

Delft University of Technology

MLSmellHound
A Context-Aware Code Analysis Tool
Kannan, Jai; Barnett, Scott; Cruz, Luís; Simmons, Anj; Agarwal, Akash

DOI
10.1109/ICSE-NIER55298.2022.9793510
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 2022 ACM/IEEE 44th International Conference on Software Engineering

Citation (APA)
Kannan, J., Barnett, S., Cruz, L., Simmons, A., & Agarwal, A. (2022). MLSmellHound: A Context-Aware
Code Analysis Tool. In Proceedings - 2022 ACM/IEEE 44th International Conference on Software
Engineering: New Ideas and Emerging Results, ICSE-NIER 2022 (pp. 66-70). (Proceedings - International
Conference on Software Engineering). IEEE. https://doi.org/10.1109/ICSE-NIER55298.2022.9793510
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSE-NIER55298.2022.9793510
https://doi.org/10.1109/ICSE-NIER55298.2022.9793510

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

MLSmellHound: A Context-Aware Code Analysis Tool

Jai Kannan
Scott Barnett

jai.kannan@deakin.edu.au

scott.barnett@deakin.edu.au

Applied Artificial Intelligence Inst.

Deakin University

Geelong, Victoria, Australia

Luís Cruz
l.cruz@tudelft.nl

Delft University of Technology

Delft, Netherlands

Anj Simmons
Akash Agarwal

a.simmons@deakin.edu.au

a.agarwal@deakin.edu.au

Applied Artificial Intelligence Inst.

Deakin University

Geelong, Victoria, Australia

ABSTRACT

Meeting the rise of industry demand to incorporate machine learn-

ing (ML) components into software systems requires interdisci-

plinary teams contributing to a shared code base. To maintain

consistency, reduce defects and ensure maintainability, develop-

ers use code analysis tools to aid them in identifying defects and

maintaining standards. With the inclusion of machine learning,

tools must account for the cultural differences within the teams

which manifests as multiple programming languages, and conflict-

ing definitions and objectives. Existing tools fail to identify these

cultural differences and are geared towards software engineering

which reduces their adoption in ML projects. In our approach we

attempt to resolve this problem by exploring the use of context

which includes i) purpose of the source code, ii) technical domain,

iii) problem domain, iv) team norms, v) operational environment,

and vi) development lifecycle stage to provide contextualised error

reporting for code analysis. To demonstrate our approach, we adapt

Pylint as an example and apply a set of contextual transformations

to the linting results based on the domain of individual project files

under analysis. This allows for contextualised and meaningful error

reporting for the end user.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS

Machine learning, code smells, context-aware

ACM Reference Format:

Jai Kannan, Scott Barnett, Luís Cruz, Anj Simmons, and Akash Agarwal.

2022. MLSmellHound: A Context-Aware Code Analysis Tool. In New Ideas

and Emerging Results (ICSE-NIER’22), May 21–29, 2022, Pittsburgh, PA, USA.

ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510455.3512773

1 INTRODUCTION

Code analysis tools reduce maintenance costs of a system through

the early detection and prevention of defects [9, 10, 15, 19, 20, 22].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9224-2/22/05. . . $15.00
https://doi.org/10.1145/3510455.3512773

These tools also support the identification and refactoring of code

smells [8, 18] and reducing ML specific technical debt. By integrat-

ing code analysis tools into CI/CD pipelines modifications to code

can be tested to improve i) security [2], ii) readability [23], and iii)

consistency [34].

Machine learning (ML) applications stand to benefit from code

analysis by i) identifyingML specific technical debt [25], ii) catching

defects in models and data and iii) mitigating ML unique failure

modes [3, 16]. These unique failure modes contribute to eroded

trust and reputation damage as demonstrated by Amazon’s sexist

recruiting tool [24] or failure of the Thistle F.C. ball tracking system

[27]. ML systems also have increased maintenance costs and effort

to manage infrastructure for data and model management [25].

The additional infrastructure and dependence on data increases

area where defects can occur. Code analysis tools are a promising

approach for improving the robustness of ML applications.

