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a b s t r a c t 

Medical image reconstruction aims to acquire high-quality medical images for clinical usage at minimal cost and 
risk to the patients. Deep learning and its applications in medical imaging, especially in image reconstruction 
have received considerable attention in the literature in recent years. This study reviews records obtained elec- 
tronically through the leading scientific databases (Magnetic Resonance Imaging journal, Google Scholar, Scopus, 
Science Direct, Elsevier, and from other journal publications) searched using three sets of keywords: (1) Deep 
learning, image reconstruction, medical imaging; (2) Medical imaging, Deep learning, Image reconstruction; (3) 
Open science, Open imaging data, Open software. The articles reviewed revealed that deep learning-based re- 
construction methods improve the quality of reconstructed images qualitatively and quantitatively. However, 
deep learning techniques are generally computationally expensive, require large amounts of training datasets, 
lack decent theory to explain why the algorithms work, and have issues of generalization and robustness. The 
challenge of lack of enough training datasets is currently being addressed by using transfer learning techniques. 
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. Introduction 

Medical imaging modalities like computed tomography (CT), mag-
etic resonance imaging (MRI), X-ray, and ultrasound have been used
n medicine to image body extremities, organs, and other tissues. How-
ver, images acquired from these imaging modalities may suffer from
ow signal-to-noise-ratio (SNR) and low contrast-to-noise ratio (CNR)
long with image artifacts [1] . Image reconstruction techniques have
een developed to overcome these challenges and to improve the quality
f images for better visual interpretation, understanding, and analysis.
eep learning (DL) techniques have been used successfully in medical

maging, among others for radionics, computer-aided detection and di-
gnosis, and medical image analysis [2–3] . Deep learning, also called
epresentation learning [4] , has attracted much attention in the recent
ast for medical image analysis [5] . Deep learning is far superior when
ompared to the traditional machine learning methods because it can
earn features from raw input data during training. It has multiple hid-
en layers that enable it to learn abstractions based on inputs [6] . The
ecent developments in efficient computational infrastructures such as
raphical processing units (GPUs) and cloud computing systems have
ccelerated the use and applications of deep learning in various fields
3] including medical image reconstruction. 
∗ Corresponding author: Emmanuel Ahishakiye, Department of Computer Scien
hishema@gmail.com). 
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Image reconstruction is the formation of an image from measure-
ents. The process of image reconstruction involves a sensor encoding,

.e., the representation of an object in the sensor domain which is then
onverted into an image by inversion of the encoding function. Image
econstruction is a challenging task because the analytic knowledge of
he exact inverse transform may not exist a priori, especially in the pres-
nce of sensor non-idealities and noise [7] . “Conventional approaches
or image reconstruction are imperfect because knowledge of the ex-
ct inverse transform is not always possible. They also require the use
f approximations by chains of highly tuned signal-processing modules,
hich can be error-prone, especially for realistic, noisy data ” [7] . Deep

earning techniques will revolutionize the process of image reconstruc-
ion [8] . Moreover, deep-learning-based techniques improve the speed,
ccuracy, and robustness of medical image reconstruction. 

The main goal of this study is to review the current applications of
eep learning in medical imaging, in particular for medical image re-
onstruction. We focused on open science medical imaging research,
he currently available open imaging data sets for deep learning, and
lso on the open-source software packages that are available for medical
mage processing. A lot of research has been done that explains in de-
ail the deep learning techniques and their applications; however, there
s a scarcity of research publications that provide a review of the ap-
ce, Kyambogo University, P.O Box 1, Kyambogo, Kampala, Uganda (Email: 

 March 2021 
dical Association. This is an open access article under the CC BY license 

https://doi.org/10.1016/j.imed.2021.03.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/imed
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imed.2021.03.003&domain=pdf
https://doi.org/10.1016/j.imed.2021.03.003
http://creativecommons.org/licenses/by/4.0/


E. Ahishakiye, M.B. Van Gijzen, J. Tumwiine et al. Intelligent Medicine 1 (2021) 118–127 

p  

[  

s  

s  

c  

d  

r
 

t  

S  

i  

i  

r

2

 

v  

t  

i  

t  

(  

c  

w  

a  

i  

d

3

 

w  

b  

c  

f  

r  

l  

i  

d

3

 

s  

i  

h  

i  

a  

p  

r  

c  

w  

m  

o

3

 

h  

l

3

 

c  

h  

t  

f  

s  

t  

I  

i  

a

3

 

(  

T  

q  

r  

c  

o  

q  

q  

f  

h  

s  

s  

d  

i  

c  

l  

t  

b  

i  

r  

q  

[  

a  

f  

y  

m

3

 

b  

p  

l  

m  

w  

a  

m  

r  

p  

a  

b  

d  

[  

D  

a  

s  

T  

(  

n  

p  

i

3

 

i  

d  
lications of deep learning in medical image reconstruction. The study
9] gives an extensive review of deep learning in medical image recon-
truction but the paper focuses more on the mathematical models of
everal deep learning algorithms in medical image reconstruction. In
ontrast, the focus of this paper is on the reviews of the applications of
ifferent deep-learning algorithms and architectures in medical image
econstruction. 

