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a b s t r a c t 

Surgery groups are clustered surgery procedure types that share comparable characteristics (e.g. expected 

duration). Scheduling OR blocks leaves many options for operational surgery scheduling and this increases 

the variation in usage of both the OR and downstream beds. Therefore, we schedule surgery groups to re- 

duce the options for operational scheduling, ultimately bridging the gap between tactical and operational 

scheduling. We propose a single step mixed integer linear programming (MILP) approach that approxi- 

mates the bed and OR usage and a simulated annealing approach. Both approaches are compared on a 

real-life data set and results show that the MILP performs best in terms of solution quality and computa- 

tion time. Furthermore, the results show that our model may improve the OR utilization from 71% to 85% 

and decrease the bed usage variation from 53 beds to 11 beds compared to historical data. To show the 

potential and robustness of our model, we discuss several variants of the model requiring minor mod- 

ifications. The use of surgery groups makes it easier to implementation our model in practice and, for 

operational planners, it is instantly clear where to schedule different types of surgery. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The operating room (OR) is one of the most expensive re-

ources ( Guerriero & Guido, 2011 ) and a central hub in hospital

atient flow. Therefore, the OR gets a lot of attention to improve

roductivity. By focusing on OR improvements, other resources

et out of sight and are therefore easily forgotten. After surgery,

atients are transferred to downstream departments such as the

ntensive care unit and inpatient wards (hereafter referred to as

ards). Therefore, the performance of these downstream depart-

ents is directly influenced by the OR ( Fügener, Hans, Kolisch,

ortbeek, & Vanberkel, 2014 ). Focusing solely on OR improve-

ents results in large fluctuations in downstream resources, and

herefore, requires overcapacity. To optimize all resources involved

n the flow of surgical patients, a holistic approach is required.

n other words, while improving the productivity of the OR (e.g.

ptimizing surgery planning), it is crucial to also consider the

ffect on downstream departments. 

According to the organizational decision hierarchy de-

cribed in Hans, van Houdenhoven, and Hulshof (2012) and
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ügener et al. (2014) , surgery planning consists of three stages:

1) the strategic case mix planning, (2) the tactical master surgery

cheduling (MSS) and (3) the operational surgery planning. In

he first stage of planning, OR capacity is roughly divided among

urgical specialties via blocks (e.g. a day or half a day). Then,

he assigned OR blocks are scheduled in a cyclic schedule, which

eans that the schedule is repeated (bi)weekly, and this results

n the tactical MSS. Finally, on an operational level, patients are

cheduled within the OR blocks of their surgical specialty. 

In this paper, we discuss the tactical MSS problem while opti-

izing the effect on the downstream inpatient resources (e.g. bed

sage in wards and the ICU). Although contra-intuitive, from hos-

ital data, we observe that the fluctuations in bed occupancy are

ostly caused by artificial (e.g. self induced) variation, and are

herefore a result of planning. For this reason, we focus on elec-

ive surgery planning. We propose a single step model where bed

sage variation is minimized and the OR utilization is maximized.

ifferent from recent research where surgical specialties are as-

igned to OR blocks in the MSS, we schedule surgery groups within

hese OR blocks. Surgery groups are clusters of surgery types that

hare comparable characteristics (e.g. duration, specialty, and/or

xpertise of surgeons). As a result of the wide variety of surgery

ypes, some surgery types are not performed (bi-)weekly. There-

ore, these surgery types cannot be taken into account individually,

hich makes is necessary to cluster several surgery types within a

https://doi.org/10.1016/j.ejor.2019.09.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.09.029&domain=pdf
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surgery group. By scheduling surgery groups instead of OR blocks,

we want to bridge the gap between the tactical and operational

level. Scheduling OR blocks on a tactical level leaves many options

for scheduling different surgery types with different expected du-

rations on the operational level, which increases the probability of

variation in OR utilization and bed usage. Therefore, we show that

scheduling surgery groups reduces the probability of overtime and

variation in bed usage. 

In the remainder of this paper, we start with an overview

of available literature on OR scheduling and position our paper

( Section 2 ). In Section 3 , we discuss three elements of our model:

(1) the constraints, (2) the probability distributions of bed usage in

the downstream departments for a given cyclic schedule of surgery

groups, and (3) the objective function. Section 4 describes our

global and local search approach, and Section 5 discusses the re-

sults of both approaches. We analyze several variants of our model

in Section 6 . Finally, we discuss the implications of our approach

in Section 7 . 

2. Literature review and paper positioning 

OR planning and scheduling literature is broadly available. For

an overview on general OR scheduling literature, we refer to

the systematic reviews of Cardoen, Demeulemeester, and Beliën

(2010) and Guerriero and Guido (2011) . Here, we solely consider

OR planning and scheduling literature that take downstream re-

sources into account. 

Beliën and Demeulemeester (2007) use two approaches to

model bed occupancy of a single ward while creating an MSS: (1)

a mixed integer programming (MIP) based approach, linear as well

as quadratic, and (2) simulated annealing (SA). In Beliën, Demeule-

meester, and Cardoen (2009) , this model is extended with mul-

tiple wards. Furthermore, Beliën and Demeulemeester (2007) as-

sume the number of patients per OR block to be deterministically

dependent on the type of surgery and fixed for each surgeon, while

Beliën et al. (2009) assume a multinomial distribution function for

this. Beliën et al. (2009) develop two hierarchical goal program-

ming approaches that both consist of two goal programming mod-

els that are solved successively. 

Santibanez, Begen, and Atkins (2007) developed a MIP using

average values for the LoS (Length of Stay: the sojourn time at

wards). Their model has two objectives: maximizing daily bed uti-

lization and maximizing throughput and mix of patients. A mixed

integer linear programming (MILP) model by Yahia, Eltawil, and

Harraz (2016) levels the daily beds and nurse workload, while con-

sidering surgeons preferences. 

Van Oostrum et al. (2008) plan elective surgical types that are

frequently performed in a cyclic schedule. The solution approach

consists of two steps: (1) an integer linear program (ILP) which

ignores the required number of beds and that is solved by an

implicit column generation approach and (2) a MILP with the

objective to minimize the required number of beds. They incorpo-

rate three types of beds which can be prioritized. Adan, Bekkers,

Dellaert, Vissers, and Yu (2009) also assign surgeries to a day in

the cyclic schedule, as in Van Oostrum et al. (2008) . However, they

use a stochastic LoS that outperforms a deterministic LoS. The

extension of Van Oostrum et al. (2008) in Adan, Bekkers, Dellaert,

Jeunet, and Vissers (2011) also accounts for emergency patients.

They use simulation to create an operational schedule based on

the obtained tactical schedule with emergency patients. 

Vanberkel et al. (2011a) and Vanberkel et al. (2011b) assign

OR time to specialties, just as Beliën and Demeulemeester (2007) ,

by computing the ward occupancy distributions, the patient ad-

mission/discharge distributions, and the distributions for the on-

going interventions/treatments required by recovering patients.

In Vanberkel et al. (2011a) , they swap OR blocks and surgical
pecialty assignments to find a good solution. This model is ex-

ended in other literature. van Essen, Bosch, Hans, van Houden-

oven, and Hurink (2014) use the analytical approach of Vanberkel

t al. (2011a) to determine the number of required beds. Two so-

ution methods are used: (1) ILP and (2) SA. To be able to use an

LP, the objective function is replaced by the maximum of the ex-

ected number of required beds. Fügener et al. (2014) extend the

pproach of Vanberkel et al. (2011a) by taking multiple wards and

he ICU into account and consider several heuristic solution meth-

ds. In Fügener (2015) , this is even further extended by including

ultiple ICUs and outpatient flows in downstream resources. An-

ther extension by Fügener et al. (2016) includes outpatients and

mergency surgeries during the weekends. 

Min and Yih (2010) use simulation to investigate a stochastic

urgery scheduling problem while considering ICU beds. Surgery

urations and LoS on the ICU are assumed stochastic with

nown distributions. Chow, Puterman, Salehirad, Huang, and Atkins

2011) combine Monte Carlo simulation and a MIP to predict the

mpact of an MSS on bed occupancy. The simulation model pre-

icts the daily demand of beds and the MIP (based on Beliën et al.,

009 ) optimizes the bed occupancy by scheduling surgery blocks

nd patient types within each block. Banditori, Cappnera, and Vis-

ntin (2013) propose a MIP model to find an MSS. Their objective

s to maximize the number of surgeries planned while minimiz-

ng the violation of due dates. Next to the MIP model, they also

imulate the MIP solution for robustness. 

