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Abstract—A higher share of renewables and electric vehicles
increase the risk of congestion in electricity distribution systems.
New distribution tariff designs have been proposed to prevent
congestion. However, most modeling of tariff performance as-
sumes deterministic price information. This paper proposes a
method to assess the impact of price uncertainty for network
tariffs, using price forecasting scenarios in a simulation model.
Electricity price forecasting scenarios are generated by analyzing
autoregressive forecasting errors and recursively generating time-
series. The scenarios are used as price forecasting inputs in a
model case study of tariff performance in a Dutch context. Results
show a reduction in congestion frequency and charging costs
using forecasts in this model setup, likely by enabling longer time
horizons. Highest peaks however are larger when using forecasts
for the fixed and capacity-based tariffs. Overall, this method
provides insight into performance of new tariffs in electricity
grids, incorporating the impact of price uncertainty.

Index Terms—Network tariffs, distribution networks, demand
response, electricity price forecasting, electric vehicles

I. INTRODUCTION

The rapid increase in electric vehicle (EV) usage, com-
bined with the call for flexible electricity demand response
(DR), has created the potential for large scale EV-charging
price optimization, possibly by means of an EV-aggregator.
While flexible EV-demand has a large potential of benefits
for national grid-balancing, problems can arise at a regional
level. Congestion can occur when too many EV’s charge at
the same time, reaching the limit of the local transformer
capacity. This occurs more quickly with the increasing share
of renewables in the energy system [1], [2]. A possible policy
solution is the use of new regional tariff schemes, discouraging
consumers to charge at times when demand peaks could cause
congestion in the energy system. These tariff prices are added
on top of the electricity prices and taxes charged to consumers.
Various different new tariff schemes and components have
been proposed and analysed qualitatively in scientific research
[3]–[5]. Most new tariff designs consist of a combination of
a volumetric charge for the consumed energy (per kWh), a
capacity charge for peak power consumption (per kW), and a
fixed charge independent of usage (i.e. per year) [4].

Previous studies have assessed the performance of different
tariffs combined with a high share of EV’s, see, e.g., [1].
However, most existing research is focused on deterministic
decision making for EV-chargers, basing decisions on perfect
knowledge of electricity prices. The impact of uncertainty
on tariff performance is important as aggregators or charging
services providers (CSP’s), can use electricity price forecasts
to charge more efficiently by using a longer time horizon.
However, the uncertainty that comes with these forecasts could
possibly affect tariff performance, increasing the amount of
congestion [1].

This paper aims to analyze the impact of uncertainty
on performance of different proposed tariff structures for
congestion prevention. We have studied three different tariff
designs: a fixed tariff of 250 euros per year, a volumetric
tariff differentiating between day and night and a capacity
subscription, where consumers choose a capacity bandwith
charge. Electricity price forecasting scenarios are generated
by analyzing the errors of an autoregressive model trained
on EPEX-NL1 day-ahead electricity prices. These scenarios
are then used as input in a model scheduling EV’s by price-
optimization through linear programming. This provides a case
study using the proposed methodology in a relevant Dutch
policy context.

The focus of this research is not the theory behind tariff de-
sign policy, but the quantitative analysis of tariff performance
of a selection of proposed frameworks. Other research in the
context of tariff design and EV’s has been conducted with
more emphasis on the social aspect and policy performance,
such as [6].

II. METHODOLOGY

A. Forecast Scenario Generation

Scenarios are suitable as input for incorporating uncertainty
in optimization problems as they can provide a wide range
of different possible outcomes [7]. To generate forecasting
scenarios corresponding to realistic behavior of electricity

1Dutch area power exchange market owner.
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Fig. 1: Auto correlation (ACF) plot (left) and partial auto
correlation (PACF) plot (right) of 2018 EPEX-NL day-ahead
electricity prices.

price forecasts, forecasting error behavior is used to generate
scenarios using an autoregressive model. Statistical methods
like autoregressive models are used frequently for forecasting
in power systems [8], [9]. A downside of this method is the
limitation in adapting for the nonlinear behavior of electricity
prices [8]. More advanced and extensive methods for electric-
ity price forecasting scenarios can also be used, for scenario
generation such as [10]–[12]. However, this research is not
focused on specific forecasting scenario generation techniques
but using scenarios in general to assess tariff performance in
optimization models.

