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Non-emergency Patient Transfer
Scheduling and Assignment

Travis Foster, Peter VanBerkel, Uday Venkatadri and Theresia van Essen

Abstract Emergency Medical Services organizations are responsible for providing
paramedic crews, vehicles and equipment to transfer patients from one location to
another in emergency and non-emergency settings. Theymust solve difficult schedul-
ing and assignment problems to ensure on-time arrival of patients and the efficient
use of health care resources during non-emergency operations. Ambulances can
serve both emergency and non-emergency requests but are rarely available to serve
non-emergency requests. Therefore, non-emergency requests are the responsibility
of Patient Transfer Units. The objective of this study is to develop a mathematical
model that will assign Patient Transfer Units to non-emergency patient transfer re-
quests, design a schedule that will minimize travel costs and balance workloads and
apply it to a real-world case study. This paper also proposes a framework to utilize
historical patient transfer data in the scheduling process. The mathematical model
provides decision support for the non-emergency patient transfer scheduling process.

Keywords Healthcare · Emergency Medical Services · Vehicle Routing

T. Foster (B) · P. VanBerkel · U. Venkatadri
Dalhousie University, 6299 South St, Halifax, NS B3H 4R2, Canada
e-mail: tfos@dal.ca

P. VanBerkel
e-mail: peter.vanberkel@dal.ca

U. Venkatadri
e-mail: uday.venkatadri@dal.ca

T. van Essen
Delft University of Technology, Van Mourik Broekmanweg 6,
2628, XE Delft, Netherlands
e-mail: j.t.vanessen@tudelft.nl

© Springer Nature Switzerland AG 2020
V. Bélanger et al. (eds.), Health Care Systems Engineering,
Springer Proceedings in Mathematics & Statistics 316,
https://doi.org/10.1007/978-3-030-39694-7_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39694-7_1&domain=pdf
mailto:tfos@dal.ca
mailto:peter.vanberkel@dal.ca
mailto:uday.venkatadri@dal.ca
mailto:j.t.vanessen@tudelft.nl
https://doi.org/10.1007/978-3-030-39694-7_1


4 T. Foster et al.

1 Introduction

This paper examines the scheduling and assignment of non-emergency patient trans-
fer requests. Such transfers can be between any of the following locations: a special
care facility, a hospital or a personal residence. Patient transfers are an important part
of public safety systems as they improve patient care by allowing access to proper and
continuing medical care to patients. In some jurisdictions of Canada, transfers are
conducted by Emergency Medical Service (EMS) providers with paramedic crews
in ambulances or similar vehicles. Increasing transfer volumes add pressure to EMS
providers [10].

From a scheduling and assignment perspective, patient transfers present a unique
challenge to EMS and Operations Research (OR) scientists. Patient transfers are
non-emergency requests and are often scheduled according to:

• Arrival time of request (advance notice or same day).
• The requested time of pickup.
• The availability of transport vehicles in the region.
• Logistical issues surrounding the transfer such as equipment required, current
vehicle location and future pickups.

Many health care organizations, including EMS providers, collect and store large
amounts of historical data. This paper presents a framework for using this historical
data to help a model for patient transfer scheduling and assignment at the offline
operational level [6].

In Sect. 2 we describe the scheduling problem faced by Nova Scotia EMS
providers. In Sect. 3 we review related literature and position our research. In Sect. 4
we present the scheduling model and the framework for integrating their data within
the model. In Sect. 5 we review our results on a real-world case study. In Sect. 6 we
present our conclusions and future work.

2 Problem Description

This research is motivated by Emergency Health Services (EHS). EHS is the organi-
zation that provides EMS to the province of Nova Scotia in Canada. EHS uses vehi-
cles called Patient Transfer Units (PTUs) for a significant portion of non-emergency
patient transfers. For simplicity, the term “patient transfer” will refer specifically to
non-emergency patient transfers.

Patient transfer requests are phoned into EHS when the sending facility has de-
termined a patient requires extra care for transport to a medical appointment. After
a pickup time has been agreed upon between EHS and the requesting party, EHS
schedules the transfer in their system. A preliminary schedule for the following day
is created in the evening with all requests that were submitted in advance. Same
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day requests are submitted to EHS the following day during the operation period.
The schedule is adjusted to account for these same day requests. EHS also assigns a
paramedic crew (who are operating a PTU) during the day-of operation. This assign-
ment depends on several factors including the location of the patient, the location
and status of the crews, future patient transfers and operator knowledge. Delaying or
arriving late to a patient pickup can result in a cancelled or rescheduled appointment
for the patient and a deadhead trip (a completed trip without a patient) for a PTU to
the next patient pickup.