The rest of the article is organized as follows. In section 2 ,
he methodology used during literature selection is explained.
ection 3 gives an overview of deep-learning applications in medical
maging. Section 4 gives open source tools and datasets for deep learn-
ng research. Section 5 discusses our findings, and also makes concluding
emarks. 

. Methodology 

This study employs a preferred reporting items for systematic re-
iews and meta-analyses (PRISMA)flow diagram and protocol [6] , for
he identification of the relevant research articles that are discussed
n this paper. The four main phases involved include: (1) identifica-
ion phase, this phase involves acquiring articles from various sources;
2) the screening process, during this phase, article duplicates were ex-
luded and also inadequate articles were removed; (3) eligibility phase,
e analyzed the articles to determine their eligibility for further review
nd ineligible articles were excluded; (4) the final phase also called the
ncluded phase, articles that are included in this study were analyzed
uring this phase. 

. Overview of deep learning 

Deep learning techniques have their roots in artificial neural net-
orks (ANNs) [4] . Deep learning became popular in 2012 when a DL-
ased technique won an overwhelming victory in the computer vision
ompetition [2] . More so, deep-learning techniques improved their per-
ormances since 2010 and by 2015, they had exceeded human accu-
acy during large-scale visual recognition challenges [3] . Deep learning
earns image data directly while traditional techniques require human
ntervention for feature extraction [ 2 , 4 ]. A more general overview of
eep learning can be found in the studies [ 2-4 , 6 , 10-12 ]. 

.1. Deep learning applications in medical imaging 

Medical images have been used in disease diagnosis and therapy
ince their discovery. Image processing techniques have been used to
mprove the quality of the images through tasks such as contrast en-
ancement and also in image analysis to aid in the interpretation of the
mages by clinicians. Automatic and semi-automatic methods of image
nalysis relieve the human operators from tedious tasks of image inter-
retation thereby saving time, improving accuracy, and increasing the
eliability of the interpretation task needed to carry out a medical pro-
edure by the clinicians [13] . Deep learning has been currently used
ith success for medical image analysis tasks such as classification, seg-
entation, and registration [14] . More information on the application

f deep learning in medical imaging can be found in [ 3 , 10 , 15-18 ]. 

.2. Image reconstruction techniques in medical imaging 

The study [8] shows that the field of medical image reconstruction
as experienced three phases of development as discussed in Table 1 be-
ow. 

.3. Medical image reconstruction using deep learning 

Existing literature on deep-learning applications in medical image re-
onstruction is scarce. Researchers believe that since machine learning
119 
as been successfully applied for image processing tasks like segmenta-
ion, classification, edge detection, and super-resolution, it can be use-
ul for medical image reconstruction as well. The major objective of our
tudy is to review the existing literature on medical image reconstruc-
ion. Related studies on medical imaging can be found in [ 8 , 9 , 19–22 ].
n the following section, we review the deep-learning applications in
mage reconstruction for MRI, CT, positron emission tomography (PET),
nd ultrasound imaging. 

.3.1. Deep learning in MRI 

Deep learning techniques particularly convolutional neural networks
CNNs) have been used in medical imaging modalities including MRI.
he image reconstruction in MRI is done using data obtained in the fre-
uency domain, also called the k-space. All the information required to
econstruct an image is contained in k-space data and it also gives a
omprehensive way of understanding and classification of the method
f reconstruction and imaging properties [23] . The signals with low fre-
uencies are arranged in the center of the k-space and these low fre-
uencies signals contain contrast information. The signals with high
requencies in the k-space data are spaced outside the center, and these
igh-frequencies signals contain information about spatial resolution or
harpness. Currently, image reconstruction is undergoing a paradigm
hift. Traditional transform-based or optimization-based methods have
ominated image reconstruction. Of recent, data-driven machine learn-
ng methods, in particular deep learning, have demonstrated a signifi-
ant potential for image reconstruction over traditional methods. Deep
earning techniques such as CNNs have been used for image reconstruc-
ion in MRI. Many deep learning frameworks like AUTOMAP [7] have
een proposed and experimental results have demonstrated high-quality
mage reconstructions over traditional and compressed sensing-based
econstruction methods. The issue of large amounts of training data re-
uired has been solved by reducing the number of trainable parameters
24–25] . However, several limitations have also been identified such
s the existing techniques being computationally expensive [7] , some
rameworks do not apply to parallel imaging [29] , and theoretical anal-
sis is still needed to explain why the algorithms work [24] . The sum-
ary of some of the articles reviewed is shown in Table 2 below. 