First, an AR(24) autoregressive time-series model is gener-
ated to forecast electricity prices, fitted onto day-ahead EPEX-
NL electricity price data of 2018 2. This AR(24) model
produces an estimate for the day-ahead price by looking at
the previous 24 hours of electricity prices, calculating the auto
correlation and partial auto correlation (figure 1).

An AR(24) time series model can be written as:

Xt = ϕ1Xt−1+ϕ2Xt−2+ϕ3Xt−3+ ...+ϕ24Xt−24+Zt (1)

Where ϕ1...ϕ24 are the calculated coefficients and Zt is the
Gaussian innovation, sometimes also called error. In this paper,
error will refer only to the difference in realized and forecasted
prices.

After fitting the parameters ϕ1...ϕ24 and Zt, the model is
used to predict blocks of 24 hours ahead of the day-ahead price
of 2019. For Zt, a Gaussian distribution with nonzero mean is
chosen for the time series’ innovation. The predicted prices are
compared to the actual, realized prices and prediction errors
are calculated, subtracting the realized price from the predicted
price for each hour.

These errors are used to fit a new AR(24) model, describing
the auto correlation of prediction errors, and shown in figure
2. This model essentially captures the way prediction errors
evolve over time in relation to its own previous values. A
Gaussian error with mean zero is used for the time series’
innovation, as to only not bias the generated scenarios towards

2Price data retrieved from https://transparency.entsoe.eu/
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Fig. 2: Auto correlation (ACF) plot (left) and partial auto
correlation (PACF) plot (right) of forecast errors of 2019
EPEX-NL day-ahead electricity prices made with the gener-
ated AR(24) model.

forecasting higher or lower prices than realized. Executing this
model this took a computational time of 147.49 seconds3.

This AR(24) error model is then used to generate error
scenarios in MATLAB by recursively applying the autoregres-
sive behavior. Finally, the generated errors are added onto the
actual prices of January 2020. For forecasts of n days ahead,
the errors are added onto the error of n-1 day ahead. The
forecast of a day in the future is thus used as the starting
point for forecasting the same day one day further in advance.
Hence, the forecasts become more accurate as the forecasted
day comes closer. The combination of an autoregressive model
for errors and a linear error propagation ensure the consistency
of forecasting scenarios within and between days of forecasted
prices. This approach is chosen as opposed to using a three
day forecasting time horizon at once because of the nature
of the day-ahead exchange market, where electricity is traded
in blocks of 24 hours. Furthermore, an AR(24) model is less
suitable for forecasting longer blocks than 24 hours at once, as
the autoregressive coefficients only extend back 24 time steps.
Other error propagation approaches can be chosen when using
different forecasting approaches. A visual representation of
scenario generation results can be seen in figure 3. Generating
50 different scenarios took 1.29 seconds, with specifications
as specified above in footnote 3.

3Windows based laptop with an Intel®Core™i5-8300H CPU 2.30GHz with
8 GB RAM.
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Fig. 3: Results of generated forecast scenarios for two days in
the January 2020 data set (january 1 and 3). Forecasted prices
are shown 1, 2 and 3 days in advance, together with the actual
price (0, black).



TABLE I: Descriptive statistics of generated forecast scenarios
1-3 days in advance.

Days Ahead MAE MMAE RMSE MRMSE
1 3.11 8.9 % 3.89 11.1%
2 4.34 12.4% 5.45 15.6%
3 5.40 15.4% 6.79 19.4%

Table I provides an overview of descriptive statistics for
the generated scenarios, representing the mean of all different
seed values used in the case study simulation. Descriptive
statistics consist of the mean absolute error (MAE), monthly
mean absolute error (MMAE), root mean squared error or st.
dev. of the error (RMSE), monthly root mean squared error
(MRMSE, a scaled RMSE). The scaled errors are taken by
dividing the absolute error by the average EPEX-NL monthly
price of january 2020 (35.03 euro / MWh).

These scenarios are generated for 31 days of January 2020
(744 hours). The error size increases with each day forecasted
ahead. The one-day day ahead MMAE of 8.9% is higher than
values found in literature using the same methods, which are
in the range of 6-7% [13], [14]. The scaled one-day ahead
RMSE (standard deviation of the error) is equal to 11.1%.
This is higher than the value of 8.64% found by [14] for their
statistical method of exponential smoothing. The larger error
values achieved in this paper resemble the more limited setup
used to generate forecasts. Producing high-quality and low-
error forecasts for the day-ahead electricity price is beyond
the scope of this paper. However, slightly more inaccurate
forecasts are not necessarily worse in the model research, as
the impact of uncertainty using the forecasts will be more
notable.

