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Abstract. Metaheuristics have been widely used to solve NP-hard prob-
lems, with excellent results. Among all NP-hard problems, the Travelling
Salesman Problem (TSP) is potentially the most studied one. In this
work, a variation of the TSP is considered; the main differences being,
edges may have positive or negative costs and the objective is to return
a Hamiltonian cycle with cost as close as possible to zero. This varia-
tion is called the balanced TSP (BTSP). To tackle this new problem, we
present an adaptive variant of the iterated local search metaheuristic fea-
turing also random restart. This algorithm was tested on the MESS2018
metaheuristic competition and achieved notable results, scoring the 5th
position overall. In this paper, we detail all the components of the algo-
rithm itself and present the best solutions identified. Even though this
metaheuristic was tailored for the BTSP, with small modifications its
structure can be applied to virtually any NP-hard problem. In particular,
we introduce the uneven reward-and-punishment rule which is a power-
ful tool, applicable in many contexts where fast responses to dynamic
changes are crucial.

Keywords: Iterated Local Search · Travelling Salesman Problem ·
Balanced Travelling Salesman Problem · Hamiltonian cycle ·
Metaheuristic

1 Introduction

In the Travelling Salesman Problem (TSP), a salesman has to visit a given set of
cities and, after travelling along all of them, has to return to the one he started
from, hence, completing a cycle. Given a set of cities V and a cost matrix D with
entries di,j (i, j ∈ V ) –in the standard TSP, costs represent the distance between
cities–, the goal of the traveller is to find the cycle of minimum cost covering
all the cities. The TSP is an NP-hard problem, and therefore, there are no
c© Springer Nature Switzerland AG 2021
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known techniques able to provide an optimal solution efficiently. In this work, we
consider a variation of the standard TSP. In particular, we address the balanced
TSP (BTSP). In this variant, the entries of the cost matrix can be negative and
the goal of the problem is to find the cycle, visiting all the cities, with cost as
close as possible to zero. Despite the complexity of these problems, the TSP
and its variants are widely studied and used in many different contexts. Typical
applications are: clustering [1], vehicle routing [2], computer wiring [3], cutting
wallpaper [4], job-scheduling [5], DNA sequencing [6] and pattern-allocation [7]
problems. To cope with these problems and their complexity, many approaches
have been proposed in the literature. The main discriminant among them is
their ability to obtain an optimal solution or to rapidly discover a near-optimal
one. In the latter, there is a trade off between the time required to identify the
solution and the quality of the solution provided.

Among the different approaches proposed in literature, some of the most
relevant are: Genetic Algorithms (GA), Ant Colony Optimisation (ACO),
Tabu Search (TS), Adaptive Large Neighbourhood Search (ALNS), Simulat-
ing Annealing (SA), Local Search (LS) and Iterated Local Search (ILS). The
approach proposed by Juneja et al. [8] exploits the ability of population-based
heuristics to search for multiple solutions in each iteration of the algorithm and,
by using various combinations of selection, crossover and mutation techniques, to
continuously improve the quality of current solutions. Dorigo et al. [9] were the
first to introduce the possibility to use ACO, a heuristic algorithm which navi-
gates the solution space by mimicking ants finding food as a group, as a viable
strategy to solve the TSP. More recently, Escario et al. [10] have refined this
approach introducing different types of agents –specialised ants– and population
dynamics to organise the ants’ movements. The TS approach proposed by Toth
et al. [11] is based on the use of restricted neighbourhoods, allowing to reduce
the solution space and leading to a more efficient implementation of candidate
strategies proposed for tabu search algorithms. The ALNS heuristic, proposed
by Ribeiro et al. [12], is based on the algorithm initially devised by Ropke and
Pisinger [13] and extends the large neighbourhood search of Shaw [14] by using
destroy and repair methods within the same search process. Differently from the
previous metaheuristics, SA techniques mimic the metal annealing process by
considering probabilistic moves depending on a temperature parameter. The SA
methodologies proposed in [15] and [16] have been adopted for the TSP resulting
in a viable alternative to the above mentioned metaheuristics. Lastly, LS and
ILS techniques have been vastly used to solve the TSP, such as in [17,18] and
[19]. As described by Lourenço et al. in [20], by using LS, a sequence of viable
solutions is iteratively generated within the embedded heuristic.