.3.2. Deep learning in CT 

Image reconstruction in CT is done using projection data. Filtered
ack projection (FBP) algorithms produce high-quality images when the
rojection data are sufficiently complete. However, some applications
ike the reduction of the scan time, decrease of the X-ray radiation which
ay expose patients to other health risks, scanning of some long objects
ith limited angular range, may result in incomplete projection data
nd therefore FBP algorithms may not be appropriate. Also, iterative
ethods like total variation (TV)-based methods produce good quality

econstructions from incomplete projection data but some artifacts ap-
ear on the edges of the reconstructed image when the projection data
re acquired from the limited-angle CT, in addition to staircase effects or
locky artifacts that may appear in the reconstructed image. Currently,
eep learning approaches have been used to address those challenges
56] . Deep learning frameworks for image reconstruction in CT include
EAR [57] , PYRO-NN [58] , LEARN [59] , Improved GoogLeNet [60] ,
mong others. Also, several other studies report accurate image recon-
tructions when compared to the existing traditional approaches [61] .
hese deep learning approaches have been used in two-dimensional
2D) and three-dimensional (3D) reconstructions, effective in reducing
oise, enhancing the spatial resolution, and perform faster on graphical
rocessing units (GPUs). The summary of some of the articles reviewed
s given in Table 3 below. 

.3.3. Deep learning in PET 

Positron emission tomography (PET) is used in research, clinical and
ndustrial applications. It is also used in cancer care for more precise
iagnosis and staging, which is correlated with early treatment and
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Table 1 Techniques used in medical image reconstruction 

Phase Techniques used Strength Limitations 

First phase Analytical methods e.g. the inverse Fourier 

transform and the filtered back-projection 

method (FBP) 

They are efficient Requires proper sampling 

Second phase Iterative methods e.g. combination of wavelets 

and total variation 

The statistical and physical properties of 

the imaging device are considered 

Discrepancies between the model and 

physical factors e.g. inhomogeneous 

magnetic fields 

Third phase Data-driven and learning-based methods e.g. deep 

learning and dictionary learning methods 

Images can be reconstructed from poor 

quality data using learned signal models 

They are not computationally efficient 

and require large sets of training data 

Table 2 Overview of papers using deep learning techniques for image reconstruction in MRI 

References Brief overviews 

[7] A deep learning framework for MR image reconstruction called AUTOMAP. It is accurate when compared to conventional methods. However, it is 

computationally intensive. 

[24] An approach to restoring high-resolution MR images from under-sampled k-space data. It performs better than the existing compressed sensing 

algorithms. 

[25] An approach for faster MRI reconstructions by reducing k-space data with sub-Nyquist sampling strategies. Theoretical analysis is still needed to 

explain why the algorithm works and it also has high complexity. 

[26] A reconstruction method using severely undersampled dynamic cardiac MRI data. It is 2x faster than compressed sensing-based methods. 

However, it does not apply to parallel imaging. 

[27] An approach using transfer learning for MR image reconstruction. Results demonstrated the applicability of transfer learning in MRI 

reconstruction to supplement scarce training data. 

[28] A DNN model for image reconstruction from subsampled MRI scans. It can also be used for image denoising and super-resolution. However, not 

all image properties are explicitly exploited. 

[29] A deep learning model for reconstructing perceived stimuli from brain responses in fMRI. It is also suitable for the development of new 

neuroprosthetic devices. 

[30] Several DL methods for MR image reconstruction were discussed. Accurate reconstructions were obtained. 

[31] An end-to-end framework for super-resolution MR reconstruction. Good quality images are reconstructed from noisy, low-resolution clinical MRI 

scans. 

[32] A CNN architecture for high-quality cardiac MR image reconstruction from highly undersampled k-space data. 

[33] The proposed method outperforms current MR reconstruction methods in terms of reconstruction accuracy and speed. 

[34] A model for extracting nonlinear features from visual images, and also robust in capturing correlations among voxel activities of fMRI recordings. 

However, there is still a need to incorporate RNN in the current framework can help to explore the reconstruction of dynamic vision. 

[35] An end-to-end reconstruction model for fMRI. Its drawback is the information in the decoded features is not all the visual information that can be 

decoded from the brain. 

[36] A model that combines the mathematics of variational models with DL. The model outperforms the standard reconstruction algorithms. Different 

choices of error metrics still need to be investigated. 

[37] An approach for denoising and data consistency enforcement during image reconstructions. It does not require a lot of training data due to a 

reduction in trainable parameters. 

[38] A method for MR image reconstruction using DNN. Assigning lower weights to noisy the noisy training images in the weighted loss function 

improved the image quality of the reconstruction. 

[39] A model for image reconstruction in parallel MRI. The study further revealed the existence of many open problems and high-impact applications 

of deep learning in the medical imaging community. 

[40] An approach for MR image reconstruction using deep cascaded CNN. The results show improved quality of reconstructed images when compared 

to other deep networks of similar complexity. 

