

Delft University of Technology

Flexible Enterprise Optimization with Constraint Programming

Andringa, Sytze P.E.; Yorke-Smith, Neil

DOI
10.1007/978-3-031-11520-2_5
Publication date
2022
Document Version
Final published version
Published in
Advances in Enterprise Engineering XV - 11th Enterprise Engineering Working Conference, EEWC 2021,
Revised Selected Papers

Citation (APA)
Andringa, S. P. E., & Yorke-Smith, N. (2022). Flexible Enterprise Optimization with Constraint Programming.
In D. Aveiro, H. A. Proper, S. Guerreiro, & M. de Vries (Eds.), Advances in Enterprise Engineering XV - 11th
Enterprise Engineering Working Conference, EEWC 2021, Revised Selected Papers (pp. 58-73). (Lecture
Notes in Business Information Processing; Vol. 441 LNBIP). Springer. https://doi.org/10.1007/978-3-031-
11520-2_5
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-11520-2_5
https://doi.org/10.1007/978-3-031-11520-2_5
https://doi.org/10.1007/978-3-031-11520-2_5

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Flexible Enterprise Optimization
with Constraint Programming

Sytze P. E. Andringa(B) and Neil Yorke-Smith

Algorithmics Group, Delft University of Technology, Delft, The Netherlands
{s.p.e.andringa,n.yorke-smith}@tudelft.nl

Abstract. Simulation–optimization is often used in enterprise decision-
making processes, both operational and tactical. This paper shows how
an intuitive mapping from descriptive problem to optimization model
can be realized with Constraint Programming (CP). It shows how a CP
model can be constructed given a simulation model and a set of busi-
ness goals. The approach is to train a neural network (NN) on simulation
model inputs and outputs, and embed the NN into the CP model together
with a set of soft constraints that represent business goals. We study this
novel simulation–optimization approach through a set of experiments,
finding that it is flexible to changing multiple objectives simultaneously,
allows an intuitive mapping from business goals expressed in natural lan-
guage to a formal model suitable for state-of-the-art optimization solvers,
and is realizable for diverse managerial problems.

Keywords: Enterprise simulation · Constraint Programming · Deep
learning · Simulation–optimization

1 Introduction

Simulation is widely used both to evaluate enterprises and in enterprise plan-
ning [16,29]. By running a simulation based on an enterprise model under various
sets of parameters, one can get insight into how an enterprise might behave in
complex or future scenarios. Various managerial interventions can be analysed
for the likely outcomes. Hence, decision makers (DM) putting these models into
practice are often interested in finding optimal inputs with respect to an observed
‘problem’ [18]. A problem describes an undesired property of the system that
can be tackled by taking action. For the DM there is uncertainty about what
course of action is best to take [6]; simulation can provide insights.

However, finding these inputs by trying out them all through simulation
can be applied with only limited success on complex simulation processes, as
the number of possible inputs grows exponentially with respect to the number
of input parameters [18]. On the other hand, using a pure optimization model
– i.e., omitting simulation – can be incapable of capturing all complexities and
dynamics of a system [18]. Hence simulation–optimization (SO) seeks to combine

c© Springer Nature Switzerland AG 2022
D. Aveiro et al. (Eds.): EEWC 2021, LNBIP 441, pp. 58–73, 2022.
https://doi.org/10.1007/978-3-031-11520-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11520-2_5&domain=pdf
http://orcid.org/0000-0003-4061-7104
http://orcid.org/0000-0002-1814-3515
https://doi.org/10.1007/978-3-031-11520-2_5

Flexible Enterprise Optimization with Constraint Programming 59

the benefits of both by using simulation to represent the actual system and
optimization to find optimal simulation inputs [28].

Misinterpretation between DM and optimization model in a SO approach
can be disastrous, then, as it can result in the wrong problem being solved. As
such, a valid translation from problem description to formal model is crucial [1].
This translation is non-trivial. From a modeller’s perspective, existing enterprise
modelling (EM) methods offer only tenuous concepts of ‘problems’ [6]. From a
computational perspective, optimization models can be difficult for a DM to
understand, especially when the model is full of formal mathematics. Indeed,
Grossman [12] points out that the four common decomposition techniques used
in enterprise-wide optimization all have a mathematical basis, in the sense that
they aim to reduce the solution space or number of constraints. The emphasis
in the literature is on model performance rather than easing the DM’s process.
A practical example can be found in [32], where the optimization model for a
clothing line is modelled by several pages full of mathematical formulae.

