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A B S T R A C T   

Electric car-sharing systems have attracted large attention in recent years as a new business model for achieving 
both economic and environmental benefits in urban areas. Among different types, the one considered in this 
paper is the so-called one-way car-sharing system whereby a user can begin and end a trip at any station of the 
system. At the same time, the Vehicle-to-Grid (V2G) concept is emerging as a possible innovative solution for 
smart power grid control. A management system that combines car-sharing system operations and V2G tech-
nology is a recent challenge for academia and industry. In this work, a mixed integer linear programming 
formulation is proposed to find the optimal management of electric vehicles in a one-way car-sharing system 
integrated with V2G technology. The proposed mathematical model allows finding the optimal start-of-day 
electric vehicles distribution that maximizes the total revenue obtained from system users and V2G profits 
through daily electric vehicles charging/discharging schedules. These schedules are based on mean daily users’ 
electric vehicles requests and electricity prices. The model can be applied to evaluate the possible average daily 
profitability of V2G operations. In order to test the model performance, we applied it to a small-size test network 
and a real-size test network (the Delft network in the Netherlands). Under the model assumptions, the adoption 
of V2G technology allows to fully cover the daily charging costs due to users’ trips and to obtain V2G profits by 
taking advantage of electric vehicles unused time without significantly reducing the satisfied car-sharing system 
demand. Most of the energy purchased to charge the electric vehicles batteries is provided back to the grid during 
energy peak load demand, creating benefits also for energy providers.   

1. Introduction 

Shared mobility is one of the possible solutions for reducing the 
traffic congestion problem. It offers the potential to enhance the effi-
ciency, competitiveness, social equity, and quality of life in large cities 
(Machado et al., 2018). Among the different shared mobility modes, 
such as bike-sharing, car-pooling, and peer-to-peer ridesharing, 
car-sharing is the most known and widespread system used in urban 
areas. In the literature, one can find plenty of literature regarding 
Car-Sharing Systems (CSSs) demand and supply in the last years. 
Generally, CSSs are classified as station-based (one-way or two-way), 
free-floating, or hybrid systems. Station-based CSSs allow users to 
pick-up and drop-off a car only in stations. In one-way station-based 
CSSs, the available cars are distributed in predefined parking places and 

the departure station can differ from the arrival one (Nourinejad and 
Roorda, 2015; Boyacı et al., 2015; Correia et al., 2014). In two-way 
station-based CSSs, the predefined parking places remain, but users 
have to return cars to the pick-up stations (Nourinejad and Roorda, 
2015). Free-floating systems are the most recent ones. They offer the 
possibility to park a rented car in any public space of the operational 
area served by car-sharing companies (Firnkorn and Müller, 2011; Li 
et al., 2018). Finally, CSSs hybrid systems are a combination of both 
two-way and one-way CSSs station-based types (Jorge et al., 2015a,b) or 
a combination of a station-based and a free-floating system (Ciari et al., 
2014). 

In the beginning, CSSs were based on internal combustion engine 
vehicles. However, CSSs with Electric Vehicles (EVs) have also recently 
emerged as a need to reduce local pollutants in cities. Indeed, electric 
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mobility has been overgrowing in recent years. In 2019, the global 
electric car fleet reached around 7.2 million units, recording a yearly 
40% increase (IEA, 2020). Following the same trend, the number of EVs 
worldwide overcomes 10 million units in 2020 (IEA, 2021). The concept 
of shared mobility with EVs is currently one of the main topics in 
transportation research and practice as it has the potential to contribute 
to sustainability in urban areas (Axsen and Sovacool, 2019). If combined 
with EVs, shared mobility could give another significant contribution to 
reducing pollution, in terms of Greenhouse Gases (GHGs) and local 
pollutants as defended by several papers (Requia et al., 2018; Martin and 
Shaheen, 2011; Jung and Koo, 2018). 

Considering the EVs increasing and overall adoption, a future 
problem could be the large-scale energy supply system (Kongjeen and 
Bhumkittipich, 2018) of EVs. A large number of EVs could cause several 
power system issues, including voltage regulation, peak-load demand, 
frequency variations, and harmonic contamination. A smart grid system 
can manage the EVs integration and fleet planning to reduce power 
system stress to a minimum (Ul-Haq et al., 2016). According to the 
Global EV Outlook 2020 of the International Energy Agency (IEA, 2020), 
a smart EV charging system can improve power systems through the 
supply of Demand-Side Response (DSR) services by optimizing the 
electricity demand pattern. In particular, EVs have the potential to 
provide energy back to the grid when the energy is needed, i.e., during 
power demand peak-loads, and to use excess energy from the grid for 
recharging the EVs battery. The idea is to use EVs battery as a source of 
energy storage, considering the fast and precise control signals to pro-
vide DSR services and to participate in electricity markets. The tech-
nology whereby EVs supply power to the network is called 
Vehicle-to-Grid (V2G). V2G technology aims to involve EV owners in 
a new ‘energy sharing’ concept by providing economic benefits. Applied 
on a large-scale scenario, V2G technology can have multiple advantages 
in terms of emissions reduction (Saber and Venayagamoorthy, 2010), 
electric supply network support (Kempton and Letendre, 1997; Kempton 
and Tomic, 2005b; Guille and Gross, 2009), and economic revenues for 
EVs owners (Taiebat and Xu, 2019). 

To the best of our knowledge, in the literature, only a few authors 
have analyzed V2G integration in CSSs (Freund et al., 2012; Fournier 
et al., 2014; Khalen et al., 2018; Iacobucci et al., 2019; Mamalis et al., 
2019; Shuyun et al., 2019; Caggiani et al., 2020; Zhang et al., 2020; Li 
et al., 2022). This paper aims to propose and test, for a one-way CSS with 
EVs, a novel Mixed Integer Linear Programming (MILP) model. This 
formulation determines EVs distribution among stations at the begin-
ning of the day and finds the optimal daily EVs charging/discharging 
schedules. In particular, the objective is to maximize the sum of reve-
nues from system users (CSS revenues) and V2G profits. CSS revenues 
and V2G profits are obtained according to mean expected daily customer 
demand and energy sale/purchase criterion based on mean expected 
day-ahead market electric energy price variation. This model can be 
applied to evaluate the possible average daily profitability of V2G op-
erations where the fleet and CSS size is fixed. A numerical application on 
a synthetic case-study and a real network with sensitivity analysis has 
been performed to show the proposed model effectiveness. 

The paper is organized as follows: Section 2 presents the literature 
review related to CSSs and V2G technology, highlighting the contribu-
tion of this paper. Section 3 describes the proposed mathematical 
formulation considering two approximations of EV charging/discharg-
ing function. Section 4 focuses on the model application and presents a 
small-size case and a real-case network of the city of Delft, the 
Netherlands including a sensitivity analysis. Section 5 shows the main 
conclusions and future research that can be developed based on the 
current work. 

2. Literature review 

One of the outputs of the proposed model is the start-of-day EVs 
distribution. Different indicators related to vehicle distribution among 

stations have been defined to evaluate the performances of a CSS. In 
Section 2.1, we summarize these indicators proposed in the literature. 
However, they are not sufficient for optimized fleet management in a 
V2G framework. Therefore, in Sections 2.2 and 2.3, we present the 
characteristics/advantages of V2G technology and the literature studies 
on electric CSSs with V2G charging stations, respectively, to show the 
motivations and objectives of our research. 

2.1. Car-sharing vehicle distribution key performance indicators 

One of the main problems related to vehicle distribution among 
stations in a one-way CSS is vehicle relocation. One-way CSS is the most 
attractive one since it allows users to make one-way trips. However, one- 
way operations, as well as the imbalance of vehicle demand, could 
generate some problems both at the origin (pick-up station) and at the 
destination (drop-off station) of a trip. Among the possible issues, there 
is the situation in which vehicles are accumulated in stations where they 
are not needed, while at the same time, there could be vehicle shortage 
at stations where more vehicles are required (Barth et al., 2004; Di 
Febbraro et al., 2012). Due to this imbalance among stations, some users 
could leave the system because they may not find a car/parking place 
available near their origin/destination. For this reason, it is necessary to 
relocate vehicles rebalancing their distribution. 

Vehicle relocation, i.e., transfer of vehicles from stations with high 
vehicle accumulation to stations with low vehicle stock, is a technique 
that has been proposed to reduce the imbalance of one-way CSSs (Jorge 
et al., 2014). Thus, the relocation activities allow for rebalancing the 
CSS to satisfy as many customers as possible. Two main relocation ap-
proaches have been proposed in the literature: user-based and 
operator-based. User-based strategies offer customers incentives for 
changing their travel behavior. In contrast, operator-based procedures 
entail vehicle redistributions performed by operators: during the night, 
when the demand is negligible (static relocation), or during the whole 
day when the demand changes depending on time (dynamic relocation). 
Both static and dynamic operator-based car-sharing relocation strategies 
require personnel costs. However, the relocation costs may be covered 
and eventually overcome by higher revenues due to the higher per-
centage of user demand satisfaction. According to Jorge et al. (2014), 
real-time relocation operations combined with optimization techniques 
may significantly increase CSS profits. More recently, Santos and Correia 
(2019) proposed a carpooling of staff operator strategy for the one-way 
station-based CSS relocation with extra-cost reduction. Additionally, 
they state that the high costs of relocations would have more effect on 
CSSs operator profits only through future vehicle automation. 

In the literature, several one-way car-sharing relocation models have 
been proposed. A recent and exhaustive literature review has been 
written by Illgen and Höck (2019), which the reader can further check. 
To define the optimal distribution of vehicles among different locations, 
these models define several Key Performance Indicators (KPIs). Among 
the first indicators proposed are those related to time, i.e., ‘zer-
o-vehicle-time’ and ‘full-port-time’. The ‘zero-vehicle-time’ (Barth and 
Todd, 1999; Kek and Cheu, 2006; Kek et al., 2009) occurs when a station 
has no parked vehicles. The full-port-time (Kek and Cheu, 2006; Kek 
et al., 2009), where ‘port’ means a parking place, occurs when a station 
is full of parked vehicles reserved by other users. Both ‘zer-
o-vehicle-time’ and ‘full-port-time’ reduce the attractiveness of a CSS 
and can imply a loss of revenues for CSS operators. 