In this work, we propose a variation of the ILS technique. ILS, differently
from LS techniques, alternates the search phase with the perturbation phase in
order to escape tenacious local optima. Given a graph, our approach searches
for a Hamiltonian cycle within it and, by iterating over a sequence of actions
operating on the current solution, navigates the neighbourhood of the current
solution while searching for local optima. Perturbations are then applied in order
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to escape local optima, hence searching different regions of the solution space.
The main contribution of this work consists in the introduction of an uneven
reward-and-punishment adaptation rule, which in turn leads to a more reactive
response to the current solution.

The paper continues as follows: Sect. 2 presents the problem formulation,
Sect. 3 describes the advantages of ILS techniques and introduces as proposed
methodology an Adaptive Iterated Local Search with Random Restarts (AILS-
RR). Section 4 shows experimental evidence for the effectiveness of the AILS-RR
technique introduced, and finally, Sect. 5 concludes the paper and presents final
remarks.

2 Problem Formulation

The goal of the TSP is to minimise the cost of the cycle connecting a set of given
cities that a salesman has to visit exactly once. The cycle of the salesman can be
defined as a sub-graph of graph G(V,E) where V is the set of vertices –cities–
and E is the set of edges of the graph representing the connections between
cities. Given two cities i, j ∈ V , we define dij as the cost of travelling from city i
to city j. In addition, we define a binary variable xij which specifies if the cycle
of the salesman includes the edge from city i to city j as follows:

xij =

{
1, if edge ij ∈ E is in the cycle of the salesman
0, otherwise.

(1)

Then, we define the total cost of the cycle as:

Ctotal =
∑
ij∈E

dijxij . (2)

In the classic TSP, all costs are strictly positive and the objective is to find
the Hamiltonian cycle of minimum cost. In the BTSP, costs can be either positive
or negative and the objective is to find the Hamiltonian cycle of cost as close as
possible to zero. A Hamiltonian cycle is a connected sequence of edges that joins
a sequence of vertices, such that each vertex in V is visited exactly once and the
edge sequence is closed. A closed sequence starts from a vertex i and, through an
ordered sequence of vertices connected by edges, returns to the original vertex
i. Given an ordered sequence, we name adjacent vertices of a generic vertex its
previous and its following vertex. In general, graphs are not fully connected, i.e.
not all vertices i, j ∈ V are connected by a direct edge. Edges are undirected and
each of them is associated with a cost which can be either positive or negative.
We define the degree of a vertex as the number of its outgoing edges.

The differences between the BTSP and the TSP translate the model of the
classic TSP in a similar one, hereby reported in (3)–(8):
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minCtotal (3)

Ctotal ≥
∑
ij∈E

dijxij (4)

Ctotal ≥ −
∑
ij∈E

dijxi,j (5)

∑
j∈V

xij = 2 ∀i ∈ V (6)

∑
i,j∈T,i �=j

xij ≤ |T | − 1 ∀T ⊂ V, T �= ∅ (7)

xij ∈ {0, 1} ∀ij ∈ E (8)

Ctot ∈ R+ (9)

Objective function (3) and Constraints (6), (7) and (8) are standard TSP
constraints. In particular, Constraints (6) impose the cycle to visit each vertex
exactly once –one incoming, one outgoing edge– while Constraints (7) avoid the
presence of sub-tours T in the cycle. Constraints (8) force variables xij to be
binary and Objective function (3) aims at minimising the absolute cost of the
cycle. Lastly, considering that is a minimisation problem, Constraints (4), (5)
and (9) impose variable Ctot to assume the absolute value of the cost of the
cycle. By minimising the absolute value, we force the costs to be as close to zero
as possible.

To solve this problem, we used AILS-RR, which is variant of ILS. We define as
a feasible solution any Hamiltonian cycle and as objective function the cost of the
cycle itself. Thus, we aim at identifying the best candidate in the neighbourhood
of the current solution by applying modifications to the solution structure.

3 Methodology

The Iterated Local Search methodology repeatedly builds a sequence of solutions
generated by a local search heuristic embedded in a framework. As defined by
Lourenço et al. in [20], given a current solution s, ILS generates an intermediate
solution ŝ by applying changes on s. Then, the embedded local search heuristic
is applied to ŝ, which leads to a new solution s′. If this solution improves s, it
becomes the new current solution in our sequence, and thus we keep navigating
the solution space modifying s′. Otherwise, if s′ does not introduce an improve-
ment with respect to s, ILS continues to apply modification to s. Starting from
a feasible solution, ILS explores its neighbourhood and determines the best solu-
tion within it. Thus, this metaheuristic exploits the possibility to search for a
solution in a reduced space defined by the output of the local search heuristic,
instead of searching over the entire solution space.

