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Free Flow Capacity and Queue Discharge
Rate: Long-Term Changes

Victor Knoop1 and Serge Hoogendoorn1

Abstract
Traffic jams are caused by a traffic demand that exceeds road capacity. Road capacity, therefore, is an important road feature.
This capacity might change as function of time, even for the same road stretch, owing to changing driving behaviors or vehicle
characteristics. In this study, we empirically analyzed the changes in road capacity over a 5- to 10-year period. The study dif-
ferentiated between free flow capacity and queue discharge rate. We used three road stretches that remained unchanged to
study free flow capacity. For 143 other locations that experienced changing properties over time, we analyzed queue dis-
charge rates and corrected for external changes. We found that free flow capacity decreased, and queue discharge rates
(slightly) increased over time. It is remarkable that one decreased, whereas the other increased. These results could be used
in policies for road planning and design. Moreover, they provide an interesting background for further studies analyzing the
effects of particular behavioral changes or driver assistance systems.
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For road network planning, the capacity of a road is a
key factor. However, looking into capacity, one finds
that the capacity of the road is in reality determined by
the drivers. It relates directly to the minimum headway
at which drivers are following and the distribution of
traffic over the lanes. Therefore, it is the driving behavior
combined with the number of lanes that determines road
capacity. There are various factors influencing this beha-
vior, which we will discuss shortly. There are design
handbooks, for instance the Highway Capacity Manual
for the United States (1) and an equivalent for the
Netherlands (2), that provide reference values for capac-
ity in various conditions. It is therefore well known that
capacity varies as function of differing conditions.

Whereas capacity can be stated as a value, the driving
behavior underlying it is quite complex. The conceptual
relations between behavior and capacity are shown in
Figure 1. Location properties can also have an effect
(direct or indirect, via e.g., speed limits or roadway geo-
metry), as well as regulations, driver distraction, vehicle
properties, advanced driver support systems (ADAS [3]),
and even vehicle automation. Note that the figure shows
longitudinal and lateral effects, that is, the closest head-
ways people choose and the lane they are driving in.

Whereas longitudinal behavior has a clear minimum
headway, lane flow distribution does not have a mini-
mum or maximum, but varies under traffic demand.
This is indicated in Figure 1. There is a vast amount of
literature on driving behavior (e.g., Ossen [4]) and its
effects on traffic (5). Parameters of driving behavior—
even aggregated ones—need to be calibrated for the par-
ticular case at hand. Several papers have tried to find
procedures to fit a fundamental diagram (6, 7), or free
flow speeds. Such efforts show that the characteristics of
roads are user-dependent.

User behavior can also vary as a function of time, as
can capacity. Obviously, many things have changed since
the first report on the fundamental diagram (8). Cars and
technology (engine power, brakes) have changed, but so
too have the drivers (who are more used to crowded con-
ditions), and perhaps the driver assistance systems.
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A large body of literature has gone into quantifying
driver modeling. For instance, Hoogendoorn and Botma
discuss how the distribution of individual headways can
be modeled and lead to a distribution of closest head-
ways, and thus to capacity (9). In the same line, Long
shows how queue discharge rate relate to various para-
meters of driving behavior and how this can be derived
from field measurements (10). Which factors ultimately
determine the (closest) headway chosen by individuals,
was analyzed by Brackstone et al., in their analysis of
123 drivers (11). Vehicle type was found to be a relevant
parameter, but headways were also found to change
from day to day. More recently, this domain has been
changing: rather than studying the behavior of drivers,
it is now the impact of automated vehicles on capacity
that is being studied. There are many scientific works
on this domain, which use analytical expressions (e.g.,
Chen et al. [12], Han and Ahn [13]), simulations (e.g.,
Calvert et al. [14]), and even naturalistic data of drivers
(e.g., Schakel et al. [15]) and of automated vehicles only
(e.g., Makridis et al. [16], Ciuffo et al. [17], Gunter et al.
[18]).

