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A B S T R A C T   

Antarctic blue ice areas are exposed due to erosion and sublimation of snow. At the same time, surface melt can 
form surface types that are spectrally similar to blue ice, especially at low elevations. These are termed melt- 
induced blue ice areas. Both types of blue ice are sensitive indicators of climate change. Satellite remote 
sensing is a powerful technique to retrieve the spatial extent of blue ice areas and their variation in time. Yet, 
existing satellite-derived blue ice area products are either mono-temporal for the entire Antarctic ice sheet, or 
multi-temporal for a limited area. Here, we present FABIAN, a product of blue ice fraction over Antarctica, 
derived from the moderate resolution imaging spectroradiometer (MODIS) archive covering the period 
2000–2021. A spectral mixture analysis (SMA) in Google Earth Engine, based on a careful selection of end-
member spectra, accurately reconstructs the reflectance observed by MODIS in blue ice areas. Based on a vali-
dation with contemporaneous Sentinel-2 images, FABIAN has a root mean square error in blue ice fraction of 
approximately 10% ~ 20% in wind-induced blue ice areas, and 20% ~ 30% in melt-induced blue ice areas across 
six selected test sites in the coastal East Antarctic ice sheet. FABIAN is challenged in regions with shallow melt 
streams and lakes, since their spectral profiles are similar to those from blue ice areas in MODIS bands. For 
further analyses and applications, FABIAN holds the potential for (1) deriving annual blue ice area maps, (2) 
distinguishing between wind-and melt-induced blue ice types, (3) evaluating and correcting (regional) climate 
models, and (4) analyzing temporal variations in blue ice abundance and exposure.   

1. Introduction 

Blue ice areas cover about 1% of the Antarctic ice sheet (Winther 
et al., 2001; Bintanja, 1999). It is ancient ice with a peculiar blue and 
rippled appearance that surfaces after the firn layer has been removed 
(Bintanja, 1999). Traditionally, blue ice has been defined as a surface 
type occurring at locations with a negative surface mass balance, where 
wind erosion and sublimation is larger than accumulation (Bintanja, 
1999). In this study, blue ice areas of this origin are referred to as wind- 
induced blue ice areas. However, Winther et al. (2001) added a second 
type, so-called melt-induced blue ice areas, being (patchy) bare ice with 
a bluish appearance experiencing cyclic melt-freeze processes (Winther, 

1994; Liston et al., 1999), mainly due to surface melt and katabatic 
winds. The origin of this ice is not glacial, but due to melt, refreezing and 
horizontal water transport. When observed from space, ‘melt-induced 
blue ice’ also includes surfaces other than ice, like slush, refrozen 
supraglacial lakes, because they cannot be discriminated based on their 
optical spectra. In Antarctica, blue ice areas are located in coastal and/or 
in mountainous regions. Blue ice areas are sensitive to climate change 
(Orheim and Lucchitta, 1990; Bintanja, 1999), therefore, they have 
often been studied in a paleoclimatological context (Sinisalo and Moore, 
2010). On decadal timescales, most wind-induced blue ice areas appear 
to be very stable (Bintanja, 1999; Sinisalo and Moore, 2010). Bintanja 
and Van den Broeke (1995a, 1995b) confirmed the stability of wind- 
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induced blue ice areas near nunataks in Dronning Maud Land. Ligten-
berg et al. (2014) explained variations in the Byrd Glacier blue ice area 
as a result of the interaction between ice velocity, surface mass balance, 
and the upstream firn mass. However, the precise dynamics of blue ice 
area formation and variation across the entire Antarctic ice sheet remain 
ambiguous, and require first a more robust inventory of blue ice areas. 
Revealing these patterns would contribute to our understanding of the 
variability in the surface radiation and energy budget, and thereby of 
temperature, and possibly surface melt. 

