

In many cases, researchers are interested in quantifying

parameters such as the average spatial wavelength and

oscillation period of a Min pattern. For this purpose, they

acquire image stacks of Min patterns at a certain surface

region (x, y in pixel or distance units) and at regular time-

intervals (t in time units or frames). However, the existence of

domains within and dynamics of patterns make manual

extraction of these parameters a laborsome task, and the

results of such analyses (cf. Figure 1A) may suffer from poor

statistics and user bias. Here, it is important to realize that what

we are interested in are essentially global, image-averaged

parameters. In this section, we describe how quantification of

such global parameters can be achieved by performing

autocorrelation analysis [29] for different slices along time or

space coordinates (x-y frames such as in Figure 1B, t-x slices such

as in Figure 1C or t-y slices as in Figure 1D). We start with spatial

autocorrelation, aiming to quantify the wavelength, and then

continue to present how temporal autocorrelation can be used to

quantify the oscillation period of a pattern.

3.1.1 Global wavelength
Spatial autocorrelation analysis of an image essentially

compares each pixel to other pixels around it, quantifying

their (dis)similarity as a function of distance [29]. Starting

from a single image frame as shown in Figure 2A, an

autocorrelation map can be calculated using routines from

scientific libraries provided for most programming languages.

Before performing these operations, the image should be

normalized by a series of actions (subtraction of minimum

intensity, division by summed-up total intensity and

subtraction of mean intensity). Using standard functions

supplied within most environments, a twodimensional

autocorrelation map crmx can be calculated for an image

frame image by the transformation

crmx � real iff t2 ff t2 image( ) · conj ff t2 image( )( )( )( ) (1)

with fft2 calculating a two-dimensional discrete Fourier

Transformation, ifft2 calculating its inverse and real and conj

returning the real part and complex conjugate of the input,

respectively. The four quadrants of the autocorrelation map

can be re-arranged so as to place the position (Δx = 0, Δy =

0) in the center of the image, rather than having four partial peaks

in the corners.

Close examination of the autocorrelation map in Figure 2B

reveals a general speckled pattern as well as a ring-shaped feature

that is present around the center, which is characterized by a peak

in intensity. As this central peak corresponds to a distance of

zero, its high intensity is a consequence of the self-correlation of

each pixel with itself. Moving radially outward from the center,

one observes a decrease in intensity (negative autocorrelation)

followed by a peak (positive autocorrelation). An easy way to

extract the pattern’s dominant wavelength is to perform an

angular averaging of the profile around the central peak,

where the radial line profiles are averaged over all angles, as

illustrated by the red arrow in panel Figure 2B. This leads to a
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profile as shown in Figure 2C. Here, the first peak after the central

peak identifies the pattern’s global wavelength λ (magenta dashed

line). The first minimum corresponds to the dark value from the

autocorrelation map. The valley in fact corresponds to ~ λ/2

(black dashed line). Note that this value is not exactly half the

wavelength, since Min profiles are typically somewhat

asymmetrical (cf. Figure 1A).

If, as often is the case, Min patterns display steady-state

dynamics, then multiple time frames can be used to provide

better statistics in estimating the global wavelength. Min patterns

are routinely acquired at constant time intervals, which provides

a series of sequential image frames, as represented in Figure 1B.

Calculating and analysing autocorrelation maps for several

frames within such an image stack allows to collect a

distribution of wavelengths, such as the histogram shown in

the inset in Figure 2C, summarising results for 20 consecutive

frames. Indeed, for dynamic patterns, we recommend

performing this analysis strategy for multiple (e.g. 10) frames

and averaging the results to obtain a reliable value for the

pattern’s spatial wavelength. As Min patterns are typically

dynamic, it is also possible that their wavelengths change over

time, e.g. due to changes in external parameters. The spatial

autocorrelation analysis presented here is however equally

applicable to static patterns.