The methodology proposed in this paper, i.e. AILS-RR, relies on ILS by
searching in the neighbourhood of an already existing solution. In order to apply
AILS-RR, it is necessary to generate a first solution to be fed to the AILS-RR
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Finding an 
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Initial
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Intermediate 
solution

Candidate best
solution

Fig. 1. The AILS-RR framework and its phases.

itself. Our methodology starts generating an initial solution from a graph G(V,E)
representing a BTSP instance. Once a solution has been identified, this is given
as input to AILS-RR, which iteratively searches for improving solutions until a
certain stopping criterion is reached. Figure 1 shows an overview of the steps of
our methodology.

Details about the strategy adopted to identify an initial solution are presented
in Sect. 3.1, while the AILS-RR procedure is described in Sect. 3.2.

3.1 Finding an Initial Solution

Determining whether there exists a Hamiltonian cycle in a not fully connected
graph is an NP-complete problem [21]. In order to find a Hamiltonian cycle,
we used the Snakes-and-Ladders Heuristics (SLH) by Baniasadi et al. [22]. The
SLH is a polynomial time algorithm inspired by the k -opt heuristic. In SLH,
vertices are ordered on a circle where edges between adjacent vertices represent
the arcs of the circle while all other edges are considered as chords of the circle.
The heuristic attempts to place all edges of a Hamiltonian cycle on the circle
by seeking changes in the arrangement of vertices of the graph, with the goal of
maximising the number of edges on the circle.

For this work, we have relied on the online implementation of SLH [23] pro-
vided by the authors of [22]. However, the online implementation accepts a max-
imum of 2000 vertices. To generate a cycle in the instances with more than 2000
vertices, we randomly partitioned all the vertices in equally sized subsets, with
size smaller than 2000. For each of them, we independently found a Hamilto-
nian cycle; then, considering only edges from one subset to another, we selected
the k vertices with highest degree. Finally, for each of the k vertices and its
adjacent ones in the Hamiltonian cycle, namely A and B, we checked if they
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Fig. 2. Flowchart of the process to generate the initial solution.

were connected to any couple of adjacent vertices in the other subset, namely
C and D. If so, it means that the two disjoint cycles can be united as A−first
cycle−B−C−second cycle−D−A. When none of the k vertices could be used to
join the two cycles, the whole procedure was repeated by randomly partitioning
the nodes. Figure 2 shows a flowchart of the process used to identify an initial
solution. For all the evaluated instances, we were able to find an initial solution
without having to re-partition more than two times.

3.2 Adaptive Iterated Local Search with Random Restarts

Once an initial feasible solution is found, we used AILS-RR to improve its objec-
tive value. The AILS-RR procedure proposed in this work relies on four main
phases: local search, update, perturbation and random restart.

The procedure starts from the initial solution s provided by the method
described in Sect. 3.1. Then, a local search is performed on s and a solution
s′ is returned. This solution can be: a) a new solution different from s or b)
the same solution s in case no improving solution has been identified. Thus, the
update phase amends the local search heuristic according to the resulting solution
generated. In this update phase, the adaptive part of the algorithm takes place.

Once solution s′ has been generated and the update has been performed,
we replace sbest – the best solution found so far – with s′ if the latter strictly
improves it. In case no improved solution, with respect to s, was found after
MaxIteration consecutive iterations, a perturbation to s is applied and a
new solution is generated. Then, the next AILS-RR iteration starts from the
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perturbed solution and the counter for the not improving solution is reset. Addi-
tionally, if for too many consecutive iterations, no solution has improved sbest, a
random restart from a good known solution is performed. In particular, details
on the number of consecutive iterations needed and on what is considered a
good solution are presented in Sect. 3.2.4. Random restart is applied to avoid
extensively searching unpromising regions of the solution space, hence moving
to a more fruitful one. Finally, the AILS-RR terminates whenever the stopping
criterion is met. Further details on the stopping criterion are given in Sect. 3.2.5.