The current study aimed to directly show the change
in capacity over time as a function of changed behavior
including all effects (driver behavior, technological
changes, and other effects). By doing so, we include all
changes, but do not attribute them to a specific source.
The current study investigated the effective changes in
capacity over the last decade for the same road layout;
the study had two goals: (1) to produce findings that
could be used in policy analyses for road planning and
(2) provide a reference for (weakly/roughly) validation
studies aim to describe the same effects reasoned from
the perspective of vehicle technology. To this end, we

studied capacity conditions in the roadway network and
analyzed the collective properties of the traffic stream.

In this paper, the word flow means the passing rate of
traffic per unit of time, which in other works is also
referred to as volume or intensity. Conceptually, in this
paper we differentiate between free flow capacity, that is,
the capacity (or maximum flow) before congestion sets
in, and the queue discharge rate, which is the maximum
flow out of congestion. The difference between the two is
the extensively studied capacity drop (19–21). The sequel
to this paper will show that it is important to distinguish
between the two, since they evolve in a different way.
Conceptually, the two are different since the free flow
capacity determines when congestion starts, and the
queue discharge rate determines the outflow of conges-
tion. We have an interest in this because of the relation
to travel time, and for the purpose of planning a road
network with appropriate capacities.

Capacity is not a fixed value, not even in the short
term (minutes). Because it is result of driving behavior, it
fluctuates with the drivers present at that particular
moment. For the queue discharge rate, the mean value is
most relevant, since the mean over a period multiplied
by the duration shows how many vehicles have exited
the queue. However, this is different for free flow capac-
ity. Brilon et al. discuss the concept of stochastic (free
flow) capacity: there is a probability that traffic can be in
free flow conditions at a particular demand level (22).
The difference with queue discharge rate is that once the
free flow capacity value is exceeded, traffic breaks down
and enters a congested state. Traffic can no longer oper-
ate at (free flow) capacity and the outflow reduces to the
queue discharge. Flow remains at this (lower) value even
if the free flow capacity would have increased again (but
traffic cannot reach this free flow capacity state any-
more). Therefore, for free flow capacity, not only is the
mean relevant, but also the spread and in particular the
low-end value of the distribution, since the low-end val-
ues are the only flows that can be sustained.

Shiomi et al. also studied long-term changes in capac-
ity (23). They studied the capacity changes of nine bottle-
necks in Japan. They found that the median free flow
capacity decreased over time, and that the free flow
capacity spread (5th to 50th percentile) also decreased
over time, yet was statistically insignificant. No signifi-
cant changes have been found for queue discharge rate.
In a study by Ros et al., most (seven of out nine) bottle-
necks were sag sections, which are known to cause con-
gestion and stop-and-go waves (24). This type of
bottleneck rarely occurs in the Netherlands, where bot-
tlenecks mainly consist of lane drops, merging sections,
or a combination of the two. They hypothesized that
vehicle type (in particular a larger fraction of hybrid
vehicles, i.e. vehicles combining a combustion engine

Figure 1. Dependencies leading to the roadway capacity.
Note: ADAS = advanced driver support systems.
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with an electric motor), driving behavior, and/or driver
assistance systems might have played a role.

In conclusion, we see that there are day-to-day and
stochastic fluctuations in free flow capacity and queue
discharge rates. However much less is known about long-
term changes. For sag sections, a decrease was found for
the free flow capacity, but no statistically significant
change was found for the queue discharge rate. The gap
the current research aimed at was therefore to find how
the free flow capacity and the queue discharge rate evolve
as a function of the time required for merging and/or lane
drop sections. Since the queue discharge rate is expected
to fluctuate, we need to analyse a large number of bottle-
necks and over a longer time in order to find statistically
significant effects.

To study the long-term effects of time on capacity, we
considered two approaches. First, we checked locations
that had not changed for a long time and, during that
time, had formed bottlenecks. There were not many such
sites, since bottleneck locations are usually reconstructed
to increase their structural capacity. A second approach
was to consider the capacity at various bottlenecks that
had changed over time, and to correct for the other
changes. In the second approach, capacity value is depen-
dent on various explanatory variables (for instance speed
limit, number of lanes), as well as time. Changes in road
properties should therefore be captured by the explana-
tory variables, which allow the independent assessment
of the autonomous changes of capacity as a function of
time. We applied both approaches. The next section will
first present the analyses for free flow and queue dis-
charge rate on bottlenecks that have not changed over
time. Then we will present the results of a multivariate
regression analysis that was undertaken on 143 bottle-
necks. The final section discusses both the analyses and
results together, and provides the conclusions and a dis-
cussion of our findings.