[41] Two categories of deep learning-based approaches were analyzed i.e. those that are based on unrolled algorithms and those that are not. Also, 

several signal processing tasks where DL can be applied was discussed especially in fast MRI image reconstruction. 

[42] Several deep learning frameworks for image reconstruction in MRI were proposed. Results revealed improved reconstructions when compared to 

the existing methods. 

[43] Bayesian deep learning (DL) technique to model the uncertainty associated with DL-based reconstructions. The proposed method achieved 

competitive results and outperformed the baseline method. 

[44] Deep learning frameworks for image reconstruction in MRI, CT, and imaging other modalities were proposed. Results showed improved 

reconstructions when compared to the existing methods. 

[45] Deep learning frameworks for image reconstruction in MRI, CT, and imaging other modalities were proposed. Results showed improved 

reconstructions when compared to the existing methods. 

[46] A model for image reconstruction using deep neural networks. The model addressed the computational complexity of compressed sensing-based 

methods. 

[47] A framework for MR image reconstruction from undersampled k-space data. The framework is also robust to noise. 

[48] A deep learning framework 2D MRI reconstruction from undersampled data. Good quality reconstructions were obtained at the 11-fold 

undersampling preserving anatomical structure. 

[49] A model is known as DAGAN for image reconstruction in MRI. Superior reconstructions with preserved image details when compared to other 

existing DL approaches. 

[50] A deep learning model for fMRI image reconstruction from the activities of the human brain. Hierarchical neural representations were effectively 

combined to reconstruct perceptual and subjective images. 

[51] A CNN model for high-quality MR image reconstruction from undersampled k-space data. In terms of restoring tissue structures and removing 

aliasing artifacts, the model performed better than the existing conventional methods. 

[52] A deep learning model for fast and accurate CS-MRI reconstruction. There is still a need to understand the architecture of the proposed method. 

[53] A deep learning framework for the CS-MRI inversion problem. Results show that the proposed model achieves consistently improves a variety of 

CS-MRI inversion techniques. 

[54] A hybrid CNN model for compressed sensing reconstruction of MR images. Visual assessments of the images reconstructed are similar to the fully 

sampled reconstruction reference. 

[55] A method for fast MRI reconstruction. High-quality MR images were used as the training datasets. Results reveal efficient and accurate 

reconstructions. 

MRI: magnetic resonance imaging; MR: magnetic resonance; CNN: convolutional neural network; fMRI: functional magnetic resonance imaging; CT: computerized 
tomography; CS-MRI: compressed sensing magnetic resonance imaging; DNN: deep neural network; 2D: two-dimensional. 
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Table 3 Overview of papers using deep learning techniques for image reconstruction in CT 

References Brief overviews 

[56] An image reconstruction framework based on U-net. It is superior to noise and angle artifacts while preserving the image structures but it is 

computationally expensive and requires large training datasets. 

[57] A framework called DEAR for 3D CT image reconstruction from few-view data. However, more experiments to optimize and validate the DEAR-3D 

network are required. 

[58] A framework based on Tensorflow for iterative reconstructions with data from real CT systems. The limitation is that it requires graphical 

processing units (GPUs). 

[59] A framework called LEARN for CT reconstruction. It improves both image quality and computational efficiency. There is still a need to optimize the 

framework for clinical applications. 

[60] An Improved GoogLeNet for removing streak artifacts in sparse-view CT reconstruction. The method is effective in reducing the artifacts and 

preserving the quality of the reconstructed image. 

[62] A deep learning framework for high-quality reconstructions in CT. The framework can differentiate and remove noise from the input signal. 

[63] An algorithm for image reconstruction in CT scans. High-quality results were obtained when compared to iterative methods. However, the 

algorithm needs to be validated with a bigger population. 

[64] A CNN framework for streak removal from CT images during reconstruction. The framework requires more training to distinguish between 

artifacts and features. 

[65] A model based on CNN for the CT reconstruction process. High-quality reconstructions were obtained. However, more training data is required for 

more accurate and reliable performance. 

[66] A model for improving image quality in CT. However, the model needs to be tested on polyenergetic low-intensity data since monoenergetic was 

used. 

[67] A DNN framework for image reconstruction in sparse-view CT. The framework performed better than the existing methods in terms of image 

quality. More work on the application of this framework in fan-beam CT, cone-beam CT, and helical multiple fan-beam CT. 

[68] A framework called DIRE, based on 3D residual convolutional network architecture. More clinical datasets are still required for an in-depth 

assessment. 

[69] A model based on Wasserstein generative adversarial networks for the 2D CT slice image reconstruction method from a limited number of 

projection images. The model needs to be validated by expert radiologists. 

[70] A CNN-based method for image reconstruction in sparse view computed tomography. Results reveal improved visual quality results and also 

preserves image structures as well as diagnostic details. 

[71] A deep learning method for image reconstruction in CT. Results show better performance compared to hybrid iterative reconstruction methods. 