Bekker and Koeleman (2011) analyze the impact of variabil-

ty in admissions and LoS on the required amount of bed capac-

ty with an approximation method. Given an admission pattern,

heir quadratic programming model determines the mean bed oc-

upancy of each day. The Markov Decision Process (MDP) model

n Astaraky and Patrick (2015) provides scheduling policies for all

urgeries, given an MSS, that minimize the time a patient spends

n the waiting list, OR overtime and ward congestion. They use

pproximate dynamic programming to solve the MDP of a realistic

roblem. 

We extend the previous work of Van Oostrum et al. (2008) and

ügener et al. (2014) by scheduling surgery groups within OR

locks and by developing an single step solution method instead

f decomposition approaches. Scheduling surgery groups com-

licates modeling the overtime constraint and utilization of the

R, because there are multiple options for scheduling surgery

roups within an OR block. To cluster surgical procedure types into

urgery groups, we use techniques from data mining. Furthermore,

e linearize the overtime constraint by a piecewise linear function

nd the objective function by using the expected variation in bed

ccupancy. 

. Problem formulation 

In this section, we formulate our problem of creating a sched-

le that specifies which surgery groups should be scheduled in an

R block. First, we explain our clustering approach for defining the

urgery groups in Section 3.1 . From Section 3.2 to 3.4 , we explain

he mathematical model. 

.1. Clustering surgery types into surgery groups 

We cluster surgery types into surgery groups using data mining

echniques. Data mining improves the understanding of the rela-

ions between predictor and response variables, underlying struc-

ures and/or distributions of the input data. Therefore, data min-

ng potentially improves the results of the considered model. Data

ining techniques can be split into two main categories: su-

ervised learning and unsupervised learning. Supervised learning

akes use of labeled training and predicts a response variable
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Fig. 1. OR schedule example with surgery groups. 
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ith predictor variables ( van der Aalst, 2011 ). Unsupervised learn-

ng only uses unlabeled (e.g. predictor) variables and analyzes the

nderlying structure or distribution of the data (e.g. clustering or

ssociation). For our model, we want to use the predictor variables

pecialty and surgery type to predict the response variables surgery

uration (for OR utilization) and LoS (for bed usage) as is done in

upervised learning. The response variable could then be split into

ertain classes such as short LoS and short surgery duration. How-

ver, these labels are dependent on the classification we would like

o make, and are therefore not available. The other category, unsu-

ervised learning, assumes unlabeled data and does not split the

ariables into response and predictor variables. 

Clustering algorithms examine the data to find groups of sim-

lar instances. We would like instances with the same specialty

nd surgery type to be in one cluster, so they account for surgeon

pecialization. However, most clustering algorithms (unsupervised

earning) assume independent instances. Moreover, in most clus-

ering algorithms we cannot specify what type of clusters we want.

his means that one cluster could contain instances where the dis-

ersion of LoS is small and the dispersion of surgery duration is

arge, and vice versa in another cluster. Therefore, we combine su-

ervised and unsupervised learning techniques in our approach:

rst, we divide the surgery types of a specialty into short and long

tay clusters based on the median LoS of the surgery type. This

eans that the cut-off point between short and long stay clus-

ers depends on the specialty. The cut-off point is determined by

aximizing the precision, based on all instances, of both clusters.

recision is an evaluation measure of the confusion matrix and is

efined as the fraction of correct positive predictions among the

otal number of positive predictions ( van der Aalst, 2011 ). In our

tudy, this equals the number of instances in a cluster that were

ndeed lower (for short stay) or higher (for long stay) than the

ut-off point among all instances of a surgery type. Next, we fur-

her divide each short and long stay cluster into three sub clusters

ased on the surgery duration. The clustering for the surgery du-

ation is similar as for the LoS, although now we take the mean

f each surgery type. The cut-off points are again determined by

aximizing the precision of each cluster. This means that our clus-

ering approach results in six groups per surgical specialty. 

To ensure that the sizes of the resulting surgery groups do not

ecome too small, we set the cut-off point such that the number

f instances assigned to a group is at least 20% of the number of

nstances that can be divided. In addition, we use a two-sample t -

est with a 5% significance level to determine whether two groups

re significantly different. When the two groups fail this test, i.e.,
hen they are not significantly different, we decrease the number

f groups. 

.2. Conceptual model 

In our approach, we assign surgery groups to OR blocks in-

tead of surgical specialties. See Fig. 1 for a graphical example

f scheduling surgery groups. Assigning a surgery group to an OR

lock allows for a single surgery type of that group to be scheduled

uring the next planning stage. Multiple surgery groups can be as-

igned multiple times to the same OR on the same day as long as

he surgery groups belong to the same specialty of the allocated

R block. The order in which individual patients of the surgery

roups are scheduled on the operational level is undefined. For ex-

mple, our MSS specifies that surgery group X and Y are scheduled

n the same day and OR, but does not specify if surgery group X

ust be scheduled before or after surgery group Y during that day.

ence, a variable amount of surgery groups can be scheduled in

n OR block of the MSS. The objective of our model is to find an

ptimal schedule of surgery groups that maximizes OR utilization

hile minimizing the variance of bed usage at the wards. 

.3. Constraints 

Multiple constraints are taken into account for our model, e.g.,

he need for specific ORs, the need for specific equipment, the total

vailable OR time during opening hours and the number of sched-

led surgery groups. Let O be the set of given ORs and K the set of

ays in the MSS. Then, an OR block ( o , k ) is defined as a combina-

ion of day k ∈ K of the MSS and OR o ∈ O . The set of given surgery

roups is denoted by set J . 
The integer decision variable z okj specifies the number of surg-

ries from surgery group j ∈ J that are scheduled in OR block ( o , k ).

o ensure equitable access for each surgery group, we set a lower

ound β j on the number of scheduled surgeries per surgery group

j ∈ J and assume that waiting lists are inexhaustible. The following

onstraints ensure that all groups j ∈ J are scheduled a minimum

f β j times. ∑ 

∈ O ,k ∈ K 
z ok j ≥ β j , ∀ j ∈ J . (1)

et S be the set of specialties and J s ⊆ J the set of surgery groups

elonging to specialty s ∈ S . We introduce binary parameters εoks 

hat are one when specialty s ∈ S can be allocated to OR block

 o , k ) in the MSS, and zero otherwise. Furthermore, we introduce
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binary decision variables u oks which are one when a surgery group

of specialty s ∈ S is scheduled in OR block ( o , k ) and zero other-

wise. Now we can ensure that only surgery groups of the specialty

that is allocated to OR block ( o , k ) can be scheduled: 

u oks ≤ εoks , ∀ o ∈ O , k ∈ K , s ∈ S . (2)

The relation between z okj and u oks is given by constraints (3) ,

where M s is the maximum number of surgeries of a specialty s ∈ S
that fit in one OR block: ∑ 

j∈ J s 
z ok j ≤ M s · u oks , ∀ o ∈ O , k ∈ K , s ∈ S . (3)

The total surgery duration of the surgery groups we assign to an

OR block is limited by the opening hours of the OR. The surgery

duration ζ j of surgery group j ∈ J is a stochastic variable with

mean μj and variance σ 2 
j 

. Let g ok denote the stochastic variable

representing the total duration of the surgery groups that are

scheduled in OR block ( o , k ). The available OR time on day k ∈ K in

OR o ∈ O is denoted by τ ok . We introduce constraints (4) to ensure

that the probability of overtime is below α with 0 ≤α ≤ 1. Over-

time occurs when the total sum of the duration of the scheduled

groups exceeds the available time of that OR block: 

P (g ok ≤ τok ) ≥ 1 − α, ∀ o ∈ O , k ∈ K . (4)

To ensure that only one specialty s ∈ S can be assigned to each OR

block, we introduce the following constraints and binary parame-

ters χ ok which are one when OR o ∈ O is open on day k ∈ K and

zero otherwise: ∑ 

s ∈ S 
u oks ≤ χok , ∀ o ∈ O , k ∈ K . (5)

Some surgery groups require specific equipment that is not avail-

able in every OR, and therefore, have to be scheduled in specific

ORs, while other surgery groups can be scheduled in every OR. To

model this, we define a set of OR types R and we denote the sub-

set of surgery groups that can be performed in OR type r ∈ R by

J r ⊆ J . Binary parameters v okr are one when OR o ∈ O on day k ∈ K
is of type r ∈ R and zero otherwise. This leads to the following

constraint: ∑ 

j∈ J r 
z ok j ≤ N r v okr , ∀ o ∈ O , k ∈ K , r ∈ R , (6)

where N r is the maximum number of surgeries belonging to OR

type r in one OR block. 