Long-Term Analyses on Selected
Bottlenecks

This section will present an analysis of the capacity
change (free flow and queue discharge rate) found at
sites that have been bottlenecks for a long period (up to
10 years).

Methodology

We studied the evolution of the free flow capacity and
the queue discharge rate over a long period. Both capaci-
ties were estimated using different methods. This section
will first describe the estimation of free flow capacity,
and then of the queue discharge rate.

Free Flow Capacity. To estimate free flow capacity, we
needed to find the maximum flow possible over a road sec-
tion before congestion sets in. A higher inflow will cause
congestion, and the outflow will be lower (the so-called
capacity drop). In idealized conditions with a gradually
increasing flow and a deterministic capacity, one can find
the value of free flow capacity at only one moment in time:
the flow just before the traffic breaks down. Later mea-
surements will give information on the queue discharge
rate and are therefore unsuitable for the free flow capacity.

The above description, ignoring stochastic fluctua-
tions, however is not realistic enough in capacity, may be
a slightly simplified approach. In this study, we followed
the principles laid out by Brilon et al. (22). This assumes
that the capacity, c, is a stochastic value with mean, mc,
and a spread around that: the traffic flow can exceed mc

for a while, whereas a lower flow might cause a break-
down later. The traffic process can consequently be seen
as a survival process: how likely it is that traffic can con-
tinue to operate without a breakdown. This probability
can be calculated, and with it the probability that a traf-
fic jam will arise (i.e., a breakdown).

To compute the probability, we first divided the data
into different classes. This was done based on the speed
of traffic upstream and downstream of the bottleneck. A
measurement period can be classified as,

1. Free flow (F): if traffic in the current and next
period has a high speed both upstream and down-
stream. One knows that flow measured during
this period is below the capacity, but one does
not know how much higher the capacity value
could be.

2. Congestion caused by the bottleneck (C): if the
traffic has a low speed upstream in the current
and previous period, and a high speed down-
stream. One knows that the bottleneck is causing
the queue, but a queue discharge rate is measured
and not a free flow capacity. It is not therefore
useful for the free flow capacity.

3. Transition to congestion resulting from traffic
demand (B): if the traffic in the current period has
a high speed upstream and downstream, but in the
next period a low speed upstream and a high speed
downstream. One knows that the capacity value is
lower than this value, but not by how much.

4. Congestion caused by a bottleneck downstream
(spillback): if the traffic in the current period has a
low speed downstream and a high speed upstream,
and in the next period a low speed upstream and
downstream. These measurements have nothing to
do with the capacity of the bottleneck itself, but with
another capacity constraint from downstream. They
are therefore discarded from further analyses.
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To determine the capacity of a bottleneck, we can look
at how often traffic flow reaches a certain value, and how
often that causes traffic jams. This is a Kaplan–Meier
survival analysis. Following Brilon et al. (22), we defined
the function, Fc, which describes the (cumulative) prob-
ability distribution function for the capacity,

Fc(q)= 1�
Y

i:qi ł q

ki � di

ki

; i 2 B ð1Þ

where

� Fc(q) = unknown cumulative distribution func-
tion of capacity c,

� q = traffic flow (vehicles per hour [vph]),
� qi = traffic flow in period i (vph),
� ki = number of intervals with a flow q ø qi (-)
� di = number of intervals in which congestion

starts at qi (-), and
� B = set of intervals where congestion starts at the

bottleneck.

This function (1) was only evaluated at the values for
which at least one flow value was measured. With dis-
crete flow values (minute-aggregated), we only evaluated
the functions at multiples of 60 vph.

