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Abstract—The problem of extended target cross-section esti-
mation has been considered. A two-step method based on the
Total Variation Compressive Sensing theory has been proposed
to solve it. First, a coarse estimation of the target cross-section is
performed with classical beamforming methods, and then Com-
pressive Sensing algorithms have been applied to refine it. To the
best of the authors’ knowledge, this is the first time this approach
has been applied to automotive radar signals. The method has
been verified simulating extended targets as scatter point clouds
and computing the response in a uniform rectangular array.
Two metrics have been used, the Intersection over Union and
a pseudo Integrated Sidelobe Level. Significant improvements in
both metrics compared with classical beamforming methods have
been demonstrated.

Index Terms—Compressive Sensing, Total Variation Normal-
ization, MIMO automotive radar, Extended Targets

I. INTRODUCTION

Automotive radar is key for advanced driver assistance
systems (ADAS), thanks to its high reliability in measuring
range, speed, and direction of arrival (DoA) in challenging,
low-visibility environmental conditions when cameras and
lidar fail. In the early days of automotive radars, only range
and speed were measured; however, the current state-of-the-
art is transitioning into 4D imaging radars, measuring azimuth
and elevation angles as well [1]–[3]. This 4D imaging radar
technology aims to deliver image-like fine resolution point
clouds, approaching the performance of lidar systems but at
a lower cost. With this improved resolution, the size of the
observed objects is larger than the resolution cell, and thus
objects are extended into multiple resolution cells. To deal
with this phenomenon and accurately estimate the DoA and
the extent of the targets, new algorithms must be developed.

Automotive radars are based on multiple-input multiple-
output (MIMO) architecture, which uses a different array of
transmitting and receiving antennas to form a virtual array with
higher spatial diversity. Different super-resolution algorithms,
such as multiple signal classification (MUSIC), minimum
variance distortionless response (MVDR), or estimation of
signal parameters via rotational invariance techniques (ES-
PRIT), have been widely exploited to estimate the DoA of
the signals in MIMO radars. However, all these algorithms
are unsuitable for new-generation imaging radars [4]. First,
they require an accurate estimation of the number of targets

before their application, assuming uncorrelated sources. This
estimation works well only when a few targets are present
and they behave as single scatter points (i.e., their size is
smaller than the resolution cell). For high-resolution radar
imaging, a single target behaves like a cloud of scatterers,
and thus the estimation of the number of sources will not
be reliable. Secondly, the computational complexity of such
methods increases with the number of detected targets, which
will grow as the resolution increases. Finally, these algorithms
only work with conventional dense arrays with no more than
half wavelength separation between antennas, and thus are
unsuitable for sparse arrays.

This work presents a method based on the compressive
sensing (CS) theory for estimating simultaneously the azimuth
and elevation angles of extended targets. The method uses
a two-step algorithm, where first a coarse estimation for the
whole scene with classical beamforming is performed, and
then it is locally refined with the CS estimation. Moreover, a
total variation regularization is used, which allows an accurate
reconstruction of the target’s shape.

The rest of the paper is organized as follows. Section
II introduces the signal model of a 2D MIMO array and
formulates the problem. In Section III, the proposed two-step
algorithm for 2D angular reconstruction is presented in detail.
The performance evaluation on simulated targets is presented
in Section IV. Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION

The conventional spherical coordinate systems is consid-
ered, with azimuth angle denoted by θ and elevation angle
by ϕ. The MIMO radar is located in the xz plane, with the
transmitter and receiver arrays closely located, so that targets
in the far-field are at the same distance from both arrays. The
transmitted waveforms are assumed to be mutually orthogonal,
and the individual elements are isotropic antennas for the
y > 0 half-space. An arbitrary topology array is considered,
where Nt is the number of elements in the transmitter array,
and Nr is the number of elements in the receiver array. For
a far-field point, the steering vectors of the transmitter and
receiver array can be described as:
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a(θ
′
, ϕ

′
) =


e−j 2π

λ (xt,1 cos θ
′
sinϕ

′
+zt,1 cosϕ

′
)

.

.

e−j 2π
λ (xt,Nt cos θ

′
sinϕ

′
+zt,Nt cosϕ

′
)

 , (1)

b(θ
′
, ϕ

′
) =


e−j 2π

λ (xr,1 cos θ
′
sinϕ

′
+zr,1 cosϕ

′
)

.

.

e−j 2π
λ (xr,Nr cos θ

′
sinϕ

′
+zr,Nr cosϕ

′
)

 , (2)

where xt, zt, xr, zr are the coordinates of the arrays’ elements,
and λ is the wavelength. With orthogonal transmitted wave-
forms, a new virtual array of NtNr elements can be formed.
Its steering vector is given by the Kronecker product of the
transmitter and receiver steering vectors, as:

v(θ
′
, ϕ

′
) = a(θ

′
, ϕ

′
)⊗ b(θ

′
, ϕ

′
) =

e−j 2π
λ ((xt,1+xr,1) cos θ

′
sinϕ

′
+(zt,1+zr,1) cosϕ

′
)

.