3.4. Bed usage distributions 

Next, we want to determine the bed usage distributions of the

wards in three steps: (1) we calculate the bed usage distribution

for the wards per surgery group, (2) we calculate the bed usage

distribution for overlapping cycles, and (3) we calculate the bed

usage distribution for an entire OR block. This final step needs

to be repeated for every cyclic schedule. The first two steps can

be done beforehand. Section 3.4.4 describes the resulting objective

function. 

As mentioned before, we further extent the work of Vanberkel

et al. (2011b) and Fügener et al. (2014) by assuming that patients

from the same surgery group can be admitted at different wards

(e.g. the ICU or different wards belonging to the same surgical spe-

cialty). Therefore, we take into account all wards where patients of

a certain surgical specialty can be admitted. 

We assume that patients can take two paths after surgery: (1)

directly to a ward or (2) first to the ICU followed by a transfer to a

ward (see Fig. 2 ). Finally, patients are discharged and leave the sys-

tem. Let set I denote all ICUs and let set W denote all wards. For

all j ∈ J , we define subsets J i ⊆ J and J w ⊆ J for the surgery groups
hat are transferred to the ICU i ∈ I and ward w ∈ W , respectively.

he LoS (in days) in the ICU i ∈ I or ward w ∈ W of each surgery

roup is modeled by discrete empirical distributions based on his-

orical data. The empirical distribution of the LoS is determined per

urgery group, regardless of the ward they are transferred to. The

ollowing input parameters are required for every surgery group

j ∈ J : 

• a ij represents the probability that a patient of surgery group j ∈
J is transferred to ICU i ∈ I after surgery. 

• b w j represents the probability that a patient from surgery group

j ∈ J is transferred to ward w ∈ W after surgery or ICU. 
• c I 

jn 
represents the probability that a patient from surgery group

j ∈ J stays exactly n days in the ICU after surgery. 
• c W S 

jn 
represents the probability that a patient from surgery

group j ∈ J stays exactly n days in the ward after surgery. 
• c W I 

jn 
represents the probability that a patient from surgery group

j ∈ J stays exactly n days in the ward after a stay in the ICU. 

The probability that a patient from surgery group j ∈ J is trans-

erred to the ICU is given by 
∑ 

i ∈ I a i j and a transfer to the ward

s given by 1 − ∑ 

i ∈ I a i j . The probabilities c I 
jn 

, c W S 
jn 

and c W I 
jn 

are not

iven separately for every ward or ICU, because for every surgery

roup j ∈ J , the probability of a patient staying exactly n days is

ndependent of the ward or ICU. We also assume a bed is occupied

 whole day if a patient is discharged on that day. 

.4.1. Single surgery group 

The first step of our approach is similar to the approach pre-

ented in Fügener et al. (2014) . As Fügener et al. (2014) , we start

y calculating conditional probabilities d I 
jn +1 

that a patient from

urgery group j ∈ J is transferred from the ICU to a ward on day

 + 1 (which is n days after surgery). In a similar way, the condi-

ional probabilities d W S 
jn +1 

that a patient from surgery group j ∈ J ,

ho is in the ward on day n , is discharged on day n can be de-

ermined. Conditional probabilities d W I 
jn +1 

represent the probability

hat a patient from surgery group j ∈ J , who is in the ward on

ay n after being transferred from the ICU, is discharged on day

 , where we assume that the patient is transferred from the ICU

n day 1. 

As Fügener et al. (2014) , we can now calculate probabilities e I 
jn 

hat a patient from surgery group j ∈ J , who had surgery on day

, is still occupying a bed on day n . For n = 1 and the ICU, this

s simply the probability that the patient is transferred to the ICU

fter surgery. We assume a patient stays at least one day in the

CU, otherwise, a patient is transferred directly to the ward. There-

ore, for n = 2 , we have the same probability as for n = 1 . For

 ∈ { 3 , . . . , N 

I 
j 
+ 1 } , where N 

I 
j 

is the maximum number of days that

 patient from surgery group j ∈ J stays in the ICU after surgery,

his is the probability that the patient was not transferred to the

ard the day before, i.e., day n − 1 , multiplied by the probability

hat the patient was still in the ICU the day before. 

Similarly, probabilities e W S 
jn 

and e W I 
jnm 

are determined, i.e., the

robabilities that a patient from surgery group j ∈ J who had

urgery on day 1, is still occupying a bed in the ward on day n

nd the probability that after an ICU stay of m days, a patient from
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urgery group j ∈ J is still in the ward on day n , respectively. Prob-

bilities e W S 
jn 

and e W I 
jmn 

are combined to calculate the probability e W 

jn 

hat a patient of surgery group j ∈ J is in the ward on day n . 

Different from Fügener et al. (2014) , we consider multiple ICUs.

herefore, we also need to calculate the probability that a patient

rom surgery group j ∈ J is in ICU i ∈ I , given that this patient is in

he ICU. 
∑ 

i ∈ I a i j is the probability that a patient of surgery group

j ∈ J is in the ICU. So, for all j ∈ J and i ∈ I , we have conditional

robability ˆ a i j = 

a i j ∑ 

i ∈ I a i j 
that a patient of surgery group j ∈ J is in

CU i ∈ I , given that this patient is in the ICU. For the wards, this

robability is given by b w j . We do not need to normalize this prob-

bility, since every patient in our model is transferred to the ward.

atients who do not stay at the ward are represented using a ward

oS of zero days. 

The probability distributions of the number of patients from

urgery group j ∈ J in ICU i ∈ I or ward w ∈ W on day n are de-

oted by f I 
i jn 

and f W 

w jn 
. The discrete stochastic variables that are

ssociated with these probability distributions are given by f I i jn and

 

W 

w jn , respectively. Since different from Fügener et al. (2014) , we

chedule surgery groups instead of OR blocks, the number of pa-

ients in an ICU or ward can only equal zero or one. So, the prob-

bility that there is one patient in the ward or ICU is calculated

y multiplying the probability that a patient from surgery group

j ∈ J goes to ICU i ∈ I (ward w ∈ W ), given this patient is in the ICU

ward), with the probability that this patient is in the ICU (ward)

n day n . The probability that there are zero patients is equal to

ne minus the probability that there is one patient. 

 ( f 
I 
i jn = 0) = 1 − ˆ a i j e 

I 
jn , i ∈ I , j ∈ J , n ∈ { 1 , . . . , N 

I 
j }; (7) 

 ( f 
I 
i jn = 1) = 

ˆ a i j e 
I 
jn , i ∈ I , j ∈ J , n ∈ { 1 , . . . , N 

I 
j }; (8) 

 ( f 
W 

w jn = 0) = 1 − b w j e 
W 

jn , w ∈ W , j ∈ J , n ∈ { 1 , . . . , N 

W 

j }; (9) 

 ( f 
W 

w jn = 1) = b w j e 
W 

jn , w ∈ W , j ∈ J , n ∈ { 1 , . . . , N 

W 

j } . (10) 

.4.2. Cyclical surgery group 

Now that we have all probabilities for single surgery groups, we

an calculate the bed usage distribution for overlapping cycles us-

ng the approach of Vanberkel et al. (2011b) , since the maximum

oS of a patient can exceed the cycle length. The distribution of the

umber of patients in overlapping cycles is denoted by F I 
i jl 

and F W 

w jl 

or surgery group j ∈ J in ICU i ∈ I and ward w ∈ W , respectively,

n the l th day of a cycle, when the surgery group is scheduled on

ay one of the cycle. The number of overlapping cycles depends on

he maximum LoS in the ICU and wards, N 

I 
j 

and N 

W 

j 
, respectively,

nd on the cycle length L , which is the number of elements in L .

epending on the day l in the cycle, we have � (N 

I 
j 
− l) /L 	 + 1 over-

apping cycles for the ICU and � (N 

W 

j 
− l) /L 	 + 1 overlapping cycles

or the ward. 

.4.3. Cyclic schedule 

We now have all the elements for the final step: calculating the

ed usage distributions for a cyclic surgery group schedule. The

alculations in this step differ from Vanberkel et al. (2011b) and

ügener et al. (2014) , since we schedule surgery groups instead

f OR blocks. A cyclic schedule is given by the integer decision

ariables z okj , which represent the total number of surgeries from

urgery group j ∈ J that are scheduled in OR o ∈ O on day k ∈ K . Let

 z ok j 
be an indicator function that is equal to one if z okj is greater

han zero and equal to zero if z okj is zero. The bed usage distribu-

ion in ICU i ∈ I and ward w ∈ W on day l of a cyclic schedule when
cheduling surgery group j ∈ J once in OR block ( o , k ) is given by

 

I 
iok jl 

and G 

W 

wok jl 
, respectively. 