This paper puts forward a novel use of Constraint Programming (CP), a
declarative paradigm for defining combinatorial optimization problems. CP is
seen as the closest approach to “the user states a problem, the computer solves
it” [8]. It allows one to describe diverse real-world problems through constraints,
i.e., statements which pose some relation among the problem’s variables [25].
Notably, the expressiveness of CP means its formal models can be more human-
like than, for instance, mixed integer programming models. Given a CP model,
algorithms called ‘solvers’ assign values to variables of the CP model such that
every constraint is satisfied. A constraint program thus only needs to express
what we want to solve, not how.

Many leading EM frameworks are descriptive in nature [29]. Since CP is
declarative, we argue CP can form an effective way to model problems in an
more understandable but computer-parsable format. This requires keeping the
CP model simple, which can be done by modelling complex properties of the
system by a simulation model and have this incorporated into the CP model
according to an automatic process.

Specifically, in this paper the simulation model is represented by a “model of a
model”, i.e., meta-model [15]. Meta-modelling techniques range from descriptive
representations of ontological concepts to algorithms to make faster approxima-
tions of complex computer code [3,15]. We focus on the latter, by represent-
ing the simulation model by neural networks (NN). NN are capable of learning
behaviour of complex systems and require little engineering by hand, making
them applicable in many domains [4,19,28]. In this paper, a NN is trained on
simulation data and automatically embedded into the CP model. We argue this
adds additional flexibility during the problem solving process, since a change of
objective can be evaluated without making additional simulation calls.

This flexibility can be desirable in various situations, for example when: 1)
The DM does not know all specifications of the problem it wants to solve (for
example, information by a third party is required) but does know how the system
currently behaves, and would like to make preparations such that problems can

60 S. P. E. Andringa and N. Yorke-Smith

be solved on-the-go without making computationally expensive simulation calls.
2) The DM has a large collection of problems that needs to be solved, making
setting up a separate feedback loop for every problem infeasible. 3) The DM is
not able to do simulation during the problem-solving phase.

Summarising, the contributions of this paper to the literature are: 1) Show-
ing how an easy-to-understand CP program can be constructed which is inter-
pretable for solver software, starting from a descriptive problem description. 2)
Showing how NNs can be embedded in a CP model by means of empirical model
learning, such that no additional simulation calls are necessary when a different
problem needs to be tackled for the same enterprise. 3) Providing experiments
together with supplementary code for a novel SO approach that embeds a NN
into a CP model. 4) Showing how a pareto front can be approximated through
soft constraints, such that a DM can get proper insight in the scope of possible
actions and their impact on the system.

2 Background and Related Work

2.1 Constraint Programming

CP is an expressive yet practical approach to optimization, used in a wide variety
of applications [25,30]. It solves constraint satisfaction problems (CSP), which
consist of a set of variables, each with a domain of permitted values, and a set of
constraints specified in a logical formalism. A solution to a CSP is an assignment
of a value to every variable from its domain, such that all the constraints are
satisfied. Soft CSPs permit the constraints to be satisfied to a degree, rather
than binary satisfaction. Constraint Optimization Problems (COP) include an
objective function. For both CSP and COPs, the resulting model is passed to a
solving algorithm. A wide variety of such solvers, complete and incomplete, are
available, such as or-tools from Google.

Although CP and Mathematical Programming (MP) share a similar model-
and-solve paradigm – there is a set of decision variables, an objective function
to maximize or minimize and a set of constraints – CP is a more expressive
formalism. It can be thought of as a generalisation of mixed integer programming
to non-linear and non-arithmetic constraints [30]. Table 1 provides an overview
of the differences between CP and MP. Notably for the purpose of this paper,
the expressive nature of CP allows for models which are closer to human-level
expression of problems [9].

2.2 Closely-Related Approaches

The approach of this paper, elaborated in Sect. 3, has two main characteristics.
First, we use simple CP to model the problem. Second, we represent the sim-
ulation model automatically in an optimization model by representing it as a
NN.

