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Efficient tactile encoding of object 
slippage
Laurence Willemet1,2*, Nicolas Huloux1 & Michaël Wiertlewski2

When grasping objects, we rely on our sense of touch to adjust our grip and react against external 
perturbations. Less than 200 ms after an unexpected event, the sensorimotor system is able to 
process tactile information to deduce the frictional strength of the contact and to react accordingly. 
Given that roughly 1,300 afferents innervate the fingertips, it is unclear how the nervous system 
can process such a large influx of data in a sufficiently short time span. In this study, we measured 
the deformation of the skin during the initial stages of incipient sliding for a wide range of frictional 
conditions. We show that the dominant patterns of deformation are sufficient to estimate the distance 
between the frictional force and the frictional strength of the contact. From these stereotypical 
patterns, a classifier can predict if an object is about to slide during the initial stages of incipient slip. 
The prediction is robust to the actual value of the interfacial friction, showing sensory invariance. 
These results suggest the existence of a possible compact set of bases that we call Eigenstrains. 
These Eigenstrains are a potential mechanism to rapidly decode the margin from full slip from the 
tactile information contained in the deformation of the skin. Our findings suggest that only 6 of these 
Eigenstrains are necessary to classify whether the object is firmly stuck to the fingers or is close to 
slipping away. These findings give clues about the tactile regulation of grasp and the insights are 
directly applicable to the design of robotic grippers and prosthetics that rapidly react to external 
perturbations.

Dexterous tasks, such as picking fruits or writing with a pen, continuously recruit sensorimotor feedback to 
detect and avoid object slippage. The feedback loop depends on the information provided by cutaneous afferents. 
Using this information, the sensorimotor system keeps the object stable in hand while applying a gentle grasp, 
by continuously adjusting the magnitude of the grip forces. During grip adjustment, a margin of safety between 
the frictional strength of the contact (i.e. the maximum admissible lateral force before slippage) and the external 
load forces acting on the object is  maintained1. The safety margin sets the grip force 10% to 20% higher than 
the minimum admissible force, depending on the unpredictability of the forces at  play2. The low safety margin 
restricts the deployment of large grip forces responsible for muscular fatigue, for damaging fragile objects, and 
for impeding the reorientation of an object during in-hand manipulation. The typical evolution of the forces 
during grasping an object is shown in Fig. 1A.

To maintain a safety margin, tactile afferents encoding the spatio-temporal deformation of the skin are con-
tinuously  monitored3. The most convincing evidence is that participants whose sense of touch has been locally 
anesthetized show a drastic degradation of the dexterous movements and grip force  regulation4,5. These grip 
force adjustments are likely triggered by early signs of incipient slippage of the object in contact with the skin. 
At a mechanical level, during incipient slippage, the contact transitions from a stable state where it is completely 
stuck, to an intermediate state where the outer region of the contact slips. The slip region grows to eventually 
encompass the entire contact area, at which stage the stuck area vanishes and the object fully  slips6. The incipient 
slip transition, predicted by Cattaneo-Mindlin  theory7 and illustrated in Fig. 1B, induces stereotypical patterns 
of skin deformation where tissues are compressed at the leading edge and stretched at the trailing  edge8. The 
patterns of strain in turn cause a stereotypical activity of the  mechanoreceptors9.

Reacting quickly to incipient slip requires processing signals sent by more than a thousand afferents on 
 average10 to detect a specific pattern in the spatio-temporal deformation. The deformation depends on the fric-
tion of the surface, but since the safety margin is independent of  friction11, the detection has to be invariant to 
the friction coefficient. In other terms, the regulation should operate similarly whether the object is slippery 
or not. Given the complexity of the task, how can the nervous system efficiently process tactile information to 
quickly detect slip and avoid a catastrophic loss of grip?