Next, we shift both distributions F I 
i jl 

and F W 

w jl 
to the day on

hich the surgery group is scheduled. Here, l is the day for which

e are determining the bed usage distribution and k is the day

n which the surgery group is scheduled in the cyclic schedule.

f l ≥ k , we shift F I 
i jl 

and F W 

w jl 
by k − 1 days. If l < k , the bed usage

istribution on day l results only from surgery groups scheduled

n day k of previous cycles. Thus, we shift by k − 1 − L days. We

ultiply these distributions by 1 z ok j 
, which is only non-zero if the

urgery group j ∈ J is assigned to OR block ( o , k ). 

 

I 
iok jl = 

{ 

F I 
i jl−k +1 

1 z ok j 
, l ≥ k 

F I 
i jl−k +1+ L 1 z ok j 

, otherwise . 
(11) 

 

W 

wok jl = 

{ 

F W 

w jl−k +1 
1 z ok j 

, l ≥ k 

F W 

w jl−k +1+ L 1 z ok j 
, otherwise . 

(12) 

Next, we obtain the bed usage distributions for an OR block.

e use the indicator function 1 z ok j 
to indicate that a surgery group

j ∈ J is assigned at least once to OR block ( o , k ). However, a surgery

roup might be assigned multiple times to one OR block. To ob-

ain the distribution of patients from an entire OR block, we need

he convolution of all distributions G 

I 
iok jl 

and G 

W 

wok jl 
of the surgery

roups scheduled in that OR block. If a surgery group is assigned

 times to one OR block, we need to convolute the distribution

 times with itself, before convolving it with the distributions of

ther surgery groups assigned to that OR block. Therefore, we use

he convolution power, which is defined as the n -fold iteration of

he convolution with itself. For h , a function Z → R and n ∈ N > 0 ,

e have: 

 

∗n = h ∗ h ∗ . . . ∗ h ∗ h ︸ ︷︷ ︸ 
n 

, h 

∗0 = δ0 , (13)

here δ0 is Dirac’s delta function. Dirac’s delta function focuses

he mass of a function around zero. When we convolve a distribu-

ion zero times, the probability of being zero is equal to one. 

The bed usage distribution in ICU i ∈ I and ward w ∈ W on day

 of the cyclic schedule per surgery group j ∈ J in OR block ( o , k ) is

iven by ˆ G 

I 
iok jl 

and 

ˆ G 

W 

wok jl 
: 

ˆ 
 

I 
iok jl = G 

I 
iok jl 

∗z ok j 
, i ∈ I , o ∈ O , k ∈ K , j ∈ J i , l ∈ L . (14)

ˆ 
 

W 

wok jl = G 

W 

wok jl 

∗z ok j 
, w ∈ W , o ∈ O , k ∈ K , j ∈ J w , l ∈ L . (15)

ow we can define distributions H 

I 
iokl 

and H 

W 

wokl 
, which repre-

ent the bed usage distributions on day l at ICU i ∈ I and ward

 ∈ W , resulting from all surgery groups j 1 , j 2 , . . . , j max ∈ J i and

j 1 , j 2 , . . . , j max ∈ J w , respectively. 

 

I 
iokl = 

ˆ G 

I 
iok j 1 l 

∗ ˆ G 

I 
iok j 2 l 

∗ . . . ∗ ˆ G 

I 
iok j max l 

, i ∈ I , o ∈ O , k ∈ K , l ∈ L , (16) 

 

W 

wokl = 

ˆ G 

W 

wok j 1 l 
∗ ˆ G 

W 

wok j 2 l 
∗ . . . ∗ ˆ G 

W 

wok j max l 
, w ∈ W , o ∈ O , k ∈ K , l ∈ L .

(17) 

ollowing the approach of Vanberkel et al. (2011b) and Fügener

t al. (2014) , we convolve the distributions of all the OR blocks in

he cyclic schedule to obtain the bed usage distributions resulting

rom the complete cyclic schedule. ˆ H 

I 
il 

denotes the distribution of

atients in ICU i ∈ I on day l of the cyclic schedule and 

ˆ H 

W 

wl 
de-

otes the distribution of recovering patients in ward w ∈ W on day

 of the cyclic schedule. The last OR and the last day in the cyclic

chedule on which surgeries take place are denoted by max { O } and

ax { K } , respectively. 
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ˆ H 

I 
il = H 

I 
i 11 l ∗ H 

I 
i 12 l ∗ · · · ∗H 

I 
i 1 max { K } l ∗ H 

I 
i 21 l ∗ H 

I 
i 22 l ∗ · · · ∗ H 

I 
i max { O } max { K } l ,

i ∈ I , l ∈ L , (18)

ˆ H 

W 

wl = H 

W 

w 11 l ∗ H 

W 

w 12 l ∗ · · · ∗ H 

W 

w 1 max { K } l ∗ H 

W 

w 21 l ∗ H 

W 

w 22 l ∗ · · ·∗ H 

W 

w max { O } max { K } l , 

w ∈ W , l ∈ L . (19)

We define the probability of having n patients in ICU i ∈ I or ward

w ∈ W on day l by ˆ H 

I 
il 

[ n ] and 

ˆ H 

W 

wl 
[ n ] . 

For a given cyclic schedule ψ , we want to determine the varia-

tion in bed occupancy. This means that we calculate for each day

l and with probability p that there are at most n patients, thus n

required beds, by summing over the probabilities that there are at

most n patients in the ICU or ward. The required number of beds

γ il ( ψ) on day l in ICU i ∈ I for a given solution ψ ∈ � is then given

by: 

γil (ψ) = min 

{ 

n 

∣∣∣ n ∑ 

m =0 

ˆ H 

I 
il [ m ] ≥ p 

} 

. (20)

The required number of beds γwl (ψ) on day l in ward w ∈ W for a

given solution ψ is given similarly by: 

γwl (ψ) = min 

{ 

n 

∣∣∣ n ∑ 

m =0 

ˆ H 

W 

wl [ m ] ≥ p 

} 

. (21)

Peaks in bed occupancy occur during weekdays since new pa-

tients arrive to undergo scheduled surgeries. These peaks may

cause surgery cancellations, because not enough beds are avail-

able. Therefore, we are interested in minimizing the variation in

bed occupancy during weekdays. As no surgeries are scheduled

during the weekends, the bed occupancy is lower. The variation

in bed occupancy, denoted by γ i ( ψ) and γw 

(ψ) , in ICU i ∈ I and

ward w ∈ W is given by the difference between the maximum and

minimum number of required beds during the week and are given

by: 

γi (ψ) = max 
l∈ K 

γil (ψ) − min 

l∈ K 
γil (ψ) , (22)

γw 

(ψ) = max 
l∈ K 

γwl (ψ) − min 

l∈ K 
γwl (ψ) , (23)

where K is the set of all workdays as defined in Section 3.3 . 

3.4.4. Objective function 

Our model has two main goals: (1) to maximize the OR uti-

lization and (2) to minimize the variation in bed occupancy. Be-

cause the available OR time is determined at the strategical level,

it is constant in our model. Hence, maximizing the OR utilization

is equal to maximizing the time allocated for scheduled surgery

groups. The utilized OR time is the sum of the mean surgery du-

rations μj of the scheduled surgery groups. Furthermore, we want

to minimize the variation in bed occupancy, γ i and γw 

. Finally, we

include weights θ i and θw 

, so we can manage the balance between

the variation in bed occupancy and the OR utilization. The objec-

tive function is now given by: 

max 
∑ 

o∈ O 

∑ 

k ∈ K 

∑ 

j∈ J 
μ j · z ok j −

∑ 

i ∈ I 
θi · γi (ψ) −

∑ 

w ∈ W 

θw 

· γw 

(ψ) , (24)

where the objective function value for a given schedule ψ is de-

noted by OB ( ψ). 

4. Solution methods 

The calculations in Sections 3.4.1 and 3.4.2 can be performed

beforehand. However, the calculations in Section 3.4.3 still involve

the convolution of several probability distributions, and the mini-

mum and maximum operators in Eqs. (22) and (23) are non-linear
perators. Moreover, the constraints in (4) are nonlinear which

akes the model nonlinear. Therefore, we use two different ap-

roaches to solve our problem: (1) approximate the objective func-

ion and the nonlinear constraint and use these approximations in

 MILP and (2) use simulated annealing (SA) as local search ap-

roach based on the given constraints and objective function. MILP

nd SA are widely used for solving the MSS problem and are also

ompared on the trade-off between the objective function value

nd computational performances by Cardoen et al. (2010) . 