Using CP in modelling enterprises and in business analytics is not a new
concept. Several studies couple Business Process Management with CP. These

Flexible Enterprise Optimization with Constraint Programming 61

Table 1. Mathematical programming vs. constraint programming [13].

Mathematical programming Constraint programming

Typically restricted to linear and
quadratic problems

Typically discrete but also
continuous problems

Proves optimality with techniques
such as a lower-bound proof
provided by cuts and linear
relaxation

Proves optimality by showing that
no better solution than the current
one can be found

Algebra as theoretical basis Logic as theoretical basis
Requires that the model falls in a
well-defined mathematical category

Does not make assumptions on the
mathematical properties of the
solution space

Is specific to a class of problems
whose formulation satisfies certain
mathematical properties

Has no limitation on the arithmetic
constraints that can be set on
decision variables

Table 2. Black box optimization vs. empirical model learning [20].

Black box optimization Empirical model learning

Designed for problems without a
complex combinatorial structure
(discrete variables and non-trivial
constraints)

Tends to provide best results for
problems with a complex
combinatorial structure

Relies on performing simulation
during the search process

Simulation time has no direct
impact on the solver performance

Function that describes the system
is a black box

No black box assumption, allowing
exploitation of its structure during
the search process

typically focus on (complex) planning and scheduling problems and require the
DM to describe the flow of the system in the CP model [14,31]. In contrast, this
paper studies CP model that merely describe the problem to solve and do not
require the DM to describe how the system operates. Differently stated, the DM
can treat the simulation model as a black-box. As a result, the DM should solely
focus on describing what relation between simulation in- and outputs she would
like to be satisfied and does not have to consider details of internal processes,
as these are modelled by means of a simulation model. We believe this makes it
applicable to a wider variety of problems in the sense that the only requirement
is access to a simulation model, and easier to understand as the DM can describe
its problem in a more direct fashion.

The literature on SO tend to favour evolutionary search to find optimal simu-
lation inputs [18,28,33]. This is convenient when fast evaluation of the simulation
model is possible. However, if simulation is expensive – frequently the case with

62 S. P. E. Andringa and N. Yorke-Smith

simulators – advanced techniques are necessary to limit the number of simulation
calls [20]. Table 2 summarizes the differences between empirical model learning
and classical black box optimization.

3 Methodology

Figure 1 provides an overview of our approach. The simulation model is assumed
to represent an enterprise; it can for example be derived from an enterprise
model [29]. How to design a qualitative simulation model is not in the scope
for this paper: the reader is refered to Kampik and Najjir [16], Laguna and
Marklund [18]. This section details the two main components of our approach,
namely the Neural Network and the CP model. Then, some specifications about
the solving procedure are discussed.

Table 3. Concepts from the meta-model presented by Bock et al. [6] and their CP
equivalents. A factual aspect describes something regarded as true, i.e., a constraint. A
goal is a metric to improve upon that is expressed by other metrics, i.e., an objective
function. Multiple stakeholders can be modelled by soft constraints, which provides
foundation to model individual preferences [27]. An action describes something that
can be undertaken, hence corresponds with a variable that can be decided upon.

Problem conceptualization meta-model CP equivalent

Factual aspect Constraint
Goal Objective function
Value Variable
Stakeholder preference Soft-constraint
Possible action Decision variable

3.1 The Neural Network

The first main component is a meta-model, derived from a simulation model
representing the behaviour of a system. This allows the DM to consult the meta-
model instead of the simulation, such that simulation calls do not have to be
made during the solving procedure. Deriving such a meta-model poses a trade-
off. On one hand it should reflect the simulation model properly. On the other
hand it should be convenient enough to allow optimization. This dilemma corre-
sponds with a fundamental computational reality, namely the trade-off between
expressiveness and tractability. A model should be detailed enough such that it
makes sense – it is expressive – but not too detailed because otherwise compu-
tations can not be made feasibly – it lacks tractability [7]. This paper proposes
using NNs as meta-model for several reasons:

Flexible Enterprise Optimization with Constraint Programming 63

Fig. 1. Approach summarized. A simple NN is trained on simulation data. Next, busi-
ness goals and the trained NN are embedded in the CP model. By utilizing soft con-
straints and various weight and threshold parameters, an approximation of the pareto
front for the various objectives is formed.