B. Optimization Simulation Model

The generated electricity price forecasting scenarios are
used as input in an optimization model. This model simulates
a neighborhood of electricity-consuming households of which
a certain share uses electric vehicles. The model has been used
before in previous research using deterministic prices [15]. The
model works using regular household electricity demand load
profiles, upon which the scheduled electric vehicle demand
is added for households with an EV. These load profiles are
generated using the Load Profile Generator tool, as described
in [15]. The regular household load profiles are considered
to be inflexible and are static input variables. Scheduled load
does not affect the electricity price, effectively making the
households purely price takers. Other input variables consist
of the number of EV’s, the number of households, transformer
capacity and the used electricity prices, possibly with fore-
casts. The forecasts are used without assigning a value to
the uncertainty. Hence, EV-chargers perceive the forecasts as
entirely accurate regardless of how far into the future prices
are.

Scheduled EV demand is the main variable to be calculated
by the model. The sum of the EV and regular household
loads result in the total load profiles, which can be used

to assess whether congestion occurred and if so, by how
much. Additional statistics describing model behavior, such
as average charging costs and congestion frequency can be
gathered as well. Congestion occurs when more power is
demanded in the neighborhood than the transformer capacity
allows. No damage is dealt to the network in the model, and
actors are not penalized for congestion occurring.

The EV charging pattern profiles are generated using the
specifications of a Nissan Leaf BEV car with a range of 352
km, capacity of 60 kWh and a minimum required charge
of 40%, as generated in [16]. With these specifications, 25
individual EV-profiles are generated. Combined with the EV
assumptions, these lead to 25 driver profiles determining the
consumption of electricity for EV charging demand. The driver
profiles are assigned randomly to the EV owning households.

The households make their EV charging schedule accord-
ing to an individual optimization strategy, using a cost-
minimization function. Decision variables are the EV charg-
ing power in all 15-minute time steps in the chosen time
horizon, where households can choose how much to charge.
The optimization constraints are determined by the desired
battery level after charging of each household, corresponding
to their mobility behavior and charging patterns. Different
tariff designs are implemented, which are taken into account
in the cost-minimization problem.

1) Tariff designs: Three different tariff schemes will be
used to run the optimization simulation model:

a. A fixed tariff cost of 250 euros per year, mimicking the
current Dutch tariff. This is used as a “base case” for
comparing performance of new tariff designs.

b. A volumetric tariff differentiating between a day and night
tariff.

c. A capacity subscription tariff, where households sub-
scribe to a capacity limit according to their typical con-
sumption. Every kW above the limit is penalized by 0.50
euro / kW.

Details of the tariff implementation can be found in table
II. The tariffs are chosen to roughly result in the same cost-
recovery for the DSO for the sake of comparison. All tariff
designs average 2 cents per kWh for households. These three
specific tariffs are chosen to represent a range of different price
incentives relevant in the Dutch policy context. Other tariffs
such as personal peak pricing or hourly varying time of use

TABLE II: Overview of different tariffs implemented in the
simulation model.

Tariff Fixed charge Cap. limit Cap. charge Vol. charge
Fixed tariff 250 - - -

Vol. day / night - - -
0.10 / kWha

0.05 / kWhb

2 kW subscription 192 2 kW 0.5 / kW
4 kW subscription 252 4 kW 0.5 / kW -
8 kW subscription 480 8 kW 0.5 / kW

a 6:00 - 23:00
b 23:00 - 6:00



(ToU) prices are beyond the scope of this paper. Furthermore,
yearly and monthly tariff costs are assigned proportionally for
the duration of the simulation.

2) Optimization objectives: Using a fixed tariff, the cost
minimization objective can be formulated as:

min
levi,t

∑
t

pDA
t · levi,t (2)

Where t indicates the time step, pDA
t is the day-ahead electric-

ity price and levi,t is the to be decided hourly charging schedule
of EV i.