Identifying the peaks shown in Figures 2C,F, see following

section) is trivial to the human eye, but not necessarily

FIGURE 2
Overview of the autocorrelation analysis pipeline to obtain global parameters. (A) Example of a Min protein surface pattern, single frame. Color
brightness indicates fluorescence intensity (a.u.). (B) Autocorrelation map of the frame shown in A. Color brightness indicates intensity. Red dashed
line indicates radial averaging. (C) Averaged radial profile for the autocorrelationmap shown in B. The first maximum after the central peak at distance
zero is a measure of the patterns global characteristic wavelength. The identified wavelength λ is highlighted by the magenta dashed line. The
first valley is positioned at approximately λ/2 (black dashed line). Inset: the analysis presented in (A–C) can be performed for all individual frames
within an image stack. Here, the collected results for 20 consecutive frames (image stack also represented in Figure 1B) are shown in a histogram. A λ
of 54 pixels is deduced. (D) Resliced image for fixed x; same as shown in Figure 1D. (E) Selected temporal traces for the y-positions indicated in D. All
point-traces shown in the kymograph in D will be included in the autocorrelation trace shown in F. (F) Line-averaged autocorrelation trace from
point-traces (such as shown in E) in blue, cubic spline fit used for peak-detection in green. The firstmaximum after the central peak atΔt=0measures
the average characteristic oscillation period of the pattern. The identified global oscillation of τ =4 frames is highlighted by the magenta dashed line.
The first valley is positioned approximately at τ/2 (black dashed line). The analysis pipeline illustrated in (D-F) can be performed for multiple slices
(fixed x or y) of the image stack.
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straightforward to automate. For our data, we achieved this via a

simple algorithm that identifies the second local maximum of the

trace. In doing so, we implicitly assume that the trace is fine

enough to achieve sufficient accuracy and upsampling is not

required. While a curve such as shown in Figure 2C looks smooth

to the eye, the original image data had a finite resolution, and

accordingly, this curve contains small rags which an algorithm

may erroneously detect as a local maximum. In many cases, this

issue can be solved by smoothing the curve slightly before

subjecting it to peak analysis. This can be achieved by

applying a smoothing kernel stretching over a few pixels, for

example a small fraction of the image dimension.

To avoid erroneous results, it is recommendable to plot at

least one example trace (for one frame) and inspect whether the

detected (averaged) wavelength position correctly co-localizes

with the valley position. If no clear valley can be identified

(characterized by a small or even vanishing intensity

difference between the local minimum and maximum), the

pattern may lack a recognizable periodicity, which could be

an intrinsic property of the given pattern. Alternatively, this

issue can also be encountered if insufficient image cleaning has

been applied to the stack before analysis and the pattern is

superimposed with too many artefacts, resulting in low

autocorrelation. However, we find that this method is

generally quite robust towards noise, as shown in

Supplementary Figure S2B.

Further, the ratio between image size and spatial wavelength

is of importance. In Supplementary Figure S3, a large-scale image

stack is sequentially cropped to smaller sizes and global

autocorrelation analysis as presented here is performed on

randomly selected areas. Based on these results, we find that

the standard deviation increases as the image sizes gets smaller,

and estimate that the image dimension should be large enough to

contain at least 5–10 full wavelengths for the presented algorithm

to provide reliable results.

3.1.2 Global oscillation period
Another global property of interest is the average oscillation

period. This parameter describes how at any given point within

the imaged region, the membrane protein density (which is

proportional to the fluorescence intensity) can be expected to

change over time. We quantify the global oscillation period of a

Min pattern following a strategy that closely resembles the one

presented for obtaining the global wavelength in the preceding

section.

To obtain quantitative information on the temporal

dynamics of Min patterns, they are typically acquired as time

series. A time series such as the one shown in Figure 1B is

essentially a threedimensional (x, y, t) matrix, containing

information on fluorescence intensity as a function of space

and time. Notably, for temporal analysis to be reliable, image data

has to be acquired at a rate above the Nyquist rate. Min patterns

are characterized by point-wise temporal periodicity (compare

the time evolution at a random sample position in Figure 1A).