– NNs are able to learn behaviour of opaque or very complex systems, with-
out requiring detailed knowledge of their components and interactions [4,19].
They are capable in dealing with both the non-linearity and uncertainty of
the underlying system [28].

– NN embeddings in optimization models have shown good performance in com-
parison to other combinations of optimization methods with machine learning
techniques [20].

– Compared to other machine learning techniques, NN are very capable in iden-
tifying what features are interesting and excel at handling high-dimensional
input data. The result is that NN require very little engineering by hand and
are applicable in many domains [19].

3.2 The Constraint Program

The second main component is the CP model. It intends to represent a problem
to be solved. There are three main aspects to be identified in problems, namely

64 S. P. E. Andringa and N. Yorke-Smith

1) an as-is scenario which is considered to be non-optimal, 2) uncertainty about
what decision would lead to the preferred situation, and 3) a preferred situation
to achieve [6]. We construct the CP model accordingly:

1. The current situation is modelled by a simulation model and represented by a
trained NN. A NN can be embedded into a CP model, which allows expressing
constraints over the NN output [4].

2. Uncertainty is also incorporated by the NN. Training an NN creates a predic-
tive model. In other words, the NN is used to tackle the uncertainty involved
in the problem by giving insight in the correlation between variables and
parameters in the decision model.

3. The preferred situation is incorporated by the objective function. In our app-
roach, the objective function is expressed by soft-weighted constraints. The
main idea is that this helps in finding an approximation of the set of dominat-
ing solutions, also referred to as the pareto front. This provides good insight
into the solution space when dealing with multiple objectives.

It is reasonable to believe most – if not all – problems can be described by
elements also found in CP. This is based on the theoretical conceptualization of
a problem by a meta-model presented in Bock et al. [6], where the concept of
a problem is decomposed. The interconnection between this decomposition and
CP is shown in Table 3.

Fig. 2. Pseudocode for the restaurant CP model. It closely matches a MiniZinc imple-
mentation.

As noted in Sect. 2, constraints expressed in natural language can be for-
malised in CP at a higher level compared to other optimization methods. The
result is that constraints expressed by the DM describing what solution it aims
to seek can be conveniently expressed in the CP model. For example, CP makes
it convenient to state some relationship between variables should always be satis-
fied, such as ‘machine A should never produce more than machine B’ or ‘depart-
ment C should always have more employees than department D’; so-called global

Flexible Enterprise Optimization with Constraint Programming 65

constraints are particularly useful [30]. Figure 2 shows an example CP model
that highlights its readability.

Our approach embeds a NN into a CP model by expressing the value of a
node as a function of values of nodes in a previous layer. This is based on the
concept of neuron constraints, which allow one to encode complex networks using
a limited number of basic components [4].

3.3 Soft Constrained Multi-Objective Solving

Most methods on multi-objective decision making in business analytics are poste-
riori, in the sense they obtain preference information – how much each objective
is preferred over the others – from the DM after computing solutions [33]. These
methods are useful when the DM is interested in the scope of actions she can
take – particularly useful when there is no single dominating solution – as multi-
ple solutions are provided instead of a single one. In CP, preference information
is the input, since the CP model is asked what inputs are necessary to satisfy
certain objectives. As such, the approach can be made posteriori by evaluating
a set of problems covering the variety of possible preferences.

Our approach does not require preference information beforehand as it con-
structs a type of soft CSP called a possibilistic CSP, in which a Weighted Soft
Constraint (WSC) is defined for each objective [27]. A WSC has a weight, indi-
cating the importance of it being satisfied, and a threshold. For a maximization
objective, the WSC is satisfied if the objective value exceeds the threshold, and
for a minimization objective if it does not. Then, random weights and thresh-
olds are generated in order to create a set of problem instances. Next, this set
of problems is solved. Their dominating solutions form the output.

3.4 Computational Solving

As just explained, our approach produces a set of soft CP problem instances.
These instances are solved and their solutions brought to bear upon the objec-
tives of interest to the DM (Fig. 1). This solving is done by existing solver soft-
ware.