.1. Global approach 

Our global approach uses an approximation of the objective

unction and a linearized version of nonlinear constraints (4) in

rder to formulate a MILP which we can solve with a commercial

olver. In Section 4.1.1 , we linearize the overtime constraints (4) .

ecause there is no direct relation between a given OR-schedule

nd the number of required beds, we also linearize the objective

unction in Section 4.1.2 . 

.1.1. Linearization of the surgery duration constraint 

In the problem formulation introduced in Section 3.3 , we have

onlinear constraints that make the surgery schedule more robust

gainst overtime. We linearize the overtime constraint using the

ame approach as Bosch (2011) . The overtime constraint is given

y: 

 (g ok ≤ τok ) ≥ 1 − α, ∀ o ∈ O , k ∈ K (25)

here g ok is the stochastic variable representing the total session

ime of all surgery types scheduled in OR block ( o , k ) and τ ok is

he total available time to schedule surgeries in OR block ( o , k ). 

May, Strum, and Vargas (20 0 0) have shown that the 3-

arameter lognormal distribution is the best fit for surgery du-

ation distributions. However, since there is no known exact re-

ult for the distribution of the sum of 3-parameter lognormal

istributed stochastic variables, we approximate the distribution

f the sum of the surgery durations with a normal distribution

s is done by Hans, Wullink, van Houdenhoven, and Kazemier

2008) and Van Oostrum et al. (2008) . Therefore, the total dura-

ion of OR block ( o , k ) is normally distributed with mean μok and

ariance σ 2 
ok 

. Thus, g ok (x ) ∼ N (μok , σok ) . Then, the overtime con-

traints can be written as: 

 (g ok ≤ τok ) = �
(
τok − μok 

σok 

)
≥ 1 − α, ∀ o ∈ O , k ∈ K . (26)

ewriting Eq. (26) gives: 

ok + �−1 (1 − α) σok ≤ τok , ∀ o ∈ O , k ∈ K . (27)

he mean and variance of the total surgery duration g ok of OR

lock ( o , k ) can be written as: 

ok = 

∑ 

j∈ J 
z ok j μ j and σ 2 

ok = 

∑ 

j∈ J 
z ok j σ

2 
j . (28)

ubstituting the latter two expressions into the overtime con-

traints (27) gives: 

 

j∈ J 
z ok j μ j + �−1 (1 − α) 

√ ∑ 

j∈ J 
z ok j σ

2 
j 

≤ τok , ∀ o ∈ O , k ∈ K . (29)

o linearize this constraint, we approximate the square root func-

ion f (x ) = 

√ 

x by a piecewise linear function. The square root

unction needs to be approximated on the interval [ x min , x max ]. We

o not want to underestimate the function f ( x ), so the approxima-

ion function must be greater than or equal to f ( x ) for all x ∈ [ x min ,

 max ]. The intervals of the piecewise linear functions are deter-

ined by breakpoints n ∈ N , where N = { 0 , 1 , . . . , m } . Here, x n is the

alue on the x -axis of breakpoint n ∈ N . We define x as the first
0 
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 -value and x m 

as the last x -value for which we approximate the

quare root function. The other x -values, x n for n = { 1 , . . . , m − 1 } ,
re intersection points of the linear approximations. Let y n be the

unction value of the linear approximation function at breakpoint

 , so y n = 

√ 

x n . See for more details the appendix in the supple-

entary materials. 

Once the breakpoints are known, we can use the λ-formulation

y Bisschop (2016) to model piecewise linear functions together.

he function value of any point between two breakpoints is the

eighted sum of the function values of these two breakpoints. Let

okn denote n nonnegative weights for each OR block ( o , k ) such

hat their sum equals one. Then, the piecewise linear approxima-

ion of the overtime constraint can be written as: 
 

j∈ J 
z ok j μ j + �−1 (1 − α) 

∑ 

n ∈ N 
λokn y n ≤ τok , ∀ o ∈ O , k ∈ K , (30) 

 

n ∈ N 
λokn x n = 

∑ 

j∈ J 
z ok j σ

2 
j , ∀ o ∈ O , k ∈ K , (31) 

 

n ∈ N 
λokn = 1 , ∀ o ∈ O , k ∈ K . (32) 

Considering overtime constraints (29) , we show that when

cheduling surgery groups instead of surgical specialties, we can

t least assign the same number of surgeries to one OR block. As-

uming that there exists a surgery group j ∈ J s with μj ≤μs and
2 
j 

≤ σ 2 
s , where μs and σ 2 

s represent the mean and variance of

he surgery duration for surgical specialty s ∈ S , we have that 

μ j + �−1 (1 − α) 

√ 

zσ 2 
j 

≤ zμs + �−1 (1 − α) 
√ 

zσ 2 
s ≤ τ (33)

here z denotes the number of assigned surgeries to a given OR

lock. This means that the cyclic schedule obtained when schedul-

ng surgery groups instead of surgical specialties allows us to

chedule at least the same number of surgeries and possibly more.

.1.2. Linearization of the objective function 

Our approach for linearizing the objective function is an exten-

ion of the approach of Beliën and Demeulemeester (2007) . Instead

f using γ i and γw 

, we use the expected number of beds at ward

 ∈ W and ICU i ∈ I on day l of the cycle. For a solution ψ , this

s given by γ̄wl (ψ) and γ̄il (ψ) , respectively. We use the expected

alue of the distribution functions ˆ H 

I 
il 

and 

ˆ H 

W 

wl 
, which are defined

s the probability distributions of the bed usage in the ICU and

ard, respectively. The expected value of ˆ H 

I 
il 

is given by: 

¯il = E 

(
ˆ H 

I 
il 

)
= 

∑ 

o∈ O 

∑ 

k ∈ K 
l≥k 

∑ 

j∈ J i 

� D I jkl 
/L 	 ∑ 

n =0 

ˆ a i j e 
I 
j(l−k +1+ nL ) · z ok j 

+ 

∑ 

o∈ O 

∑ 

k ∈ K 
l<k 

∑ 

j∈ J i 

� (D I 
jkl 

−L 
)
/L 	 +1 ∑ 

n =1 

ˆ a i j e 
I 
j(l−k +1+ nL ) · z ok j (34) 

ith � D 

L 
jkl 

/L 	 = � (N 

I 
j 
− (l − k + 1)) /L 	 for the number of overlap-

ing cycles on day l ∈ L when a surgery group is scheduled on day

 and l ≥ k and � (D 

I 
jkl 

− L ) /L 	 + 1 = � (N 

I 
j 
− (l − k + 1 + L )) /L 	 + 1

he number of overlapping cycles on day l ∈ L when l < k . The ex-

ected number of required beds on day l is given by the sum over

ll surgery groups of the probability that a patient from surgery

roup j ∈ J is in an ICU on day l , accounting for all cycles, multi-

lied by the number of times this surgery group is scheduled in all
R blocks ( o , k ). Similarly, we obtain: 

¯wl = E 

(
ˆ H 

W 

wl 

)
= 

∑ 

o∈ O 

∑ 

k ∈ K 
l≥k 

∑ 

j∈ J w 

� D W jkl 
/L 	 ∑ 

n =0 

b w j e 
W 

j(l−k +1+ nL ) · z ok j 

+ 

∑ 

o∈ O 

∑ 

k ∈ K 
l<k 

∑ 

j∈ J w 

� (D W 
jkl 

−L ) /L 	 +1 ∑ 

n =1 

b w j e 
W 

j(l−k +1+ nL ) · z ok j . (35) 

ince 
∑ 

n ˆ a i j e 
I 
j(l−k +1+ nL ) 

and 

∑ 

n b w j e 
W 

j(l−k +1+ nL ) 
are constant, the

ew objective function is linear in the decision variables z okj .

gain, we want to obtain the maximum and minimum of both

¯il (ψ) and γ̄wl (ψ) to determine the variation in bed occupancy

uring the week. The maximum and minimum operator are not

inear. Therefore, we add the following constraints: 

¯ max 
i ≥ γ̄il , ∀ i ∈ I , l ∈ L , (36) 

¯ max 
w 

≥ γ̄wl , ∀ w ∈ W , l ∈ L , (37) 

¯ min 
i ≥ −γ̄il , ∀ i ∈ I , l ∈ L , (38) 

¯ min 
w 

≥ −γ̄wl , ∀ w ∈ W , l ∈ L . (39) 

dditionally, let 

ˆ i = γ̄ max 
i + γ̄ min 

i , ∀ i ∈ I , (40) 

ˆ w 

= γ̄ max 
w 

+ γ̄ min 
w 

, ∀ w ∈ W . (41) 

he resulting MILP model is now given by: 

ax 
∑ 

o∈ O 

∑ 

k ∈ K 

∑ 

j∈ J 
μ j · z ok j −

∑ 

i ∈ I 
θi ̂  γi −

∑ 

w ∈ W 

θw ̂

 γw 

(42) 

s.t. (1) − (3) , (5) − (6) , (30) − (41) 

e refer to this problem as the linear OR schedule problem, which

s NP-hard as proven by van Essen et al. (2014) . Note that a solu-

ion obtained by solving the linear OR schedule problem will still

e evaluated by using the original objective function (24) . 