.

e−j 2π
λ ((xr,Nt+xr,Nr ) cos θ

′
sinϕ

′
+(zr,Nt+zr,Nr ) cosϕ

′
)

 (3)

This paper aims to estimate the DoA angles of extended
targets, and therefore, the time delay due to target range and
Doppler shift are not shown in the model. This is justified by
the fact that angular resolution is independent of range and
Doppler resolution in MIMO radars [5]. Thus, the received
single snapshot baseband signal (i.e., only one chirp transmit-
ted per transmitter) can be written in matrix form as:

y = Ã̃ÃA(θ, ϕ)x̃+ e, (4)

where y ∈ CNrNt×1 is the complex sample vector, e ∈
CNrNt×1 is the additive complex Gaussian noise, and Ã̃ÃA ∈
CNrNt×K is the measurement matrix formed by the virtual
steering vectors pointing to K targets as:

Ã̃ÃA(θ, ϕ) = [v(θ1, ϕ1), ..., v(θK , ϕK)] (5)

From a classical signal processing point of view, Ã̃ÃA and x̃ are
unknowns, and the goal is to estimate them using y. However,
this problem can be cast as a CS problem by discretizing the
azimuth-elevation space in a grid of M points, and assuming
the targets locations lie on this grid. A new dictionary matrix
AAA ∈ CNrNt×M can be constructed where each steering vector
points to the grid points, and thus, the received signal can be
expressed as:

y = AAAx+ e, (6)

where x ∈ CM×1 is an unknown vector containing the
reflected power of the targets and encoding their angular
position. Note that the AAA matrix is known in this case, pre-
computed a-priori by stacking virtual steering vectors.

In the standard CS framework, the undetermined system of
equations in (6) is solved by enforcing sparsity in the signal
x (i.e., M ≫ G, and thus x contains only a few non-zero
elements) via the l1-norm minimization problem given by:

min
x

||x||1 s.t. AAAx = y (7)

Many studies have successfully solved the optimization
problem given by (7) in the radar field [6], [7]. However, if
large extended targets are present in the scene, the signal may
not be sparse enough in the DoA domain, and the recovery
guarantees given by the restricted isometry property (RIP) may
not hold. For this reason, an alternative approach is proposed
in this paper using the total variation compressive sensing
(TVCS) framework. In this framework, instead of assuming
the signal is sparse, the assumption is that the gradient of
the signal is sparse. The TVCS minimization problem given
in (8) aims to find the signal whose gradient is the sparsest,
thus preserving the edges or boundaries more accurately. This
model is more appropriate for large extended targets because
only a few sharp transitions are present in the DoA domain,
i.e., at the edges of the object, and thus the gradient is sparse.
The recovery guarantees of the TVCS are discussed in [8].

min
x

||∇x||1 s.t. AAAx = y (8)

However, the formulation given in (8) has two main prob-
lems: it is hard to solve because it is non-differentiable and
non-linear, and solving it might be too computationally com-
plex. In the next section, these two issues will be addressed.

III. PROPOSED METHOD

The proposed method uses a two-step process to reduce
computational complexity. First, classical delay and sum (DS)
beamformer [9] is applied to estimate the approximate location
of the objects. Then, the AAA matrix is dynamically built with
steering vectors pointing only to the local regions where the
potential targets are. With this, the dimensionality of AAA is
drastically reduced. Now, for the reduced version of AAA, (8)
must be solved. Different methods have been proposed in
the literature to solve this problem, but in this work the
TV minimization by augmented lagrangian and alternating
direction algorithm (TVAL3) [10] is used because of its
efficiency [11]. The first step of TVAL3 is to reformulate (8)
into an equivalent form introducing a set of auxiliary variables
as:

min
w,x

||w||1 s.t. AAAx = y and ∇x = w (9)

Then, to cast the problem into a sequence of unconstrained
optimization problems, the well-known augmented Lagrangian
is used as:

L(w, x) =||w||1 − vT (∇x− w) +
β

2
||∇x− w||22

− rT (AAAx− y) +
µ

2
||AAAx− y||22,

(10)
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where .T is the transpose operator, ||.||2 is the l2-norm, β
and µ are the penalty terms, and v and r are the Lagrangian
multipliers. Therefore, (9) can be reformulated as:

min
w,x

L(w, x) (11)

Finally, this unconstrained optimization problem series is
solved using the alternating direction method proposed in
[10]. In several fields, TVAL3 has been proved to be one
of the most efficient total variation regularization solvers
[12], [13], and combined with the dimensionality reduction
of AAA, the computational time is reduced significantly. The
following section provides some examples of DoA estimation
for extended targets using this two-step approach.

IV. NUMERICAL RESULTS

This section presents numerical results to assess the pro-
posed method’s performance. First, several extended targets
with different shapes have been simulated as a cloud of scatter
points with the same radar cross section (RCS). Examples of
these targets can be seen on the leftmost two plots of Fig. 1.
The scatter points have been spaced 1° in both azimuth and
elevation and have been randomly shifted by ±0.25° to avoid
the so-called ’inversion crime’ (i.e., the points lie precisely in
the discretized grid). Also, it can be seen in black dotted line
the convex haul, which will be used as the target boundary.