For the theoretical foundation, we referred to Brilon
et al. (22). The short and intuitive interpretation of the
equation is as follows. The function, F, indicates the
breakdown probability of a certain flow. A breakdown
can be considered the inverse of a survival (i.e., a break-
down does not occur for a certain flow), denoted S. The
survival function, S, is therefore 1 minus the breakdown
function, F = 1� S. This survival probability is com-
puted according to (a) how likely it is that the flow will
not break down once it has reached this high level or
higher. This is empirically determined by (ki � di)=ki. The
other element (b) of the survival function is that the flow
should not have broken down already at lower flows
(product of the survival rate for lower flows). Equation 1
can be broken down as follows:

Fc(q)= 1�
Y

i:qi ł q

ki � di

ki|fflfflffl{zfflfflffl}
Survival of flow qi

i 2 B

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Survival of flows up to q|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

No breakdown up to flow q

ð2Þ

This function does not change if the total amount of
collected data changes (i.e., one would collect 10 times as
much data with the same underlying distributions).

Figure 2 shows an example of this empirical capacity
function. For this figure, we include all aggregation peri-
ods within a year around June 2016 in which traffic jams

occurred were included within a year around June 2016.
In this case, the distribution function was created based on
1,123 measurement values of the capacity (i.e., the number
of elements in B) combined with 16,734 measurements of
flow, which was smaller than the capacity (i.e., the number
of elements in F).

In many cases, as here, this empirical cumulative
probability distribution function will not reach 1. This is
because there are periods in which flow exceeds the high-
est values of flow in set B. Let us consider the example in
Figure 2. Here, the highest flow causing congestion was
found at approximately 6,050 vph; in other periods,
higher flows were measured without causing congestion.
In further analyses, we will consider the median of the
distribution function for all periods, as well as its 17.5
percentile value. The 17.5 percentile value was chosen
because this value is probably found more often, and it
corresponds to an inflection point of the probability den-
sity function of a normally distributed variable (i.e.,
mean minus standard deviation).

When determining capacities in this way, several mea-
surements of congestion caused by the bottleneck are
required—in the order of hundreds. We were interested
in the time evolution, meaning we needed (some percen-
tile value of) a distribution at one point in time.
However, recall that one peak hour typically only gives
one value, which is insufficient to obtain its full distribu-
tion function. To visualize the time evolution of the
capacity, a 2-year time window was determined at the
start of each month. This way, for all months, a distribu-
tion could be found with a moving time window of 2
years. Subsequently, the resulting median and percentile
values were taken for the trend analysis. The relative
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Figure 2. Distribution function of capacities for the
measurement periods June 2015 to June 2017.
Note: vph = vehicles per hour.
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changes for the median and the 17.5th percentile indicate
whether the spread of capacity has been increasing or
decreasing.

Data aggregated over 1 min were used, which is clo-
sest to the data we get. A shorter aggregation interval
has the advantage that there are less ‘‘mixtures’’ of states.
For example, a longer interval (Interval 1) that is initially
not congested, but then is congested, might be classified
as not congested. Then, the next interval (Inteval 2) is
congested and the flow in interval 1 is now considered to
be a breakdown flow, whereas it was only partially the
high flow that caused the breakdown. The disadvantage
of a shorter interval is that the flows are more volatile,
and there might be more intervals with high flows that
do not cause a breakdown because of random effects.
This means that a shorter interval is likely to lead to a
distribution function that ends at a lower maximum per-
centile value.

For the trend analysis, we included a piecewise linear
fit through capacity values as a function of time, for
which we used the median and 17.5th percentile values
respectively. The slope of this line indicates an increase
or decrease in capacity. The fitting function automati-
cally minimizes the error between the fitted line and the
measurements, yet additional breaks (more pieces of the
piecewise linear fit) incur a penalty. The main goal of the
fit is to provide a visual aid. For clarity, we report fitness
(root mean squared error).

Queue Discharge Rate. Determining the queue discharge
rate is simpler: all flow measurements at the bottleneck
(or the first location downstream thereof) during the time
that congestion is present are measurements of the queue
discharge rate. So all measurements of Class C defined in
the previous section are being used. Typically, there are
many more data points for the queue discharge rate (class
C) than for breakdown flows (class B). One hour of con-
gestion would lead to 60 usable 1-min points.

In this study, we used 1-min intervals since they are
most commonly used and this was the base unit of data
available (i.e., shorter periods were not possible). Shorter
periods yield higher variation, and longer periods lower
variation. Note, moreover, that longer periods would be
less specific in determining the presence of congestion.
For instance, if 15-min periods were used, and 10 out of
the 15min were congested, this 15-minute aggregate data
should not be used. Nevertheless, the average speed in
the interval could still be below the threshold and so
would still be classified as congested owing to the bottle-
neck. A final remark: the length of the interval will not
influence the mean flow.