Hence, when acquiring a time series, intervals have to be chosen

short enough to ensure the acquisition of enough data to

adequately depict the pattern’s temporal dynamics. If

consecutive acquisition times in a series are chosen very far

apart, the pattern may even appear to travel towards the opposite

direction. According to Nyquist theorem, for patterns of an

oscillation period τ, consecutive images in a series have to be

acquired at intervals spaced no longer than τ/2 apart. In

principle, the shorter these intervals are, the better the

temporal dynamics can be characterized. Min protein patterns

in lipid bilayer reconstitutions will typically exhibit

wave propagation velocities of several 100 nm s−1 [12] and

wavelengths around 50 µm [9]. This leads to an expected

oscillation period in the order of minutes. Acquiring sufficient

images to fulfill Nyquist theorem should therefore not be an issue

in most microscope setups. In practice, finding the optimal

imaging rate is a trade-off between achieving a high temporal

resolution and minimizing fluorescence bleaching.

Upon analysing a given Min pattern stack with respect to its

temporal characteristics, we found that reslicing the stack along

fixed spatial coordinates simplifies data processing and makes it

more straightforward to access the temporal information

contained within the stack. Figure 2D shows a (t, y) slice

through our example image stack at fixed pixel position x.

These t-x or t-y slices are collections of kymographs for all

points along the cross-section at the fixed spatial coordinate.

In Figure 2E, we show example traces of these kymographs along

selected y positions, which then correspond to individual surface

locations (x, y) on the field-of-view shown in Figure 2A.

Analogous to the strategy presented for spatial global analysis,

Eqn. 1. can be used to obtain an autocorrelation map for this slice

(cf. Supplementary Appendix DEMO_MinDE_global_analysis).

To extract the pattern’s global oscillation period, we consider the

autocorrelation map’s trace at Δy = 0 for Δt ≥ 0, plotted in

Figure 2F. Including the Δt ≤ 0 trace (going back in time) of the

curve would not yield additional resolution, as it contains the

same information as the positive trace. This profile then

immediately provides the averaged temporal autocorrelation

trace for all points along one fixed spatial coordinate (as

indicated for fixed x by the vertical line in Figure 2A). If the

line-averaged autocorrelation trace does not provide sufficiently

high resolution to identify a minimum indicative of the

oscillation period, imaging over a longer time and/or at

shorter intervals could be necessary.

The first maximum of this curve beyond the central peak

again identifies the predominant global oscillation period τ

(magenta dashed line), while the first minimum is located at

approximately τ/2 (black dashed line). Statistics on τ can be

collected by performing the analysis pipeline illustrated in

Figures 2D–F for multiple cross-sections at fixed y or x, that

is, for multiple resliced frames as shown in Figures 1C,D.