However, a DM might encounter the solving procedure is slow depending on
the complexity of the enterprise and managerial problem being studied, raising
interest to speed it up. There are several ways this can be achieved. One way is
to reduce the complexity of the problem by using less variables, putting more
constraints on the problem to solve or discretizing continuous variables. The
trade-off here is that it limits the system in what solutions it is able to present.
Another method would be to reduce the complexity of the NN, by reducing the
amount of nodes and layers, which has a trade-off against accuracy. Alternatively,
the DM could experiment with different search strategies or solvers, and might
find one that works particularly well on its problem. An analysis of the various
options was out of the scope for this paper. For more details on different solvers
and search strategies, we refer to Wallace [30].

66 S. P. E. Andringa and N. Yorke-Smith

4 Experimental Validation

This section assess the approach from Sect. 3 by means of two experiments.
Three further experiments, one based on a simulation model derived from a
DEMO model, one based on a simulation study performed by other work and
one based on an agent-based simulation model, are reported in Andringa [2]. The
goal of the experiments is to examine the proposed approach for applicability,
generalizability, flexibility and ease of use.

In order to asses consistency, the same simple NN architecture was used for
these experiments, as shown in Fig. 4. Training was performed in batches of 64
samples using the AdamW optimizer [21], with a learning rate set at 10−5. The
simulations were implemented in Python and NetLogo, the NN in PyTorch [24]
and the CP model in MiniZinc [22], supported by MiniBrass [26] to implement
soft-constraints. The JaCoP [17] WCSP solver was used. Source code is available
under MIT licence at https://doi.org/10.4121/17060642.v1.

4.1 Experiment 1: Restaurant

The first experiment studies the case of a restaurant. It shows how to apply the
approach to a simple problem. The simulation was programmed in Python. The
NN was trained ±2 h on ±350000 simulation calls based on random inputs.

Problem Definition. The restaurant buys ingredients periodically according to
some buying strategy and processes these into various dishes. Its buying strategy
is represented by an integer per resource that indicates the quantity being bought
each period. Buying strategies have limitations, for example due to seasonal
ingredients. Resources can spoil if stored for too long. The restaurant has two
objectives that characterize a trade-off: it should not buy too many resources in
order to minimize spoilage but also should not buy to little in order to maximize
the number of successful orders. The restaurant is interested in how its buying
strategy affects its spoilage and success ratio.

Results. The corresponding CP model can be found in Fig. 2 and the solving
times in Table 4. The results in Fig. 3 show the CP model is able to recognise
how various courses of action have different impact on the objective outcomes.
It also shows it was able to make accurate predictions.

4.2 Experiment 2: Supply Chain

Supply chain models describe how various manufacturing units interact with each
other by passing products and materials to each other towards some resulting
product. A freely-available NetLogo model, based on a supply chain was con-
sulted for this experiment [11]. The NN was trained on ±5 h and ±14000 random
simulation calls. The purpose of the experiment is show the approach is applica-
ble on more complex simulation models. The experiment conducted matches the

https://doi.org/10.4121/17060642.v1

Flexible Enterprise Optimization with Constraint Programming 67

Fig. 3. Experimental results. a, b and c show CP-estimations (+) and simulation esti-
mations (•) for the objective metrics. Accuracy of the CP model can be measured by
the difference between the CP and simulation estimations.

68 S. P. E. Andringa and N. Yorke-Smith

Fig. 4. Description of the NN architecture used for the conducted experiments.

famous Beer Game that represents a supply chain with a non-coordinated pro-
cess [23]. Problems arise due to lack of information sharing, causing a bull-whip
effect – an increase of variance of orders placed by each stage when we move
from downstream stage to upstream stages – resulting in inefficient inventory
management [10].

Problem Definition. The supply chain of a product consists of factory, dis-
tributor, retailer and client. They make individual marketing decisions based
upon a strategy picked by the DM. Furthermore, the DM decides upon the total
number of factories, retailers and distributors. There are two issues observed
regarding the current state of the supply chain. First, too many sales are lost.
Second, too many products are stored in the factories instead of the distribu-
tors and retailers. The number of clients and their demand is given. The DM is

Flexible Enterprise Optimization with Constraint Programming 69

Table 4. Mean and standard deviation runtimes for solving a single problem for both
experiments. The number of NN parameters gives an indication about the complexity
differences of the CP models.