Other KPIs presented in the literature are the ‘vehicle-to-trip ratio’, 
the ‘number of relocations’, and the ‘number of trips’ indicators. The 
‘vehicle-to-trip ratio’ (Barth and Todd, 1999) or ‘vehicle-to-trip station 
ratio’ (Kek et al., 2009) evaluates the CSS performance by adding/-
removing vehicles or stations in the system. The ‘number of relocations’ 
evaluates the CSS performance by applying different relocation policies 
or strategies (Barth et al., 2004; Jorge et al., 2014; Kek et al., 2009; 
Nourinejad and Roorda, 2015). Finally, the ‘number of trips’ indicator 
provides necessary information about the percentage of satisfied 

L.P. Prencipe et al.                                                                                                                                                                                                                              



Journal of Cleaner Production 368 (2022) 133147

3

demand (Jorge et al., 2014; Nair and Miller-Hooks, 2014) by counting 
all completed trips made by customers. Additionally, the ‘number of 
trips’ indicator can be used to evaluate the level of service offered to the 
clients (Alfian et al., 2014; Fink and Reiners, 2006; Nair and 
Miller-Hooks, 2010) or the actual vehicle utilization (Alfian et al., 
2014). Recently, Prinz et al. (2021) suggested that using KPIs in CSS 
would improve their service quality, profit, and relocation performance. 

In the model proposed in this paper, one of the KPIs used in the 
objective function is related to the ‘number of trips’. It is defined as ‘CSS 
revenues KPI’, namely the total revenue obtained from the CSS users 
paid fee. However, to take advantage of V2G technology, this KPI is not 
enough for evaluating the proper start-of-day distribution of vehicles to 
be achieved through a static relocation (operator-based), as explained in 
the next sub-sections. 

2.2. Vehicle-to-Grid concept 

According to demand-response services, the V2G concept was first 
proposed by Kempton and Letendre (1997) and consists of enabling EVs 
to share the energy from and to the power grid bidirectionally. The 
batteries of electric vehicles act as a form of distributed energy storage 
and can transfer electricity from EVs to the power grid and vice versa. 
Therefore, V2G allows to charge EV batteries during low demand times 
and to send electricity back to the grid during periods of high demand 
(Kempton and Tomic, 2005a; 2005b). Before introducing V2G technol-
ogy, the electric energy transfer between the power grid and EV batte-
ries was only unidirectional, named grid-to-vehicle (G2V). The 
bidirectional energy flow was successfully implemented by providing 
energy and ancillary services to the electric grid from EVs. Smart 
charging systems and aggregators are required for EVs participating in 
V2G, where multiple EVs can be considered a single unit (Han et al., 
2010; Kempton and Tomic, 2005b). 

To demonstrate V2G benefits, several authors have analyzed the 
interconnection between EVs energy storage and the power grid 
(Kempton and Kubo, 2000; Kempton and Tomic, 2005a, 2005b; Kemp-
ton et al., 2005; Williams and Kurani, 2006; Tomic and Kempton, 2007). 
According to Kaur et al. (2019) and Liu et al. (2019), V2G technology 
has the potential to transform EVs into a distributed energy resource 
with multiple benefits for smart grid integration. According to Noel et al. 
(2019), V2G technology implemented on EVs can provide several ad-
vantages in technical, economic, and environmental benefits. Technical 
benefits are related to the power grid operator. They include voltage 
regulation (Rogers et al., 2010), spinning reserve (Pavic et al., 2015), 
load peak shifting (Dallinger et al., 2011), and frequency regulation 
(Kolawole and Al-Anbagi, 2019). Among the environmental benefits, 
V2G technology can incentivize the electricity sector decarbonization if 
combined with renewable power sources (i.e., solar photovoltaic and 
wind energy) in terms of higher flexibility and backup storage (Noel 
et al., 2019; Saber and Venayagamoorthy, 2010). Finally, the economic 
benefits obtained by V2G technology can be classified according to the 
different stakeholders: EV owners, grid operators, and society. EV 
owners can get a new revenue source by selling/purchasing electric 
energy stored in EV batteries to the distributed system operator for 
different prices during the day. For grid operators and society, V2G can 
provide cheaper electricity market alternatives. However, quantifying 
V2G economic benefits is still fuzzy due to different objectives, market, 
and technical conditions (Heilmann and Friedl, 2021). A smart charging 
system may manage profits obtained from the purchase and sale of 
electric energy to identify the most favorable time intervals with the 
most profitable tariffs during the day to maximize profits. This man-
agement is possible given that energy demand response from the power 
grid is higher during the daytime (daily peaks) and, consequently, the 
energy tariff is higher. In contrast, the energy demand response from the 
power grid is lower during the night (off-peak hours, overnight), thus 
the energy tariff is lower. This process could allow small profits per 
vehicle per day, however, considering a large-scale EV fleet, the 

aggregation of all EVs energy transfer may be relevant in terms of profit 
per kWh. As an example of a future real application, V2G technology can 
be used to support the energy demand response of a corporate office 
building by using EVs during an idle time, particularly for air condi-
tioning energy load during the summer period. Recently, Li et al. 
(2021b) proposed a hierarchical scheduling method of the active dis-
tribution network considering flexible loads, i.e., the heating, ventila-
tion, air-conditioning, and EV charging systems, in office buildings 
calculating the optimal EV daily charging time. 

Yilmaz and Krein (2013) and Arfeen et al. (2019) have analyzed the 
differences between uncoordinated and coordinated smart charging/-
discharging systems, highlighting strengths and weaknesses of both 
methodologies in terms of requirements, costs, and impact on power 
distribution networks. The uncoordinated charging system allows the 
EVs charging at any time when plugged into charging columns. In 
contrast, the coordinated charging/discharging system allows the bidi-
rectional energy transfer between EV batteries and the power grid in a 
specific time interval managed by a smart strategy. Several authors have 
addressed the smart charging/discharging system in the literature, 
focusing on power daily load curve (Zhang et al., 2012; Lassila et al., 
2012), economic benefits for EV owners (Fan, 2012), operation costs 
(Rotering and Ilic, 2011) and power losses (Dallinger et al., 2011). 
Recently, Cai et al. (2018) have proposed a day-ahead optimal char-
ging/discharging scheduling for EVs considering random initial EV 
batteries State of Charge (SOC). 

In recent years, V2G implementation is a challenge. The diffusion of 
V2G is still in the first-step stage of development limited to fleet-based 
pilot projects worldwide (Sovacool et al., 2018). However, several 
pilot programs are presenting encouraging results by using the bidi-
rectional flow of electricity between EVs and the power grid. Companies 
involved in the processes of generation, transmission, distribution, and 
consumption of energy can take advantage of this new functionality 
given that V2G may prove to be effective in balancing the grid while 
yielding economic benefits (Modumudi, 2019). Recently, several pilot 
projects concerning V2G technology implementation are in progress, e. 
g., Enel and Nissan projects (Enel, 2020), Smart Solar Charging (De Brey, 
2017), WeDriveSolar project (WeDriveSolar, 2020), Engie eps and FCA 
project 2020 (Engie-FCA project, 2020), and different countries Nuvve 
projects (Nuvve, 2020). For a summary of recent worldwide V2G pilot 
applications, see Ravi and Aziz (2022). V2G technology adoption may 
depend on further aspects, such as the fleet market trend, users’ pref-
erences, infrastructures, and policies. Meelen et al. (2021) evaluated the 
level of impact on the upscaling potential of V2G by analyzing 
socio-technical trends through a system-level account approach. Ac-
cording to Noel et al. (2021), V2G adoption should be encouraged by 
user-based innovations by evaluating three concepts, i.e., tinkering, 
testing, and tacit knowledge. Following these concepts, the proposed 
work can provide a testing contribution from car-sharing and grid op-
erators’ perspectives, to evaluate economic and energy potential bene-
fits applied to a specific real network. 

2.3. V2G smart charging and car-sharing systems: contribution and 
outline 

The first steps to develop EV charging algorithms in a one-way sta-
tion-based electric CSSs have been published by Gambella et al. (2018), 
Brendel et al. (2018), and Illgen and Höck (2018). However, these 
models do not consider selling energy to the power grid but only G2V 
optimization, that is, from the power grid to the vehicle perspective. 

In the literature, the first models applied to V2G and CSSs were 
introduced by Freund et al. (2012) and Fournier et al. (2014). Freund 
et al. (2012) presented a software agent control architecture considering 
distribution system operators, micro smart grid operators, and 
car-sharing operators to maximize the EVs charging through the utili-
zation of renewable energy sources. Fournier et al. (2014) analyzed the 
integration of electric car-sharing fleets implemented with V2G 
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technology. They estimated the potential profit through the use of a 
Monte Carlo simulation model with real car-sharing data. 

Khalen et al. (2018) developed a mixed rental-trading strategy that 
predicts the day-ahead electricity prices and demand for each city dis-
trict, including uncertainties. The authors provided the optimal EV SOC 
management for maximizing V2G profit for fleet owners and validate the 
proposed strategy using real-life data of a CSS. Iacobucci et al. (2019) 
proposed two model-predictive control optimization algorithms for 
shared autonomous electric vehicles. They optimize V2G charging, 
routing, and relocation simultaneously. Mamalis et al. (2019) developed 
a queuing-theoretic model and several computational tools for coordi-
nating EVs in car-sharing service platforms. The authors have assumed 
that an EV battery can be divided into two distinct parts: the car-sharing 
service and the grid service part. The model provides an algorithm to 
optimize the transportation price and the EV battery split percentage for 
dual-use. Shuyun et al. (2019) introduced a dynamic pricing scheme for 
the EV-sharing network. The authors formulated the dynamic pricing 
scheme as an optimization problem that maximizes the system profit 
considering EVs relocation and Vehicle-Grid integration. Caggiani et al. 
(2020) proposed to optimize the start-of-day distribution of EVs between 
CSS depot and the service area and among stations. The two suggested 
models maximize the difference between V2G profits (coming from the 
EVs in the depot and the service area) and the lost revenue due to lost 
users (unsatisfied demand). These models have been solved with a 
heuristic and using a CSS simulator. Zhang et al. (2020) introduced a 
two-stage mathematical formulation that evaluates CSS design and EVs 
profitability by integrating V2G technology. They applied a 
linear-decision-rule-based approximation approach for solving dynamic 
operations, considering the minimization of overall costs as the primary 
objective function. Finally, recent work has been done by Li et al. (2022) 
related to EV sharing optimization with V2G operations considering 
electricity price stochasticity. The authors formulated the problem as a 
Markov decision problem which is solved with a dynamic programming 
algorithm. The problem is generalized for EV fleet location for obtaining 
optimal V2G profits according to the electricity market but it does not 
properly match reservation-based one-way CSSs functioning and EV 
fleet relocation between stations by including CSS revenues in the 
objective function. 