We hence use short aggregation times of 1 minute.
Yet, this will give many observations. To identify the

trend, we clustered the observations in bins. We needed
to balance a sufficient time resolution (small bin sizes)
and sufficient observations per bin (a reliable bin aver-
age). The number of bins we choose was the square root
of the number of aggregation periods.

To obtain the trend in the queue discharge rate, we
fitted a piecewise linear curve through the median flows,
for which the same technique was used as for the free
flow capacities.

Locations and Data

To obtain the data, we needed a location that (a) would
not change in configuration over the long term and (b)
forms a bottleneck in the road network. With regard to
duration, we considered 10 years to avoid random fluc-
tuations from year to year. Such sites are rare because
bottleneck locations are typically one of the first to be
improved in a network.

For this research we identified three locations that ful-
filled the criteria. Speed contour plots of typical days can
be seen in Figure 3.

The first location is the A12 motorway near the Dutch
town Gouda in a westbound direction. The weaving sec-
tion upstream of the lane drop and motorway diverge
form a bottleneck. The second location is the A20 motor-
way near the city of Rotterdam in a westbound direction.
The bottleneck is formed by the motorway junction for
Rotterdam city center (three-lane freeway). The third
location is the A12 motorway near the onramp for
Bodegraven in an eastbound direction. The large inflow
from the N11 without an increase in the number of lanes
(four lanes) forms the bottleneck. Location 3 has only
been a bottleneck since 2013; queuing is not always
apparent at the bottleneck location, as Figure 3, c and d,
show. The speed limit is different for each location. To
avoid false positives in congestion detection, we adapted
the threshold value to distinguish congestion from free
flow to the location: 80, 65, and 85km/h, respectively, for
the three locations. Note that the days for which queuing
was not clearly caused by the bottleneck were filtered out
by the classification described in the Methodology
section.

The Dutch freeway network is equipped with double
loop detectors at approximately 500-m distances. Data
were saved in an aggregate form, at aggregation intervals
of 1min, providing lane-specific mean speeds, and flows.
We added the flows and computed the harmonically
weighted average of the time mean speeds of the different
lanes. Since speeds per lane are more homogeneous than
speeds across the roadway, this provides a more accurate
approximation of Edie’s mean speed (25) (which is com-
pletely accurate if the speeds within a lane are homoge-
neous) (26).
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Data over a road stretch of 5 km per bottleneck loca-
tion were requested, allowing for a slight variation in the
head of the queue. Note, moreover, that within the
observed period the road layout did not change, but the
detector configuration did, which was also a reason for
analyzing a longer road stretch. The time interval was
March 2006 to October 2017. This allowed for 10 years
of observations, including the moving average of 1 year.
For all week days (Monday through Friday), data from
7 to 10 a.m. were requested; this time interval included
the full morning peak congestion. For the remainder of
the analysis, we used the data that were present and valid
(sometimes detectors fail or prove unreliable).

Figure 4 shows the results for the evolution of the free
flow capacity (left column) and the queue discharge rate

(right column) for all three locations. We will discuss
them in turn, in the order of location. Note that to better
illustrate the changes in capacity, the scale is adapted per
subfigure.

Results

At Location 1, the free flow capacity seemed to have a
brief peak, probably caused by limited congestion mea-
surements from before 2011. The reduction of free capac-
ity from 2012 (17.5th percentile value) or 2014 (median)
was clearer. The free flow capacity decreased with 30 vph
(17.5th percentile) and 110vph (median) per year (for
three lanes). Owing to the nature of these measurements
(one every minute of congestion), the values for the

(a) (b)

(c) (d)

7 7.5 8 8.5 9 9.5 10
Time of day

2.9

3

3.1

3.2

3.3

3.4

Lo
ca

tio
n 

(m
)

×10 4

3

3
3
4
3

3

33

4
3
3
3
4
4
2 10

20

30

40

50

60

70

80

90

100

7 7.5 8 8.5 9 9.5 10
Time of day

2.5

2.6

2.7

2.8

2.9

3
Lo

ca
tio

n 
(m

)
× 104

4

5
5
5
4

4
4

5
5
3
3
3

3

3
70

80

90

100

110

7 7.5 8 8.5 9 9.5 10
Time of day

3.5

3.6

3.7

3.8

3.9

4
Lo

ca
tio

n 
(m

)