Spaceborne remote sensing is the backbone for mapping the areal 
extent of blue ice areas, with practical applications such as mapping 
meteorite searching areas (Tollenaar et al., 2022) and potential airfield 
locations (Mellor and Swithinbank, 1989; Yoshida et al., 1971). It is 
primarily based on multispectral optical data, thanks to the unique 
spectral profile of blue ice areas compared to its ambient environment of 
snow and/or rock. Its history can be traced back to 1976, when the 
national institute of polar research in Tokyo, Japan, delineated blue ice 
areas in the Yamato Mountains, Antarctica, using a Landsat 1 (previ-
ously known as the Earth resources technology satellite-1, ERTS-1) 
scene (Williams et al., 1982). Since the concept of band (ratio) thresh-
olding was proven to be suitable for mapping blue ice areas (Orheim and 
Lucchitta, 1988, 1990), it has become a frequently used approach for 
detecting blue ice areas in optical imagery (Brown and Scambos, 2004; 
Hui et al., 2014; Winther et al., 2001; Bronge and Bronge, 1999). The 
first blue ice area map for the entire continent made use of an image 
mosaic from the national oceanic and atmospheric administration - 
advanced very high resolution radiometer (NOAA-AVHRR) (Winther 
et al., 2001). A pan-Antarctic map of blue ice areas at higher resolution 
was presented by Hui et al. (2014), based on the 30 m resolution Landsat 
image mosaic of Antarctica (LIMA) product (Bindschadler et al., 2008). 
Apart from these optical products, blue ice area mapping has also been 
attempted with radar imagery (Liu et al., 2006; Cheng et al., 2003), yet 
at local to regional scale only. 

To date, spaceborne observations of the intra-and inter-annual 
variability of Antarctic-wide blue ice are still missing. To our knowledge, 
all Antarctic-wide blue ice area products are static and derived from a 
multi-year mosaic of satellite images. Intra-and inter-annual variability 
of blue ice areas is thereby neglected, although it was shown to occur 
(Brown and Scambos, 2004), as snow/ice surfaces can be highly dy-
namic. Cloud obstruction can hamper a correct interpretation, since it 
directly poses a challenge for assessing spatiotemporal variability in 
Antarctic blue ice areas, especially using (semi-)high resolution optical 
satellite images (e.g., Sentinel-2 and Landsat). Within an austral sum-
mer, it is unfeasible for the Sentinel-2 and/or Landsat constellations to 
acquire sufficient and adequate cloud-free observations for a proper 
analysis of intra-annual blue ice dynamics. In contrast, the moderate 
resolution imaging spectroradiometer (MODIS), observing the same 
place twice a day with Terra and Aqua, holds a great potential to reveal 
intra-annual blue ice dynamics. A temporally resolved product of blue 
ice area coverage also allows us to highlight different dynamics of wind- 
and melt-induced blue ice areas. They form by very different mecha-
nisms, and their dynamics and anomalies express changes and vari-
ability of climatic drivers on different timescales. Melt-induced blue ice 
areas are very dynamical and sensitive to short-term variations in the 
changing ambient environment, especially surface melt. In this regard, 
identifying these two types of blue ice can further improve our under-
standing of the changing climate over Antarctica. 

This study develops a daily product of fractional austral-summer 
blue ice over Antarctica (FABIAN). Fractional blue ice refers to the 
percentage of blue ice located within a MODIS pixel at a given time. 
FABIAN is based on MODIS images acquired during the austral summers 
from 2000/01 to 2020/21, and can easily be extended each year. 
FABIAN is able to reveal intra-and inter-annual variability at daily 