From the literature arises the need to consider the maximization of 
possible V2G profits in fleet management. However, this should not 
reduce revenues from system users. Indeed, if the power grid uses an EV, 
it lowers its SOC and could be unavailable to users if the SOC falls below 
a certain threshold level. On the other hand, if an EV is expected to 
remain unused, it could be worthwhile to sell the energy stored in its 
battery if the power selling price is higher than the power purchase 
price. For this reason, in this paper, we propose a model that, starting 
from a fixed fleet size, aims to find the optimal start-of-day EVs distri-
bution among stations and the optimal energy sale/purchase scheduling 
for each EV. These two outputs of the problem are defined by maxi-
mizing the sum of revenues from CSS users and V2G profits. Therefore, 
in addition to the ‘CSS revenues KPI’, we introduce the ‘V2G profits KPI’ 
resulting from smart charging and depending on mean expected electric 
energy prices and customers’ demand. Since this model is based on ex-
pected mean input data (for an average day) and it is formalized as 
linear programming (that may require, for real cases, computation times 
of hours, as shown in Section 4.2), it is suitable for preliminary assess-
ment on average daily V2G profitability. Therefore, the proposed model 
is to be considered particularly useful for defining strategies of CSSs 
companies and is not appropriate to be applied every day or dynamically 
during the day. For large-scale networks with day by day and/or real- 
time CSS and V2G management, implementing a heuristic/meta-
heuristic algorithm would be required but this is beyond the scope of this 
work. 

3. The proposed MILP model for the optimal fleet management 
of electric car-sharing systems with vehicle-to-grid operations 

In this section, we describe the proposed Mixed Integer Linear Pro-
gramming (MILP) model for optimal fleet and smart charging/dis-
charging management of a one-way electric CSS. After a list of notations 
used in this paper (Section 3.1), in Section 3.2, we introduce the basic 
assumptions of the model and the description of the two KPIs (CSS 
revenues and V2G profits) used in the MILP objective function. Finally, 
in Section 3.3 we show in detail the MILP mathematical formulation. 

3.1. Notation 

This section summarizes all the mathematical notations and symbols 
adopted in the paper. They are grouped into three main categories: sets, 
matrices, and vectors, decision variables, and parameters used for 
solving the proposed model. 

3.1.1. Sets, matrices, and vectors 

S = {1,…, i,…,S}: set of stations. 
T = {1,…, ts,…, te,…,T}: set of daily time steps. 
V = {1,…,v,…,V}: set of electric vehicles. 
A = {11, …, it− 1, it , it+1…, ST}: set of time-space network nodes ob-
tained combining set S with set T with elements it representing sta-
tion i at time step t. 
K = {1, …, k, …, K}: set of discretized intervals adopted for the 
piecewise linearization of the EV SOC charging/discharging pattern. 
C: time-space mean expected customer demand matrix with ele-
ments cit j representing the number of customers leaving from origin i 
at time step t headed toward destination j with it ∈ A, j ∈ S. 
Z: parking places vector with elements zi representing the number of 
parking places for each station i ∈ S. 
Δ: travel time matrix with elements δij representing the number of 
time steps required to travel from origin i to destination j. 
e: mean expected electric energy unit price vector with elements, et 
representing the unit price at time step t. 

3.1.2. Decision variables 

bv
it : binary decision variable which is 1 when vehicle v ∈ V parked at 

station i ∈ S is charging during time step t ∈ T, and 0 otherwise. 
sv
it : binary decision variable which is 1 when vehicle v ∈ V parked at 

station i ∈ S is discharging during time step t ∈ T, and 0 otherwise. 
wv

it : binary decision variable which is 1 when vehicle v ∈ V, parked at 
station i ∈ S, is on stand-by during time step t ∈ T, and 0 otherwise. 
xv

it j: binary decision variable which is 1 when vehicle v ∈ V goes 
through arc l = (it , j) from station i ∈ S to station j ∈ S at time step t ∈
T, and 0 otherwise. 
λvt

k : binary decision variable indicating the interval k ∈ K of the SOC 
of vehicle v ∈ V at time step t ∈ T. 
λbvt

k : binary decision variable indicating the interval k ∈ K of the SOC 
of vehicle v ∈ V at time step t ∈ T during the charging process. 
λsvt

k : binary decision variable indicating the interval k ∈ K of the SOC 
of vehicle v ∈ V at time step t ∈ T during the discharging process. 
SOCv

t : non-negative decision variable indicating the battery SOC, in 
percentage, of vehicle v ∈ V at time step t ∈ T. 

3.1.3. Parameters 

Q: battery energy capacity, expressed in kWh. 
βk

c : charging energy rate for interval k ∈ K, in percentage, i.e., the 
amount of SOC increase per time step of the charging phase. 
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βk
d: discharging energy rate for interval k ∈ K, in percentage, i.e., the 

amount of SOC decrease per time step of the discharging phase. 
εc: energy transfer efficiency during the charging phase, expressed in 
percentage. 
εd: energy transfer efficiency during the discharging phase, expressed 
in percentage. 
γk

c : transferred energy for the interval k ∈ K, in kWh per time step of 
the charging phase, i.e., the amount of electric energy transferred 
from power grid to EV battery during a time step of the charging 
phase, with γk

c = Q⋅ βk
c ⋅ εc. 

γk
d: transferred energy for the interval k ∈ K, in kWh per time step of 

the discharging phase, i.e., the amount of electric energy transferred 
from EV battery to power grid during a time step of the discharging 
phase, with γk

d = Q⋅ βk
d⋅ εd. 

α: en-route battery discharging rate, in percentage, i.e., the amount 
of battery SOC decrease during a time step of a user trip. 
p: EV usage fee per time step. 
ts: start of operating time step. 
te: end of operating time step. 
SOCmin: battery SOC minimum value (in percentage). 
SOCmax: battery SOC maximum value (in percentage). 

3.2. Model description and assumptions 

In this section, we present how we modeled CSS operations, EV’s 
charge/discharge phases, and the main problem parameters. The one- 
way station-based electric CSS consists of a set of CSS stations S and a 
set of electric vehicles V. Each station i ∈ S has a number of parking 
places equal to zi and is equipped with V2G-enabled charging columns 
so that one EV per parking place can be plugged in. The position and 
number of stations, the number of parking places for each station, and 

the number of vehicles are considered fixed input variables. Further-
more, we assume that the position and number of stations, as well as the 
number of parking places, EVs, and charging columns have been 
adequately designed for satisfying the current and the future customer 
demand. 

We apply a time discretization by dividing the whole day into T time 
steps, considering T as the set of all time steps t included in a day. Each 
electric vehicle v ∈ V has a battery energy capacity Q and can be picked- 
up or returned by a customer to one of the S = |S| stations through a 
reservation-based system. Each day is divided into two time windows 
(see Fig. 1) named ‘operating time’ (from t = ts to t = te) and ‘non- 
operating time’ (rest of the day). 

EVs must be booked in advance and used only during the operating 
time. Each vehicle v ∈ V can be in one of two states defined as ‘inactive 
state’ and ‘active state’ during the day. In the inactive states, EVs remain 
plugged into charging columns and are unused by customers; in the 
active states, EVs are unplugged from charging columns and are used by 
customers. In particular, inactive states can occur at any time of the day, 
while the active ones can happen only during the operating time. 

The active state is the one that may generate CSS revenues. We 
consider a time-space network and a time-space matrix of customer 
demand for evaluating EVs trips between origin/destination stations 
during the active state. The time-space network is a directed graph 
where A is the set of all time-space nodes it obtained by combining the 
stations in set S with the time steps in set T. In order to make a trip, the 
required information from the proposed model is related to customer 
demand. We set the time-space mean expected matrix of customer de-
mand as matrix C with cit j elements containing time and space infor-
mation (origin station i, destination station j, and time step t at which 
customers wish to reserve an EV parked in the station i). In particular, 
during a trip made by a customer, an EV is moving in the time-space 

Fig. 1. The CSS operating scheme that is used in the proposed model.  
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network through arcs l = (it ,j). A vehicle v traverses an arc l according to 
the value of the decision variables xv

it j. These variables assume a value 
equal to one if the arc l is traversed and a value equal to zero otherwise. 
The optimal distribution of the EVs at the beginning of the day (t = 1) is 
the first of the two model outputs. In particular, the optimal start-of-day 
station i for each vehicle v is the one where 

∑

j∈S
xv

i1 j = 1. This EVs distri-

bution has to be achieved through a static relocation (operator-based). 
In our model, the EVs transfers to be carried out through relocation, i.e., 
the planning of relocation staff operations, are not considered/sug-
gested. To evaluate travel times, it is necessary to set the matrix Δ with 
elements δij denoting the origin/destination travel time matrix between 
two nodes. The elements δij represent the number of time steps needed to 
traverse arc l = (it , j) at any time step t. Finally, we consider a fixed en- 
route battery discharging rate α that represents the amount of energy 
consumption during a time step of driving. CSS revenues are evaluated 
by multiplying the CSS fee p by the total driving time steps with clients. 

The inactive state is the one that may generate V2G profits. During 
the inactive state, the batteries may be in one of the following phases: 
charging, discharging, and stand-by phase. Generally, the EV battery 
charging/discharging pattern is non-linear. For example, the charging 
function is divided into two phases: the first phase in which the charging 
rate is approximately linear in time and the second phase in which the 
charging rate is concave with time (Montoya et al., 2017). The EV bat-
tery charging functions applied in mathematical formulations, e.g., for 
solving EV routing problems, are divided into three groups, such as 
constant (Hof et al., 2017), linear (Hiermann et al., 2016), and 
non-linear charging functions (Montoya et al., 2017). A compromise 
between approximating the charging function and the computation time 
needed to solve the mathematical formulation may be assuming a 
piecewise linear charging function (Fu and Dong, 2019; Jamshidi et al., 
2021) in which the charging pattern is divided into a certain number of 
intervals. Therefore, in the proposed model (see the M_PL model in 
section 3.3), we used a piecewise linear charging/discharging function 
considering a homogeneous discretization in K intervals. The charging 
and discharging rates are considered constant parameters when the EV 
battery SOC of vehicle v at time step t is in the k-th SOC interval but they 
are different for each interval. Under this assumption, in the charging 
phase, the battery state-of-charge SOCv

t of vehicle v at time step t and 
interval k is increased by a rate βk

c . Considering a charging energy 
transfer efficiency equal to εc, electric energy, in the interval k, γk

c (with 
γk

c = Q⋅ βk
c ⋅ εc) is purchased from the smart grid, during time step t, at 

mean expected energy unit price et . In the discharging phase, the reverse 
process occurs, i.e., the battery SOCv

t is decreased by a rate βk
d for vehicle 

v, time step t and interval k. Here, with a discharging energy transfer 
efficiency equal to εd, energy γk

d (with γk
d = Q βk

d⋅ εd) is sold at an expected 
electric energy unit price et during time step t and transferred from the 
battery to the smart grid. 