In a volumetric tariff where the tariff cost varies over time,
the objective function will be:

min
levi,t

∑
t

(pDA
t + pToU

t ) · levi,t (3)

With pToU
t being the added tariff penalty cost dependent on

the time of day (Time of Use).
For a capacity subscription tariff, this yields:

min
levi,t

∑
t

pDA
t · levi,t + ppenalty · θ

(
lexcessh,t

)
· lexcessh,t (4)

Where
lexcessh,t := l0h,t + levh,t − csubh (5)

is the load exceeding the subscribed capacity and θ(x) is the
Heaviside theta function that is 0 when x ≤ 0 and 1 when
x > 0. The variable l0h,t indicates the household load, levh,t
the EV load per household and csubh the subscription capacity.
Here, ppenalty is the penalty of exceeding the subscription and
not dependent on time.

3) Optimization constraints: The charging rate of an EV is
bound by the maximum capacity of the charger, levi . The sum
of EV charging and inflexible household load are also bound
the connection limit, lhh:

levi,t ≤ min
(
levi , lhh − l0h,t

)
(6)

The charge of the EV battery is bound by the size of the
battery:

qi ≤ qi,t ≤ qi (7)

Where qi,t is the charge of EV i at time t, qi = 0 is the
minimum charge and qi the maximum.

The battery charge of an EV is updated based on how much
was charged in the previous period. Charges are initialized at
the starting charge:

qi,t :=

{
qstarti , if t = 0

qi,t−1 + ηeffi · levt−1,t ·∆tstep, otherwise
(8)

With qstarti being the charge at the beginning of the simulation,
ηeffi the charging effiency and ∆tstep the simulation time step.

EVs can only charge while they’re at home at the household:

levi,t = 0, if t ∈ [tdepi , tarri ] (9)

Where tdepi and tarri are the departure and arrival times of EV
i.

The EV should be charged to the desired charge by the
planned departure time:

qi,tdepi
≥ qtargeti (10)

Where qi,tdepi
is the departure charge and qtargeti the target

charge.

III. MODEL CASE STUDY

A. Setup and Scenarios

The simulation model is used in a case study to analyze the
tariff performance in a Dutch policy context. Model settings
and tariff designs are as stated in section II-B. For further
model configurations, a time span of 17 days is chosen, starting
January 1 2020 and ending January 17. Time steps of a quarter
are used to schedule demand, resulting in 1536 time steps. The
neighborhood consists of 50 households, of which 25 have
EV’s. Connection limits of households are set to 17.3 kW,
and the transformer capacity to 75 kW.

For each of the three tariff designs, three different price
knowledge scenarios are used:

1) No forecasts, using 1 day of known prices.
2) Forecasts, using a time horizon of 4 days, where the first

day is known.
3) No forecasts, using a perfect-knowledge 4 day time

horizon.
This results in 9 different scenarios. Each scenario is ran 50

times, varying the seed for random EV behavior assignment
to households and for forecasting scenarios. Three different
output variables of the model will be assessed:

1) Timesteps overloaded (-), describing the number of
timesteps the demand is higher than the transformer
capacity.

2) Max. overload percentage (%), the highest peak relative
to the transformer capacity.

3) Average charging costs (eur / kWh), the average cost of
charging an EV one kWh.

B. Results

Figure 4, 5 and 6 show a graphical view of the results.
Running all 450 scenario runs took 4928 seconds, with spec-
ifications as described above in footnote 3.

Congestion frequency, described by the average number of
timesteps overloaded, is highest in the one-day, no forecasts
scenario and decreases sharply when a four-day time horizon is
used. The difference between using perfect prices and forecasts
however is smaller. For all tariff designs, using forecasts
decreases the congestion frequency by about 22%, and using
four days of perfect prices decreases the congestion frequency
by about 25% compared to the one-day time horizon.

The maximum overload percentage varies more per chosen
tariff design. Overload percentages of over 500% are of course
unrealistic, but chosen for comparison sake of leaving other
input variables equal in all scenario’s. In the less restrictive
fixed and volumetric tariffs, the highest peaks are highest
when four days of perfect prices are used. Using forecasts



Fig. 4: Model results: average number of timesteps overloaded.

tends to produce lower peaks than using perfect prices for
a four day time horizon. However, forecasts perform slightly
better in the volumetric day and night tariff compared to the
fixed tariff. The capacity subscription tariff in contrast shows
higher peaks when forecasts are used. However, the difference
is small compared to the one day scenario (2%).