In this article, we hypothesize that the nervous system must compress the peripheral information by project-
ing it on a compact basis of functions as illustrated in Fig. 1C. The compression removes the redundancy and 
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promotes perceptual invariance to friction when detecting incipient slippage. To test our hypothesis, we extracted 
a compact dictionary of deformation patterns from a large dataset containing the spatio-temporal evolution of 
skin strains during the transition from stick to slip at different frictional conditions. The dictionary efficiently 
decodes the safety margin from the pattern of strain with a success rate higher than 80% compared to 20% when 
using the entire strain pattern. The results reveal the contribution of skin mechanics to the detection of incipient 
slip and can inspire reactive control of robotic grippers based on tactile  events12,13.

Encoding of object slippage. At the onset of sliding, the deformation of the skin likely stimulates mecha-
noreceptors whose neural activity propagates toward the central nervous  system9,14,15. The timing and the num-
ber of the first spikes of neural activity produced by the deformation contain crucial information, for stabilizing 
 grasp16,17. External perturbations elicit responses within 100 to 150  ms18,19 during which central processing only 
accounts for approximately 15 ms of the total  time17. The latency is comparable in magnitude to long-latency 
reflex responses, suggesting that the grip force regulation is mediated supra-spinally20.

Given the speed of the reaction, the number of stimulated mechanoreceptors, and the limited capacity of 
the brain, the nervous system likely compresses the information contained in the afferents. One possible com-
pression mechanism involves projecting the incoming skin deformation pattern onto a compact dictionary of 
strain primitives. With the dictionary, the high-dimensional space of the neural information from upward of 
1,000 afferents in the fingertip is reduced down to a few principal components. By focusing on a few principal 
components, a simple set of neurons can provide a swift estimation of the safety margin and determine if more 
grip force should be applied (Fig. 1C).

Efficient coding hypothesis. The dimensionality reduction process proposed in this paper derives from 
the efficient coding hypothesis, first introduced  by21. Efficient coding postulates that information is transmitted 
from the sensory organs to the nervous system with a minimal number of action potentials, using a compact 
lexicon that minimizes the neural activity by removing the information redundancy. Moreover, the lexicon must 
be independent of the friction coefficient, since the same reflexive behavior can be observed on objects having 
surfaces of various frictional  strengths22.

How can we gain access to a likely candidate of a compact lexicon? Considering that the sensory system 
evolves in the natural world, a representation must be created where natural stimuli are encoded  efficiently23. 
Therefore, by distilling the lexicon from a large sample of natural stimuli, we can find a compact function decom-
position by maximizing the sparsity of the signal. The sparsity assumption allows us to extract useful patterns 
from big datasets and, thus, reduce the computational cost. In the specific case of detecting incipient slippage, 
these stimuli are the strain patterns, representative of the deformation of the skin. Similar dimensionality reduc-
tion approaches have been successful in distilling sparse representations of natural  images24 and audio  signals25. 
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Figure 1.  (A) Normal and tangential components of the force during grasping. To avoid slippage, the nervous 
system regulates the grasping force fn to keep the frictional strength ft = µ fn at a safety margin from the load 
force applied by the object. (B) Typical evolution of the interaction force, area of contact, and skin deformation 
during the transition from stick to slip. (C) Steps of perceptual computation from a strain field that is influenced 
by the frictional interaction to an estimate of the safety margin which is independent of friction.
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The sparsity condition ensures that the information is embedded in a population code with a minimum number 
of neurons active at any one time, leading to a more than 20-fold compression of images or audio waveforms 
without losing perceptual  accuracy26. Similar efficient coding strategies have been proposed in touch, and can 
facilitate the classification of hand gestures from vibrotactile surface wave  propagation27 or to identify material 
properties from the vibrotactile signal they  produce28.