However, it needs to be validated with different clinical trials. 

[72] A method for sparse-data CT reconstructions. Results reveal quality performance in terms of artifact reduction, feature preservation, and 

computational speed. The method needs to be optimized for clinical applications. 

[73] A method for a few-view CT reconstruction with a lightweight structure. It directly learns an end-to-end mapping between a few- and full-view 

image optimization. 

[74] A model that integrates deep learning with the Model-Based Iterative Reconstruction method. The model improved image quality reconstructions 

at a minimal computational cost. 

[75] A framework for image reconstruction using incomplete data in CT was proposed. Improvement of the model with advanced methods was 

recommended. 

[76] A deep CNN model for mapping low-dose CT images towards their corresponding normal-dose counterparts in a patch-by-patch fashion. Results 

reveal an improved performance in terms of image quality and reconstruction speed over iterative and patch-based methods. 

[77] The model is a relaxed version of projected gradient descent (PGD). Results reveal an improved performance over the existing methods. 

[78] A deep learning model is known as SIPID that combines sinogram interpolation with image denoising. The model can be adapted to other types of 

CT reconstruction approaches. 

[79] A deep learning model for high-quality image reconstructions from sinogram data. It is effective in reducing noise, enhancing spatial resolution, 

and fast without loss of quality. 

[80] A deep learning method suitable for solving ill-posed inverse problems in parallel beam X-ray computed tomography. The model outperformed 

total variation-regularized iterative methods. 

[81] A deep learning model for high-quality three-dimensional (3D) reconstructions under sparse sampling conditions. The SSIM values of sparsely 

sampled CT reconstruction were 0.85 or higher. 

[82] A deep-learning method for image reconstruction in CT. Results reveal improved image quality with reduced image noise when compared to other 

state-of-the-art techniques. 

[83] A deep learning model for computed tomography (CT) data processing in sinogram-space while bypassing the image reconstruction step. The 

model made it easy to analyze and interpret sinograms that are virtually impossible for human experts. 

3D: three-dimensional; CT: computed tomography; CNN: convolutional neural network; DNN: deep neural network; PGD: projected gradient descent 
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etter patient outcomes. Tomographic PET projection data, also called
onograms, cannot be interpreted by a human observer, but must first
e reconstructed into images. The most common reconstruction meth-
ds in PET include analytical filtered back-projection (FBP) and itera-
ive maximum-likelihood methods [84] . However, these methods suffer
rom data inconsistencies, data mismatches, and data over-fitting which
esults in artifacts like noise and streaks in the reconstructed images.
hese drawbacks have been addressed by using machine learning-based
ethods, in particular deep learning techniques. Experimental results
ith deep learning methods reveal lower noise, reduced ringing, and
artial volume effects, as well as sharper edges and improved resolu-
ion [84-89] . The summary of some of the articles reviewed is shown in
able 4 below. 

.3.4. Deep learning in ultrasound imaging systems 

Currently, there is a high demand for high-quality reconstructions
rom a limited number of radio-frequency measurements in ultrasound
maging systems. Due to the presence of side lobe artifacts from the ra-
121 
io frequency sub-sampling, the standard beamformer produces blurry
mages with less content which are unsuitable for clinical use [90] . Com-
ressed sensing methods have been used to address those challenges but
hey require either computationally expensive algorithms or changes
n hardware and also the quality of the reconstructed images is lim-
ted. Deep learning methods have demonstrated high-quality image re-
onstructions in ultrasound imaging. Some studies [90-94] showed the
uccees in applying deep learning in medical image reconstructions;
hese studies reported significant improvements in reconstruction qual-
ty when compared to the existing state-of-art methods( Table 5 ). 

.3.5. Deep learning frameworks for image reconstruction in other imaging 

odalities 

Deep learning methods have been used for image reconstruction in
ther imaging modalities like in fluorescence microscopy [95] , pho-
oacoustic tomography (PAT) [96] , optical microscopy [97] , diffuse
ptical tomography (DOT), electromagnetic tomography (EMT) [98] ,
onocular colonoscopy [99] , holographic image reconstruction [100] ,
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Table 4 Overview of papers using deep learning techniques for image reconstruction in PET 

References Brief overviews 

[84] An encoder-decoder-based framework for image reconstruction in PET. The limitation is that synthetic data was used instead of real patient data. 

[85] A method for dynamic PET image reconstruction. U-Nets were combined in parallel for deep images prior. Results reveal the excellent 

performance of the method when compared to the conventional methods. 

[86] A framework based on auto-encoder for dynamic PET imaging. There is still a need to validate the method with PET images from different tissues. 

[87] A model based on CNN for improved PET reconstructions. However, better network training approaches need to be explored as well as further 

evaluations using more clinical datasets. 

[88] A framework for iterative PET reconstruction using denoising CNN a local linear fitting function to address the disparity of noise levels. It 

outperforms total variation based on conventional methods. 