Finally, the average charging costs can be seen as a reflec-
tion of the “restrictiveness” of the tariffs. Charging costs show
a very similar behavior to congestion frequency in response to
changing the price knowledge. Costs decrease when a longer
time horizon is used. Using forecasts yields a decrease of
about 15% for the fixed and volumetric tariff, and of 9%
for the capacity subscriptions. Using perfect price information
slightly lowers the prices even further, with a decrease of

Fig. 5: Model results: maximum overload percentage.

Fig. 6: Model results: average charging costs.

about 17% compared to the one-day scenario for the fixed and
volumetric tariff. The capacity subscriptions however respond
less to using perfect price knowledge, providing a little bit less
charging cost but rounded still 9%.

IV. DISCUSSION

As noted above, the used price forecasting scenarios contain
more uncertainty than most real world forecasts would. This
could be reduced by choosing other forecasting methods or
by scaling error values. As such, an advantage of the used
scenario-based approach is the flexibility to use different fore-
casting methods. Another advantage is the clear interpretation
of uncertainty scenarios provide. Furthermore, combined with
different random seeds and runs, a broad range of forecasts
can be quickly assessed by the model.

Looking at the results of the model case study, a relatively
small effect of the added uncertainty can be observed. The
used time horizon is a more important factor for tariff perfor-
mance. This raises the question whether this small effect holds
in real world-scenarios, other model research and proposed
new tariffs not considered in this research.

The method of generating forecasting price scenarios con-
tain some limitations and directions for further research. First,
forecasting scenarios used in this research may not be repre-
sentative enough of real-world forecasts, as a simple linearly
propagated autoregressive prediction model is less suited for
forecasting the nonlinear behavior of electricity prices. Second,
the absence of extreme events in forecasting can also result in a
smaller impact of uncertainty than real-world forecasts would
have. Finally, a more extensive research of error propagation of
electricity price forecasts could make the rolling time horizon
scenario behavior more realistic.

In the optimization model, some points of discussion arise.
EV-chargers now attach no value to the uncertainty of the
forecasts in this model. This could result in a tendency to



only focus on lower prices, even if they could be perceived
as more uncertain by being further in the future. A possible
improvement would be to incorporate stochastic optimization
techniques. In terms of tariff design, further model calibration
could be carried out to have more realistic maximum overload
percentages and congestion occurrence for the less restrictive
fixed and volumetric tariff. However, it seems unlikely this
would drastically change overall model behavior. Furthermore,
the absence of additional taxes levied and the assumption of
fully price-minimizing rational chargers enlarges the differ-
ences in price information scenarios. Moreover, there are more
signals and incentives impacting charging behavior and tariff
performance than the price signals modeled by uncertainty and
the optimization model. Other tariff policy objectives are not
assessed in this paper as they are beyond the scope of this
research.

Finally, EV-chargers make no assessment of the chance
of congestion occuring in the model, and there is no real
consequence of congestion when it occurs in the system.

V. CONCLUSIONS

This paper provides an application of electricity price
forecasting scenario generation to assess the impact of price
uncertainty for network tariffs on a distribution grid level.
Electricity price forecasting scenarios are generated using an
autoregressive time-series approach, and used as price inputs
in an optimization model providing a case study of network
tariff performance in a neighborhood with a large share of
electric vehicles.

Looking at scenario generation, the main results can be
summarized as follows:

• Methodologically, this paper presents a new way to assess
tariff performance under more realistic non-deterministic
real world behavior. This provides a way to add un-
certainty for analyzing the robustness of different tariff
designs and policy measures, especially when considering
multiple individual actors trying to optimize over uncer-
tain information.

The main insights of the application of scenarios in the
model case study can be described as follows:

• In this particular case study, the used time horizon (1 or
4 days) is more relevant than whether forecasts or perfect
knowledge of prices is used in for impact on the conges-
tion frequency and charging costs. The advantage of using
forecasts in the model appears to lie in their potential to
extend the time horizon for price optimization, even if
they are not perfectly accurate.

• Of the three chosen tariff designs implemented in the
model, charging costs respond less sharply to changes
in price information when the more restrictive capacity
subscriptions are used. This can likely be explained
by the capacity tariffs already limiting charging at the
hours where prices are cheapest. Congestion peaks and
frequency show the same relative changes, regardless of
tariff design. Thus, for the chosen tariffs in this case

study, the tariff performance does not depend critically
on whether uncertainty is included in the model or not.
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