Compared to the traces obtained from spatial autocorrelation,
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FIGURE 3
Overview of analysis pipeline for determining local wave propagation velocities. (A) Local analysis relies on sequential pairwise comparison of
frames within an image stack. Example frames are here referred to as frame 1 and frame 2. (B) The Horn-Schunck algorithms is used to compute
optical flow of the image pair (from frame 1 to frame 2) These return one vector per pixel, indicating the shift. Brightness indicates the vector
magnitude. (C) Phase image of frame 1. The phase is determined by whether the wave intensity goes up (“front” of the wave, bright color) or
down (“wake” of the wave, dark color) following the direction of the vector obtained from the optical flow analysis. (D)Wave crests can be identified
by the transitions from front to wake as denoted in panel C. Red lines show the identified wave crest locations. Selected arrows indicate the direction
of movement of the crests as determined from the optical flow. (E) Left: Zoom-in of frame 1 at the location highlighted in panel D. Wave crest points
are indicated by red dots; direction of movement as identified by optical flow analysis are indicated by arrows. Right: Zoom-in of frame 2 at the same
location. Crest points of frame 1 are indicated by red dots. In both images, 3 crest point positions are highlighted by white line traces parallel to the
direction of propagation at these points (i.e., normal to the wave fronts). (F) Intensities versus distance along the white lines in panel E. Starting from
the crests identified for frame 1 (red dots), intensities are sampled at discrete sub-pixel positions perpendicular to the wave front. Smoothed intensity
traces are shown in red for frame 1 and in blue for frame 2. The translocation d of each crest position is then determined from the peak shift, allowing
to calculate a velocity vector with magnitude v. Wave crest velocities can be calculated for each crest and each sequential pair of frames in an image
stack. (G) Velocity distribution of a pattern can be visualized as a 2D histogram. (H) Velocity histogram that provides the average velocity magnitude v
as well as the distribution of velocities within a given pattern. (I) Histogram of angles of the wave propagation vector (left) and an angular diagram
denoting the occurrence of various pattern velocities (right). From the list of velocity vectors, we have immediate access to the propagation
directions present within a pattern, the occurrence of which can be visualized in a histogram (left). The information can be represented as a polar
histogram (right).
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which are calculated via radial averaging, these temporal

autocorrelation traces may appear rather coarse. A more

advanced peak detection can be performed with cubic-spline

fitting and subsequent extreme point analysis. Further, the

presented method for temporal autocorrelation analysis is less

robust towards noise than spatial autocorrelation, as shown in

Supplementary Figure S2C Adequate image preprocessing and

cleaning is again of high importance. Image smoothing was

found to slightly increase the detected oscillation period, albeit

not above the error margins obtained for unsmoothed images, as

shown in Supplementary Figure S4.

Note furthermore that the propagation speed of a pattern

may depend on the concentrations of all components, and may

change over time. Therefore, for very long time series, it can

make sense to split the stack up into multiple stacks of shorter

total duration and perform analysis for subsequent sub-stacks

(compare Supplementary Figure S8). However, we estimate that

an image stack needs to span the duration of a minimum length

of 3 oscillation periods for the presented method to yield reliable

results (cf. Supplementary Figure S4).

3.2 Local parameters

In this section, we present an analysis strategy that aims to

quantify local parameters ofMin patterns. These parameters include

the local wave propagation velocity or characteristic local distances

such as the distance between MinD and MinE wave crests. As we

will describe in more detail, local parameters can be quantified by

implementing two steps: 1) identification of wave crests for each

frame within an image stack, and 2) comparison of intensities at and

around the identified crest points from one frame to the next.

3.2.1 Local wave propagation velocity
The local wave propagation velocity is determined as the shift

of individual crest points from one frame to the next. To calculate

the local velocity, we first need to identify these crest points, and

then determine their positional difference. We achieve this by

applying optical flow analysis. Optical flow is defined by how

brightness patterns move from one image to another [30, 31]. For

our Min patterns, we estimate an optical flow vector field using

Horn-Schunck algorithm [30, 32]. This algorithm works on a

pair of sequential image frames (see Figure 3A for example data,

recorded for MinE) and returns a vector field, describing the

estimated optical flow for each pixel from the first to the second

frame. Figure 3B shows the magnitude (indicated by image

brightness) of the optical flow vectors obtained for our

example image pair from Figure 3A. Note that the collected

optical flow vectors do not necessarily represent the local wave

propagation velocities. The relation between the two measures

will depend on the wave shape, making it hard to generalize.

As a first step to identifying the positions of the wave crests

within the first frame, we use the information obtained from

optical flow analysis to create a phase image. This phase image is

essentially a binary map over the whole image, which indicates

whether at any given point we are at the “front” (‘ahead of the

wave’) or “wake” region of the wave (‘behind the wave’). These

regions are characterized by a decrease or increase in

fluorescence intensity, respectively, along the direction of

movement. If we consider any specific surface location and its

corresponding vector obtained from optical flow, we can follow

the direction of that vector over a short distance (say 3 pixels)

within the same frame, and determine whether the fluorescence

intensity is decreasing or increasing. The outcome of this

procedure for our example frames is shown in Figure 3C.