This paper focuses on scheduling advance notice patient transfer requests to min-
imize total travel time while using historical data to inform the model. We are also
interested in introducing workload balancing features to the model. We do not ex-
amine the same day scheduling portion of the problem at this time nor do we address
crew assignment; in this phase of the research, only vehicle assignment and schedul-
ing are considered. This model is then applied to a real-world case study in Nova
Scotia.

3 Related Research

Patient transfer systems are a common part of health care systems and as such,
scheduling patient transfers has been studied extensively. Patient transfer systems
can be modelled as dial-a-ride problems (DARP), a class of Vehicle Routing Prob-
lems (VRP) and part of the Travelling Salesman group of problems. The dial-a-ride
model develops vehicle routes and schedules for n requests divided among k vehi-
cles. We refer readers to Cordeau and Laporte [3] and Ho et al. [7] for additional
information regarding the DARP.

Detti et al. [4] studied a real-world health care example of the DARP with sev-
eral constraints and multiple vehicle depots. They analyze the effectiveness of their
heuristics and a Mixed Integer Programming (MIP) model from real and randomly
generated data. Guerriero et al. [5] solved a multi-objective DARP considering travel
and patient waiting time and demonstrated computational results from their two step
heuristic approach. Workload balancing features such as cost-related objective func-
tions and constraints are explored by Matl et al. [9] in VRPs, including the DARP.
They also review types of VRP workload balancing measures. Berg and Essen [1]
examined scheduling vehicles for patient transfer coverage while minimizing the
impact on emergency vehicles. Marković et al. [8] developed prediction models us-
ing statistical and machine learning algorithms for capacity requirements of a new
dial-a-ride system. Yalçındağ et al. [11] used data driven methods to estimate travel
times in home health care.

Our paper applies a DARP scheduling model including workload balancing, and
data driven statistical models to estimate travel and service times from historical
data to act as an efficient scheduling tool and applied to a real-world case study of a
non-emergency patient transfer system.
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4 Methods

In this section, we first review the approach and assumptions made when modelling
the scheduling processwith aDARPmodel. This approach is used tomimic the actual
scheduling process where a preliminary schedule is created the previous day for all
patient transfer requests submitted in advance. Second, we discuss the historical data
and how it is used as an input to the model.

4.1 Advance Request Model

The model creates a set of routes for k PTUs and n requests while minimizing the
travel time across all routes. The model assumes a single depot to act as the start and
end point for every vehicle. We also assume that we have a homogeneous fleet and
patients. In reality, patients do have different needs but this has little impact on the
time required for a request.

Our DARP model is based off of the three-index formulation found in Cordeau
[2]. However, our model includes workload balancing constraints and variable shift
times for the PTU crews. We use the time windows to ensure patients arrive at their
destination in a timely manner. It is formulated on a directed graph G = (V, A). All
vertices on the graph are represented by i, j = (0, ..., 2n + 1). The pickup nodes are
represented by P = (1, ..., n) and the drop-off nodes are represented by D = (n +
1, ..., 2n). The depot is represented by nodes 0 and 2n + 1. These three indices make
up the vertex set V = (0, 1, ..., n, n + 1, ..., 2n, 2n + 1). Each request is treated as
a pair (i, n + i) that must be visited in order and by the same vehicle.

K represents the set of vehicles. Each vehicle k ∈ K has a capacity of Qk , a
minimum shift start time of Tmink and a maximum shift end time of Tmaxk . Each
node i ∈ V has a service time di and a load qi such that qn+i = −qi . These values for
the depot are such that d0 = d2n+1 = q0 = q2n+1 = 0. Each node has a time window
[ei , li ] where ei and li are the earliest and latest times that service may begin at node
i . Each arc (i, j) has an associated travel time ti j . We use the parameters wb+ and
wb− as the maximum and minimum workload, respectively, for each PTU.

The model has three types of decision variables:

• xki j is a binary decision variable and is 1 if vehicle k will traverse the route from
node i to node j and is 0 otherwise.