[89] A model for the post-reconstruction step for reducing reconstruction artifacts. Results reveal lower noise, reduced ringing, and partial volume 

effects, as well as sharper edges and improved resolution. 

PET: positron emission tomography; CNN: convolutional neural network 

Table 5 Overview of papers using deep learning techniques for image reconstruction in ultrasound 

References Brief overviews 

[90] An approach for accelerated B-mode ultrasound imaging. There was a significant increase in PSNR, CNR, and SSIM when compared to other 

existing methods. 

[91] A deep learning-based tool known as WaveFlow. Data obtained from wire and cyst phantoms were used to evaluate the tool. The tool can run on 

both GPU and CPU. 

[92] A DNN method to address the challenge of poor image quality in ultrasound. The DNN model had the best CNR. The limitation was that DNN 

training needs to be refined. 

[93] A model for image reconstruction ultrasound imaging. The model improves the vector flow estimations in more challenging environments where 

the analyzed displacement spans a large dynamic range. 

[94] A generative adversarial network (GAN) framework for ultrasound image reconstruction. The proposed framework reconstructed ultrasound 

images with improved quality. 

GPU: graphics processing unit; CPU: central processing unit; DNN: deep neural network; GAN: generative adversarial network 

Table 6 Overview of papers using deep learning techniques for image reconstruction in other modalities 

References Brief Overviews 

[97] The study provided an overview of DNNs in optical microscopy. Results revealed that DNNs improve the quality of image reconstruction in optical 

microscopy. 

[98] A method for solving imaging problems in electromagnetic tomography (EMT). The preliminary results verify its feasibility. 

[99] A framework for depth estimation from monocular colonoscopy images. There is a need to validate the framework using better validation schemes 

and clinical studies. 

[106] A model that combines transfer learning and DL for super-resolution reconstruction in medical imaging. Better results were obtained when 

compared to other conventional methods. 

[107] An image reconstruction model using diffuse optical tomography (DOT) projection data. There is a need to validate the model clinical scenarios. 

DNNs: deep neural networks; EMT: electromagnetic tomography; DL: deep learning; DOT: diffuse optical tomography 
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tochastic microstructure reconstruction [101] , reconstruction of neu-
al volumes [102] , neutron tomography [103] , coherent imaging sys-
ems [104] , tomographic 3D reconstruction of a single-molecule struc-
ure [105] , and the integration of deep and transfer learning in imaging
106] . Table 6 shows deep learning frameworks for image reconstruc-
ion in other medical imaging modalities. 

.4. Current challenges of deep learning in image reconstruction 

The application of deep learning techniques in medical image recon-
truction is growing and high-quality results have been reported in the
iterature. Better quality images are obtained while using deep learn-
ng than when compared to analytical, iterative, and compressed sens-
ng methods. However, various issues have been hindering its progress.
hese include: the issue of generalization and robustness, the theoretical
nalysis of how deep learning methods achieve results is still required,
hey are computationally expensive, and require a lot of training data
hen compared to the compressed sensing algorithms and other existing
ethods [17, 108] . The issues of large training data and computational

xpensiveness are being addressed by using transfer learning and special
omputing devices like graphical processing units (GPUs) respectively.
n the following section, we discuss the issues of generalizability, stabil-
ty, and training data in detail. 

.4.1. Generalizability 

Generalization means how good a model is at learning from a given
ata and applying the learned model elsewhere. Generalizability is a
122 
oncern when applying a deep learning model trained on one dataset to
ther datasets. Training a universal model that works anywhere, any-
ime, for anybody is unrealistic. Generalizability may be a significant
roblem when applying a trained deep learning model to datasets from
nother vendor’s scanners [109] . The study further revealed that trans-
er learning may help to address the issue by fine-tuning the trained
ource model to the target domain dataset. Also, the study [110] pro-
osed numerical generalization guarantees for deep learning, and also
he theoretical insights on how and why can generalize well. The study
f investigating how norm-based control, sharpness, and robustness
rives generalization in deep networks revealed that some combination
f expected sharpness and norms seem to capture much of the gener-
lization behavior of deep networks. However, the study revealed that
he relationship between optimization and generalization needs to be
nvestigated [111] . 

.4.2. Stability 

The two pillars of image reconstruction algorithms are accuracy and
tability. While deep learning algorithms have demonstrated accurate
econstructions, the stability pillar is still absent in the current deep
earning-based algorithms for image reconstruction. Three crucial insta-
ility issues of the use of deep learning methods in image reconstruction
nclude: (1) instabilities concerning certain tiny perturbations, (2) in-
tabilities concerning small structural changes (e.g. a brain image with
r without a small tumor), and (3) instabilities concerning changes in
he number of samples [112] . The significance of stability and accurate
ethods of image reconstruction in medical imaging cannot be under-
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Table 7 Deep learning tools 

References Deep learning tools Descriptions 

[120] Tensorflow This is one of the most used deep learning tools. It is based on Python and it was developed by Google Brain Team. It is 

continuously updated and maintained frequently for additional functionality. 