.2. Local search approach 

Similarly to Beliën et al. (2009) , Hans et al. (2008) , Beliën

nd Demeulemeester (2007) , and van Essen et al. (2014) , we use

A as local search approach, and therefore, we need to specify a

ooling scheme, using the following parameters: the initial tem-

erature, the final temperature, the reduction (e.g. cooling) fac-

or and the length of the Markov chain. The effectiveness of this

ethod depends on the configuration of these parameters and the

ocal search strategy. First, we explain how we define neighbor

olutions, and then, we describe how we determine the cooling

cheme. 

To obtain feasible neighbor solutions, we set a generator func-

ion that uses the current solution as input and produces a

ew solution. We consider four strategies to generate a neighbor

olution: 

• Removing a surgery group 

We find a neighbor solution by removing one surgery group

from a certain OR-day. To find a feasible new solution, it is im-

portant to only remove a surgery group if it is scheduled more

often than the required minimum amount. 
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• Adding a surgery group 

Similarly, adding one surgery group to a certain OR-day leads

also to a neighbor solution. To find a feasible new solution,

it is important to only add surgery groups from the specialty

assigned to the selected OR-day and to check if adding this

surgery group does not violate the overtime constraint. 
• Swap two OR blocks 

Similar to Beliën et al. (2009) , Beliën and Demeulemeester

(2007) , and van Essen et al. (2014) , we define neighbor solu-

tions by swapping all surgery groups between two OR blocks.

This can only be done if they have the same available time for

surgeries and the same specialty can operate in the ORs. We

do not swap two OR blocks that take place on the same day,

because this leads to a symmetric solution. 
• Swap two groups 

Similar to Hans et al. (2008) , we define neighbor solutions by

swapping two surgery groups that have been scheduled in the

current solution. They can only be swapped if either the OR or

the day on which they are scheduled is different. Furthermore,

the new solution is only feasible when surgery groups from the

same specialty are swapped and the overtime constraint is not

violated. 

Per iteration, one strategy is selected with equal probability(
1 
4 , 

1 
4 , 

1 
4 , 

1 
4 

)
to find the next neighbor solution. 

We follow a similar approach as van Essen et al. (2014) to select

appropriate values for the initial temperature T in and final tem-

perature T f . In our preliminary tests, we used θ = θw 

= θi , so each

ward was given the same weight. The maximum possible decrease

of the objective function is given by max j∈J μ j + θ, which depends

on the parameters θ and the surgery groups J . At the start of the

procedure, we want to accept this maximum decrease with proba-

bility 0.5. Thus, the initial temperature is given by: 

T in = 

−
(
max j∈J μ j + θ

)
ln (0 . 5) 

. (43)

We determine the final temperature using the same approach.

Near the end of the procedure, we want to accept negative changes

in the objective function with a low probability. This way, the

procedure converges to a local minimum. Our minimum negative

change is given by removing the surgery group with the shortest

surgery duration, while not influencing the variation in bed occu-

pancy. We set the probability of accepting this change to 0.001 and

this gives: 

T f = 

− min j∈J μ j 

ln (0 . 001) 
. (44)

Next to the initial and final temperature values, we also need to set

the reduction factor, the number of iterations per temperature and

the maximum number of accepted solutions per temperature. We

used sensitivity analysis to determine the best combination of pa-

rameters considering both computational time and solution quality.

5. Computational results 

In this section, we present the results of our two approaches.

To compare the performance of the global approach and the

SA approach, we use a real-life data set. This data includes a

master surgery schedule where each OR block is assigned to a

specialty. The cycle length is 14 days with 13 ORs where 9 surgical

specialties operate. We have 11 wards and one ICU. Data was

gathered from interviews with surgeons involved with planning,

OR management and the hospital data warehouse. As a result of

missing time stamps, 75% of the data set is used. For each surgery

group obtained from the data, the mean and variance in surgery

duration and LoS are determined. Furthermore, we determine the
robability of patients from a surgery group going to ICU i ∈ I
nd ward w ∈ W . With the model described in Section 3.4 , we de-

ermine the bed usage distribution resulting from scheduling the

urgery groups. The changeover time between surgeries is set to

5 minutes. 

In the global approach, we calculate the objective function

alue differently from the SA approach. The objective function of

he MILP is an approximation of the original objective function and

nly depends on the expected number of beds, while the SA ap-

roach considers the original objective function. In order to make a

air comparison, we also determine the original objective function

alue for the solution given by the MILP. We also combine both ap-

roaches by starting with the global approach and then try to im-

rove that solution with SA. Finally, we compare the performance

f the best solution of both approaches with the performance of

he real-life data set in Section 5.6 . For analysis, we also consider

omputation time as a performance indicator. 

We start this section with the results of our clustering approach

nd parameter settings for both the global and local approach. In

ection 5.3 , we compare the results of both approaches and try

o further improve the value of the objective function by combin-

ng both approaches. In Section 5.5 , we compare the result of our

pproach with the commonly used block scheduling approach. Fi-

ally, we validate our model using historical data in Section 5.6 . 

Solving the MILP model is done by using version 4.2.3 of

IMMS. For our MILP model, we use CPLEX version 12.6.3. The SA

rocedure is implemented in MATLAB R2016b. All computational

xperiments are performed on a PC with an Intel Core i7 6700K

.20 gigahertz with 16 gigabytes RAM. 

.1. Clustering 

For each specialty, we use the clustering approach as described

n Section 3.1 . First, we determine the threshold between the short

tay group and the long stay group per surgical specialty. The pro-

edures with a median LoS of less than the threshold are denoted

s short stay, while the procedures with a median LoS higher than

he threshold are in the long stay group. Next, each LoS group is

ivided into three surgery groups based on the surgery duration of

he surgery types. Two thresholds are determined and procedures

re put into a short, medium or long surgery duration group de-

ending on the mean surgery duration. However, some LoS groups

id not contain enough procedures to be split into three signifi-

antly different sur gery duration groups. In these cases, only two

urgery duration groups are defined. This approach leads to a to-

al of 62 different sur gery groups. Four medium surgery duration

roups have a precision of less than 0.6 and all belong to different

pecialties. For these groups, the interval between the two thresh-

lds defining the three surgery duration groups is small (less than

0 minutes). Therefore, the mean surgery duration of certain pro-

edures may fall into the interval between the two thresholds, but

any realized instances are outside these bounds, which leads to

 low precision. However, the three surgery duration groups have

ignificantly different means, and therefore, our method does de-

ne three groups instead of two. Defining less thresholds would

ncrease cluster variance, and therefore, we decided not to adjust

ur clustering approach for groups with low precision. 

.2. Parameter settings 

In this section, we discuss the input parameters for both the

lobal and SA approach. 

.2.1. Global approach 

In our MILP model, we only have to define the input parame-

ers based on managerial decisions. These consist of parameter α
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Fig. 3. The value of the LP bound and best integer solution with increasing compu- 

tation time. 

Table 1 

Parameter setting for SA approach. 

Symbol Value Description 

T in 1000 Initial temperature 

T f 1 Final temperature 

ρ 0.97 Reduction factor 

ω 450 Number of iterations for one temperature 

ω new 150 Maximum number of new solutions accepted 

for one temperature 
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Table 2 

Results for the best solution of MILP and SA procedure with 90-percentile. 

KPI MILP SA 

Objective value 41,778 38,699 

OR utilization 0.839 0.855 

Number of beds 152 159 

Difference in beds 12 20 

Computation time (hour) 1.5 7 

Table 3 

Results for the best solution of MILP and SA with 85-percentile. 