However, code analysis tools suffer from high false positive rates

when analysing ML applications [30]. The impact of high false

positive rates is poor adoption and wasted time. False positives

are perceived as a challenge [28, 29]. Calibration is required to

balance false negatives (missed defects) and false positives (no de-

fect present). Development of ML applications utilises multiple

languages and mixed teams of data scientists (specialists in de-

velopment and application of ML algorithms) working alongside

software engineers to integrate the algorithms with the surround-

ing infrastructure. As such, defects in ML applications require a

combination of data science and software engineering expertise to

resolve [12]. Thus, code analysis tools operating on ML applications

must account for i) multiple programming languages, ii) conflicting

definition and prioritisation of defects in interdisciplinary teams,

iii) ML specific failure modes, and iv) provide contextualised error

reporting to provide explanations in the context of ML to reduce

false positives.

Existing code analysis tools for ML have focused on data linters

[13], and tensor shapes [17]. Code analysis tools focus on analysing

Python, a popular language for ML [26] or identifying general

code smells [11]. However, existing approaches are not sufficient

to provide actionable explanations for mixed development teams

and ignore the technical domain of ML [4]. For example, during

exploratory data analysis, code quality is sacrificed for speed of

experimentation and discovery of insights; here the activity influ-

ences the definition of code quality. This paper proposes inclusion

of context from the technical domain, software artefact and envi-

ronment to improve the precision of code analysis tools through

contextualised feedback.

66

2022 IEEE/ACM 44th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)
20

22
 IE

EE
/A

C
M

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g:
 N

ew
 Id

ea
s a

nd
 E

m
er

gi
ng

 R
es

ul
ts

 (I
C

SE
-N

IE
R

) |
 9

78
-1

-6
65

4-
95

96
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
SE

-N
IE

R
55

29
8.

20
22

.9
79

35
10

Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2022 at 15:20:02 UTC from IEEE Xplore. Restrictions apply.

ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA Jai Kannan, Scott Barnett, Luís Cruz, Anj Simmons, and Akash Agarwal

In this paper we present a research agenda for MLSmellHound,

a context-aware tool that improves the precision of code analysis

tools. The goal of our research is to improve the maintainability and

robustness of ML applications through context-aware code analysis

tools. We hypothesize that context can improve the precision of

code analysis tools and propose the following research questions:

• RQ1:What context can be mined from ML projects?

• RQ2: How can context transformations be applied to priori-

tize ML smells?

• RQ3:Which software metrics can be used with context to

predict ML smells?

Our novel approach is inspired by ideas from model driven en-

gineering that uses i) a context metamodel, ii) a set of context

transformations, and iii) context checkers to improve code analysis

for ML.

Motivated by the work in Simmons et al. [26], we provide a

demonstrator of MLSmellHound on Python coding conventions.

We apply our approach to an existing code analysis tool, Pylint. Our

tool uses the purpose of the source code to selectively apply and cus-

tomise linting errors. Contributions arising from this paper include:

1) an approach for leveraging context to reduce false positive rates

in code analysis tools, and 2) a demonstrator of MLSmellHound

for leveraging context in coding conventions for ML applications.

2 MOTIVATION

To motivate our research we use coding conventions as an example.

Consider Dave, a data scientist, working with a software engi-

neer, Tammy. Dave and Tammy are tasked with creating a fraud

prediction model. Dave finds a research paper providing a solution

that best fits the description of the problem. Dave implements the

solution in Python and the widely available ML frameworks [7].

When Dave issues a pull request, the pull request is reviewed by

Tammy. During the review Tammy identifies that the code violates

their organisation’s coding standards. Figure 1 shows an example

of Dave’s code.