Experiment Solving duration (s) Number of NN parameters

Supply chain 14.23± 0.79 1255
Restaurant 0.544± 0.025 116

interested in finding the optimal number of factories, retailers and distributors,
as well as the optimal inventory policy and costumers strategy, such that little
sales get lost and fewer products are stored in factories.

Results. The CP model used for this experiment has a similar structure as the
model in Fig. 2, only with more in- and outputs. Solving runtimes are given in
Table 4. The results in Fig. 3 show how the CP-estimations are clearly correlated
with the simulation values but were sometimes off target.

From the proposed actions, the DM is able to make two main observations
about the process. First, less factories with respect to the distributors and retail-
ers resulted in less products being stored at the factories but also in more unsuc-
cessful orders as demand could not be kept up. Second, random inventory and
buying strategies performed best for our problem. To investigate this observa-
tion further, a variant of this experiment where random strategies were excluded
was also performed. The outcome was that less complex strategies – strategies
where market participants do not take too many factors in account to adjust
their buying behaviour – were proposed. This shows a trend. The more a market
participant aims to maximize its own profit by incorporating complex strate-
gies, the more unpredictable its behaviour gets for other participants, making
the market prone to the bullwhip effect. This is in line with how literature tends
to tackle this problem – by regulation – as that limits market participants to
put complex strategies into practice [10].

4.3 Discussion

The experiments indicate that the approach has some desirable properties:

– Applicability The approach can be applied to both simple and complex simula-
tion models. The first experiment is considered to be simple, as the simulation
model only had a few in- and outputs. The second experiment was performed
on a complex agent-based simulation, which is used widely in real-world busi-
ness problems and is capable to model complex systems properties, indicating
the approach can be used for practical application [16].

– Generizability The same architecture as described in Fig. 4 was used for both
experiments. This indicates the potential in using already existing designs,
allowing a DM unfamiliar with deep learning to apply the approach on a

70 S. P. E. Andringa and N. Yorke-Smith

custom problem. This observation supports the claim that deep learning tends
to require little extra engineering [19].

– Flexibility The solution evaluation process happens within reasonable time
(see Table 4). For the supply chain experiment, a single simulation call took
around the same time as a single CP evaluation and thus a significant speedup
is put into place. Furthermore, solving time can be tweaked accordingly (see
Sect. 3.4). As such, a change of problem can be quickly evaluated, making the
approach flexible to a change of problem.

– Ease of use The experiments showed that a simple, easy-to-understand CP
model (see Fig. 2) is sufficient to allow solving of it when following the pre-
sented approach. We believe this makes it doable for a DM with little technical
knowledge to construct a CP model for its problem.

5 Conclusion and Future Work

This paper considered enterprise simulation–optimization and addressed how to
find optimal simulation inputs more effectively. The proposed approach adopts
a meta-model in the form of a NN to capture simulation behaviour, and embeds
the NN automatically into a soft CP model.

The demonstrated proof of concept has multiple advantages: 1) DMs with
little technical expertise are expected to be more comfortable with designing a
CP model that a MP model, due to CP being more expressive. 2) DMs need
not have expertise about deep learning to put this approach into practice, since
already existing NN architectures can be used. 3) The approach is applicable
to already-existing simulation models. 4) Complex properties are kept intact
during the decision making process, as both NN and simulation models are able
to model them. 5) A change of problem can be quickly evaluated since a meta-
model is used to represent the simulation model. 6) It is not required for the DM
to input preference information over the importance of objectives since a set of
non-dominating solutions is presented instead of a single solution. 7) There is
room for many extensions on this approach due to the general concept of using
a machine learning based meta-model.

The paper demonstrated the potential of the approach. Although Fig. 3 shows
good accuracy for the Restaurant experiment, for the Supply Chain experiment
this can still be improved upon. As such, there is room for development. First, the
simple NN architecture can be revisited. This paper used a generic and somewhat
arbitrary architecture for generality and applicability reasons. What architecture
suits best for this application is left for future work. An interesting direction for
a better architecture is transfer learning [34]. Second, more advanced techniques
regarding data extraction from simulations can be investigated for example by
having what parameters to send to the simulation model depend upon what
data is gathered so far. Third, in this paper we assumed the simulation model
to be a black box. Not doing so allows the use of formal model checking and
verification methods to create more accurate meta-models as deeper properties
of the simulation model can be taken into account.