[121] MXNet This is a flexible and efficient deep learning library that provides an API for python developers. MXNet enables developers 

to exploit the full capabilities of cloud computing and CPUs. 

[122] Theano This is a deep learning python library that lets users define, optimize, and evaluate mathematical expressions that are 

essential in deep learning implementations. 

[123] Caffe This is a deep learning framework that was developed by Berkeley AI Research (BAIR) and is being maintained by 

community contributors. It was developed by Yang Qing Jia as a project during his Ph.D. at UC Berkeley. 

[124] DeepLearning4j This is an open-source deep learning distributed library. It is designed to be used in business environments on distributed 

CPUs and GPUs. It can import neural network models via Keras from Caffe, Torch, Theano, and Tensorflow. 

[125] Torch This is a deep learning framework with wide support for machine learning algorithms that puts GPUs first. It is fast and 

efficient due to its GPU support. 

[126] Keras This is a deep learning library for Theano and Tensorflow. It is written in Python. It supports recurrent neural networks 

and convolutional neural networks or combinations of the two. 

[127] Microsoft Cognitive 

Toolkit 

This is an open-source easy to use deep learning toolkit. It was previously known as CNTK. It is also described as a 

unifying deep learning toolkit that describes neural networks as a series of computational steps via a directed graph. 

[128] Neural Designer This is a data mining package that utilizes neural networks in its operations. It was developed by Artelnics based in Spain. 
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stimated since they are traditionally considered a necessity to secure
table and reliable methods used for instance in disease diagnosis. 

.4.3. Quality and amount of training datasets 

Deep learning methods are highly dependent on the quality and the
mount of training dataset [113] . A large amount of training data leads
o overfitting and bias. Also, there could be legal and ethical issues in
he use of clinical imaging data in commercial applications since the
erformance accuracy are dependent on the quality of the training data
 17 , 114 ]. The challenge of large amounts of training data required to
rain deep learning methods is currently one of the barriers to the success
f deep learning in medical imaging, but it is being addressed by using
ransfer learning. It has been reported that the quality of training data
n the field of deep learning, especially in image reconstruction, plays a
ignificant role in the final result [ 56 , 113 ]. More so, the success of deep
earning models mainly depends on the presence of large datasets with
igh-quality labels [9] . 

. Open source tools and datasets for deep learning research 

There are many open-source tools and datasets for deep learning.
hese open-source materials are available for researchers to use and du-
licate results. All this has been possible due to the open-science move-
ent that advocates for the sharing of resources, data, methodologies,

nd open peer reviews. For example, different research groups across
he world are developing sustainable imaging modalities such as MRI
ystems by sharing methodologies and designs [115] . Embracing open
cience and innovations by these research groups may result in a reduc-
ion of development times, reduction of investment, and operational
osts. Also, open science allows free availability of research data and
esults, and also advocates for the removal of barriers that hinder re-
earch developments [116] . Neuroscience researchers state that freely
haring technologies, including data and software packages, will speed
he development of affordable medical imaging systems [115] . Also, the
pen Data movement advocates the sharing of data openly and freely

115] . People have joined the movement by donating their corps to sci-
nce, e.g. “a former inmate who gave his life to science, upon his death,
T and MRI scans were done on the whole of his body and also color
ryosections (photographs) were generated by cutting the frozen body
nto thin slices ” [117] . Furthermore, different organizations and indi-
iduals have joined the open-source community and there are various
nfrastructures to share open-source software and codes such as GitHub,
itLab, and iPython notebooks, among others. In the following section,
e discuss deep-learning tools and datasets that can be freely utilized
y researchers during image reconstruction research. 
123 
.1. Deep learning tools 

There are many open-source deep learning software tools for deep-
earning research. These open-source software tools enable the develop-
ent of cost-effective applications and also reproducible study results

3] . This section reviews the most commonly used open access deep-
earning software tools for deep-learning research. More deep-learning
oftware tools can be found in [118–119] . Table 7 shows the deep learn-
ng tools we identified during this study. 

.2. Open source datasets 

Currently, deep learning researchers are having challenges with
nough data for the training of deep learning systems. However, there
re some imaging data sources [129] that researchers in the field can
tilize during their experiments. Table 8 shows the open-source datasets
e identified during this study. 

.3. Open source deep learning codes for medical image reconstruction 

This study identified open-source deep-learning codes implemented
o solve the ill-posed problem of medical image reconstruction from dif-
erent research groups as shown in Table 9 below. From the findings,
t was noted that much of the implementations are done in Python, fol-
owed by Matlab programming languages. 