×104

4

4

4
4
4

4

4

4

4
5

20

40

60

80

100

120

7 7.5 8 8.5 9 9.5 10
Time of day

3.5

3.6

3.7

3.8

3.9

4

Lo
ca

tio
n 

(m
)

×104

4

4

4
4
4

4

4

4

4
5

20

40

60

80

100

120

Figure 3. Speed contour plot for the various locations; the digits show the number of lanes: (a) Location 1: a clear traffic jam caused by
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Figure 4. Evolution of the capacity at individual locations: (a) Location 1 free flow capacity, (b) Location 1 queue discharge rate, (c)
Location 2 free flow capacity, (d) Location 2 queue discharge rate, (e) Location 3 free flow capacity, and (f) Location 3 queue discharge rate.
Note: vph = vehicles per hour.
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queue discharge rate were much more volatile. The queue
discharge rate showed an increase up to 2014, after which
it was more or less constant (annual increase of 6 vph).

Location 2 showed no clear trend until 2011 (the fit
showed an increase, but several trends could be seen as
well). Later, from 2010 to 2011, a decrease of the 17.5th
percentile value as well of as of the free capacity was seen,
with a decrease of 260 (17.5th percentile), 160 (2011 to
2015), and 70 vph (2015 to 2017). The queue discharge
rate capacity seemed to increase a little in the first year
(+260 vph in 1.3 years), but showed a decreasing trend
from 2012 (annual reduction of 41 vph from August 2008
to November 2017).

For Location 3, capacity measurements were only pos-
sible from 2013. Since then, the free flow capacity (17.5th
percentile value) has been decreasing. The median of free
capacity was found only in a few measurement periods,
so it was not possible to identify a trend. The queue dis-
charge rate hardly varied over time. The best fit indicated
that this first increased and then decreased, but the effects
(i.e., increase or decrease) did not exceed the bounds.

Overall, we observed that a possible trend of increas-
ing free flow capacity seemed to change to a decreasing
free flow capacity over the last 5 years. This change in
trends is a clear and relevant finding. For the queue

discharge rate the results were not as clear: the increase
fell within the bounds. For the queue discharge rate, fur-
ther analysis of more locations and factors was therefore
carried out and is presented in the next section.

Evolution of Capacities: Exogenous Factors

Apart from locations that are bottlenecks and that have
not changed, we also considered capacity at a variety of
locations where we corrected for the change in location
properties.

Data

The basis for this analyses was a data set containing traf-
fic data of 143 locations throughout the country. This
database was available because it had been compiled by
the Dutch Road Authority for the evaluation of previous
capacity studies. The data cover the period 2011 to 2015.
The locations are shown in Figure 5; most indicated sites
provide data for traffic in both directions. Contrary to
previous analyses, here we used data from only one
detector. Because we did not have data from detectors
upstream and downstream, we could not apply the same
classification techniques as in the previous section. The
methodology we used is explained in the next section,
followed by a description of the results

Methodology

We based our analysis on the raw data obtained from
double loop detectors. Inclusion criteria for the relevant
aggregation periods were based on what was expected for
the driving behavior, and the individual spacing, s. Our
basic idea was that a simplified speed-dependent spacing
might follow the equation

s�(v)= s0 + Tv ð3Þ

where

v = speed,
T = net time headway, and
s0 = effective vehicle length.

Note, we used this equation for the selection criteria only,
and if driving behavior differed, this did not influence the
outcomes.We filtered out the period outliers based on the
speed–spacing relationship. We excluded periods in
which the spacing was either too small, s\s�(v), with
s0 = 0 and T = 0:9 s; or too large, s.s�(v) with s0 = 20
m and T = 4:5 s. These measurements would not be part
of normal traffic operations. Moreover, since we were
only interested in congested times, we filtered out periods
with speeds that were too high, v.v0, with v0 = 65km/h.
We took a lower speed separation value here to avoid

Figure 5. Locations of the measurement points on a map of the
Netherlands. All locations are used in both directions.
Note: Scale of the figure: left to right is approximately 250 km.
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including periods in which speed was low because of rea-
sons other than congestion. Since this was a one-detector
filtering (rather than the two-detector filtering described
in the previous section), the threshold set was a little stric-
ter. The whole procedure gave the flows in periods where
there was congestion. We know that the flow in conges-
tion is equal to the flow through the bottleneck, which is
with an activated bottleneck the queue discharge rate.