Figure 1: Code snippet from an open-source project1 violat-

ing Python’s naming conventions

The organisation follows PEP8 coding standards, that states that

variable names such as ‘P’ should be lowercase. When asked why

Dave neglected to use the organisation’s code analysis tool, Dave

responds that he prefers keeping the variable names similar to the

1https://github.com/shuyo/iir.git

mathematical notation of the algorithm in the paper he is imple-

menting, for example, capital letters to represent matrices, and

indicates that the configuration used by the organisation ignores

data science norms resulting in high false positives from his per-

spective. Dave and Tammy agree there is a need to adjust the organ-

isation’s standards to restore team cohesion; however, deliberating

a fix diminishes productivity as i) existing linter configurations are

calibrated, ii) rule sets defined and agreed upon, and iii) new scripts

are implemented as existing tools cannot identify the context of ML

code. To help Dave and Tammy we propose a context-aware tool

that selectively applies convention rules depending on the code

context.

3 VISION

Our goal is to improve the maintenance aspects and robustness of

ML applications by using context-aware code analysis tools. We

borrow ideas from model driven engineering (MDE) [6] to compose

a new category of tools for modelling context. These tools are

designed to provide better tool support for interdisciplinary teams.

We hypothesise that context can provide better explanations of the

code artefacts and code objectives. By combining the context with

ML specific code smells we aim to prevent a class of ML defects and

improve the precision of code analysis tools. To realise our vision

we have modelled the problem with concepts from MDE as shown

in Figure 2. We use the principle of meta-modelling [5] to create

the context meta-models and context transformations for the tool.

Below, we pinpoint the core components of the proposed model.

3.1 Context Metamodel

RQ1. What context can be mined from ML projects?

The context metamodel represents properties that comprise the con-

text for an ML application. We plan to investigate multiple facets

of context including i) purpose of the source code, ii) technical

domain [4], iii) problem domain, iv) team norms, v) operational

environment, and vi) development lifecycle stage. The context meta-

model will define the relationships between these concepts. The

source code is given as input to the system. The system makes

use of a Parser (c.f Figure 2) to abstract over different source code

languages and repositories, and map it to contextual features; for

example, extracting file level imports of known ML frameworks for

that language to help determine if the incoming code is categorised

as ML or non-ML code. A context metamodel is applied to annotate

the source code, producing a Project Specific Context which pro-

vides a high level representation for informing the context-aware

linter.

3.2 Context Transformations

RQ2. How can context transformations be applied to

prioritise ML smells?

The context transformations enable MLSmellHound to modify the

linter based on the context of a project. These transformations

include:

• Subtraction - context disallows certain rules from applying

on a file.

67

Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2022 at 15:20:02 UTC from IEEE Xplore. Restrictions apply.

MLSmellHound: A Context-Aware Code Analysis Tool ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 2: A conceptual overview of the novel context-aware code analysis tool, MLSmellHound.

• Addition - context selectively applies new rules to better

inform the user of design problems.

• Reprioritisation - context used to re-rank linting results to

draw attention to high priority items and demote items that

are unlikely to be relevant in the given context.

• Remessage - operational context produces a different mes-

sage to an end-user to improve usability.

Context transformations can be used with existing tools extending

our approach to all code analysis tools.

3.3 Context Checkers

RQ3.Which software metrics can be used with the con-

text to predict ML smells?

The context checkers are the rules that are used to operate on the

software artefacts informed by the project specific context. These

checkers are informed by ML smells that are known to cause issues

and include metrics for identifying each smell. We hypothesise that

the combination of context transformations and a context model

will improve the precision of code analysis tools. The Context-

Aware Linter (cf. Figure 2) is a code analyser performing two

functions: i) checking for ML code smells and anti-patterns by

applying the relevant set of Context Checkers to each file in

the source code; ii) generating the context-transformed linting

messages. Using these two functions theAudit Report is generated

for the user to evaluate the code.

4 WHY IS IT NEW?

ML smells are an emerging area of research. Recent work has

investigated i) the prevalence of code smells in ML applications [30],

ii) deep learning [14] code smells, iii) anti-patterns [21], and linters

for datasets [13]. However, a gap exists for a code analysis tool that

automatically identifies ML-specific smells. Unlike existing tools,

our approach also considers the technical domain [4] to provide

context-aware recommendations for the code base. New tools are

needed to identify suitable metrics that locate ML smells and sup-

port the developer in prioritising impact to redirect engineering

effort.