In the stand-by phase, there is no energy transfer (no purchase/sale 
occurs), and the SOCv

t remains unchanged. Furthermore, the SOC for 
each vehicle v at the start-of-day is represented by the decision variables 
SOCv

1. The proposed optimization model acts as a smart EVs charging/ 
discharging management system, and these three phases, related to CSS 
EVs during a day, represent the second output of the proposed model. 
Therefore, for each vehicle v, station i, and time step t, charging, dis-
charging, and stand-by phases are represented by binary decision vari-
ables named bv

it , s
v
it , and wv

it , respectively. These variables assume a value 
equal to one if the corresponding phase is in progress and a value equal 
to zero otherwise. V2G profits are given by the difference between en-
ergy sale revenues and energy purchase costs. V2G revenues, deriving 
from a vehicle v, are the sum, for all time steps, of the product of mean 
expected energy unit price et, transferred energy γk

c , and the decision 
variable sv

it . Similarly, V2G costs, deriving from a vehicle v, are the sum, 
for all time steps, of the product of mean expected energy unit price et , 

transferred energy γk
d, and the decision variable bv

it . V2G increases the 
number of battery charge/discharge cycles and could accelerate EV 
battery degradation (Dubarry et al., 2017). Indeed, the battery lifetime 
may depend on several factors such as temperature, time, charge/di-
scharge cycles number and power rates, depth of discharge, battery SOC 
charging/discharging interval, capacity, C-rate, and previous degrada-
tion rate (Bishop et al., 2013; Rezvanizaniani et al., 2014; Pelletier et al., 
2017; Thompson, 2018). However, in the literature, studies on the 
impact of V2G on batteries have shown variable results and there are 
conflicting opinions regarding this aspect (Lunz et al., 2012; Uddin et al., 
2018). For example, Uddin et al. (2017) have demonstrated that 
extending EV Li-ion batteries lifetime through a smart grid algorithm is 
possible. For a review on V2G batteries capacity losses, see Noel et al. 
(2019). The proposition of a smart grid algorithm for managing battery 
lifetime in a CSS with V2G technology is beyond the scope of this work. 
Therefore, aspects related to battery degradation have not been 
considered. 

3.3. Mathematical formulation 

In this section, we describe the mathematical formulation of the 
proposed Mixed Integer Linear Programming (MILP) to optimize the EVs 
charging/discharging schedules and the start-of-day EVs distribution of 
a one-way station-based V2G electric CSS. The MILP formulation, named 
M_PL, is introduced as follows. 

M_PL: 

maxp
∑

v∈V

∑

it∈A

∑

j∈S
xv

it j ⋅ δij +
∑

v∈V

∑

it∈A

∑

k∈K

(
et ⋅ γk

d ⋅ λsvt
k − et ⋅ γk

c ⋅ λbvt
k

)
(1) 

Subject to 
∑

i∈S

∑

j∈S
xv

i1 j = 1, ∀v ∈ V (2)  

∑

v∈V
xv

it j ≤ cit j,∀ it ∈ A,∀j ∈ S, i ∕= j (3)  

∑

j∈S
xv

it j =
∑

jt− δji ∈A

⃒
⃒
⃒j∕=i

xv
jt− δji i + xv

it− 1 i,∀v ∈ V, ∀it ∈ A (4)  

∑

v∈V

∑

j∈S
xv

it j ≤ zi, ∀it ∈ A (5)  

SOCv
t = SOCv

t− 1 + εc⋅
∑

k∈K
λbvt

k ⋅ βk
c − εd⋅

∑

k∈K
λsvt

k ⋅ βk
d − α

∑

i∈S|it∈A

∑

j∈S|j∕=i

xv
it j⋅ δij ∀v

∈ V, ∀t ∈ T
(6)  

bv
it + sv

it + wv
it = xv

it i, ∀it ∈ A, ∀v ∈ V (7)  

SOCv
1 ≤ SOCv

T , ∀v ∈ V (8)  

SOCmin ≤ SOCv
t ≤ SOCmax, ∀v ∈ V, ∀t ∈ T (9)  

∑

k∈K
λvt

k ⋅
100
K

⋅ (k − 1) ≤ SOCv
t− 1 ≤

∑

k∈K
λvt

k ⋅
100
K

⋅ k, ∀v ∈ V, ∀t ∈ T (10)  

∑

k∈K
λvt

k = 1, ∀v ∈ V, ∀t ∈ T (11)  

∑

k∈K
λbvt

k =
∑

i∈S|it∈A

bv
it , ∀v ∈ V, ∀t ∈ T (12)  

∑

k∈K
λsvt

k =
∑

i∈S|it∈A

sv
it , ∀v ∈ V, ∀t ∈ T (13)  
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λbvt
k + λsvt

k ≤ λvt
k , ∀v ∈ V, ∀t ∈ T,∀k ∈ K (14)  

bv
it , sv

it ,w
v
it ∈ {0, 1}, ∀v ∈ V,∀it ∈ A (15)  

xv
it j ∈ {0, 1}, ∀it ∈ A,∀j ∈ S , v ∈ V (16)  

λvt
k , λbvt

k , λsvt
k ∈ {0, 1}, ∀v ∈ V, ∀t ∈ T, k ∈ K (17) 

The proposed M_PL model (1)–(17) aims to maximize the objective 
function (1), which is the sum of two terms. The first one (i.e., ‘CSS 
revenues KPI’) is the sum of the revenues obtained from the CSS cus-
tomers’ trips fee p. The second one (i.e., ‘V2G profits KPI’) is the sum of 
the profits resulting from the energy sale/purchase between EVs batte-
ries and the power grid. The profits depend on the mean energy unit 
price et which is a function of time step t. 

The objective function is subject to the following constraints. Con-
straints (2) guarantee that, at the start of the day (t = 1), each vehicle v 
can choose only one arc l = (i1, j) from station i to station j. It allows the 
start-of-day EV assignment at each station i. These constraints make no 
distinction between operating time and non-operating time. For this 
reason, it is necessary to introduce Constraints (3) which allow the EV 
assignment according to the requests of customers cit j that leave from 
station i at time step t to reach destination j. To set the operating time 
range, the reservation system allows customers’ requests cit j only within 
two fixed time steps i.e., the starting operating time step ts and the 
ending operating time step te. Furthermore, we set i not equal to j to 
avoid the wrong assignment of decision variables xv

it j due to the null 
value of cit i. Constraints (4) represent the continuity of flow constraints 
at each time-space node it . Constraints (5) define the capacity limit of 
each station i. Thus, the total number of EVs present at station i at time 
step t cannot exceed the maximum number of parking places zi at this 
station. Constraints (6)–(10) define the variables, SOCv

t , which represent 
the EV battery SOC of vehicle v at time step t. Specifically, Constraints 
(6) allow calculating the EV battery SOC at time step t by the residual 
SOC at the previous time step (t– 1) and the sum of three terms. The first 
and the second term refer to the inactive state, while the third term 
refers to the active state, i.e., the electric energy consumption due to EVs 
displacement during CSS use. In particular, the first term provides the 
energy purchase from the power grid to the EVs batteries, while the 
second term provides the energy sale from the EVs batteries to the power 
grid. Constraints (7) ensure that only one of the charging, discharging, 
and stand-by phases are chosen during the inactive state of a vehicle v. 
Namely, when xv

it i = 1, i.e., vehicle v is plugged into a charging column 
of station i during time step t, which means that only one of the three 
decision variables, sv

it , b
v
it , and wv

it can be equal to one. Constraints (8) 
define the initial SOC of each vehicle v at time step t = 1. It must be 
lower than or equal to the SOC of the same vehicle v at the end of the day 
(t = T). Without these constraints, in order to obtain high V2G profits, 
the model would assign to SOCv

1 the maximum value allowed (e.g., 
SOCmax), arriving at the end of the day with the lowest possible SOCv

T 
value (e.g., SOCmin). This behavior could be effective for one day, but it 
would not express the average operations of the system. Constraints (9) 
define the SOC lower bound and upper bound of all EVs for each time 
step t. Constraints (10) define the interval k in which the SOC of vehicle v 
at time step t belongs due to the binary decision variable λvt

k . Constraints 
(11) ensure that exactly one interval k is selected for each vehicle v at 
each time step t. Constraints (12)–(13) allow assigning the binary de-
cision variables λbvt

k and λsvt
k through the binary decision variables bv

it 
and sv

it during the charging/discharging phases, respectively. Constraints 
(14) ensure for each vehicle v and time step t that at most one decision 
variable between λbvt

k and λsvt
k can be equal to 1 if the corresponding 

variable λvt
k is equal to 1. Finally, Constraints (15)–(17) define the 

domain of the decision variables. 
Solving problem (1)-(17) results in two main outputs, namely the 

EVs charging/discharging schedule, expressed by the optimal values of 

bv
it , sv

it and wv
it , including the SOC at the start of the operating time 

(SOCv
1), and the start-of-day EVs distribution among stations according 

to the values of decision variables xv
i1 j. 

The proposed M_PL model (1)–(17) can be reformulated considering 
the EV charging/discharging energy rates as constant during the whole 
phase and for every EV battery SOC (γk

c = γc; γk
d = γd; βk

c = βc; βk
d = βd). 

In other words, this simplification could consistently decrease the 
number of decision variables and, consequently, improve the perfor-
mance of the proposed model. Thus, the M_PL model can be reformu-
lated in the M_C model as follows. 

M_C: 

max p
∑

v∈V

∑

it∈A

∑

j∈S
xv

it j ⋅ δij +
∑

v∈V

∑

it∈A

(
et ⋅ γd ⋅ sv

it − et ⋅ γc ⋅ bv
it

)
(18) 

Subject to 
∑

i∈S

∑

j∈S
xv

i1 j = 1, ∀v ∈ V (19)  

∑

v∈V
xv

it j ≤ cit j,∀ it ∈ A,∀j ∈ S, i ∕= j (20)  

∑

j∈S
xv

it j =
∑

jt− δji ∈A

⃒
⃒
⃒j∕=i

xv
jt− δji i + xv

it− 1 i,∀v ∈ V, ∀it ∈ A (21)  

∑

v∈V

∑

j∈S
xv

it j ≤ zi, ∀it ∈ A (22)  

SOCv
t = SOCv

t− 1 + εc⋅ βc

∑

i∈S|it∈A

bv
it − εd⋅ βd

∑

i∈S|it∈A

sv
it − α

∑

i∈S|it∈A

∑

j∈S|j∕=i

xv
it j⋅ δij ∀v

∈ V, ∀t ∈ T
(23)  

bv
it + sv

it + wv
it = xv

it i, ∀it ∈ A,∀i ∈ S, ∀v ∈ V (24)  

SOCv
1 ≤ SOCv

T , ∀v ∈ V (25)  

SOCmin ≤ SOCv
t ≤ SOCmax, ∀v ∈ V, ∀t ∈ T (26)  

bv
it , sv

it ,w
v
it ∈ {0, 1}, ∀v ∈ V,∀it ∈ A (27)  

xv
it j ∈ {0, 1}, ∀it ∈ A, ∀j ∈ S, v ∈ V (28) 

The comparison between the proposed M_PL model and its refor-
mulation (M_C model) is shown in Section 4.1. 