KPI MILP SA 

Objective value 41,278 36,518 

OR utilization 0.839 0.843 

Number of beds 146 149 

Difference in beds 13 23 

Computation time (hour) 1.5 6 
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hat denotes the overtime probability and parameters θw 

and θ i 

o balance the OR utilization and the variation in bed usage at the

ards. Preliminary results indicated that setting θw 

= θi = 500 pro-

ided the best trade-off between the variation in required num-

er of beds and OR utilization. This means that we would remove

cheduled surgery groups with a total OR time of 500 minutes if

his would reduce the variation in required number of beds by one.

he overtime probability α is set to 0.3. 

In Fig. 3 , the LP bound and current best solution are shown

hen increasing the computation time. We see that the solution

mproves with longer computation times, however, the speed of

mprovement decreases rapidly after 20 minutes. Since we are cre-

ting a tactical schedule, which in theory should only be calculated

 couple of times per year, we decided to set the computation time

o 90 minutes. 

.2.2. SA approach 

As initial solution for SA, we use the incumbent solution ob-

ained after solving our MILP for 60 seconds. Furthermore, we have

o set the following parameters: the initial temperature, reduction

actor, final temperature and the maximum number of iterations

ithin one temperature. As in Section 5.2.1 , we use α = 0 . 3 and

w 

= θi = 500 . Table 1 gives an overview of the parameter set-

ings for the SA approach. Using our data, T in ≈ 10 0 0 and T f ≈ 5.

owever, preliminary results showed that we should set the stop-

ing temperature to T f < 1 to make sure SA converges to a local

ptimum. Furthermore, the preliminary results showed that we

hould set the number of iterations for one temperature, given by

, to 450 and the maximum number of new solutions accepted

or one temperature, denoted by ω new 

, to 150 to obtain acceptable

olutions. 

.3. Comparing the global and local approach 

We compare the best solutions of both approaches to determine

hich approach performs best, using five key performance indica-

ors (KPIs): (1) objective value, (2) OR utilization, (3) total number

f used beds, (4) total difference in used beds during the cycle,

nd (5) computation time. The objective function values for both

he MILP and SA are calculated using the 90-percentile and 85-

ercentile of the probability distribution of the number of required

eds. 
Given the parametrization used in our SA procedure, SA is

lower than the MILP approach. The best obtained solution is

hown in Table 2 and required seven hours to compute. This can be

xplained by the large amount of convolutions needed to calculate

he objective function value. Recall that we set the computation

ime of the MILP to 90 minutes. 

The MILP also performs best compared to the SA approach for

he 85-percentile, see Table 3 . 

.4. Improving MILP solution with SA 

We also test whether the MILP solution can be improved by the

A procedure. With the initial temperature at T in = 10 0 0 , we did

ot obtain better solutions. Therefore, we analyzed different initial

emperatures. Results improve slightly for T in = 10 : the OR utiliza-

ion improves with 0.66 percentage point to 84.57% and the vari-

tion in required number of beds decreases by 1 bed to 11 beds.

e need an additional 30 minutes of computation time to obtain

his solution. 

.5. Scheduling surgical specialties instead of surgery groups 

In our introduction, we state that scheduling surgery groups in-

tead of surgical specialties reduces the OR overtime probability

nd variation in bed usage. In Section 4.1.1 , we have already shown

hat under the assumption that there exists a surgery group j ∈ J s 
ith μj ≤μs and σ 2 

j 
≤ σ 2 

s , we can schedule at least the same num-

er of surgeries in one OR block when compared to scheduling sur-

ical specialties. This assumption holds for our data. 

In addition, our results show that we can even schedule more

urgeries when scheduling surgery groups instead of surgical spe-

ialties. If we evaluate the solution obtained by scheduling surgery

roups on data on surgical specialty level, we see that the OR uti-

ization increases from 84.57% to 100.71%, which means that the

btained solution is not feasible when aggregating the data on sur-

ical specialty level. In addition, we see that the bed variation in-

reases from 12 to 36 beds and the maximum number of required

eds increases from 152 to 192. This means that by scheduling the

ame number and type of surgeries, we need to reserve more OR

nd bed capacity when aggregating the data on surgical specialty. 

Next to this, if we schedule surgical specialties, we see that we

annot meet the restriction on the minimum number of surgeries

hat should be scheduled per surgical specialty. By relaxing this

onstraint, i.e., by setting βs := 0.75 βs , we do obtain a feasible so-

ution with an OR utilization of 61.53%, bed variation of 23 and

aximum number of required beds equal to 122. This means that

his solution performs worse in terms of maximizing OR utilization
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Table 4 

Comparison between the historical mean bed variation and the bed 

variation given by the model. 

Ward Bed variation historical Bed variation model 

Day treatment 9 0 

Weekday ward 13 2 

Long stay 1 5 0 

Long stay 2 4 2 

Long stay 3 4 1 

Long stay 4 5 2 

Long stay 5 2 1 

Long stay 6 1 0 

Long stay 7 2 0 

Long stay 8 4 4 

ICU 4 1 
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Fig. 4. The expected number of beds at the weekday ward. 

Table 5 

Results for two variants of the model: (1) minimizing variation in bed 

utilization and (2) minimizing the number of beds. 

KPI Minimize variation Minimize required beds 

OR utilization (%) 83.9 85.2 

Number of beds 152 147 

Difference in beds 12 26 
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and minimizing bed variation and that it is not feasible according

to our original constraints. 

5.6. Historical versus model performance 

The average OR utilization registered in the data set was 71%.

The weekly variation in bed occupancy over all wards was 53 beds.

When we compare this with our best solution, the variation in bed

occupancy can be improved by 42 beds, while the OR utilization

can be improved to 84.57%. Given that the available OR capacity

has not changed, these results show that more surgeries can be

performed while the variation in the number of required beds de-

creases. In Table 4 , we see the historical mean bed variation and

the bed variation resulting from our best solution for each ward

and the ICU. We also see that for each ward the variation in bed

occupancy decreases, or in case of long stay ward 8, stay the same.

6. Problem and model variants 

To show the robustness and potential of our model, we ana-

lyze several variants of the model using minor modifications. In

the first variant of our model, discussed in Section 6.1 , we try to

avoid occupied beds during the weekends at the weekday ward, as

this ward closes during the weekends. In Section 6.2 , we describe

and test a variant of our model that minimizes the total number of

required beds instead of the variation in number of required beds.

In Section 6.3 , we analyze a relaxation of the MILP. Finally, we ap-

ply our MILP model to data from another hospital in Section 6.4 . 

6.1. Closure during the weekends 

The weekday ward (WDW) is intended to be only used dur-

ing weekdays. When there are still patients admitted at this ward

when the weekend starts, these patients have to be transferred to

other wards. This setting has not yet been included in our current

model. However, we could schedule the surgery groups in such a

way that no patients are admitted at the weekday ward during the

weekend. We do so by adding a penalty Q for each patient ad-

mitted at the weekday ward during the weekend. We introduce

variable r which denotes the number of patients admitted at the

weekday ward during the weekend. The weekday ward is abbre-

viated by WDW and the Saturdays and Sundays in the planning

horizon are given by set L r ⊂ L . The resulting MILP model is given

by 

max 
∑ 

o∈ O 

∑ 

k ∈ K 

∑ 

j∈ J 
μ j · z o,k, j −

∑ 

i ∈ I 
θi ̂  γi −

∑ 

w ∈ W 

θw ̂

 γw 

− Q · r (45)

s.t. (1) − (3) , (5) − (6) , (30) − (41) 

r ≥ γ̄W DW,l , ∀ l ∈ L r (46)
 O
n Fig. 4 , the results of the model with Q = 10 , 0 0 0 and a computa-

ion time of 90 minutes is compared to the best solution obtained

y the initial MILP model. We see that the expected number of

eds during the weekend is reduced, but does not reach zero. It

lso affects the OR utilization, which decreases by 7.5 percentage

oint and the difference in beds, which increases by 12 beds. For

igher values of Q , the results for the weekday ward do not im-

rove. These results can be explained by the fact that each surgery

roup has to be scheduled a minimum number of times. In the

olution provided when Q = 10 , 0 0 0 , each surgery group for which

atients are admitted to the weekday ward are scheduled the min-

mum number of times. However, the used surgery groups are not

he best predictor for the ward the patients need to be admitted,

ecause every surgery group has some probability that a patient

ill be admitted at the weekday ward. Therefore, always some pa-

ients will be admitted at the weekday ward during the weekend

iven the used surgery groups. 