Rationale behind the dimensionality reduction. Amongst the numerous dimensionality reduc-
tion methods, matrix factorization methods can efficiently find a dictionary to compress natural stimuli. For 
instance, independent component analysis finds features separating the signal in statistically independent parts. 
When applied to natural images, it recovers a functional basis that resembles Gabor  filters23, hinting at a possible 
structure of the computation used in the early stages of the visual processing. Similarly, Non-negative Matrix 
 Factorization29 has been popular for explaining sensory processing since it promotes basis functions that capture 
local features. As an example, the factorization trained on a database containing human faces leads to a diction-
ary containing representations of the mouth and the nose.

In our specific case of decoding the safety margin from the skin deformation, we postulate that the nervous 
system uses a compact set of basis patterns (i.e. that includes only a minimal amount of projective axes) to accel-
erate the processing. The compact set of bases should capture the most variance of the skin deformation patterns 
and should maximally decorrelate the output signal. This set of requirements makes the principal component 
analysis the most suited method. The principal component analysis can be computed by taking the singular value 
decomposition (SVD) of the entire database of strain patterns and truncating the result to conserve only the first 
most representative principal  components30,31.

Results
Dataset of spatio‑temporal strain field. We computed the spatio-temporal deformation of participants’ 
skin while they touched a plate that slid under their index fingertip. We collected the temporal evolution of the 
strain pattern of the index fingertip of 12 participants, using 7 levels of frictional conditions and 4 repetitions, 
resulting in 336 individual videos. We selected 30 equally spaced frames of these videos from 0.05 to 6 mm every 
0.2 mm of relative displacement between the plate and the finger, totaling in 10,080 data points.

The friction of the plate could be changed from high, medium, and low friction using ultrasonic friction 
 modulation32. The three conditions correspond to average coefficients of sliding friction of 1.1, 0.8, and 0.5, for 
vibration amplitudes of 0.17, 1.6, and 2.9 µm respectively (Fig. 2B). A constant normal force of about 1.2 N was 
maintained by a lever and weights, and we imposed the lateral force by controlling the current in a coreless motor, 
through a low-friction capstan transmission. The plate moved in the radial direction with a speed of 10 mm/s, 
for a total displacement of 20 mm, which is sufficiently long for the finger to reach full slip. Forces and position 
are plotted in Figure S1.

The deformation of the skin was extracted from the images of the contact illuminated by frustrated total 
internal reflection (FTIR). The illumination technique highlights the asperities of the skin that are in intimate 
contact with the plate while darkening everything that is not touching the plate, resulting in a highly contrasted 
 image33. An illustration of the apparatus can be found in Fig. 2A and typical images for a high- and low-friction 

Figure 2.  (A) Experimental apparatus combining ultrasonic friction reduction and frustrated total internal 
reflection imaging of the contact (inset). (B) Ultrasonic vibration reduces the sliding friction coefficient. (C) 
Typical images for two lateral deformations and two amplitudes of vibrations. (D) Experimental deformation 
of the skin when the finger is sliding on the surface in high, medium, and low-friction conditions for relative 
displacements of 1, 2, 4, and 6 mm. (E) Safety margin as a function of the finger position for the same 3 friction 
conditions. The solid lines and shaded areas stand for mean ± std.
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case are shown in Fig. 2C. Construction details are presented in the Materials and Methods section. The motion 
of individual points on the surface of the skin was tracked. The skin strains were computed from the displace-
ments of each tracked point using the Delaunay triangulation  method8, the procedure is depicted in Movie M1. 
From the start of plate motion and until full slip is reached, the finger experiences longitudinal strains, whose 
magnitude depends on the frictional strength of the contact as shown in Fig. 2D.