• uki decides the service start time at node i by vehicle k.
• lki decides the number of patients in vehicle k after visiting node i.
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The MIP formulation is (1)–(19):

Min
∑

k∈K

∑

i∈V

∑

j∈V
ti j x

k
i j (1)

∑

k∈K

∑

j∈V
xki j = 1 ∀ (i ∈ P) (2)

∑

i∈V
xk0i =

∑

i∈V
xki,2n+1 = 1 ∀ (k ∈ K ) (3)

∑

j∈V
xki j −

∑

j∈V
xkn+i, j = 0 ∀ (i ∈ P, k ∈ K ) (4)

∑

j∈V
xkji −

∑

j∈V
xki j = 0 ∀ (i ∈ P ∪ D, k ∈ K ) (5)

Equation (1) is the objective function where we minimize the total travel time
of the routes. Constraints (2) ensures each request is served once. Constraints (3)
ensures that every vehicle route begins and ends at the depot. Constraints (4) ensures
the pickup and delivery nodes of a request are served by the same vehicle. Constraints
(5) certifies that the vehicle that enters a node will also depart from that node.

ukj ≥ uki + di + ti j − M(1 − xki j ) ∀ (i, j ∈ V, k ∈ K ) (6)

uki+n ≥ uki + di + ti j − M(1 − xki,i+n) ∀ (i ∈ P, k ∈ K ) (7)

uk2n+1 ≤ Tmaxk ∀ (k ∈ K ) (8)

uk0 ≥ Tmink ∀ (k ∈ K ) (9)

ei ≤ uki ≤ li ∀ (i ∈ V, k ∈ K ) (10)

Constraints (6) and (7) guarantee that service time is consistent among every
node, and that the service time at node i + n does not begin until after the service at
node i is completed. Constraints (8) and (9) uphold vehicle shift start and end times.
Constraints (10) ensures that a request is completed during it’s time window.

lkj ≥ lki + q j − M(1 − xki j ) ∀ (i, j ∈ V, k ∈ K ) (11)

lkj ≤ lki + q j + M(1 − xki j ) ∀ (i, j ∈ V, k ∈ K ) (12)

lki ≤ Qk ∀ (i ∈ V, k ∈ K ) (13)

lki ≤ Qk + qi ∀ (i ∈ V, k ∈ K ) (14)
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lki ≥ 0 ∀ (i ∈ V, k ∈ K ) (15)

lki ≥ qi ∀ (i ∈ V, k ∈ K ) (16)
∑

i∈K

∑

j∈V
(ti j + di )x

k
i j ≤ wb+ ∀ (k ∈ K ) (17)

∑

i∈K

∑

j∈V
(ti j + di )x

k
i j ≥ wb− ∀ (k ∈ K ) (18)

xki j ∈ (0, 1) ∀ (i ∈ V, j ∈ V, k ∈ K ) (19)

Constraints (11)–(16) ensures consistency for the passenger load in every vehi-
cle. Inequalities (17) and (18) are the workload balancing constraints. We measure
workload as the sum of the travel time and service time along a PTU’s route.

4.2 Model and Data Framework

EHS captures data such as facility visited, length of time traveled, time spent with
the patient and much more. We use historical patient transfer data to help estimate
travel times, service times and generate samples to test the model. This process is
illustrated in Fig. 1. The DARP model receives the service and travel time estimates
from the patient transfer data in addition to the PTU shift schedules and qi . The
output from this model is the route set (xki j ), service time start times (uki ) and PTU
load (lki ) for each node.

The patient transfer process can be broken into four stages as shown in Fig. 2. A
PTU crew is sent to pick up a patient. They spend t ji minutes travelling to pickup
node i . They spend service time di at the pickup node. Once the patient is loaded into
the PTU, the crew spends ti,i+n minutes travelling to the delivery node where they
spend di+n minutes. When they have transferred care to the receiving facility, the
patient transfer is complete. This is a special case where no additional patients are
picked up once a patient transfer has begun, and Qk = 1.We focus on this case as the
majority of PTUs have a capacity of one. Thesemodel parameters are estimated from
the patient transfer data. We first look at characteristics of patient transfer demand
to determine how we will determine these parameters.