Using the above filters, we found (a series of) values
for the queue discharge rate for each site. Via a multi-
variate regression analysis we aimed to approximate the
queue discharge rate as a function of the properties of
the site. The available properties and their parametriza-
tion are listed in Table 1. For the parameters that were
subsequently found to be statistically significant (see
Table 2), an abbreviation is also included.
A part of these properties is dynamic with different time-
scales. For instance, the truck fraction changes with traf-
fic, and the number of lanes can change over a larger
timescale. We therefore adapted the parameters to the
period of measurement.

The queue discharge function we estimated was a lin-
ear additive function,

c= c0 +
X15

i= 1

cipi ð4Þ

where

c0 = base queue discharge rate,
pi = value of the i th variable (from Table 1), and
ci = rate of change of the queue discharge rate with a
change of variable.

Note that the variable estimated here, c, was normalized
for the number of lanes, and therefore was the queue dis-
charge rate per lane. This allowed for more flexible adap-
tation to changes in the number of lanes.

The base queue discharge rate, c0, and all 15 values of
ci were found by performing a least squares optimization.
To have the best matching coefficients for the significant
parameters, we iteratively removed the least significant
parameter in the fit until the fit only had significant para-
meters. To assess significance, we used t-value, and a cut-
off value of 2 for significance.

Results

The results of the multivariate estimation are given in
Table 2. The base queue discharge rate was 2,296 vehicles
per hour per lane (vphpl). This result matched the Dutch
highway capacity manual well (2). Before considering the
time effect, let us consider the effect of the significant
parameters, and in particular the signs. All signs of the
parameters were as expected. A higher truck fraction will
reduce queue discharge. With a passenger car equivalent
value of trucks of approximately 2 (27), we expected a
coefficient in the order of the base queue discharge. This
holds in the limit for a truck percentage of 0%. The typi-
cal truck percentage was around 5% to 15%. More lanes
decreased the queue discharge rate of each lane (by
approximately 10% per lane), which was expected owing
to inefficient lane usage. A higher speed limit decreases
queue discharge; this approach has been the basis for
various projects aiming to reduce speed and increase
homogeneity; this effect was statistically significant, yet
the size of the effect was small (28). With a higher frac-
tion of congested measurements, the queue discharge rate
increased. This was expected since the drivers in these
conditions were used to driving in busy conditions and
could handle short headways. The coefficient was large
because the variation in fractions of congestion were very
small (e.g., a change from 1% to 1.5% of the time leads
to a change of 0.005 in the variable pcong). For the same
reason, the sign of annual average daily traffic (AADT)
was positive (drivers on busier sections were used to
crowded conditions), and had a low value because the
AADT itself was a large number. The presence of a
dynamic route information panel was negatively corre-
lated with queue discharge rate, which can be explained
by the how these are mostly at locations where drivers
need to choose their route, which (a) distracts them from
their car-following task (29), and (b) might cause lane
changes owing to a route choice, which induces gaps and
reduces the queue discharge rate (30). The presence of
(average) speed checks reduced the use of the left lane;
this decreased the overall queue discharge rate. Finally,
the presence of an overtaking prohibition for trucks

Table 1. Parameterized Properties in the Data Set

ID Abbreviation Factor (unit)

1 Time Time (unit year, but data on minute-
resolution)

2 na Presence of jam detection and information
(1/0)

3 Lane Number of lanes
4 na Distance to closest onramp (m)
5 na Distance to off-ramp (m)
6 na Presence of weaving area
7 ptruck Fraction of trucks
8 DRIP Presence of dynamic route information

panel
9 pcong Fraction of time congested
10 AADT Annual average daily traffic (vehicles)
11 na Possibility to open hard shoulder for

traffic during peak hour (0/1)
12 vlim Speed limit (km/h)
13 ASC Average speed check on the section (0/1)
14 OBT Overtaking ban for trucks (0/1)
15 na Tunnel or bridge (0/1)
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increased the queue discharge rate, which was expected
since overtaking slow trucks (speed limit 80 km/h, slower
than other traffic with speed limits of 100 to 130km/h)
creates gaps (30).