For each element of the dataset, the spatial strain field of the fingertip was matched to the safety margin Sm . 
First, the static friction limit f ∗t  was identified from the time series of the lateral force by considering the average 
force when the finger was fully sliding. Then, the safety margin was computed for all instants in time (Fig. 2E) 
from:

Empirical strain patterns. During the transition from stick to slip, the finger deforms and the slip area 
propagates from the periphery to the center of the contact area. The strain wave is always compressive ahead 
of the stuck area (red in figures) and tensile on the trailing edge (blue in figures), see Figure S2, consistent with 
previous  observations8. The strain fields are shown for 3 coefficients of friction of 1.1, 0.8, and 0.5 (Fig. 3B). For 
all friction conditions, as the plate displacement increases, the magnitude of the tensile and compressive strains 
increases (Fig. 3A). The magnitude of the compressive strain decreases significantly with increasing vibration 
amplitudes (ANOVA, F(6,329)=2.18, p = 0.045 ), whereas the magnitude of the tensile strain increases with 
increasing vibration amplitudes (ANOVA, F(6,328)=6.3, p = 0.0091 ), see Figure S3. For a high-friction condi-
tion, the maximum compressive strain experienced by the finger is on average 25% larger than when friction is 
low.

Model validation. To better understand the influence of friction on the skin deformation during sliding, 
we simulated the interaction using a finite-difference time-domain model that captures the viscoelasticity of 
the stratum corneum and soft cutaneous tissues as well as the local frictional behavior. The details of the imple-
mentation are presented in the Supplementary Figure S4. The fingertip model is composed of a chain of mass-
less elements linked together by high-stiffness springs ( 2.5 kNm−1 ). The chain lies on a bed of soft springs 
( 31.5 Nm−1 ) connected on the other end to a rigid element modeling the bone. To maintain contact and induce 
a sliding motion, external normal and tangential forces were applied to the bone element fn = ft = 1 N . The 
simulated deformation fields of the skin are shown in Fig. 3B. The simulated strain fields follow a similar trend 
as the experimental ones, with a compressive part ahead of the stuck area and a dilatation behind it.

The fingertip model allows us to observe the pressure and traction fields at the interface between the skin 
and the surface that cannot be accessed by experimental means, see Fig. 3C. During the transition from stick to 
slip, we observe that the elements on the outer edge are the first to slide since the interaction pressure is collinear 
with the friction cone. In the high friction condition, the lateral motion of the elements is constrained, resulting 
in a larger skin strain. Conversely, in the low friction condition, the outside layer experiences lower tangential 
traction, and the lateral stress is released for smaller lateral displacement.

(1)Sm(t) =
f ∗t − ft(t)

f ∗t

Figure 3.  Typical trial. (A) Compressive and tensile strain fields for 3 different friction conditions as a 
function of the relative lateral displacement. The solid lines and the shaded areas represent the mean ± std. (B) 
Experimental and simulated strain profiles for the 3 different friction conditions at three positions on the plate 
from 1 to 5 mm. (C) The corresponding simulated surface finger profile. The blue arrows represent the pressure 
p and traction q acting on each element, and the color of the dots represents the local pressure ratio |q/p|.
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Dimensionality reduction of the strain field. We postulate that the strain field must contain informa-
tion about the safety margin before slippage. Since the estimate of the safety margin exists before gross sliding 
occurs, the estimate is likely independent of the actual friction coefficient of the surface. While we do not have 
access to the neural encoding of the afferent to find a base of neuronal activation, we can infer it from the skin 
displacement. The dataset allows us to find a potential basis composed of a set of strain field patterns.

To find the Eigenstrain patterns, we performed a Singular Value Decomposition (SVD) of the 10,080 indi-
vidual strain patterns contained in the dataset. The method outputs a set of orthogonal eigenvectors ui(x) repre-
senting the dictionary of strain patterns, and eigenvalues σi , whose magnitude relates to the variance explained. 
The weight of each Eigenstrain as a function of time is embedded in v(t), such that each vector vi reveals the 
temporal evolution of the ith eigenvectors. To compress the information, we selected the first r elements of the 
set. The original evolution of the skin strain can be recovered by adding these eigenvectors, weighted by time-
dependent vectors, σivi(t) as follows.

The first six primitives are shown in Fig. 4A. u1 is the major principal component, illustrating the typical pat-
tern of compression ahead of the stuck area and stretching behind it. u2 and u3 include higher frequency details 
at the periphery of the contact, whereas the following bases improve the details at the center of the contact area.