We check patient transfer requests by day of week and by time of day. The day of
week analysis found themajority of patient transfer requests occurMonday to Friday.
Focusing only on those days, Fig. 3 shows requests by time of day. Requests begin
at 6 a.m. We see that requests taper off by 6 p.m.; therefore, that will be the end of
the model’s time horizon. We also note that advance notice requests are more likely
to take place in the morning while same day requests take place in the afternoon.

With these patient transfer trips captured in the data, we use the historical average
to estimate the expected time to travel from node i to node j . These estimates are
used in the model as parameter ti j .
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Fig. 1 Big data and OR framework

Fig. 2 Time stages in the patient transfer process

Fig. 3 Patient transfer requests by time of day
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In this paper, we define two types of service time. The pickup service time is the
time that paramedics spend with the patient at the pickup location before transit be-
gins. Delivery service time is the time spent at the delivery location before completing
the transfer. These are shown in Fig. 2 as di and di+n respectively. Service times are
captured in the patient transfer data. However, numerous factors can influence the
service time, including the facility type, equipment required and whether the patient
is ready when the paramedics arrive. Using the patient transfer data, multi-linear
regression models were created to estimate the expected pickup and delivery service
times for requests. These models use common information that are included in every
patient transfer record. The output of the regression model is used as input to the
DARP model as di . We use day of week, time of day, facility, whether the patient is
bariatric, whether special equipment is required andwhether the request was advance
notice or same day.

5 Results

EHS typically receives 15–45 advance requests per day in the city of Halifax. We
test the model on randomly selected actual problems from the historical data. We can
use the actual service times or generate predicted service times from the regression
model. The computational times are plotted on a logarithmic scale in Fig. 4 shows
that computation time (plotted on a logarithmic scale) increases with the number of
requests. However, every problem tested solved in under one hour of run time using
the Gurobi Optimizer. Since EHS would run the model overnight, we have shown
that the model can be solved in a short time frame where the results will be of use
to EHS. Table1 shows a summary of our tests including the maximum, minimum
and mean number of requests and time (measured in seconds) required to solve the
DARP.

We compare our total travel time against the actual recorded travel time from the
data for advance requests. However, we do not have the original schedules with only
the advance requests. Instead, we have the final schedules with advance and same
day requests. Therefore, we select the 9days where same day requests make up the

Fig. 4 DARP model computational time
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Table 1 Computational results summary

Requests Computational time (s)

Max 49 3281

Min 19 2

Mean 33 319

Table 2 Advance requests study

Advance
requests

Model travel
time

Actual travel
time

Actual
completed
requests

Travel time
difference

Same day
requests

24 645 747 22 102 8

26 771 833 26 62 8

32 847 1244 32 397 9

34 744 1048 34 304 11

35 768 993 35 225 10

37 890 933 36 43 8

39 920 1211 37 291 10

39 740 1191 38 451 11

43 1289 1271 41 −18 12

smallest percentage of all requests. While this is not a completely fair comparison,
focusing on the days with the least impact from the same day requests is as close as
we can get. The results are found in Table2.

For these DARP instances, we see a total reduction in travel time of 1857min, or
206min per day. This is a 19.6% improvement on the actual travel time spent on the
advance requests. The PTUs also only completed 301 advance requests versus the
309 that were planned for as 8 requests were cancelled. Cancellations can happen
for a number of reasons, but it is most likely that this happens when the patient is
not ready for transport. The average travel time spent per request as per the model is
24.6min versus 31.5min in the data, an improvement of 21.7%.

6 Conclusions and Future Work

In this paper, we studied non-emergency patient transfers and applicable operations
research models. We modelled the advance request system using a Dial-A-Ride
Problem approach, and developed a model that will schedule and route PTUs for
a set of known requests. We also develop statistical models for delivery service
times from historical patient transfer data. The historical data is used to inform
model parameters as described in Fig. 1. We present this framework as a method to
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incorporate Big Data and Analytics into non-emergency patient transfer scheduling.
We test our model on historical data and find the model is computationally feasible
for problem sizes we are interested in. Finally, we compare our model’s output to
the actual travel times for days where impact from same day requests is minimal and
find travel time improvements of approximately 20%.

Future work involving this problem could include incorporating the same day
requests into a model to dynamically update the routes as new demand arrives in real
time and investigating the stochastic nature of travel and service times.
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