. Conclusion 

During this study we reviewed the current literature on the appli-
ation of deep learning in medical image reconstruction. PRISMA flow
iagram and protocol were used for the identification of relevant ar-
icles that we discussed in this paper. It was noted that deep learning
ecame popular in 2012 when deep learning-based technique won an
verwhelming victory in the computer vision competition. It was also re-
ealed that deep learning automatically learns features from the training
atasets, unlike traditional machine learning algorithms that require hu-
an intervention. Our study shows that deep learning techniques have

een successfully applied for image reconstruction. They can help to ac-
elerate data acquisition thereby decreasing the imaging time. Results in
RI, CT, PET, and ultrasound imaging systems revealed improvement

n image quality and efficient noise removal when compared to analyt-
cal, iterative, and compressed sensing-based methods. Deep learning
as also been successfully applied to other medical image processing
asks like classification, segmentation, and registration. However, the
eviewed literature also shows that that deep learning techniques are
omputationally expensive, require large amounts of training datasets,
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Table 8 Open source datasets 

References Datasets Descriptions 

[130] UK Biobank 

dataset 

The dataset contains medical image data available for use by the public and researchers. 

[131] Give A-Scan This contains images and clinical data for lung patients and those at risk for the disease. 

[132] OpenNeuro dataset This contains neuroimaging data obtained with various imaging modalities and protocols. 

[133] ADNI dataset This contains image data for Alzheimer’s disease neuroimaging initiative. 

[134] ABIDE dataset This contains imaging data with Autism Spectrum Disorder and their controls. 

[135] TCIA dataset This contains cancer imaging data and it hosts a large archive of medical images 

[136] FastMRI dataset It contains 1,500 fully sampled knee MRIs obtained on 3 and 1.5 Tesla magnets and DICOM images from 10,000 clinical 

knees MRIs also obtained at 3 or 1.5 Tesla. 

[137] Cancer dataset Contains lots of links to datasets most especially for cancer-related data 

[138] Imaging dataset Contains lots of links to imaging datasets from a variety of sources 

[139] CT medical images The dataset contains CT images from the cancer imaging archive 

[140] Medical imaging This contains links to various medical imaging datasets 

[141] Medical imaging 

repository 

Open-Access medical image repositories from NIH database, national biomedical imaging archive, OASIS, UCI Machine 

Learning Repository, Japanese Society of Radiological Technology (JSRT) Database, and others 

[142] Medical imaging CT, MRI, PET, and other image data different imaging modalities 

[143] Digitized images It contains a collection of digitized images. The database is maintained to support research in image processing, image 

analysis, and machine vision. 

[144] Machine learning 

datasets 

Contains several links to machine learning datasets 

Table 9 Open-source deep learning codes for medical image reconstruction 

References Imaging modalities Descriptions Implementations 

[145] CT Image reconstruction codes in computed tomography Matlab 

[146] MRI The code for various experiments analyzing various regularization parameter for K-space based 

parallel MR image reconstruction 

Matlab 

[147] MRI GRAPPA is a popular parallel imaging reconstruction algorithm. The codes implement 

GRAPPA-like algorithms. 

Python 

[148] Other Reconstruction of three-dimensional porous media using generative adversarial neural networks. Python 

[149] MRI Deep cascade of CNNs and convolutional recurrent neural networks for MR image reconstruction Python 

[150] Other Image reconstruction method to represent detailed images purely from the binary sparse edge 

and flat color domain. 

Python 

[151] MRI Codes for deep learning, image processing, dictionary learning and compressed sensing Python 

[152] MRI An open-source implementation of the deep learning platform for undersampled MRI 

reconstruction 

Python 

[153] MRI Several open-source AI tools and codes for fast MRI Various 

implementations 

[154] CT PYRO-NN, a state-of-the-art reconstruction algorithm to neural networks integrated into 

Tensorflow. 

Python 

[155] MRI Links to several deep learning implementations for image reconstruction Python 

[156] MRI A deep learning implementation for undersampled MRI reconstruction Python 

[157] MRI A TensorFlow implementation for MRI reconstruction Python 

[158] MRI Links to several deep learning implementations for image reconstruction Various 

implementations 

[159] CT Links to several deep learning implementations for image reconstruction C ++ 
[160] Several modalities Links to several deep learning implementations for image reconstruction Various 

implementations 
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hat theoretical analysis explaining why the algorithms work is still re-
uired (the black-box nature of deep learning) [15] , and also that the
ssues of generalization and robustness of deep learning techniques need
o be addressed. Also, the reliability of deep-learning systems is a con-
ern in case they are used independently from the supervision of a ra-
iologist, therefore there is a question of whom to blame in case the
isinformation or an error that leads to patient harm [14] . Next to a

omprehensive review of literature on deep-learning techniques for im-
ge reconstruction, the study identified open-source tools, codes, and
atasets that, we believe, may be utilized by deep learning researchers,
specially the novice. Therefore, this paper may be used as a reference
oint, since it has identified the majority of these resources. 
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