Code analysis tools ignore cultural differences. Current

code analysis tools are geared to support software engineering

standards, however not all of these standards may be applicable for

ML software, resulting in an increase in false positives and reduced

adoption [29, 30]. Code analysis tools need to consider the cultural

differences existing between disciplines in cross functional teams

to improve support for shared development. Code quality in ML

software may score poorly against traditional code quality metrics

due to experimentation, mathematical vocabulary and the nature

of code artefacts. To support these developers, we utilise a set of

transformations based on the context of the program to selectively

apply linting rules. Our tool prioritises outputs for developers, to

support data scientists to build standards-compliant code without

hindering their productivity.

Novel use of context for improving the precision of code

analysis tools. Context has been used in software engineering

to improve software quality [1, 33], security [31], and to improve

development time [32]. In our approach, we leverage MDE to treat

code artefacts as models, to extract metadata to improve code anal-

ysis for interdisciplinary teams, and to selectively apply a set of

transformations to linting outputs with the goal of reducing false

positive rates. Contextual features extracted include the purpose

of the code (which we plan to detect by analysing the operations

implemented in the code). For example, we detect whether a code

file pertains toML functionality, or is intended as a non-ML mod-

ule that provides the surrounding infrastructure. To the best of our

knowledge, this is the first work to use context to improve code

analysis for ML projects.

5 MLSMELLHOUND DEMONSTRATOR

To demonstrate the approach, we developed an initial prototype of

MLSmellHound that provides context-aware linting2. Our tool is

based on Pylint, a popular linter for Python projects that is highly

configurable but that does not consider context. The demonstrator

shows how existing code analysis tools can be augmented with context

using our approach. For the purposes of demonstration, we use

a simplified representation of the purpose of the source code as

the context (whether a source file is an ML or non-ML module),

although we will explore finer granularities (e.g. data wrangling,

configuration, etc.) and additional dimensions of context (e.g. stage

of the team data science process) in the future. To determine this

simplified context, we traverse through each of the Python files in

a given directory line by line. If we detect the presence of an ML

library import, we flag that file as an ML module. A sample of the

output is presented in Figure 3.

The following context transformations are implemented in the

tool: Subtraction/Addition: Depending on the context, we con-

figure Pylint to selectively enable or disable different rules, as well

as use adjusted thresholds and patterns. For example, ML code

2Download MLSmellHound from: https://github.com/a2i2/ml-smell-hound

68

Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2022 at 15:20:02 UTC from IEEE Xplore. Restrictions apply.

ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA Jai Kannan, Scott Barnett, Luís Cruz, Anj Simmons, and Akash Agarwal

Figure 3: Screenshot showing difference between Pylint default output (left), and transformed ouput generated by MLSmell-

Hound (right). Pylint warns about “e” and “df”, whereas MLSmellHound accepts these in the context of ML files. The output

also shows that trailing-whitespace warnings have been re-ranked to a lower priority for ML files.

often uses short variable names inspired by mathematical conven-

tions [26], thus we use an altered regular-expression for validating

conformance to variable naming conventions when linting ML files.

Remessage: A common smell detected in ML source code is an

excessive number of parameters, which has been speculated to be

a result of algorithms with many hyperparameters [26]. To ensure

the message is understandable to data scientists we provide a simple

mechanism for overwriting these messages by mapping Pylint sym-

bols to custom messages tailored to the context. Reprioritisation:

Our tool transforms the linting output by moving message cate-

gories that are not relevant for a particular context to the bottom

of the generated output. E.g., ML code influenced by Tensorflow

often uses non-standard indentation (two spaces instead of four),

thus indentation warnings are deprioritised for ML files.

6 FUTURE PLANS

To realise the vision for MLSmellHound outlined in section 3 we

have broken our approach down into four phases: i) qualitative

evaluation of context for code analysis, ii) catalogue of ML smells

and fixes, iii) metrics and context for locating ML smells, and iv)

end-user evaluation of MLSmellHound.