A pseudo-code of the approach is illustrated in Algorithm1. In the algorithm,
there are five main functions: a) LocalSearch, b) Update, c) Perturbation, d)
RandomRestart and e) StoppingCriterion. Our algorithm differentiates from the
standard ILS [20] in terms of the update phase as well as the introduction of the
random restart from a known solution. In the following paragraphs, we explain
each component of the algorithm in detail.

Algorithm 1. Adaptive Iterated Local Search with Random Restart
1: procedure AILS (Input: Graph G, Hamiltonian cycle s; Output: Hamiltonian

cycle sbest)
2: sbest = s;
3: notImproving = i = 0;
4: while not StopCriterion() do
5: i = 0;
6: while i < MaxIterations do
7: s′=LocalSearch(s);
8: Update(LocalSearch());
9: if Cost(s′) < Cost(s) then

10: s = s′;
11: i = 0;
12: if |Cost(s′)| < |Cost(sbest)| then
13: sbest = s′;
14: notImproving = 0;
15: else
16: notImproving + +;
17: end if
18: else
19: i + +; notImproving + +;
20: if notImproving > RestartFactor then
21: s = RandomRestart();
22: notImproving = 0;
23: end if
24: end if
25: end while
26: s=Perturbation(s);
27: end while
28: return sbest
29: end procedure
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3.2.1 Local Search
Starting from a current solution s, the local search aims at finding an improved
solution s′. It consists of applying modifications, which are dictated by different
operators, to the solution structure. An operator is a function that, given cycle
s, applies modifications on its structure which generates multiple cycles which
are variations of cycle s. The resulting cycles define a neighbourhood of s. Every
solution in the neighbourhood is evaluated and only the solution which most
improves s is accepted. If no solution improves s, s itself is returned. During the
local search, the algorithm uses – with probability depending on their weights –
one of these three operators: one edge insertion, two edges insertion and cycle
modification. Each operator selects at least one edge to be inserted in s. The
insertion of an edge divides the original cycle in two subtours. Selecting the edge
to be inserted determines which subtours will be created. Dually, identifying a
desired subtour lets us establish which edge is to be inserted. Given the particular
structure of the instances, we have chosen to determine the edges first. More on
this is presented in Sect. 4.1. The following paragraphs introduce the operators
adopted.

One Edge Insertion. Given a cycle s, the first operator selects, at random, one
edge AB which is not in s. The extreme points of the edge, A and B, are adjacent
to two vertices each in s –C and D for A, E and F for B. For the time being, we
assume every vertex to be different with respect to each other; straightforward
modifications can be applied if this is not the case. There is only a limited number
of possibilities to insert edge AB in the existing solution; at most, there are eight
possible outcomes. The cost, Eq. (3), of all possible outcomes is evaluated and
the best one is chosen. Since the graph is not complete, in general not all the
combinations exist. Indeed, naming p the probability that an edge exists, and
assuming they are all independent, we can analyse quantitatively the probability
for each combination to exist. Figure 3 shows all possible outcomes; the edge to
be inserted is represented in blue, the edges that may or may not exist are
shown in red, while black indicates the edges belonging to the original cycle. By
construction, we know the existence of edges AB,AC,AD,BE and BF . Hence,
we deduce there are two combinations with probability p, four combinations with
probability p2 and two combinations with probability p3.

Two Edges Insertion. Similarly to the previous operator, this process chooses
two edges not yet in the current solution and tries to insert them. If the four
extreme vertices of the two selected edges are all different, isolating them divides
the cycle in four subtours. Hence, the solution is now decomposed in six subtours
– four from the original cycle and two from the two inserted edges, that can be
considered subtours as well, see Fig. 4ii.

There are 10!!1 possible ways to combine the four subtours and the two edges.
This number comes from (2 ·(t−1))!!, where t is the number of subtours – six, in
our case – and −1 because a degree of freedom is lost for the intrinsic symmetry

1 !! is double factorial, i.e. f !! = f · (f − 2) · (f − 4)...
In our case, 10!! = 3840.