Figure 4A shows the recruitment of each basis σivTi  as a function of time, for a high and a low friction coef-
ficient. The recruitment of the first basis differs between high and low friction conditions from the early stages of 
the slip when the finger has moved 0.25 mm relative to the plate (Spearman’s correlation, ρ = −0.17 , p = 0.0024 ). 
The amplitude of the first basis captures the intensity of the skin deformation. On the other hand, the recruitment 
of bases 2, 4, 5, and 6 are not significantly impacted by the level of friction. Similarly, the recruitment of the third 
basis changes significantly with friction when the relative displacement is higher than 1 mm (Spearman’s correla-
tion, ρ = −0.21 , p = 8.4× 10−5 ). σ2vT2  do not significantly differ between the friction conditions, suggesting 
that the friction does not significantly influence the tensile pattern embedded in u2.

Efficiency of the tactile encoding. We trained two support-vector machine classifiers to predict the 
safety margin from the recruitment of the bases σvT . The first one was trained using 90% of the whole dataset 
(10-fold) and the second one with data of the whole subjects, except one which was used for testing (cross-sub-
ject). The prediction map using the first two bases with the 10-fold classifier is shown in Figure S7A for 2 classes 
of safety margin: higher and lower than 0.5.

Compressing the tactile information with only 2 bases leads to a classification rate of 70%, whereas this 
number increases with the number of bases and exceeds 90% of accuracy for 6 bases (see Fig. 4B). Adding more 
than 6 bases leads to a marginal increase in the classification rates, and the performance of the 10-fold classifier 

(2)ǫ̂(x, t) =

r
∑

i=1

ui(x)σivi(t)

Figure 4.  (A) Six first bases ui and the temporal evolution of the recruitment of these six bases for a low and a 
high-friction condition (in violet and green, respectively). (B) The classification rate of the safety margin is split 
into two classes, as a function of the number of bases. The dark green line corresponds to ten-fold testing when 
taking 90% of the data for training and 10% for testing, and the light green line corresponds to cross-subject 
testing when only one subject among 14 is used for testing. The solid lines and shaded areas stand for mean ± 
std. Classification rates using the entire strain matrix ǫ are represented on the right. (C) The time needed for the 
classification using �V  normalized by the time using the whole matrix of strains for the cross-subject and the 
10-fold classifier. (D) Effect of safety margin quantization on the classification rate when using 6 bases for the 
decomposition. The confusion matrix is shown for 5 classes.
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drops when using the entire dataset. The classification rates for cross-subject classifiers are lower and present 
larger standard deviations than the one with a ten-fold training, due to the high inter-subject variability.

Since humans react in a remarkably short amount of time, we qualitatively compared the speed of each 
classification approach, by studying the influence of the number of bases on the computational effort. To get a 
qualitative estimate of the computational effort, we computed the time needed for the cross-subject and 10-fold 
classifiers to perform the prediction, normalized by the time of classification using the whole matrix of strains 
(Fig. 4C). For both classifiers, the predictions using a limited number of bases are performed more than 600 
times faster than using the entire strain data; the latter takes around 23 s. Moreover, the relative classification time 
between the limited number of bases and the entire strain matrix is minimum when considering only 6 bases. 
The minimum of computational effort suggests that the 6-bases kernel provides an efficient estimation while pre-
serving accuracy. This value matches the tradeoff between precision and compactness of the bases (Figure S6B): 
selecting less than 6 bases lacks accuracy, whereas considering more than 6 bases leads to a recruitment matrix 
V not compact enough, which is less efficient to process.

To increase the accuracy of safety margin estimates, we reduced the interval quantization of the safety margin 
by increasing the number of classes from 3 to 10 (Fig. 4D). The classification rate using 6 bases decreases when 
the number of classes increases, but stays higher than 70% even when the safety margin was predicted with a 
0.1-precision using 10 classes. Increasing the discretization of the safety margin comes with a significant tradeoff 
in the classification rate.