Qualitative evaluation of context in code analysis. For fur-

ther validation, we plan to extend Simmons et al. [26] by inter-

viewing practitioners to better understand why coding conventions

change based on context. The interviews will also be designed to

understand the relevant context when building ML applications.

Catalogue of ML smells and fixes.We plan to conduct a map-

ping study to mine a catalogue of ML smells and anti-patterns with

appropriate solutions. Our goal is to establish if ML anti-patterns

map to existing software engineering code smells and analyse their

impact on the occurrence of ML failures to create a set of ML-

specific smells which map to defects that development teams need

to consider while developing ML applications. To improve the com-

pleteness of the catalogue we will include both academic and gray

literature (i.e. blogs, industry papers, and tutorials). From the cata-

logue we plan to identify context required for identifying an ML

smell and will evaluate our findings with practitioners.

Metrics and context for locating ML smells. Based on the

findings from the previous stage a set of smells will be selected. We

will investigate how and where the context can automatically be

mined for these smells in a software engineering project. These

smells will be integrated into MLSmellHound to assess if context

can be used to predict other ML smells.

End-user evaluation of MLSmellHound. Our plan is to run

MLSmellHound against open-source repositories and ask partici-

pants to assess the i) accuracy of the reported smells, ii) usability

of MLSmellHound, and iii) benefit for reducing failure in ML appli-

cations. We will also run a questionnaire to evaluate the relevance

of context used in the predictions as a form of interpretation of the

ML-smell prediction.

7 RISK

Differences in development exist between data scientists and soft-

ware engineers in software quality and expected outcomes, for

example software engineers may value software maintainability

while data scientists may value the performance of the model in

production. To account for this, we plan to identify these differ-

ences and include an approximation of the mental models of each

discipline to ensure ML smells and warnings are explained and

ranked in a manner that is compatible with the reasoning of that

discipline.

Another risk for our research is the assumption that dimensions

of context influence the relevance of code smells and the appropriate

preventative action can be identified and mined from available

artefacts. We plan to test this assumption through a controlled study

to evaluate the relevance of context with practitioners compared to

a control group using a tool that does not take into account context.

69

Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2022 at 15:20:02 UTC from IEEE Xplore. Restrictions apply.

MLSmellHound: A Context-Aware Code Analysis Tool ICSE-NIER’22, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing NATURAL coding conventions. In Proceedings of the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering. Association for Computing
Machinery, 281–293. https://doi.org/10.1145/2635868.2635883 arXiv:1402.4182

[2] Nikolaos Bafatakis, Niels Boecker, Wenjie Boon, Martin Cabello Salazar, Jens
Krinke, Gazi Oznacar, and Robert White. 2019. Python coding style compliance
on stack overflow. In IEEE International Working Conference on Mining Software
Repositories. IEEE Computer Society, 210–214. https://doi.org/10.1109/MSR.2019.
00042

[3] Lucas Baier, Vincent Kellner, Niklas Kühl, and Gerhard Satzger. 2021. Switching
Scheme: A Novel Approach for Handling Incremental Concept Drift in Real-
World Data Sets. Proceedings of the Annual Hawaii International Conference
on System Sciences (2021), 990–999. https://doi.org/10.24251/HICSS.2021.120
arXiv:2011.02738

[4] Scott Barnett. 2018. Extracting technical domain knowledge to improve software
architecture. (2018).