4. Numerical application 

To test the proposed model effectiveness, we applied it on a small- 
size (Section 4.1) and a real-size network (Section 4.2) for evaluating 
mean car-sharing system revenues and V2G impacts/profitability. Be-
sides, for the real case network, a sensitivity analysis is carried out 
tuning up different parameters. As a result of the proposed model sce-
nario, referred to as ‘V2G-CSS’ from now on, it is possible to provide the 
optimal EV charging/discharging schedule and the optimal day-ahead 
assignment of EVs at each station at the beginning of the day, consid-
ering a fixed EV fleet and a fixed mean expected demand. 

4.1. Small-size numerical application 

In this section, we tested the M_PL model and its reformulation in 
order to evaluate their behavior in terms of objective function, number 
of decision variables, and computation time. 

The test network of this small-size application has the following 
characteristics: the total number of stations is set equal to 5 (S = 5) with 
5 parking places each (zi = 5 for each station i ∈ S). The EV fleet consists 
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of 10 EVs (V = 10) and the operating time is set equal to 10 h (T = 10) 
from 2:00 p.m. to 11:00 p.m. In this test, the non-operating time is not 
considered, that is ts = 1 and te = T. The operating time was discretized 
into 10 time steps of 1 h. Mean electric energy unit price et varies be-
tween 0.05 €/kWh and 0.25 €/kWh, following a typical day-ahead 
electricity market trend (see Fig. 5). The car-sharing usage fee per 
time step is set equal to p = 15 €/h (i.e., 0.25 € per minute). All the 
stations are equipped with fast-charging columns with CHAdeMO con-
nectors enabled with V2G technology. CHAdeMO is a Direct Current 
(DC) charging protocol developed by CHAdeMO Association. This pro-
tocol currently enables EV charging from 6 kW to 400 kW (CHAdeMO 
Association, 2021). The EV model chosen for this application is the 
Nissan Leaf, 2019 with a battery capacity of Q = 40 kWh, equipped with 
two inlets (Type 2 Alternating Current (AC) and CHAdeMO) and enabled 
with bidirectional charging. Considering the features of this EV model 
(Nissan Leaf, 2019), we assumed that the maximum vehicle range equals 
270 km and the full-charge time (from 0% to 100% of EV battery SOC) 
equals 135 min. We set the EV average travel speed equal to 25 km/h. 
The en-route battery discharging rate per time step is equal to α =
9.26%. This value is calculated considering the ratio between EV 
maximum covered distance and the EV average travel speed for each 
time step. Finally, the travel time matrix Δ and the time-space mean 
expected demand are shown in Table 1 and Table 2, respectively. We 
highlight that the inputs used for numerical applications do not contain 
users’ private information in order to follow privacy policies. Therefore, 
in Table 2, we consider customers’ movements through an identification 
number named ‘Customer ID’. 

We tested the M_PL model with a piecewise linear function dis-
cretizing the non-linear charging pattern of EV SOC through K intervals. 
Considering a Nissan Leaf 40 kW DC non-linear fast charge pattern 
(Fastned, 2021), we discretized it with a piecewise linear function 
through 5 intervals (K = 5), with the following EV SOC ranges (in per-
centage): [0, 20), [ 20, 40), [40, 60), [60, 80), and [80, 100]. From the 
SOC-Power graph, we obtained the corresponding SOC-time graph 
(Fig. 2) considering 1 h time steps with the following EV charge time 
ranges (in minutes): [0, 60), [ 20, 80], [40, 100), [60, 120), and [75, 
135]. 

From the SOC-time graph, we obtained the corresponding charging 
rates βk

c for each k-th interval, where β1
c = 57.03%, β2

c = 54.93%, β3
c =

47.49%, β4
c = 36.51%, and β5

c = 30.62%. Hence, charging rates βk
c are 

the average values between the minimum and maximum values of the k- 
th interval range. According to equation γk

c = Q⋅ βk
c ⋅ εc, we obtained also 

the corresponding transferred energy during the charging process γk
c , 

where γ1
c = 20.53 kWh, γ2

c = 19.77 kWh, γ3
c = 17.10 kWh, γ4

c = 13.14 
kWh, and γ5

c = 11.02 kWh. Due to the lack of data availability for Nissan 
Leaf discharging pattern, we set for this case the charging rate βk

d =

44.40% and the transferred energy γk
d = 16 kWh considered as constants 

for all k-th intervals. 
We solved the proposed M_PL model on a cluster of two computers 

using the CPLEX MILP exact solver of IBM ILOG. The two computers 
consist of 2 CPU Intel Xeon(R) E5-2660 v3 3.3 GHz, 10 cores (20 logical 
processors), and 128 GB memory each. Due to IBM LOG software limi-
tations, only 16 cores (32 logical processors) have been used. 

We run the model without CPU time limit and with a relative gap 
tolerance equal to 0%. The relative gap tolerance is the relative differ-
ence between the upper bound on the optimal objective function value 
(UB) and the lower bound (LB), i.e., the best-found objective function 
value, and it is calculated as UB− LB

UB × 100 expressed in percentage. With 
these settings, the optimization was not successful since the maximum 
available memory has been reached. Indeed, we set the CPU time limit 
equal to 72 h obtaining the following results with 1.48% of relative gap 
tolerance. The sum of V2G profits and V2G-CSS revenues (objective 
function value) is equal to 278.1 €. In particular, ‘CSS revenues KPI’ is 
equal to 240 € and ‘V2G profits KPI’, namely the difference between 
energy sale revenues and energy purchase costs is equal to 38.1 €. Since 
optimality has not been reached (relative gap tolerance equal to 0%), we 
decided to deeply analyze the reformulation of the proposed model (M_C 
model) optimization. In this case, the charging and discharging energy 
rates per time step (1 h) are considered the same and equal to βc = βd =

44.40%. Furthermore, considering εc = εd = 90%, the transferred en-
ergy per time step is γc = γd = 16 kWh. 

The obtained results can be compared with a baseline scenario of a 
car-sharing system without V2G operations, referred to as ‘B_CSS’. In 
other words, in this scenario, it is only allowed to purchase energy from 
the grid (G2V) but not to sell it (the decision variables sv

it have been set 
equal to zero). The M_C model has been solved in a computation time 
equal to 2.3 s, and the main results are shown in Table 3. 

From Table 3 we can observe that, for V2G-CSS, the optimal value of 
the objective function is equal to 277.6 €. In particular, ‘CSS revenues 
KPI’ is equal to 240 € (86.5% of the objective function) and ‘V2G profits 
KPI’, namely the difference between energy sale revenues and energy 
purchase costs is equal to 37.6 € (i.e., 13.5% of the objective function). 
Revenues for both scenarios are the same. However, the sale of energy in 
the proposed scenario allows not only to recover the required costs to 
charge the EVs, but also to obtain positive profits. Furthermore, V2G 
profits may be valued as revenues from car-sharing system usage. Since 
in this application the average revenue per user is equal to 30 €, V2G 
profits can be considered as the equivalent of about 1 more customer out 
of 8. 

The solution can also be depicted on the time-space network of Fig. 3. 
In this figure, each time-space node it is represented by a circle and the 
number of EVs parked at station i at time step t is contained inside. 

According to Constraints (19), (21), and (22), each vehicle v must 
move between time-space nodes depending on the values of xv

it i or xv
it j. If 

xv
it i = 1, it means that the EV is moving only through time and not 

through space, i.e., the EV remains parked at the same station between 
two consecutive time steps. On the contrary, if xv

it j = 1, the EV is moving 
through the time-space arc l = (it ,j), and is used by a customer. As shown 
in Fig. 3, the EVs movements between time-space nodes are represented 
by two types of arrows. The blue and the red arrows display the decision 
variables xv

it i and xv
it j, respectively. Furthermore, observing Table 2 and 

Fig. 3, we can see that all user demand is satisfied. In particular, three 
vehicles (vehicles 5, 6, and 8) are not used by customers, i.e., the V2G- 
CSS revenues coming from these vehicles are equal to zero (see Table 3). 

The optimal energy sale/purchase scheduling for each EV, that is the 
vehicle-by-vehicle EV battery SOC for each time step, is shown in Fig. 4. 

Table 1 
Travel time matrix Δ expressed as the number of time steps t (hours) needed to 
travel from station i to station j.  

Origin station i Destination station j 

1 2 3 4 5 

1 0 1 2 3 2 
2 1 0 1 2 3 
3 2 1 0 1 3 
4 3 2 1 0 2 
5 2 3 3 2 0  

Table 2 
Time-space mean expected demand.  

Customer ID Origin i Destination j Origin of the trip time step t 

1 1 2 2 
2 2 5 5 
3 3 4 7 
4 3 5 7 
5 3 1 7 
6 4 5 1 
7 5 1 4 
8 5 1 5  
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The charge phase is shown with solid lines, the discharge phase with 
dotted lines while the en-route discharge phase with dashed lines. 

Except for vehicle 8 (which is one of the three vehicles not used by 
customers), we can see that the SOC of the EVs, at the beginning and the 
end of the operating time considered, take on values that are close to 
each other, i.e., about 20%–40% and about 30%–50%, respectively. 

To better understand the trend of EVs SOC, it is useful to observe 
Fig. 5. This figure shows the total amount of energy transferred from EVs 

to the power grid, and vice versa, and the values of energy unit price 
during the day that were considered in this small-size numerical 
application. 

The model allows smart charge/discharge operations, that is, it al-
lows to purchase energy (charge phases) when the mean energy unit 
price et is low and to sell energy when et is high. In particular, 348 kWh 
are purchased from the power grid to charge the EVs batteries against 
432 kWh sold from EVs batteries to the power grid. 

Fig. 2. SOC-Power and SOC-time graphs with piecewise linear charging function implemented in the M_PL model.  

Table 3 
Small-size application main results.  