Then, a 20Tx-20Rx MIMO radar system that yields a
20×20 virtual uniform rectangular array (URA) with λ/2
separation between elements is simulated. The signal reflected

by each scatter point is computed and aggregated in each
virtual element to generate the y sample vector. After re-
shaping, a conventional DS beamformer can be applied to
perform the azimuth-elevation estimation. An example of this
beamforming with a zoom in the region of interest can be
seen in the sub-figures in the second column of Fig. 1. Then,
the reduced version of AAA is computed in a 1° grid within the
zoomed area, and optimization problem (11) is solved. The
result yielded by the TVAL3 algorithm can be seen in the
rightmost column of Fig. 1. The default TVAL3 parameters
proposed by the authors have been used, except µ, which
has been lowered to 24 to guarantee a good performance in
the cases with a high noise level. By visual inspection, it is
clear that the reconstruction using TVAL3 represents better
the shape of the targets, as well as having lower sidelobes.
These two aspects are the key metrics to assess the algorithm’s
performance.

In order to evaluate the similarity between the real shape
and the reconstructed shape of the target, a shape must be
extracted from the azimuth-elevation matrix. In this paper, the
boundary at the -10dB drop from the maximum value in each
image has been chosen to define the reconstructed shape. It
is not in the scope of the article to discuss an appropriate
value for this definition of the shape, and changing this -10
dB threshold does not change the results from a qualitative
point of view. An example of these boundaries can be seen
as the dotted black line in the middle and rightmost columns
of Fig. 1. Moreover, Fig. 2 shows an example of the real and

Fig. 1. On the leftmost column, the cloud scatter points simulate distributed targets. In the middle, the reconstructed azimuth-elevation matrix using a
conventional DS beamformer. On the rightmost column the output of the TVAL3 algorithm is shown. The simulations assumed 9dB of SNR.
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Fig. 2. Original and reconstructed shapes using a DS beamformer and TVAL3.
In this case, a rectangular target has been simulated. It can be seen how the
TVAL3 reconstructs the target’s shape better, yielding an IoU of 0.886.

reconstructed shapes as colored areas, for one realization of a
rectangular target. Once the target shape has been determined
given the aforementioned threshold, the Jaccard index, also
named intersection over union (IoU), is computed between
the real and estimated shape. The IoU metric is equal to 1
when two areas perfectly overlap and goes to 0 when there is
no union between them. A Monte Carlo simulation has been
implemented, modifying the target shape, position, and signal
to noise ratio (SNR). 100 trials have been simulated with three
shapes: rectangular, triangular and circular. The position of the
targets has been uniformly sampled in ±60° for both angles.
The results aggregated for each SNR are presented in Fig. 3. It
is important to note that the SNR refers to the ratio before the
angular processing, i.e., before the DS gain or TVAL3 gain.
It can be seen how the IoU is higher in the TVAL3 case for
every SNR and only start decaying for rather low values. This
appears to indicate that it is a robust method against noise.

However, the IoU metric only provides an indication of
how well the shape is reconstructed, but does not consider
how the energy is spread into secondary lobes. This is not
only important because of its influence on the reconstruction
quality, but also could prevent weak targets detection. For this
reason, a pseudo integrated side lobe level ratio (P-ISLR) is
computed, where all the energy inside the real target boundary
is considered as the main lobe, and all the energy outside
is considered as sidelobes. Again, this test is repeated in a
Monte Carlo fashion for different target shapes and locations.
The results for different SNRs are shown in Fig. 3. It can be
seen how the TVAL3 reconstruction outperforms significantly
in terms of P-ISLR.

V. CONCLUSIONS

A Compressive Sensing based method to estimate the cross-
section of extended targets using MIMO radars is presented in
this paper. It is based on the Total Variation regularization to

Fig. 3. IoU vs SNR for different targets’ shape and locations.

Fig. 4. P-ISLR vs SNR for different targets’ shape and locations.

enforce sparsity in the signal’s gradient, preserving the edges
of the targets. The TVAL3 algorithm has been used for its high
efficiency, which solves the CS optimization problem using
the alternating direction method. Different extended objects
have been simulated with different shapes, and the algorithm
has been applied to the signal collected with a 20×20 URA
system. To assess the performance, results have been com-
pared with the reconstruction obtained using a classical DS
beamformer for two key metrics. First, the IoU of the real
and reconstructed shapes have been computed to assess the
accuracy of the shape reonstruction, for which TVAL3 clearly
outperforms the classical beamforming. Then, the P-ISLR has
been computed to evaluate the impact of the algorithm in the
sidelobe level, critical for detecting weak targets near strong
reflectors (i.e., a pedestrian next to a truck). Again, the TVAL3
reconstruction performs well, even in low SNR scenarios.
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