[5] Benoit Baudry, Clementine Nebut, and Yves Le Traon. 2007. Model-Driven
Engineering for Requirements Analysis. In 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007). Institute of Electrical and
Electronics Engineers (IEEE, 459–459. https://doi.org/10.1109/edoc.2007.15

[6] Jean Bézivin. 2006. Model driven engineering: An emerging technical space.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 4143 LNCS (2006), 36–64. https:
//doi.org/10.1007/11877028_2

[7] Houssem Ben Braiek, Foutse Khomh, and Bram Adams. 2018. The open-closed
principle of modern machine learning frameworks. In Proceedings of the 15th
International Conference on Mining Software Repositories - MSR ’18. ACM Press,
353–363. https://doi.org/10.1145/3196398.3196445

[8] Aloisio S. Cairo, Glauco de F. Carneiro, and Miguel P. Monteiro. 2018. The Impact
of Code Smells on Software Bugs: A Systematic Literature Review. Information 9,
11 (2018). https://doi.org/10.3390/info9110273

[9] Zhifei Chen, Lin Chen, Wanwangying Ma, and Baowen Xu. 2016. Detecting
code smells in python programs. In Proceedings - 2016 International Conference
on Software Analysis, Testing and Evolution, SATE 2016. Institute of Electrical and
Electronics Engineers Inc., 18–23. https://doi.org/10.1109/SATE.2016.10

[10] Ke Dai and Philippe Kruchten. 2017. Detecting technical debt through issue
trackers. CEUR Workshop Proceedings 2017, QuASoQ (2017), 59–65.

[11] Hristina Gulabovska and Zoltán Porkoláb. 2019. Survey on static analysis tools
of python programs. CEUR Workshop Proceedings 2508, September (2019), 22–25.

[12] Mark Haakman, Luís Cruz, Hennie Huijgens, and Arie van Deursen. 2021. AI
lifecycle models need to be revised. an exploratory study in fintech. Empirical
Software Engineering (2021).

[13] Nick Hynes, D Sculley, and Michael Terry. 2017. The Data Linter: Lightweight,
Automated Sanity Checking for ML Data Sets. In NeurIPS.

[14] Hadhemi Jebnoun, Houssem Ben Braiek, Mohammad Masudur Rahman, and
Foutse Khomh. 2020. The Scent of Deep Learning Code: An Empirical Study.
Proceedings - 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories, MSR 2020 (2020), 420–430. https://doi.org/10.1145/3379597.3387479

[15] Arvinder Kaur and Ruchikaa Nayyar. 2020. A Comparative Study of Static Code
Analysis tools for Vulnerability Detection in C/C++ and JAVA Source Code.
Procedia Computer Science 171 (jan 2020), 2023–2029. https://doi.org/10.1016/J.
PROCS.2020.04.217

[16] Ram Shankar Siva Kumar, David O Brien, Kendra Albert, Salomé Viljöen, and
Jeffrey Snover. 2019. Failure Modes in Machine Learning Systems. (nov 2019).
arXiv:1911.11034 https://arxiv.org/abs/1911.11034v1

[17] Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and Yannis
Smaragdakis. 2020. Static Analysis of Shape in TensorFlow Programs. In 34th
European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and
Tobias Pape (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 15:1–15:29. https://doi.org/10.4230/LIPIcs.ECOOP.2020.15

[18] Luigi Lavazza, Sandro Morasca, and Davide Tosi. 2021. Comparing Static Analysis
and Code Smells as Defect Predictors: An Empirical Study. IFIP Advances in
Information and Communication Technology AICT-624 (may 2021), 1–15. https:
//doi.org/10.1007/978-3-030-75251-4_1

[19] Diego Marcilio, Carlo A. Furia, Rodrigo Bonifácio, and Gustavo Pinto. 2020.
SpongeBugs: Automatically generating fix suggestions in response to static
code analysis warnings. Journal of Systems and Software 168 (oct 2020), 110671.
https://doi.org/10.1016/J.JSS.2020.110671

[20] Serguei A. Mokhov, Joey Paquet, and Mourad Debbabi. 2015. MARFCAT: Fast
code analysis for defects and vulnerabilities. 2015 IEEE 1st International Workshop
on Software Analytics, SWAN 2015 - Proceedings (mar 2015), 35–38. https://doi.
org/10.1109/SWAN.2015.7070488

[21] Nikhil Muralidhar, Sathappah Muthiah, Patrick Butler, Manish Jain, Yu Yu, Katy
Burne, Weipeng Li, David Jones, Prakash Arunachalam, Hays ’Skip’ McCormick,
and Naren Ramakrishnan. 2021. Using AntiPatterns to avoid MLOps Mistakes.