The factor time was found to be significant, with an
annual increase in capacity of 45 vphpl. Note again that
this was the exogenous change in queue discharge rate,
which was not explained by any of the other variables in
Table 1. Whereas the value of the number might seem
small, it was statistically significant. Moreover, over the
analyzed period of 5 years, this could change the capac-
ity considerably (10%).

Conclusion and Discussion

This study analyzed the evolution of capacity as a function
of time. The main conclusion for the paper was that free
flow capacity changes at a different rate than the queue
discharge rate, and even in the opposite direction. The free
flow capacity was found to have been decreasing and the
queue discharge rate increasing over time. This finding
could be directly used in policies for road planning.

For further research, a takeaway is that research into
the long-term evolution of capacity should study free
flow capacity separately from queue discharge rate. The
free flow capacity and the queue discharge rate namely
have opposite effects on hours, and experience different
changes over time.

The changes in capacity were caused by driver beha-
vior, such as car-following or lane choice. However, the
underlying cause of these changes is unknown and could
not be determined by this empirical work. Causes can
range from driver education, vehicle techniques to the
state of the economy and environmental awareness. A
topic for further research could be to identify the cause
of the effects found here. They could potentially origi-
nate from different sources, but it would also be possible
for them to have originated from one source. Answers
may lie beyond the field of traffic engineering, in sociolo-
gical-, economical-, or ecological-based reasoning.

Nevertheless, we would like to posit one hypothesis in
the area of traffic engineering: the effect of Adaptive
Cruise Control (ACC) systems. These could potentially

be the underlying cause of both the decrease of the free
flow capacity and the increase of the queue discharge
rate. Early ACC systems worked in high-speed condi-
tions (i.e., free flow) and disengaged at low speeds (there-
fore, queue discharge rate was unaffected). Moreover,
it is known that ACC maintains longer headways than
human drivers in the Netherlands (31), and these sys-
tems (used to) switch off at low speeds. This could
mean that the reduction in free capacity could be a
result of the use of high-speed ACC systems. It could
even be possible that recent ACC systems have a differ-
ent impact than older systems because they operate at
all speeds, and therefore also might affect the queue
discharge rate. In the most modern systems, studies
have found that reaction times are longer than human
reaction times (16, 32).

The current study could provide empirical back-
ground for other studies exploring the effects of ACC
systems reasoned from the individual vehicle (i.e., up-
scaling results obtained from one or a couple of vehicles).
Proving this hypothesis from a collective traffic perspec-
tive (rather than individual vehicles) would be challen-
ging. One reason is that even if penetration rates of the
vehicle fleet are known, this would still give insufficient
information on the presence of such systems that are
active during peak hours. With a known static penetra-
tion rate, the fraction of the vehicles on the road ACC
equipped vehicles would still be unknown (however, this
might be different because one type of car might be used
more frequently, or more in specific conditions). Even if
known, the fraction of drivers actively using ACC sys-
tems would still be unknown. An in-vehicle analysis
would be required.

An alternative hypothesis of changed driver behavior
relates to increased driver distraction. This could lead to
increases in reaction time, which would specifically
decrease the queue discharge rate. Note again that these
are unconfirmed hypotheses posited by the authors and
causes may well lie in other domains, potentially even
beyond traffic engineering. Testing these or other
hypotheses relating to the potential causes of the empiri-
cally revealed changes in free flow capacity and queue
discharge rate is a topic for further research.

Table 2. The Parameter Estimates

Constant
c1 c3 c7 c8 c9 c10 c12 c13 c14

Time Lane ptruck DRIP pcong AADT vlim ASC OBT

Value ci 2,296 45 2257 22,222 2173 7,5E3 41 28 2757 130
t-value 7.3 3.0 27.0 28.8 22.0 8.2 7.6 23.1 23.9 3.8

Note: For definitions of abbreviations, see Table 1.
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