EV 
v 

B_CSS V2G-CSS 

Start-of-day assigned 
station i 

B_CSS revenues 
[€] 

Energy purchase 
costs [€] 

Start-of-day assigned 
station i 

V2G-CSS 
revenues [€] 

Energy sale 
revenues [€] 

Energy purchase 
costs [€] 

V2G profits 
[€] 

1 1 60 − 1.6 1 60 3.2 − 3.2 0 
2 2 0 0 3 15 8 − 4 4 
3 3 0 0 3 30 8 − 4 4 
4 3 15 − 0.8 3 45 4.8 − 2.4 2.4 
5 3 30 − 0.8 4 0 8 − 2.4 5.6 
6 3 45 − 0.8 4 0 8 − 2.4 5.6 
7 4 30 0 4 30 7.2 − 3.2 4 
8 5 0 0 5 0 8 − 2.4 5.6 
9 5 30 − 0.8 5 30 6.4 − 4 2.4 
10 5 30 − 0.8 5 30 8 − 4 4  

Total 240 ¡5.6  240 69.6 − 32 37.6  

Fig. 3. Time-space network functioning scheme.  
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A comparison between the M_PL and M_C models in terms of the 
objective function, number of decision variables, and computation time 
is shown in Table 4a and Table 4b. 

From Table 4a, we can observe that the objective functions differ by 
0.5 €. From Table 4b, we can observe that for solving the small-size test 
network, the M_PL model has a much higher number of binary decision 
variables, non-zero coefficients, and constraints. Furthermore, the dif-
ference in terms of computation time between the M_PL and M_C models 
is not comparable (i.e., 2.3 s against 72 h) despite only 10 h of operating 
time having been considered. For this reason, the M_PL model turned out 
to be not applicable for large-size networks due to too high computation 
time. We can state that the M_C model is more appropriate to use in 
practice compared to the M_PL model since the difference in the 
objective function values is small and the computation time for the M_C 
model is only 2.3 s compared to 72 h for the M_PL model. It seems that 

the adoption of the EV charging/discharging constant function yielded 
similar V2G-CSS revenues and V2G profits when compared to EV 
charging/discharging piecewise linear function. Hence, the adoption of 
M_C model is not only convenient in terms of computation time but also 
acceptable in terms of the realism of the results in this context. Thus, for 
the large-size network (Section 4.2) the M_C model with constant EV 
charging/discharging function has been applied. Note that this is not to 
say that such simplification should always be done, we argue that for the 
purpose of understanding the scale of the economic benefits of V2G used 
as part of a car-sharing system. 

4.2. Real case network: the city of Delft 

The M_C model (18)–(28), also referred to as ‘the proposed model’ 
from now on, has been applied to the city of Delft, the Netherlands. The 
numerical application is a ‘quasi-real’ case study, because only a part of 
the data used is real. The real data comes from the Dutch mobility 
dataset (used by Correia and van Arem (2016), Liang et al. (2018), and 
Liang et al. (2020)) and the Delft road network. The Dutch government 
collects the mobility dataset for mobility research gathering daily in-
formation related to households’ purposes of travel, origin and desti-
nation, transport mode, departure, and arrival times. The original 
dataset contains 68,640 trips made by Delft households during one day 
of the year 2008. 

The dataset has been filtered and aggregated to obtain a mean hy-
pothetical next day expected car-sharing demand among the Delft city 
zones. We have assumed that several CSSs operate in the city of Delft. 
Therefore, this demand should be satisfied by all CSSs in the city. Ac-
cording to the assumed CSSs operating time, set as 6:00 a.m. - 10:00 p. 
m., the total number of trips in the dataset using cars and taxis was 
reduced to 20,640. These trips have been aggregated into several 
groups, each consisting of households with the same characteristics, i.e., 

Fig. 4. Test network results: EV battery SOC variation for each time step.  

Fig. 5. The energy exchanged and energy unit price.  

Table 4a 
Objective function results comparison for the small-size test network - V2G-CSS scenario.  

EV charging/discharging function Obj. fun. value 
[€/day] 

Obj. fun. Upper 
Bound [€/day] 

Rel. gap 
[%] 

V2G-CSS revenues 
KPI [€/day] 

Energy sale 
revenues [€/day] 

Energy purchase 
costs [€/day] 

V2G profits KPI 
[€/day] 

Piecewise linear function (M_PL) 278.1 282.2 1.48 240 72.8 34.7 38.1 
Constant function (M_C) 277.6 277.6 0.00 240 69.6 32.0 37.6  

Table 4b 
Performance results comparison for the small-size test network - V2G-CSS scenario.  

EV charging/discharging function Decision variables Non-zero Coeff. Constr. CPU time [s] 

Binary Continuous 

Piecewise linear function (M_PL) 5680 100 23980 2700 260000 
Constant function (M_C) 4000 100 18880 1700 2.3  
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gender, age, and education level. The total number of trips of each group 
has been divided by a coefficient μ = 20 called expansion coefficient 
(Correia and van Arem, 2016), to consider only the fraction of the 
car-sharing demand. Therefore, for the 20,640 real households’ trips, 
1032 CSS trips have been considered in the model. This demand has 
been aggregated into 10-min intervals and shows the trend depicted in 
Fig. 6. Furthermore, in this numerical application, all CSS trips are 
assumed as booked in advance and the origin and destination, as well as 
the starting departure time, are obtained from the original database. The 
proposed model does not require knowing users’ sensitive information. 
For more details, see the recent advanced model proposed by Li et al. 
(2021a) that considers users’ privacy protection. 

We assume that one of the CSSs operating in the city of Delft has 
V2G-enabled EVs and charging columns. We apply our proposed model 
to this system (V2G-CSS). We have set the number of car-sharing stations 
of this system equal to 19. These stations have been located by maxi-
mizing the V2G-CSS covered area and considering a customer catchment 
area of each station based on the maximum walking distance that a car- 
sharing customer can cover. This distance has been set equal to 500 m 
(Herrmann et al., 2014). By placing a V2G-CSS station in the center of a 
catchment area and considering Euclidean distances, a station can be 
reached from any point of a circle centered in the station and with a 
radius of 500 m. However, the city of Delft does not have a radial street 
network but approximately a grid street layout. For this reason, we have 
considered Manhattan distances according to the Taxicab geometry 
(Krause, 1973) instead of Euclidean distances. Therefore, the customer 
catchment area is not a circle, but a square centered in the station with 
the diagonals parallel to the streets and 1000 m long (taxicab circle). In 
Fig. 7, the V2G-CSS stations and the customer catchment areas are 
shown. 

The trips dataset is defined according to the Origin/Destination (OD) 
demand matrix among 46 centroids (see black nodes in Fig. 7). However, 
it is assumed that all customers within the taxicab circle will use the car- 
sharing station located in the respective center. For this reason, a data 
aggregation process was used to define the V2G-CSS demand matrix C. 
The OD V2G-CSS demand of the centroids falling in a taxicab circle, as 
well as the corresponding departure times, have been aggregated in the 
center of the circle. For example, station s1 demand is the sum of cen-
troids 1 and 24 demand. Some centroids (see red nodes of Fig. 7) do not 
present any customers’ OD demand, so they have not been considered in 
the data aggregation process. 

The travel time matrix Δ has been calculated by dividing the mini-
mum distance between two stations along with the Delft street network 
by the average speed of an EV and by the duration of a time step. The 
shortest paths have been evaluated by applying Dijkstra’s algorithm. We 
set an EV average speed equal to 15 km/h and a time step equal to 10 
min. For example, the δ1,15 element of the travel time matrix (the travel 
time between station s1 and s15) is equal to 3 time steps since the dis-
tance between s1 and s15 is equal to 7 km. 

We assumed that each of the 19 stations distributed on the Delft 
network has 10 parking places available (zi = 10 for each station i ∈ S). 

The EV fleet consists of 50 EVs (V = 50) and the used EV car model is the 
same as in the small-size numerical application. Based on the mean 
expected demand, this system sizing was set to saturate the V2G-CSS 
usage, reducing the time the EVs are parked. In this way, the opportu-
nities to sell/buy energy (i.e., to obtain V2G profits) are on average 
reduced. The whole day was divided into 144 time steps (T = 144), 
considering time steps t of 10 min. The operating time has been set equal 
to 16 h between ts = 36 (6:00 a.m.) and te = 132 (10:00 p.m.) while the 
non-operating time is set equal to 8 h between t = 1 (00:10 a.m.) and 
ts− 1 = 35 (05:50 a.m.), and from te+1 = 133 (10:10 p.m.) to T = 144 
(12:00 a.m.). The V2G-CSS usage fee per time step has been set equal to 
p = 2.5 €/time step. 

Generally, the electric energy price is a time and day dependent 
variable due to the energy demand response trade. Several authors have 

Fig. 6. CSS demand pattern.  

Fig. 7. Delft network and catchment areas (based on Maps Data: Goo-
gle, ©2019). 

Fig. 8. Day-ahead Dutch electricity market: daily electric unit price variation – 
average values of a weekday of year 2018. 
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introduced prediction models for electric energy prices (Contreras et al., 
2003; Shuman and Yang, 2019) and Jiang and Hu (2018) have recently 
written a review paper. We assume that the mean next-day expected 
energy prices can be obtained from the day-ahead electricity market. 
Specifically, we considered the average hourly electric energy prices of 
one typical weekday in 2018 obtained from the official day-ahead Dutch 
electricity market (SMARD, 2019) as depicted in Fig. 8. In particular, 
during the day, the electric energy unit price et varies between 0.039 
€/kWh and 0.068 €/kWh. Notice as well that power in the city is 
modeled in an aggregated way meaning that we do not consider that the 
grid may be stronger or weaker in different parts of the city. 

To perform a sensitivity analysis, two different types of V2G charging 
columns/speed (Level 2 with Alternating Current named L2, Level 3 
with Direct Current (DC) fast charge named L3) and three different 
vehicle battery capacities (Q1 = 24 kWh, Q2 = 40 kWh, and Q3 = 62 
kWh) have been considered. From the combination of the charging 
column types and the battery capacities, six scenarios were evaluated 
(L2Q1, L2Q2, L2Q3, L3Q1, L3Q2, L3Q3). For each of these scenarios, we 
have solved a corresponding baseline scenario (B_CSS) that is a car- 
sharing system without V2G operations (B_L2Q1, B_L2Q2, B_L2Q3, 
B_L3Q1, B_L3Q2, B_L3Q3). As assumed in the small-size numerical 
application for the M_C model, the charging and discharging energy 
rates, and consequently the transferred energy per time step, were 
considered the same for each scenario (β = βc = βd and γ = γc = γd). 
However, two energy transfer efficiency (ε = εc = εd = 95% for L2 and ε 
= εc = εd = 90% for L3) have been considered. The six different sce-
narios with the corresponding parameter values (obtained as described 
in Section 3 and in the small-size numerical application) are shown in 
Table 5. 

In order to obtain near-optimal solutions in reasonable computation 
time, we set the relative gap tolerance equal to 10% and the CPU time 
limit equal to 72 h. 