Adaptive Iterated Local Search with Random Restarts for the Balanced TSP 45

A

B

C D

E F

A

B

C D

E F

A

B

C D

E F

A

B

C D

E F

A

B

C D

E F

(i) (ii) (iii) (iv) (v)

A

B

C D

E F

A

B

C D

E F

A

B

C D

E F

A

B

C D

E F

(vi) (vii) (viii) (ix)

Fig. 3. Examples of single edge insertion. Dashed blue lines show the edge to be
inserted; dotted red lines indicate the edges that may or may not exist, while black
lines show the edges belonging to the original cycle. Figure (i) shows the original cycle,
while figures (ii)–(ix) show the possible insertions.

of cycles. A multiplicative factor of 2 is added since each subtour can be linked to
the next one through two different endpoints. Having t subtours implies having,
as their endpoints, 2t vertices. Intuitively, the double factorial follows because
a vertex can be connected to 2t − 2 other vertices, every vertex but itself and
the other endpoint of its subtour. Once connected, the following vertex can be
connected to 2t − 4 others. This includes all the vertices but itself, the other
endpoint of its subtour and the endpoints of the subtour to which it is already
linked to. Recursively, we can see how this develops, for the remaining vertices,
in a double factorial structure. Among these combinations, only the ones with
at least probability p3 to exist are considered by our methodology.

Generally speaking, these first two operators can be viewed as modified ver-
sions of k -opt. Figure 4 shows an example of two edges insertion. Starting from
an initial cycle – Fig. 4i – two edges are inserted. The new edges divide the
cycle into four different subtours – Fig. 4ii. Finally, Fig. 4iii and Fig. 4iv show an
example of a reconstructed cycle with probability p3 and p6, respectively.

Cycle Modification. The two edge insertion generates multiple intermediate
solutions, but it is computationally more expensive with respect to the one edge
insertion operator. To compensate the computational requirements of the two
edge insertion operator, we introduce the cycle modification operator.

This operator selects, at random, an edge in the existing solution s. We name
A and B its extreme vertices, which are consecutive in the original solution s.
Then, we select at random one edge, not in solution s, which is outgoing A
and is entering, without loss of generality, in C. At the same time, we select
at random one edge, not in solution s, which is outgoing B and is entering,
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Fig. 4. Example of two edge modification. (i) Initial cycle. (ii) Insertion of two edges
and subtours generated. (iii) Reconstructed cycle with probability p3. (iv) Recon-
structed cycle with probability p6. The original edges are shown in black, while dashed
blue lines depict the inserted edges, and dotted red lines depict the edges with proba-
bility p.

without loss of generality, in D �= C, see Fig. 5ii. Subsequently, we consider
the path, in the original cycle, from C to D, that passes through A and B.
In that cycle, we name E and F the follower of C and the predecessor of D,
respectively. By construction, there exist paths EA,CD,BF and edges AC,BD.
Hence, there exists a path connecting EA−AC −CD−DB −BF , see Fig. 5iii.
Finally, if edge EF exists, we obtain a feasible cycle, see Fig. 5iv. In general,
edge EF exists with probability p. To increase the size of the neighbourhood,
this procedure is repeated for all outgoing edges of B. It is not, however, repeated
for all combinations of outgoing edges of A and outgoing edges of B, because
this would be computationally too expensive.

3.2.2 Update
Each operator of the local search is applied with a probability proportional to
its associated weight. These weights are constrained to be greater than a param-
eter MinWeight and their sum is forced to a value lower that the upperbound
parameter MaxWeights. Whenever an operator returns a solution which does
not improve the input solution, we subtract f –in this work, f has value 1– from
its associated weight. In case an operator returns a better solution than the
solution given as input, its associated weight is increased by 10% and rounded
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Fig. 5. Example of cycle modification. (i) Original cycle. (ii) Selection of the edges to
be inserted. (iii) Construction of the existing path. (iv) Closing the cycle with edge
EF which exists with probability p. Original edges are shown in black, dashed blue
lines depict the inserted edges, and dotted red lines indicate the edges that exist with
probability p.

to the nearest higher integer. In addition, if the returned solution is even better
than the best known solution –sbest– the weight of the operator leading to the
improved solution receives an extra reward of 10f in addition to the normal
reward obtained for improving the previous solution. We call this discrepancy
among a constant decrease and a proportional increase an uneven reward-and-
punishment adaptation rule. In our opinion, an even reward-and-punishment
adaptation rule is more suited to grasp stable characteristics, such as the ones
related to the structure of the graph itself, while an uneven rule is more keen
to quickly adapt to variations, such as the ones in the changing structure of the
solution.