We also studied the influence of adding short-term memory to the classifier. We trained the classifier with 
knowledge of the short-term evolution of the recruitment on each basis. We find that the accuracy of the safety 
margin estimation using the 10-fold classifier trained with the contribution of the 6 bases at a given time instant 
was 20% higher than using the contribution of the first basis at 6 consecutive instants. However, adding priors 
on the weight of the first and second bases increases the accuracy of the cross-subject classifier by 10%, in com-
parison with exclusively spatial or exclusively temporal values (Figure S7C).

Discussion
The findings suggest the existence of compression of the tactile information of incipient slippage, showing one 
concrete implementation of the idea that the computation behind tactile perception is embedded in a minimal 
 subspace34. The six strain primitives obtained with the singular value decomposition enable a reduction of the 
dimensionality of the tactile signal while keeping a sufficient accuracy of the predictions. We found a major 
contribution of the compressing strain in the encoding of friction, which has recently been shown to excite the 
response of fast adapting afferents of type 1 (FA-I)22.

The first six bases were found to optimally encode the safety margin, leading to a 90% accuracy of the safety 
margin quantized over two classes. When the safety margin was quantized with more than seven classes, the 
accuracy decreased to 85%. Globally, if the number of bases exceeds the number of classes, the classification rate 
is higher than 80%. However, when reacting to an excessive reduction of the safety margin, the sensorimotor 
system is likely to make a binary decision. The decision could be based on a quantization of the safety margin 
that involves only two classes and therefore a limited number of bases.

We estimated the safety margin at specific time stamps, without taking into account the history of the defor-
mation that led to a particular strain pattern. Knowledge of the dynamics could help improve the prediction of 
imminent slippage. Since the adjustment of the grip force is a continuous process, it is likely that the nervous 
system constantly monitors the time differences in strain to make a judgment. Assuming that the detection of 
slippage makes use of predictive coding, the evolution of the strain could be associated with priors on the weight 
and material property to lead to an even more robust  classification35. The classification rate of the 10-fold classi-
fier is 10% lower when the prediction is made with exclusively temporal evolution of the first basis compared to 
a purely spatial one. Future investigations will include several scanning speeds to properly study the influence 
of the skin dynamics on the classification of the safety margin.

It is worth noting that the mechanics dictating the skin deformation is strongly influenced by the friction of 
the surface. Large friction coefficients lead to large compressive strain of the skin, in line with previous findings. 
The strain profiles observed when the finger is sliding on a friction-modulated glass plate matched with the 
previous one observed in the literature with a slip annulus forming at the periphery  first6,8,36. The classifier suc-
cessfully removes the dependence on friction, suggesting that the information of the safety margin is contained 
not in the magnitude of the strain, which is strongly influenced by friction, but in the relative recruitment of 
the different Eigenstrains.

In this study, the database is constituted with data acquired in constrained conditions when the plate is mov-
ing in the ulnar direction to mimic an object slippage due to gravity. Since it is known that the direction of the 
slippage has a significant influence on the strain experienced by the  finger8, different orientations might likely 
be encoded in the nervous system (see Figure S6C). We carefully aligned participants’ index finger to have a 
consistent center of the contact across the dataset, necessary to avoid alignment artifacts when using the sin-
gular value decomposition. Since the center of contact varies constantly during natural interaction, it is likely 
that the nervous system uses a process analogous to a convolution rather than a simple projection to ensure the 
translation-invariance. This study was limited to a perfectly flat and smooth glass plate. The actual set of bases 
probably incorporates an invariance to the physical properties of the object, such as local texture and curvature 
that would affect the shape of the strain field.