April (2021). arXiv:2107.00079 http://arxiv.org/abs/2107.00079
[22] Rajshakhar Paul. 2021. Improving the effectiveness of peer code review in

identifying security defects. (aug 2021), 1645–1649. https://doi.org/10.1145/
3468264.3473107

[23] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011. A simpler model
of software readability. In Proceedings - International Conference on Software
Engineering. 73–82. https://doi.org/10.1145/1985441.1985454

[24] Reuters. 2018. Amazon scraps secret AI recruiting tool that showed bias against
women. https://www.reuters.com/article/us-amazon-com-jobs-automation-
insight-idUSKCN1MK08G

[25] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean François Crespo, and Dan Denni-
son. 2015. Hidden technical debt in machine learning systems. In Advances in
Neural Information Processing Systems. 2503–2511.

[26] Andrew J. Simmons, Scott Barnett, Jessica Rivera-Villicana, Akshat Bajaj, and
Rajesh Vasa. 2020. A large-scale comparative analysis of Coding Standard con-
formance in Open-Source Data Science projects. In International Symposium on
Empirical Software Engineering and Measurement. IEEE Computer Society, New
York, NY, USA, 1–11. https://doi.org/10.1145/3382494.3410680 arXiv:2007.08978

[27] The Verge. 2020. AI camera operator repeatedly confuses bald head for soccer
ball during live stream. https://www.theverge.com/tldr/2020/11/3/21547392/ai-
camera-operator-football-bald-head-soccer-mistakes

[28] Kristin Fjola Tomasdottir, Mauricio Aniche, and Arie Van Deursen. 2017. Why
and how JavaScript developers use linters. In ASE 2017 - Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. Institute
of Electrical and Electronics Engineers Inc., 578–589. https://doi.org/10.1109/
ASE.2017.8115668

[29] Kristin Fjola Tomasdottir, Mauricio Aniche, and Arie Van Deursen. 2020. The
Adoption of JavaScript Linters in Practice: A Case Study on ESLint. IEEE Transac-
tions on Software Engineering 46, 8 (aug 2020), 863–891. https://doi.org/10.1109/
TSE.2018.2871058

[30] Bart Van Oort, Luis Cruz, Mauricio Aniche, and Arie Van Deursen. 2021.
The prevalence of code smells in machine learning projects. Proceedings -
2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for
AI, WAIN 2021 (2021), 35–42. https://doi.org/10.1109/WAIN52551.2021.00011
arXiv:2103.04146

[31] Shao-Fang Wen and Basel Katt. 2019. Toward a Context-Based Approach for
Software Security Learning. Journal of Applied Security Research 14 (2019), 1–20.
https://doi.org/10.1080/19361610.2019.1585704

[32] Fangke Ye, Shengtian Zhou, Anand Venkat, RyanMarcus, Paul Petersen, Jesmin Ja-
han Tithi, Tim Mattson, Tim Kraska, Pradeep Dubey, Vivek Sarkar, and Justin
Gottschlich. 2020. Context-Aware Parse Trees. (2020). arXiv:2003.11118
http://arxiv.org/abs/2003.11118

[33] Xiaohan Yu, Quzhe Huang, Zheng Wang, Yansong Feng, and Dongyan Zhao.
2020. Towards Context-Aware Code Comment Generation. (2020), 3938–3947.
https://doi.org/10.18653/v1/2020.findings-emnlp.350

[34] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and Baowen Xu. 2019.
How does code style inconsistency affect pull request integration? An exploratory
study on 117 GitHub projects. Empirical Software Engineering 24, 6 (dec 2019),
3871–3903. https://doi.org/10.1007/S10664-019-09720-X

70

Authorized licensed use limited to: TU Delft Library. Downloaded on August 04,2022 at 15:20:02 UTC from IEEE Xplore. Restrictions apply.