3.2.3 Perturbation
The perturbation is applied when we are not able to improve a local solution for
a significant number of iterations –MaxIterations. To perform a perturbation,
the algorithm uses the same operators as the local search. The main differences,
with respect to the local search, is that every change is accepted –not only an
improving one– and it is performed only once. There is no evidence that more
perturbations results in better solutions. In fact, more perturbations cause the
current solution to drift too much away from a promising part of the solution
space. In addition, since the costs of the edges are neither Euclidean nor the
authors found any pattern within them, even a slight modification of a few
edges can lead to dramatic changes in the objective function.

3.2.4 Random Restart
Perturbations allow to explore different regions of the solution space; nonethe-
less, some of those regions could be unpromising. To avoid exploring inadequate
regions of the solution space, it is useful to restart the search from a region where
good solutions are known to exist. If, after too many consecutive iterations, no
solution improved the best known objective function, then a random restart from
a good known solution is performed. In particular, we define as History an array
storing the HistorySize best solutions and their number of occurrences. If, after
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RestartFactor consecutive not improving iterations, sbest was not improved, we
perform a random restart from any of the solutions stored in History.

We define RestartFactor as:

RestartFactor = cMax +
MostV istitedSolution(History)

HistoryStep
, (10)

where MostV istitedSolution(History) assumes the value of the number of vis-
its to the most visited solution in History, while cMax and HistoryStep are
parameters. cMax indicates the minimum number of iterations the algorithm
has to perform before a random restart can happen, while HistoryStep is a
scaling factor. While we perform the random restart to avoid going too far away
from a region of the solution space where good solutions exist, we reduce the
frequency of restarts when the same solution is visited more and more times to
escape that tenacious local minimum. In fact, it could happen that too frequent
restarts drives the local search to the same local minima. In addition, restarting
from any of the solutions stored in History helps to maintain a certain degree
of diversity.

3.2.5 Stopping Criterion
AILS-RR has no memory of all the solutions discovered since it started, and in
general there is no guarantee of optimality. Hence, without a stopping criterion,
it would indefinitely search for improving solutions. The stopping criterion we
implemented terminates the execution of the algorithm if any of the following
conditions is met: a) the solution cost is zero, and thus, we have reached the
optimal solution, b) a user-defined time limit was exceeded, c) the algorithm
returned for more than MaxIterationHistory times the same solution.

If condition a) is met, then, it is not possible to further improve the solution
identified. Condition b) offers a knob for setting a reasonable usage of resources
required to search for improving solutions, and condition c) is useful to avoid
expensive explorations of particularly tenacious local minima from where the
algorithm cannot escape even with its perturbation move.

4 Experiments

In this section, we explain the experiments setup and the performance of our
algorithm. In Sect. 4.1, we describe the instances tested, in Sect. 4.2, the param-
eters used, and lastly, in Sect. 4.3, the performance of our algorithm.

4.1 Instances

The algorithm was tested on 27 given instances, available at [24], which vary in
size from 10 vertices and 40 edges, to 3,000 vertices and 12,000 edges. Hence, on
average, each vertex has degree 4. This motivates the analysis on the probability
of existence of an edge in the AILS-RR. The absolute value of the costs of every
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edge can be written as k1 · 100,000 + k2, where k1 and k2 are integers in the
range [0, 99]. We run the algorithm twice per instance. The first time, we used
as input the instances considering as cost only k1. In the following, we refer to
this change in the cost associated with the edges as a cost modification. With
this data, the algorithm was able to find a solution of cost zero for all instances.
Then, the algorithm was run a second time, starting from the previously found
solution, with the real costs of the arcs.

4.2 Parameters Tuning

The local search procedure is repeated until for MaxIterations = 100 consec-
utive iterations no improving solution is found. HistorySize, the number of
how many good solutions were stored in array History, is set to 100. Param-
eters cMax and HistoryStep, which are used to determine when to restart
from a random solution in History, are set to 1,000 and 100, respectively.
Parameter MaxIterationHistory determines how many times a solution can
be visited before the stopping criterion is met and is set to 1,000,000. This
means that a random restart can happen as often as after 1,000 consecutive
not improving iterations, or as rarely as after 10,999 consecutive not improving
iterations. In Paragraph 3.2.4, we explained how often the random restart hap-
pens depending on how many times the most inspected solution is visited. We
may have a restart after 10,999 consecutive not improving iterations and not
after 11,000 times as expected if MostV isitedSolution(History) assumes value
MaxIterationHistory. In fact, MostV isitedSolution(History) cannot assume
value MaxIterationHistory in Eq. (10) because, if so, the stopping criterion
is met and the execution of the whole algorithm is terminated. Every single
operator weight is initially set to 333 and restricted to integer values above
MinWeight = 1 and such that their sum does not exceed MaxWeights = 1,000.
If the sum of the weights exceeds MaxWeights, the weight of every parameter
is decreased by one, unless this violates the lower bound MinWeight, until the
threshold is respected. For the tests with the modified cost, the maximum run-
ning time for each instance was set to two hours while, for the tests with the
original cost, the maximum running time for each instance was set to twelve
hours. Table 1 summarises all the parameters used in the algorithm.