4.2.1. Results analysis 
The results of the proposed model scenarios (V2G-CSS) were ob-

tained in a mean computation time equal to 28.4 h where L2Q1 is shown 
to be the fastest scenario solved (4 h) while L3Q1 the slowest one (see 
Table 6). 

Computation times could be accelerated by using more recent/per-
forming CPUs or increasing the relative gap tolerance. The satisfied 
demand and the average number of trips are very similar across all 
scenarios. In particular, for baseline/proposed model scenarios, the 
average satisfied demand and the average number of trips are equal to 
28.5%/27.1% and 294/279, respectively. Indeed, for one-way CSSs, 
fully satisfy the demand requires a large number of vehicles to face odd 
trips, if there are no vehicle relocation operations during the day (Cor-
reia and Antunes, 2012). The rest of the demand is supposed to have 
been satisfied by the other car-sharing systems assumed to operate in the 
city of Delft. The main obtained results of all tests are shown in the next 
tables and figures. Specifically, Table 7a and Table 7b summarize the 
optimization results of the six baseline/proposed model scenarios in 
terms of objective function value, upper bound objective function value, 
relative gap, and KPIs. Table 8 and Fig. 9 summarize the V2G-CSS sce-
nario results regarding energy transferred from/to the grid during the 
operating and non-operating time. Table 9 shows the number of EVs 

assigned through the optimization at the beginning of the day among all 
stations. Finally, Fig. 10 depicts the optimized daily EVs charging/di-
scharging schedules for the main proposed model scenarios. 

According to Tables 7a and 7b, we can make the following obser-
vations from an economic point of view:  

• For the V2G-CSS scenarios, the average revenue is equal to 1510.05 
€/day. This value appears to be lower than the baseline scenarios, but 
this revenue was obtained for higher average relative gaps (see L3Q2 
case). The baseline solutions should also be feasible for V2G-CSS 
scenarios (no energy is sold) and so, optimal V2G-CSS solutions 
should always be better or the same. The higher upper bounds for 
V2G-CSS scenarios, compared to the corresponding baseline ones, 
indicate that there is indeed room to find better solutions. The 
average V2G profit is equal to 36.04 €/day, and it is comparable with 
those estimated by Khalen et al. (2018) and Fournier et al. (2014). 
The best results appear to be those of L3Q3 with the highest V2G 
profit corresponding to the highest V2G-CSS revenue. However, it is 
not possible to define the best scenario among the six with great 
certainty because the obtained objective function and KPI values are 
very similar to each other with different relative gaps.  

• We can observe that V2G profits resulted to be much lower than CSS 
revenues in all scenarios. Since the value of the parameter p (usage 
fee per time step) has been set higher than any difference between 
two energy prices et , the priority of the optimization is to maximize 
the V2G-CSS use with respect to V2G profits. This implies that the 
sale of energy takes place mostly if it does not increase the unsatis-
fied demand. Hence, the V2G profits term does not negatively affect 
the CSS revenue term in the optimization. We can observe it by 
comparing B_L2Q2 and V2G_CSS L2Q2 scenarios results where we 
obtained the same amount of CSS revenues (1550 €/day) with a 
comparable relative gap (0.21% and 0.57%, respectively).  

• If we look at the baseline scenarios, we can see that the charging 
costs are lower than the corresponding values of the V2G-CSS sce-
narios. Therefore, most of the charging costs are due to the profit-
ability given by the purchase of energy at a lower price to be sold 
later at a higher price. Since the profits are positive in each scenario, 
the V2G technology also allows to fully cover the daily charging costs 
due to users’ trips.  

• In all scenarios (V2G-CSS and B_CSS), customers use EVs on average 
for only about 12% of the operating day. This value is comparable 
with the vehicles utilization rate evaluated by Sprei et al. (2019) over 
12 European and US cities for free-floating CSS. Accordingly, for 
about 88% of a day, CSS EVs are parked and, consequently, do not 
generate any revenue for CSS companies. Given that V2G-CSS mean 
revenue per customer is equal to about 5.5 €, V2G profits can be 
considered equivalent to about 7 more customers out of 279 during a 
day. 

From Table 8 and Fig. 9, we can make several key considerations, for 
the V2G-CSS scenarios, from an energy point of view:  

• Considering the L2 charge speed type, the V2G-CSS could provide 
more than 1 MWh from 50 EVs during the operating time. Specif-
ically, the best scenario in terms of net energy supplied to the grid 

Table 5 
Parameters used in the six scenarios.  

Scenario Charger type Q [kWh] β [%] ε [%] α [%] γ [kWh] Full-charge time [h] Maximum range [km] 

L2Q1 L2 (AC) 24 3.03 95 1.25 0.691 5.5 200 
L2Q2 L2 (AC) 40 2.22 95 0.92 0.844 7.5 270 
L2Q3 L2 (AC) 62 1.45 95 0.65 0.855 11.5 385 
L3Q1 L3 (DC) 24 12.5 90 1.25 2.70 1.33 200 
L3Q2 L3 (DC) 40 7.4 90 0.92 2.67 2.25 270 
L3Q3 L3 (DC) 62 4.76 90 0.65 2.67 3.5 385  
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during the operating time resulted to be scenario L2Q2 with around 
1.6 MWh. For L3 charge speed type, the V2G-CSS could provide less 
than 1 MWh from 50 EVs during the operating time from scenario 
L3Q1. Aside from scenario L3Q1, from scenario L3Q2 and L3Q3, the 
amount of net energy provided to the grid during the operating time 
is around 1.6 and 2.3 MWh, respectively. In general, the net energy 
transferred to the grid during the operating time resulted to be sig-
nificant. Considering an average energy demand per household of 10 
kWh/day (see de Almeida et al., 2011), according to the results of all 
scenarios, during the energy peak hour period, each EV could satisfy 
around 2 households electric energy supply.  

• The mean transferred energy from the grid to the vehicles of the 
baseline scenarios is much lower than that of the V2G-CSS scenarios 
(16% only). The greater the charging speed, the greater this differ-
ence. In other words, in the V2G-CSS scenarios, most of the energy 
purchased to charge the EVs batteries is not used for en-route dis-
charging phases but is provided back to the grid thanks to V2G 
technology.  

• All energy transactions from/to the grid are shown in Fig. 9. From 
this figure, we can see that the energy sale takes place during energy 
peak load demand. The amount of energy transferred from the grid 

during the non-operating time is comparable with the amount of 
energy transferred to the grid during the operating time. This is 
useful for energy providers for frequency regulation and energy 
balance issues for reducing operational costs.  

• Furthermore, from Fig. 9, we can see that in the L2 scenarios almost 
all EVs are either in the energy sale phase or in the energy purchase 
phase. However, for L3 scenarios, EV battery charge/discharge 
pattern is different. It turns out that frequently during the day, in the 
same time interval, a part of EVs sells energy and a part buys it with 
reduced net energy transferred. L2 charge speed type could provide a 
comparable amount of electric energy to the grid than the fast charge 
L3 by using EVs equipped with batteries Q1 or Q2. This could 
incentivize installing electric columns type L2 instead of type L3 with 
high savings in terms of fixed investment costs. This observation is 
confirmed by the numerical application of Zhang et al. (2020). 
However, according to Yoon et al. (2019), adopting charging col-
umns type L2 instead of type L3 could increase the EV fleet size and, 
consequently, increase fixed investment costs. 

From Table 9, we can make remarks from a fleet management point 
of view:  

• In all analyzed scenarios, the start-of-day EVs distribution among 
stations follows almost the same configuration. Therefore, it seems 
that it does not strongly depend on EVs battery energy capacity and 
on charging columns type speed. This result is obtained because the 
customers’ demand is the same for all the scenarios and therefore the 
cars are positioned to satisfy the users.  

• Comparing the start-of-day V2G EVs distribution of the V2G-CSS 
scenarios with the corresponding baseline ones, we can observe 
that this distribution is not greatly influenced by the V2G charge/ 
discharge operations. This could depend on the relative weight of the 
two objective function terms already discussed above. Since the ve-
hicles are positioned at the start-of-day mainly to meet customers’ 

Table 6 
Comparison between V2G-CSS and baseline CSS scenarios in terms of problem size and computation time.  

Scenario Decision variables Non-zero Coeff. Constr. CPU time [h] 

Binary Continuous L2Q1 L2Q2 L2Q3 L3Q1 L3Q2 L3Q3 

V2G-CSS 3009600 7200 18691600 395483 4.02 28.27 13.81 56.84 50.03 17.63 
B_CSS 2880000 7200 18281201 395483 0.79 0.78 0.74 0.37 0.55 0.50  

Table 7a 
Main baseline scenarios results.  

B_CSS 
scenario 

Obj. fun. 
value 

[€/day] 

Obj. fun. 
Upper 
Bound 

[€/day] 

Rel. 
gap 
[%] 

B_CSS 
revenues 

KPI 
[€/day] 

Energy 
purchase 

costs 
[€/day] 

Average 
EVs 

usage 
[%] 

B_L2Q1 1531.67 1550.10 1.20 1540.0 8.33 12.90 
B_L2Q2 1545.13 1548.42 0.21 1550.0 9.87 13.10 
B_L2Q3 1516.34 1547.57 2.06 1527.5 11.16 12.58 
B_L3Q1 1530.05 1550.10 1.31 1540.0 9.95 12.79 
B_L3Q2 1521.91 1548.40 1.74 1535.0 13.09 12.88 
B_L3Q3 1545.19 1547.51 0.15 1557.5 12.31 12.79  

Table 7b 
Main V2G-CSS scenarios results.  

V2G-CSS 
scenario 

Obj. fun. value 
[€/day] 

Obj. fun. Upper 
Bound [€/day] 

Rel. gap 
[%] 

V2G-CSS revenues 
KPI [€/day] 

V2G profits KPI 
[€/day] 

Energy sale 
revenues [€/day] 

Energy purchase 
costs [€/day] 

Average EVs 
usage [%] 

L2Q1 1546.94 1570.59 1.53 1530.0 16.94 117.83 100.89 12.58 
L2Q2 1575.98 1585.26 0.57 1550.0 25.98 152.46 126.48 12.83 
L2Q3 1455.10 1585.15 8.94 1432.5 22.60 147.93 125.33 11.92 
L3Q1 1466.91 1595.48 8.76 1435.0 31.91 267.66 235.75 11.96 
L3Q2 1477.89 1617.55 9.68 1422.5 55.39 313.23 257.84 12.06 
L3Q3 1600.90 1647.83 2.89 1537.5 63.41 442.13 378.73 12.94  

Table 8 
Energy transferred from/to the grid in the different proposed model scenarios.  