Using this phase image, we can identify those positions in the

image that make up the wave crests – which form the backbone

structure of the pattern. Wave crests are identified by the

positions at which a transition from the front to a wake

region occurs. Figure 3D shows the wave crests identified for

the first frame in red. Subsequently, we need to determine the

direction of wave propagation for these individual crest points.

While we have a set of vectors available for distinct (x, y)

positions from optical flow analysis, their directions will in

general not be exactly normal to the wave crests due to noise.

Therefore, we calculate vectors which are perpendicular to the

lines of wave crests, and determine their correct directionality

(pointing towards the front of the wave) using the information

already present in the phase image. In Figure 3D the direction of

propagation is indicated by vectors at distinct crest points

throughout the image for illustration. Following the procedure

outlined here and in Figures 3A–D, we thus effectively obtained

1) a list of positions, identifying the wave crest point positions,

and 2) a list of vectors, describing their direction of movement

from the current to the next frame.

The next step is to quantify how far these crest points moved

during the transition from the current to the next frame. Upon

quantifying this positional shift, the velocity magnitude is given

by this distance divided by the time that passed between the

acquisition of subsequent frames. The procedure is illustrated in

Figures 3E,F for three example crest points. For each crest point,

we considered the fluorescence intensity traces along the

direction of movement at the given position

(i.e., perpendicular to the wave front). Starting from the crest

position, we plotted this trace up to a distance corresponding to

roughly half the (global) wavelength of the pattern. Choosing this

distance should ensure that the next frame’s peak is still within

the sampling range (provided that the time resolution of the

acquisition stack is sufficiently high, cf. Section 3.1.2). In

Figure 3E, the example traces along which intensities are

plotted are highlighted in white. For sampling positions along

this trace that are located off the pixel grid, intensities can be

estimated by interpolation. This yields an intensity trace at sub-

pixel resolution. This intensity trace will have a maximum

located very close to the center of the originally determined

crest position, with a small offset that can be attributed to the
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additional smoothing step performed before optical flow analysis,

and is generally not significant (cf. Supplementary Figure S5 and

adjoined table).

Next, we performed exactly the same procedure at the same

positions on the next frame. As shown in Figure 3E and

Figure 3F, these positions are now no longer centered around

the maximum of the intensity trace, but offset from them by a

certain distance. This distance is the positional shift that we need

to obtain for quantification of the local wave propagation

velocity. Performing peak fitting allows to identify the two

traces’ peak values and measure the shift d in crest peak

position at sub-pixel resolution.

Performing this analysis for all identified crest points along all

sequential pairs of frames in an stack eventually yielded a list of

velocity vectors with components (vx, vy) at frame n for a wave crest

at position (x, y). Image smoothing is an important technical aspect

of the local analysis presented here. We first perform a light image

smoothing (with a limited initial smoothing kernel) to de-noise the

image and to simplify peak detection such as shown in Figure 3F.

For optical flow analysis (Figure 3B), we perform an additional

smoothing step with a more extensive secondary smoothing kernel.

The effect of different initial smoothing kernels is illustrated in

Supplementary Figure S6, the effect of increasing image noise in

Supplementary Figure S2D,E. Further, applying Horn-Schunck

algorithm [30] requires setting a few parameters, particularly the

regularization constant and the number of iterations. Here, we

determined their values by trial-and-error from evaluating

simulated as well as real Min protein pattern data and kept both

constant from then on.