Interestingly, the optimal basis of strain patterns resembles a collection of Gabor filters, containing alter-
native patterns of compression and tension. While the first basis has only one cycle of alternating strains, the 
higher-order pattern contains a higher frequency feature that captures finer details of the interaction. It has 
been hypothesized that a bank of Gabor filters is used to encode tactile  features37. These filters are central to the 
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perception of movement in the visual system, and their presence in the tactile perceptual system suggests that 
their function is shared across modalities.

The corresponding temporal evolutions of the recruitment of each of the six bases, compactly represent the 
evolution of the strain field. By virtue of its compactness, the code simplifies and accelerates the decoding by 
the nervous system, which is needed to react promptly while avoiding slippage of an object in hand. Even if the 
existence of a compact lexicon in the human nervous system still needs to be confirmed, the Eigenstrain decom-
position can be directly used to design efficient control policies for robotic grippers that can manipulate objects 
while preventing slippage instead of reacting to  it38–40.

Materials and methods
Data collection. Twelve volunteers gave their informed consent prior to the experiment to participate in 
the study, which was approved by the institutional review boards of Aix-Marseille Université’s ethics commit-
tee (2019-14-11-003). All methods were performed in accordance with the relevant guidelines and regulations. 
The index fingertip of the participants was secured in a dedicated 3D printed plastic shell to ensure a constant 
angle between the finger and the glass plate around 20◦ . The frictional resistance of the plate against the skin was 
controlled by ultrasonic  lubrication32. The device uses a flexural standing wave to induce a micrometric levita-
tion of the skin of the fingertip, thereby reducing the interfacial friction. The rectangular glass plate vibrated at 
a frequency of 29.97 kHz in the 3× 0 mode, 68× 120× 11 mm3 . Images of the fingertip were captured at 300 
frames per second by a high-speed camera (Phantom Miro M110). Frustrated Total Internal Reflection (F.T.I.R) 
was used to highlight the asperities of the skin in intimate contact with the glass plate. The technique creates 
highly contrasted images of the skin asperities at pixel resolution, that is 0.0535 mm.

The haptic surface is mounted onto an aluminum frame attached to a 6-axis force sensor (ATI Nano 43). The 
normal force applied to the finger was controlled with a balance mechanism, with one arm pushing against the 
finger and the other arm supporting a calibrated weight. The lateral force developed was servo-controlled by a 
DC-motor (Maxon RE 36) with a capstan transmission.

Data analyses. Force data was synchronized to the images using a digital trigger also used to start the 
movement. The time-domain data were interpolated to match the time vector of the images. The force data were 
filtered using a zero-lag 50 Hz second-order low-pass filter. For a good measure of plate displacement, a check-
erboard pattern was printed on the glass plate to get an external reference of the relative motion.

The contrast of the image was adjusted, and the contour was sharpened. 3000 optimal features were selected 
within a fitted ellipse of contact, extracted from the binarized image. The selected features were nearly equally 
spaced with a minimum spacing of 10 pixels, to be sure the entire population of features is equally distributed 
inside the ellipse of contact. Then, these features were tracked frame by frame with sub-pixel accuracy. The rela-
tive displacement of each feature was obtained by subtracting its current position from the initial value found 
before the movement started.

The longitudinal strain fields were obtained via the same procedure as  in8, using the equation:

Each strain field was interpolated on a grid of 601× 801 pixels and downsampled 8 times, leading to a 
76× 101 matrix. Skin strain was not resized according to the finger size to promote diversity in the dataset. 
Since the safety margin depends on the size of the fingertip, including the strain without rescaling leads to bet-
ter classification.

Efficient encoding. The optimization procedure used for dimensionality reduction was formulated as a 
Limited Memory Block Krylov Subspace Optimization, allowing to maximize the compactness and the accuracy 
of the  estimation41. For each value of the rank r, the optimal set of bases was determined by minimizing the dif-
ference between the strain and its estimate.

Data availability
The datasets generated and/or analyzed during the current study are available in the 4TU.ResearchData reposi-
tory, https:// doi. org/ 10. 4121/ 19329 506. v1.
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