.2. Minimize the number of beds 

In our model, we minimize the variation in the number of re-

uired beds. However, personnel to keep the beds open is expen-

ive. Therefore, instead of minimizing the variation in bed usage,

e can also minimize the number of required beds. Even though

here might be more variation in bed usage, the number of re-

uired beds may decrease. 

To minimize the number of required beds, we modify our linear

odel described in Section 4.1.2 . In the modified model, we use

he maximum values of γ̄i,l and γ̄w,l instead of using the difference

etween the maximum and minimum values of γ̄i,l and γ̄w,l . The

esulting MILP is: 

ax 
∑ 

o∈ O 

∑ 

k ∈ K 

∑ 

j∈ J 
μ j z o,k, j −

∑ 

i ∈ I 
θi ̂  γi −

∑ 

w ∈ W 

θw ̂

 γw 

(47)

s.t. (1) − (3) , (5) − (6) , (30) − (35) 

ˆ γi ≥ γ̄i,l , ∀ i ∈ I , l ∈ L 

ˆ γw 

≥ γ̄w,l , ∀ w ∈ W , l ∈ L . 

he results for this variant of the model are shown in Table 5 . We

annot compare objective function values, since different objective

unctions are used for both methods. The variation in number of

equired beds is a lot higher, as was to be expected. However, the

R utilization is also higher while less beds are needed in total. 
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Table 6 

Results of relaxation variant disregarding the blocks in 

the MSS. 

KPI 90 minutes 360 minutes 

Objective value 40,561 41,847 

OR utilization (%) 87.0 87.5 

Number of beds 163 162 

Difference in beds 18 16 

Optimality gap (%) 45.8 39.3 

Table 7 

Results from other hospital data set. 

KPI 10 minutes 90 minutes 

OR utilization (%) 86.7 89.6 

Number of beds 40 39 

Difference in beds 3 3 

Optimality gap (%) 15.4 12.2 
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.3. Scheduling without blocks 

Our model uses the OR blocks of the MSS as input. This means

hat surgery groups can only be scheduled within the OR blocks

hat are allocated to this surgical specialty. In this variant of the

odel, we relax our model by excluding the MSS, meaning that

very surgery group can be scheduled at any day within the cycle.

n Table 6 , we see that the complexity of the problem increases

hen not using an MSS. After 90 minutes of computation time,

he optimality gap is still 46%. The solution has a lower objective

unction value than the solution of the basic model, which has an

bjective function value of 41,778, an OR utilization of 83.9%, and

 variation in number of required beds of 12. After six hours, the

ound solution has a higher objective function value than the solu-

ion of the basic model. The OR utilization has improved, but the

ariation in the number of required beds has increased. 

Scheduling without OR blocks shows advantages, but ignores

any other factors that affect the MSS, e.g. schedules of surgeons,

taff and equipment availability, and therefore, implementation is

hallenging. 

.4. Applying the model to different instances 

To analyze whether our approach also works for other real-life

nstances, we obtained a data set from another hospital. This data

et contains 43 surgery groups for which the minimum, mean and

tandard deviation and LoS probability distributions per surgery

roup are given. Furthermore, one ward is taken into account. We

se the 95-percentile to calculate the required number of beds.

he results can be found in Table 7 for different computation

imes. Bosch (2011) uses the same data set and overtime probabil-

ty. Their decomposition approach consists of: (1) maximizing the

R utilization and (2) minimizing the required number of beds.

he best solution found in Bosch (2011) yields an OR utilization of

1% that needs 45 beds in total. Our solution has 1.4 percentage

oint lower OR utilization, however, the required number of beds

ecreases by 6 beds. In Bosch (2011) , the OR blocks are formed

eforehand, so there is no flexibility in assigning surgery groups to

R blocks when minimizing the required number of beds. 

. Discussion 

In this paper, we show the positive impact of the holistic

erspective on surgery scheduling. We introduce two single step

pproaches for scheduling surgery groups while taking into ac-

ount the overtime constraint and maximizing the OR utilization

nd minimizing variation of bed usage. Scheduling surgery groups
nstead of OR blocks leaves fewer options on an operational level

o schedule surgeries, and therefore, the probability of overtime

nd variation in bed usage as a result of surgery scheduling on an

perational level decreases. We also added weights to the objective

unction, θ i and θw 

, to balance the managerial trade-off between

ariation of bed usage and OR utilization. 

We compare two approaches for finding a good feasible so-

ution for large real-life instances. Both on computational results

nd on computation time, the MILP outperforms the SA approach.

e also combine both approaches where we first optimize the

SS with the MILP, and then try to further improve the objective

unction value with SA. This combination leads to slightly better

esults. The MILP shows good results for large real-life instances

ithout long computation times and is therefore suitable for prac-

ical applications. Comparing the results of the model with the his-

orical performance derived from the data set, the variation in beds

s improved from 53 beds to 11 beds and the OR utilization can be

mproved from 71% to 85%. 

With the use of the MILP, we also analyze some model variants

hat can give more managerial insights. The first variant focuses

n closing the weekday ward during the weekend, as in practice,

eekday wards are only opened during weekdays. Weekday wards

ften struggle with patients that are still admitted during week-

nds. Without changing the surgery planning, the ward manage-

ent has two options to solve this problem: (1) extend the open-

ng hours of the weekday ward or (2) transfer these patients to

ther wards on Friday. So, in the first variant of our model, we ex-

ended the model by including a penalty in the objective function

or patients being admitted on a weekday ward during the week-

nd. The computational results show that it is difficult to close

uch wards during weekends. The next variant of the model min-

mizes the usage of beds instead of the variation of bed usage

hich can be achieved by modifying the objective function. Re-

ults show that with this approach, the number of required beds

an be further reduced and OR utilization increased. However, this

lso results in an increase in the variation of bed usage. 

Furthermore, we relaxed our model such that every surgery

roup can be scheduled in any OR block in the cycle. The results

how that OR utilization can be improved at the cost of an increase

n bed variation and required number of beds. To analyze the ro-

ustness of our model, we compare our model with another solu-

ion approach and data set. Results show that our model has 1.4

ercentage point lower OR utilization, however, the required num-

er of beds decreases by 6 beds. 

An important step in our approach is the clustering of surgery

ypes into surgery groups. Our clustering approach has a major ef-

ect on the group variation, in terms of surgery duration and length

f stay, and possible destination wards. With the surgery groups

sed for our model, we were not able to close the weekday ward

uring the weekend, because too many surgery groups may use

he weekday ward after surgery. Therefore, we conclude that the

roups at hand are still too aggregated for this model variant. Fur-

her research on applying data mining on such instances could in-

rease the predictive value of clusters (in our case surgery groups),

nd therefore, improve the robustness of planning. 

When clusters are only based on specialty, we obtain a model

hich schedules OR blocks similar as previous work ( Fügener

t al., 2014; van Essen et al., 2014; Vanberkel et al., 2011b ). As

hown here, our clustering approach results in more precise pre-

ictions for surgery duration and LoS, and therefore, results in a

igher OR utilization and lower variation in bed usage. However,

maller clusters (e.g. clustered surgery types versus clusters based

n specialty) require more data to attain similar precision levels.

herefore, our approach assumes no limitations in data availabil-

ty. Since most hospitals nowadays have advanced electronic health

ecord systems, this would be a fair assumption to make. Next to
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possible data limitations, our model assumes that the clusters also

account for the biweekly number of realizations of surgery types

(e.g. at least once every two weeks) such that each block can be

filled with surgeries of that type on the operational level. Further-

more, the dispersion of durations within surgery groups should be

limited. When this is not the case, it could result in under- or

overutilization of resources, since on the operational level, surgery

types with significant shorter or longer individual durations could

be scheduled than was accounted for when scheduling surgery

groups on the tactical level. 

The model can also be extended to optimize the schedule of

surgeons. To achieve this, the model should not only take the OR

and its downstream resources into account, but also its upstream

resources such as the outpatient clinic given that surgeons also

work there. Another potential direction for further research is op-

timizing break-in moments for OR cleaning. 

Overall, this research provides a way to bridge the gap between

tactical and operational planning of surgeries. It reduces the vari-

ation in bed usage and improves the robustness of the schedules.

The use of surgery groups makes it possible to easily implement

our model into practice, and for operational planners, it is in-

stantly clear where to schedule what type of surgery. With only

minor model modifications, we show that a broad range of variants

on OR scheduling can be analyzed to obtain valuable managerial

insights. 
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