4.3 Performance

Instances were run overnight on different machines. In particular, instances up to
100 nodes were run on an Intel Core i7-6600U CPU @2.60 GHz 2.80 GHz with
8 GB RAM and instances from 150 to 400 nodes on a Intel Core i7 @2.9 GHz with
8 GB RAM. Bigger instances (500 to 3,000 nodes) were run on a 32 core machine
with Intel Xeon E5-4650L CPU @2.60 GHz 3.1 GHz with 500 GB of physical
memory. Since the BTSP is a new problem, introduced for the MESS2018 solver
challenge, no comparison with the state of the art is possible. In general, optimal
solutions are not known but they cannot have a better objective function than
zero. By executing the AILS-RR on the instances with modified costs of the
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Table 1. Parameters tuning

Parameter name Value Description

MaxIterations 100 Maximum not improving cycles of LS

HistorySize 100 Dimension of array History

cMax 1,000 Minimum number of cycles for a random
restart

HistoryStep 100 Random restart parameter

MaxIterationHistory 1,000,000 Stopping condition parameter

MinWeight 1 Minimum weight for each operator

MaxWeights 1,000 Maximum value of the sum of the weights of
all operators

MaxTime 2 h Maximum time per instance - modified costs

MaxTime 12 h Maximum time per instance - original costs

edges, as explained in Sect. 4.1, we know that the optimal solutions for all these
modified instances have cost zero. In general, a zero cost solution for the modified
instances does not translate into an optimal solution for the original instances;
nonetheless, it is a good initial when solving the instance with original costs.
The results displayed in Sect. 4.3.1 and 4.3.2 refer to the modified costs and the
results shown in Sect. 4.3.3 refer to the original costs. For the tests with the
modified costs, we set a time limit of two hours and a limit of 10,000 iterations
by counting how many times LocalSearch is called. We ran this experiment to
perform a qualitative analysis of the obtained results and operator effectiveness.
We tested the instances on a 32 core machine with Intel Xeon E5-4650L CPU
@2.60 GHz 3.1 GHz with 500 GB of physical memory, and each test was run 10
times in order to obtain average results. In Sect. 4.3.1, we introduce in detail a
meaningful instance case, while in Sect. 4.3.2, we present results for all instances.

4.3.1 Instance 3,000 Vertices
The instance presented in this section is representative of the entire set. In fact,
Fig. 6i and Fig. 6ii display the trends of the objective function, for the same
executions, with respect to iterations and time while Fig. 6iii and Fig. 6iv show
the evolution of the weights during the ten tests of the algorithm, with respect to
iterations and time. Since all the tests are plotted simultaneously, these figures
give some idea on the variance of the trends and how many tests terminated
their execution in just a few iterations. First of all, plotting results with respect
to iterations or with respect to time only slightly modifies the overall shape of
the figures. This is due to the fact that comparable amounts of time are needed
for each operator to perform its local search. In Fig. 6iii and Fig. 6iv, sharp peaks
with slow decline are visible. This is exactly the effect of the uneven reward-and-
punishment adaptation rule; since increases are proportional while decreases are
constant, rapid changes in the weights of the operators are visible. In this case,
it is clear that operator cycle modification performs better than the others; as
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shown in Sect. 4.3.2, this is the case for basically all other instances. Secondly,
Fig. 6i and Fig. 6ii show the absolute value of the best solution found so far by
the algorithm. Even though this instance is the biggest one, even for the worst
of the ten tests, our algorithm was able to find an optimal solution in roughly
two minutes.

absolute value of the objective function

(i) Cost with respect to the number of iterations (ii) Cost with respect to the execution time

one edge insertion two edges insertion cycle modification

(iii) Weights with respect to the number of iterations (iv) Weights with respect to the execution time

Fig. 6. Evolution of absolute cost of the solutions and operator weights with respect
to number of iterations and execution time. Results are shown for the instance with
3,000 vertices.