Flexible Enterprise Optimization with Constraint Programming 71

Furthermore, there is potential in improving the solving procedure. The
thresholds and weights of the soft constraints are randomly generated. More
effective strategies can be put into place such that the generated problems more
evenly spread the objective space. This paper did only minor experiments with
trying various solvers and search strategies. Solving time can possible be reduced
by experimenting with these, as mentioned in Sect. 3.4.

Building on the approach of this paper, it can be interesting to consider
constraint acquisition [5]. Here, the CP model is allowed to make simulation
calls to obtain more knowledge when it considers it possesses too less. This gives
up a form of flexibility, in that solving becomes dependent on the simulation
runtime. However, it is expected to be more accurate than our approach as
it can consult the simulation model in case of doubt. Constraint acquisition
is different from black box optimization, and allows exploitation of the model
structure (see Table 2). An interesting follow-up study would be a performance
comparison between the proposed methodology, constraint acquisition and other
multi-criteria optimization methods such as evolutionary search.

Acknowledgements. We thank the EEWC’21 reviewers for their suggestions. This
research was partially supported by TAILOR, a project funded by EU Horizon 2020
research and innovation programme under grant number 952215.

References

1. Abushark, Y., Thangarajah, J., Miller, T., Winikoff, M., Harland, J.: Requirements
specification in the prometheus methodology via activity diagrams. In: Proceedings
of the International Conference on Autonomous Agents & Multiagent Systems
(AAMAS), pp. 1247–1248. ACM (2016)

2. Andringa, S.: Applying Constraint Programming to Enterprise Modelling. Master’s
thesis, Delft University of Technology (2021)

3. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
IEEE Softw. 20(5), 36–41 (2003)

4. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model
complex real-world problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 115–
129. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_11

5. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif.
Intell. 244, 315–342 (2017)

6. Bock, A., Kudryavtsev, D., Kubelskiy, M.: Towards more expressive problem struc-
turing: A theoretical conceptualization of ’problem’ in the context of enterprise
modeling. In: Proceedings of the 20th Conference on Business Informatics (CBI),
IEEE (2018)

7. Brachman, R.J., Levesque, H.J.: The tradeoff between expressiveness and tractabil-
ity. In: Knowledge Representation and Reasoning, pp. 327–348. Elsevier (2004)

8. Brouard, C., de Givry, S., Schiex, T.: Pushing data into CP models using graphical
model learning and solving. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp.
811–827. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_47

9. Buscemi, M.G., Montanari, U.: A survey of constraint-based programming
paradigms. Comput. Sci. Rev. 2(3), 137–141 (2008)

https://doi.org/10.1007/978-3-642-23786-7_11
https://doi.org/10.1007/978-3-030-58475-7_47

72 S. P. E. Andringa and N. Yorke-Smith

10. Chinna Pamulety, T., Madhusudanan Pillai, V.: Performance analysis of supply
chains under customer demand information sharing using role play game. Int. J.
Ind. Eng. Comput. 3(3), 337–346 (2012)

11. Gil, A.: Netlogo model: Artificial supply chain (2012), École Polytechnique Mon-
tréal

12. Grossmann, I.E.: Challenges in the application of mathematical programming in
the enterprise-wide optimization of process industries. Theor. Found. Chem. Eng.
48(5), 555–573 (2014). https://doi.org/10.1134/S0040579514050182

13. IBM: Mathematical programming versus constraint programming, DOcplex v2.22
documentation (2021)

14. Jimenez-Ramirez, A., Barba, I., Del Valle, C., Weber, B.: Generating multi-
objective optimized configurable business process models. In: 6th International
Conference on Research Challenges in Information Science (RCIS), IEEE (2012)

15. Jin, R., Chen, W., Simpson, T.: Comparative studies of metamodelling techniques
under multiple modelling criteria. Struct. Multi. Optim. 23(1), 1–13 (2001)

16. Kampik, T., Najjar, A.: Integrating multi-agent simulations into enterprise appli-
cation landscapes. In: De La Prieta, F., et al. (eds.) PAAMS 2019. CCIS, vol. 1047,
pp. 100–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24299-
2_9