Depending on what kind of information is of interest, the

obtained distribution of velocity vectors can be represented in

different ways. A representation that combines information on

the magnitude and directional preference is a 2D histogram such

as the one shown in Figure 3G for an example image stack of

MinE data. If the magnitude of the wave propagation velocity is

most important, the velocity magnitudes v can be plotted in a

histogram to visualize their distribution and peak value, as shown

in Figure 3H. In other cases, the directional information may be

of prime interest, for example, when studying the influence of an

external bulk flow [26] or physical environmental parameters on

the pattern [22]. For each vector component, an angle α can be

calculated that corresponds to the wave crest point’s direction of

movement with respect to the direction of applied flow. The

occurrence of different directions can then be plotted in a regular

or polar histogram, as shown in Figure 3I. As shown

Supplementary Figure S7, the method can be applied to a

wide range of image sizes. Decreasing the area on which

analysis is performed generally leads to smaller standard

deviation in velocity magnitude distribution, which is linked

to a loss in directional information. The full local velocity

pipeline is also presented in the Supplementary Appendix

DEMO_MinDE_local_analysis.

3.2.2 Local MinD/MinE crest shift
When studying Min protein patterns, researchers routinely

acquire data in two channels, for fluorescently-labelled MinD

andMinE, respectively. Both these proteins exhibit a peak in their

surface density, but these two peaks do not coincide in space and

time (an example is given in Figure 4A).

To determine these differences, the analysis pipeline

presented in Section 3.2.1 for obtaining wave propagation

velocity between sequential frames can be slightly adapted for

measuring the difference in crest position between MinD and

MinE waves. This can be achieved by first performing crest

detection (analysis pipeline shown in Figures 3A–D) for one

stack, e.g. the MinD stack. The crest points attributed to the

MinD stack can then be compared to the corresponding frame of

theMinE stack, analogous to the comparison shown in Figure 3E.

The collected peak shifts d can be visualized in a histogram, such

as shown in Figure 4B for our example data.

4 Discussion

In this paper, we proposed protocols that can be applied to

analyse data on E. coli Min protein surface patterns with respect

to quantitative parameters such as the spatial wavelength,

oscillation period, or wave crest propagation velocities. Our

primary goal was to develop user-independent and largely

automatized strategies for pattern analysis in order to 1)

improve comparability of results obtained from different

studies and research groups, and 2) provide tools for

quantification of experimental data for comparing results to

theoretical studies. We presented global and local analysis

methods which both can be valuable depending on what kind

of pattern information is of interest. All of the routines that we

suggested and described can be further modified to better fit the

requirements posed by a particular research question – thus

providing a framework that others can build upon.

The methodology we describe can be combined with many of

the aspects and practices of Min pattern analysis which we did

not cover here. For example, in studies investigating absolute or

relative local concentrations or concentration gradients of MinD

and MinE on the surface, fluorescence calibration can be

important. Calibration allows to relate fluorescence intensity

to the local membrane protein density [12, 16, 19, 21].

However, in many cases the patterns as such – their shapes,

domains, wavelength, or dynamics – can be studied without this

step, using the acquired fluorescence intensity data in arbitrary

units, and this is what we focused on in this paper.

The global analysis that was presented here provides

parameters averaged over entire image frames (spatial analysis)

or slices along fixed spatial coordinates (temporal analysis). We

found that for well-cleaned images, spatial autocorrelation robustly

quantifies the main dominant wavelength within an image frame,
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as identified by the distance at which maximum self-correlation is

present. This yielded results that are very comparable to those

obtained by manual quantification, albeit with higher statistical

reliability (see Supplementary Figure S1 for an example

comparison of manual and automatic analysis). For temporal

autocorrelation, we recommend re-orienting the image stack

into slices of fixed x- or y-coordinates and calculating

autocorrelation-maps along sets of kymographs, as described.

We found this to be an efficient way to access large parts of

the information provided within the image stack. Pixelwise

analysis of intensity traces at distinct surface location,

autocorrelation thereof and subsequent averaging is a more

straightforward approach. However, we found that taking this

detour via reslicing as presented in this paper reduces

computational time by about two orders of magnitude, and

hence, allows for easier processing of large amounts of data (cf. SI).