4.3.2 Results for All Instances
Small instances were solved in a few iterations with no particularly interesting
trend; because of that, in this paragraph, we consider only instances of size
strictly greater than one hundred vertices. Since no particular difference arises
from plotting with respect to the number of iterations or with respect to time,
the figures in this paragraph refer to the iterations. Furthermore, for the sake
of readability, we decided to plot average results instead of all the 10 trends.
Averaging the results highlights the trends but smooths peaks which instead
are visible in Fig. 6iii and Fig. 6iv. For instances with more than one hundred
nodes, trends of the weights of the operators and of the solution developments
are shown in Fig. 7 and Fig. 8, respectively. These trends show the average results
for the ten tests. Figure 7 shows that, for all simulations, all tests over all the
instances, but one, returned the optimal solution within few iterations –resulting
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absolute value of the objective function

(i) 150 vertices (ii) 200 vertices (iii) 250 vertices

(iv) 300 vertices (v) 400 vertices (vi) 500 vertices

(vii) 600 vertices (viii) 700 vertices (ix) 800 vertices

(x) 900 vertices (xi) 1,000 vertices (xii) 1,500 vertices

(xiii) 2,000 vertices (xiv) 2,500 vertices (xv) 3,000 vertices

Fig. 7. Evolution of the objective function over different instances. Number of iterations
on the x -axis, objective function value on the y-axis.

in few minutes of execution time–, way before encountering the time or the
iteration limit. In our opinion, this is a powerful indicator of the effectiveness
of our algorithm. Similarly, Fig. 8, shows how among all the instances, the cycle
modification is the most effective operator. Nonetheless, it is worth noticing that,
while for the medium-sized instances, weights are almost equivalently distributed
among operators, the bigger the instance, the greater the probability of cycle
modification to be chosen.
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- - - one edge insertion - - - two edges insertion - - - cycle modification

(i) 150 vertices (ii) 200 vertices (iii) 250 vertices

(iv) 300 vertices (v) 400 vertices (vi) 500 vertices

(vii) 600 vertices (viii) 700 vertices (ix) 800 vertices

(x) 900 vertices (xi) 1,000 vertices (xii) 1,500 vertices

(xiii) 2,000 vertices (xiv) 2,500 vertices (xv) 3,000 vertices

Fig. 8. Evolution of the weights assigned to the different operators over different
instances. Number of iterations on the x -axis, objective function value on the y-axis.

4.3.3 Final Results
In this section, for the sake of further comparison, we display the results sub-
mitted to the competition. All the results proposed in this section are computed
with the original costs. In particular, Table 2 portraits: in the first column, the
instance size –expressed in the number of vertices–, and in the second column,
the absolute value of the solutions.
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Table 2. Results.

# vertices |Solution cost|
10 105

15 271

20 296

25 375

30 433

40 473

50 717

60 918

70 1,056

80 929

90 1,098

100 1,245

150 2,035

200 2,657

250 3,811

300 4,846

400 6,509

500 8,418

600 9,784

700 17,989

800 18,233

900 20,596

1,000 22,597

1,500 37,662

2,000 49,882

2,500 36,607

3,000 24,423

5 Conclusion

This paper illustrates the AILS-RR methodology applied to the balances travel-
ling salesman problem. With slight modifications of the local search operators,
we believe that the same metaheuristic can obtain significant results in many
operational research problems. The proposed metaheuristic is a variant of ILS
and it features the adaptive use of the local search operators and restart moves.
Key advantages of the AILS-RR are: its effectiveness in navigating the solution
space, as shown in the achieved ranking in the MESS2018 Metaheuristics Com-
petition, its easiness to implement and its ability to quickly obtain near optimal
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solutions. Additional motivations and a detailed description of our algorithm are
presented in Sect. 3, which presents the algorithm structure focusing on the dif-
ferent phases of the metaheuristic. In particular, the description details the main
contribution of the proposed methodology which lays in the newly introduced
uneven reward-and-punishment adaptation rule. To the best of our knowledge,
this is the first time that such a strategy is used. Section 4 proves that our
AILS-RR achieves notable results, scoring remarkable positions in almost every
instance ranking, and achieving the 5th position in the competition.
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