17. Kuchcinski, K., Szymanek, R.: JaCoP - java constraint programming solver. In:
Abstract from CP Solvers: Modeling, Applications, Integration, and Standardiza-
tion, co-located with the 19th International Conference on Principles and Practice
of Constraint Programming. Uppsala, Sweden (2013)

18. Laguna, M., Marklund, J.: Optimizing business process performance. In: Business
Process Modeling, Simulation and Design, 2nd Edn, pp. 439–472. Chapman and
Hall CRC (2013)

19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

20. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif.
Intell. 244, 343–367 (2017)

21. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proceedings
of 7th International Conference on Learning Representations (ICLR). OpenRe-
view.net (2019)

22. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38

23. O’donnell, T., Maguire, L., McIvor, R., Humphreys, P.: Minimizing the bullwhip
effect in a supply chain using genetic algorithms. Int. J. Prod. Res. 44(8), 1523–
1543 (2006)

24. Paszke, A.e.: PyTorch: an imperative style, high-performance deep learning library.
In: Proceedings of the 33th Conference on Neural Information Processing Systems
(NeurIPS), vol. 32, pp. 8024–8035 (2019)

25. Rossi, F.: Constraint (Logic) programming: a survey on research and applications.
In: Apt, K.R., Monfroy, E., Kakas, A.C., Rossi, F. (eds.) WC 1999. LNCS (LNAI),
vol. 1865, pp. 40–74. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
44654-0_3

26. Schiendorfer, A., Knapp, A., Anders, G., Reif, W.: MiniBrass: soft constraints for
MiniZinc. Constraints 23(4), 403–450 (2018). https://doi.org/10.1007/s10601-018-
9289-2

https://doi.org/10.1134/S0040579514050182
https://doi.org/10.1007/978-3-030-24299-2_9
https://doi.org/10.1007/978-3-030-24299-2_9
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/3-540-44654-0_3
https://doi.org/10.1007/3-540-44654-0_3
https://doi.org/10.1007/s10601-018-9289-2
https://doi.org/10.1007/s10601-018-9289-2

Flexible Enterprise Optimization with Constraint Programming 73

27. Schiex, T.: Possibilistic constraint satisfaction problems or “how to handle soft
constraints?". In: Uncertainty in Artificial Intelligence, pp. 268–275. Elsevier (1992)

28. Teerasoponpong, S., Sopadang, A.: A simulation-optimization approach for adap-
tive manufacturing capacity planning in small and medium-sized enterprises. Exp.
Syst. Appl. 168, 114451 (2021)

29. Vernadat, F.: Enterprise modelling: research review and outlook. Comput. Ind.
122, 103265 (2020)

30. Wallace, M.: Building Decision Support Systems. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-41732-1

31. Wiśniewski, P., Kluza, K., Jemioło, P., Ligęza, A., Suchenia, A.: Business process
recomposition as a way to redesign workflows effectively. In: Proceedings of the
16th Conference on Computer Science and Intelligence Systems, IEEE (2021)

32. Yaghin, R., Sarlak, P., Ghareaghaji, A.: Robust master planning of a socially
responsible supply chain under fuzzy-stochastic uncertainty (a case study of cloth-
ing industry). Eng. Appl. Artif. Intell. 94, 103715 (2020)

33. Yalcin, A., Kilic, H., Delen, D.: The use of multi-criteria decision-making methods
in business analytics: a comprehensive literature review. Technol. Forecast. Soc.
Change 174, 121193 (2022)

34. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1),
43–76 (2021)

https://doi.org/10.1007/978-3-030-41732-1
https://doi.org/10.1007/978-3-030-41732-1

	Flexible Enterprise Optimization with Constraint Programming
	1 Introduction
	2 Background and Related Work
	2.1 Constraint Programming
	2.2 Closely-Related Approaches

	3 Methodology
	3.1 The Neural Network
	3.2 The Constraint Program
	3.3 Soft Constrained Multi-Objective Solving
	3.4 Computational Solving

	4 Experimental Validation
	4.1 Experiment 1: Restaurant
	4.2 Experiment 2: Supply Chain
	4.3 Discussion

	5 Conclusion and Future Work
	References