Scenario Energy transferred to the grid (V2G) - energy sold 
[kWh] 

Energy transferred from the grid (G2V) - energy purchased 
[kWh] 

Net energy transferred (V2G - G2V) [kWh] 

Oper. time Non-oper. time Total Oper. time Non-oper. time Total Oper. time Non-oper. time Total 

L2Q1 1804.2 120.2 1924.4 859.6 1268.7 2128.3 944.6 − 1148.5 − 203.9 
L2Q2 2443.4 44.7 2488.1 810.2 1892.2 2702.4 1633.2 − 1847.5 − 214.3 
L2Q3 2379.5 42.8 2422.3 887.5 1779.3 2666.8 1492.0 − 1736.5 − 244.5 
L3Q1 3510.0 1085.4 4595.5 2605.5 2089.8 4695.3 904.5 − 1004.4 − 99.9 
L3Q2 4264.0 990.6 5254.6 2683.4 2608.6 5292.0 1580.6 − 1618.0 − 37.4 
L3Q3 6223.8 1364.4 7588.2 3908.9 3689.9 7598.8 2314.9 − 2325.5 − 10.6  
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demand, and the SOC of each vehicle at the end of the day are similar 
to that of the start-of-day (see Fig. 10), the relocation costs of the 
V2G-CSS scenarios could be comparable to those of the baseline 
ones. 

From Fig. 10, we can make the following considerations:  

• EV batteries charging occurs mainly in three times of the day when 
the price of energy is relatively low compared to the other periods, i. 
e., between 0:00 a.m. and 6:00 a.m., between 12:00 p.m. and 4:00 p. 
m. and between 8:00 p.m. and 0:00 a.m.  

• The charge and V2G discharge slopes are greater the faster the 
charge and the lower the batteries capacity. In other words, these 
slopes are the lowest in the L2Q3 scenario and the highest in the 
L3Q1 scenario and grow according to the following order: L2Q3, 
L2Q2, L2Q1, L3Q3, L3Q2, L3Q1. For this reason, the L2Q3 scenario 

turns out to be the least constrained, i.e., the EVs start-of-day SOC is 
neither low nor the same for all vehicles. As the charge/discharge 
slopes increase (e.g., L2Q1 scenario), all vehicles assume almost the 
same and lower start-of-day SOC to maximize the objective function. 
For all vehicles, the SOC at the end of the day is very similar to the 
one at the beginning of the day and this can approximately guarantee 
the SOC continuity between one day and the next, representing the 
average operations of the system.  

• For scenarios with higher charging speeds, SOCs fluctuate around the 
maximum or minimum values for a more extended period. During 
these periods, the energy prices are increasing, and therefore, the 
fluctuations are due to successive phases of energy purchase and sale. 

5. Conclusions and further developments 

Vehicle-to-Grid (V2G) technology allows electric energy transfer 

Fig. 9. Daily electric energy transactions for all V2G-CSS scenarios.  

Table 9 
Optimal EV distribution among stations i at the beginning of the day (time step t = 1) for the different scenarios.  

Scenario Station i 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

B_L2Q1 0 0 0 0 0 2 0 0 0 3 9 2 6 0 2 6 1 9 10 
L2Q1 0 0 0 0 0 2 0 0 0 2 10 3 6 0 2 6 1 8 10 
B_L2Q2 0 0 0 0 0 1 0 0 0 3 9 3 6 0 1 7 1 9 10 
L2Q2 0 0 0 0 0 2 0 0 0 1 9 4 7 0 2 7 0 8 10 
B_L2Q3 0 0 0 0 0 1 0 0 0 3 7 2 8 0 1 8 1 9 10 
L2Q3 0 0 0 0 0 4 0 0 0 2 7 4 7 0 2 5 1 8 10 
B_L3Q1 0 0 0 0 0 1 0 0 0 2 7 3 9 0 1 7 1 9 10 
L3Q1 0 0 0 0 0 2 0 0 0 3 6 3 5 0 3 7 3 8 10 
B_L3Q2 0 0 0 0 0 2 0 0 0 1 8 4 8 0 2 6 0 9 10 
L3Q2 0 0 1 0 0 4 0 0 0 5 8 2 4 1 1 6 0 8 10 
B_L3Q3 0 0 0 0 0 1 0 0 0 2 9 4 6 0 1 6 2 9 10 
L3Q3 0 0 0 0 0 0 0 0 0 3 10 2 7 0 2 7 0 9 10  
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from vehicles to the grid. It can create benefits both for electric vehicles 
(EVs) owners and for grid operators/societies. For the former, V2G can 
be a source of income by selling previously purchased energy at a higher 
price. For the latter, it can be used, for example, for peak loading/fre-
quency regulation adopting EV batteries as a source of energy storage. 
V2G technology is already on the market with some electric car models 
and bi-directional charging columns, but the V2G applications are 
currently mainly reserved for pilot projects. Given the growing electric 
car demand and the regulations that different countries are recently 
adopting, V2G could spread on a large scale and could be implemented 
for private users and private/public EVs fleet companies. 

Although V2G applications to a Car-Sharing System (V2G-CSS) have 
not yet been realized on a large scale, in the literature, some authors 
have started to evaluate the profitability of this technology when asso-
ciated with CSSs. In this work, we have proposed a novel Mixed Integer 
Linear Programming formulation that determines EVs distribution 
among stations at the beginning of the day and suggests the optimal 
daily EVs charging/discharging schedules. In particular, the objective of 
the problem is to maximize the sum of revenues from system users and 
V2G profits. The proposed model can manage both linear and non-linear 
EV charging/discharging energy rates by assuming a constant (M_C 
model) and a piecewise linear (M_PL model) EV charging/discharging 
function, respectively. V2G-CSS revenues and V2G profits are obtained 
according to mean expected daily customers demand and energy sale/ 
purchase criterion based on mean expected day-ahead market electric 
energy price variation. This model can be applied to evaluate the 
possible average daily profitability of V2G operations starting from a 
fixed fleet and V2G-CSS size. We tested the effectiveness of proposed 
model on a small and a large-size test network assuming mean V2G-CSS 
demand and energy prices as known. However, for the real case 
network, only the proposed model with constant EV charging/dis-
charging energy rates (M_C model) can be effectively used to find results 
in a reasonable computation time. Additionally, we carried out a 
sensitivity analysis by varying battery charge/discharge speed and ca-
pacities and compared the results with CSS baseline scenarios without 
considering the bidirectionality of the charge. Results have shown V2G 
profitability and a contribution to the grid during energy peak load 

demand in terms of energy-share without significantly reducing the 
satisfied V2G-CSS demand compared to the baseline cases. 

Under the model assumptions, in each sensitivity analysis scenario, 
V2G profits are positive and on average equal to 36.04 €/day for a fleet 
of 50 EVs. Therefore, the adoption of V2G technology allows to fully 
cover the daily charging costs due to users’ trips and obtain V2G profits 
by taking advantage of EVs unused time. Indeed, for the large-size 
network, EVs are used by customers for only about 12% of the oper-
ating day. For the rest of the time, without bi-directional charging, they 
would be parked not generating revenues for CSS companies. Most of the 
energy purchased to charge the EVs batteries is provided back to the grid 
during energy peak load demand, creating benefits also for energy 
providers. The net energy transferred to the grid during the operating 
time resulted to be significant, especially for lower charge speed type. 
These positive results were found under less-than-ideal V2G-CSS de-
mand level and energy price conditions. The considered expected de-
mand completely saturates the V2G-CSS. Therefore, the EVs are parked 
and enabled to transfer energy for shorter periods than in lower demand 
cases. Moreover, much of the V2G profits depend on energy prices 
fluctuations. The greater the differences in prices during the day, the 
greater the profits could be. We assumed average day-ahead electric 
energy prices. This means that greater differences between minimum 
and maximum prices can occur in some days, and consequently, higher 
V2G profits could be obtained. 

The optimal start-of-day EVs distribution among the stations is 
different but very similar for each analyzed scenario (including the 
baseline ones without V2G) given the prevalence of V2G-CSS revenues 
over V2G profits. Therefore, it appears that the EVs are positioned at the 
beginning of the day mainly to meet expected customers’ demand. 

The optimal daily EVs charging/discharging schedules generally 
show three charging phases carried out when the price of energy is 
relatively low and two discharging phases performed during the rest of 
the day. The schedules turn out to be much smoother (without fluctu-
ations) for low charging/discharging speeds and low battery capacities 
scenarios. From the battery degradation point of view, low charging/ 
discharging speeds may be preferable, especially without adequate 
temperature management (Wu et al., 2019; Feng et al., 2020). However, 

Fig. 10. Daily EV battery SOC for main V2G-CSS scenarios.  
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in the proposed model, the optimal charge/discharge schedules search 
does not consider possible battery degradation. Indeed, EV battery 
degradation depends on several factors (such as temperature, depth of 
discharge, C-rate) and not only on the parameters used in our work 
(battery SOC charging/discharging interval). There are conflicting 
opinions regarding the greater loss of capacity over time of the batteries 
used for V2G in literature. Uddin et al. (2017) show that through a smart 
grid algorithm with depth of discharge and overall cycling control, V2G 
technology can actually reduce battery degradation. 

The integration of a detailed/empirical battery model with the pro-
posed optimization is beyond the scope of this work. The proposition of 
a smart grid algorithm for managing battery lifetime in a car-sharing 
system with V2G technology will be presented in a future study. In 
this model, different aspects related to battery degradation can be 
considered assuming a non-linear battery charge/discharge pattern and 
optimized depth of discharge, charging/discharging speed, and mini-
mum/maximum SOC levels. Future developments may also concern 
profit maximization models based on uncertain CSS demand and dy-
namic charging/discharging schedules. The proposed model is based on 
mean demand data and energy prices and is suitable for preliminary 
assessment on V2G profitability. Therefore, for large-scale networks 
with day by day and/or real-time car-sharing system and V2G man-
agement, implementing a heuristic algorithm to improve computation 
time would also be interesting. A further challenge might be the inte-
gration of the proposed model with the CSS network design for opti-
mizing the position and the number of stations, as well as the number of 
parking places, EVs, and V2G charging/discharging columns consid-
ering different time horizons, customer demand, and electricity markets. 
Following this model, it could be interesting to evaluate a detailed cost- 
benefit analysis and calculate the effective V2G profitability applied to a 
real case study. Furthermore, different incentive policies may play a 
crucial role in promoting car-sharing mobility systems and, therefore, 
moving towards a large-scale V2G implementation. 

In addition, the proposed model may not only be limited to the CSSs 
application but also, as a future study, for evaluating the V2G energy and 
economic profitability by coupling EVs with renewable energy sources 
and/or smart buildings (e.g., residential or office buildings) in a smart 
grid framework. 
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