In many cases, parameters obtained from spatial and temporal

analysis can be averaged for several frames/slices. However, whether

this is justified depends on the time evolution of the pattern over the

course of the acquisition. Supplementary Figure S8 shows the

temporal autocorrelation results for an example image stack which

shows a decline in oscillation period over time. This is visible from the

spreading of peaks in the resliced image (cf. Supplementary Figure

S8A) as well as in the variation in the shape of the Δx = 0 traces (cf.

Supplementary Figure S8B). In such a case, averaging is only justified

over the part of the stack that shows a constant temporal periodicity. If

required, the routines can be expanded to include peak analysis of

single traces in the kymograph set and automatically determine up to

which point averaging is permitted.

Local analysis, in contrast to global analysis, directly provides

large-number distributions of parameters even when analysing only

two consecutive images. Our approach to local analysis relies on the

identification of wave crests and quantification of the positional shift

thereof from one frame to the next. The first step can in principle be

achieved by various strategies. For example, one could implement an

algorithm that relies on thresholds of fluorescence intensity to

identify peaks. Here, we presented a strategy that relies on

established algorithms for optical flow analysis, as it offers certain

advantages, in particular access to directional information. We have

already successfully used this local analysis methodology to examine

and quantify the response of Min protein patterns to hydrodynamic

bulk flow [26]. Numerous other applications can be imagined, in

which a surface pattern is either exposed to an external stimulus and

responds to it, or in which the time evolution of its characteristic

properties is relevant. Using the local analysis pipeline presented

here (or modifications thereof) allows to systematically quantify

properties of interest with proper statistics rather than relying on

qualitative description alone.

As our local analysis routine essentially offers a way to acquire a

high number of intensity traces that are locally perpendicular to the

wave fronts, it opens up possibilities for further in-depth analysis.

Our brief illustration of a MinD-MinE crest distance detection is

only one example of a parameter that can be extracted using an

optical-flow-based routine. For example, it is imaginable to modify

our local analysis pipeline such that it facilitates fast visualization of

local fluorescence intensity profiles for bothMinD andMinE waves.

Upon fluorescence calibration, the fluorescence intensity can be

converted to membrane protein density, and hence the relative peak

heights can be connected to the protein ratio at the surface. Further,

information obtained from local and global analysis can be

combined, and local velocity analysis can provide an alternative

to global methods if their requirements are not met. For example,

while we found that a certain minimum number of entire

oscillations is required for global temporal analysis to yield

results (cf. Supplementary Figure S4), local analysis can already

be performed on only two consecutive frames, and can be combined

with global spatial analysis to serve as an alternative route to

determining the predominant oscillation period.

Finally, we note that the general strategies presented within

this paper are not restricted to application to the analysis of E. coli

Min protein surface patterns. Min protein patterns have some

properties that are very specific to them – such as their quasi-

FIGURE 4
Using the local analysis pipeline to determine local MinE-MinD crest positions shifts. (A)MinD (magenta) andMinE (green) patterns. The pipeline
for local analysis shown in Figures 3A–F can be used to quantify other properties of the pattern, such as the MinE-MinD crest point distance in a
simultaneous dual-channel acquisition. Here, crest point detection was performed for each frame of the MinD stack. Subsequently, the intensity
traces at these positions were compared to those of the corresponding MinE frame. (B) Distribution of MinE-MinD crest point distances.
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periodic nature, dynamic oscillatory behavior, and their

organization within domains – and our routines are

designed for these specific properties. However, the

routines presented here may very well be modifiable and

applicable to quantify other types of semi-periodic surface

patterns, biological or not, for example to the fascinating

reaction-diffusion patterns of chemical systems like the BZ-

AOT system [33]. We hope that our analysis toolbox will

help to further disentangle the intriguing mechanisms that

underlie pattern formation.
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