resolution, thereby strongly enhancing our monitoring capacity of blue 
ice areas. FABIAN makes use of linear spectral mixture analysis (SMA), a 
well-developed technique for estimating land cover fractions. Presently, 
SMA has been applied frequently to vegetated and urbanized areas 
(Somers et al., 2011; Wu and Murray, 2003; Elmore et al., 2000; Smith 
et al., 1990) but also in snow/ice-covered areas (Hu et al., 2017; 
Vikhamar and Solberg, 2003). SMA models the observed reflectance by 
combining the spectra of pure, single-type land covers (called end-
members) from a certain pixel. These endmembers are weighted by their 
fractional coverage (Smith et al., 1990). Antarctica is a particularly 
interesting area for SMA applications, since the variety of land surface 
forms is more limited than in vegetated and urbanized areas, reducing 
the number of endmembers required for a reliable retrieval. Section 2 
introduces the overall framework of FABIAN, the methods we apply for 
estimating the blue ice fraction, our validation setup, as well as the data 
sets we use. In Section 3, we present and discuss the results of FABIAN, 
focusing on dynamics of the blue ice fraction estimates from FABIAN, 
and the relation to meteorological parameters provided by a polar 
regional atmospheric climate model (RACMO2). Next, we evaluate the 
blue ice fraction results from FABIAN, as well as the quality of the 
reference blue ice fraction data set derived from Sentinel-2 images. In 
the end, we summarize the development of FABIAN and its application. 

2. Methods and materials 

A flowchart of FABIAN generation is shown in Fig. 1. The framework 
consists of three principal steps: (I) the construction of a spectral library 
for the SMA; (II) a MODIS-based SMA procedure to estimate a gridded 
blue ice fraction map; (III) evaluation of the blue ice fraction maps using 
contemporaneous Sentinel-2 imagery. In part I (block I in Fig. 1), the 
hyperspectral data (from optical radiative transfer model simulations, 
and field or laboratory measurements) are radiometrically resampled 
and inserted, with candidate multispectral endmembers derived from 
MODIS imagery, into the initial spectral library. The representativeness 
of the endmembers is assessed using two independent methods, i.e., 
EMC: endmember average root mean square error (Dennison and Rob-
erts, 2003); minimum average spectral angle (Dennison et al., 2004); 
count based endmember selection (Roberts et al., 2003), and AMUSES: 
automated music and spectral separability-based endmember selection 
(Degerickx et al., 2017). Subsequent endemember selection based on the 
EMC and AMUSES outputs then yields the seven most representative 
endmembers, and they are selected for the final spectral endmember 
library. The represented surface types are: (1) blue ice, (2) coarse- 
grained snow, (3) fresh snow, (4) bare rock, (5) deep water, (6) slush, 
and (7) wet snow. These selected endmembers are then used for SMA of 
MODIS images (block II in Fig. 1). Temporal gaps (mostly due to cloud 
obstructions) in SMA-estimated blue ice fraction results are then filled 
with weekly or monthly mean pixel value. Meanwhile, we classified the 
contemporaneous Sentinel-2 scenes into blue ice area maps using the 
Otsu method (Otsu, 1979) to produce the blue ice fraction validation 
data set. In the remainder of this subsection, we present details of the 
endmember selection, blue ice fraction derivation from MODIS imagery, 
blue ice fraction derivation from Sentinel-2 imagery, and blue ice frac-
tion evaluation. 

2.1. Satellite imagery and cloud masking 

MODIS has been providing continuous observations of the Earth’s 
surface for more than two decades. In this study, we used the seven 
surface reflectance bands (1: 620–670 nm, 2: 841–876 nm, 3: 459–479 
nm, 4: 545–565 nm, 5: 1230–1250 nm, 6: 1628–1652 nm, and 7: 
2105–2155 nm) from the MOD09GA (MODIS/Terra Surface Reflectance 
Daily L2G Global 1 km and 500 m SIN Grid) and MYD09GA (MODIS/ 
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Aqua Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid) 
products archived in Google Earth Engine (GEE; Gorelick et al., 2017) as 
the reflectance input for SMA, in which cloud pixels were masked out 
based on the ‘1 km Reflectance Data State’ band. To assess the SMA- 
estimated blue ice fraction results, we used optical remote sensing 
products from Sentinel-2, including L2A bottom of atmosphere reflec-
tance (for blue ice area classification) and L1C top of atmosphere 
reflectance (for cloud and shadow detection). These data are not avail-
able daily, but have the advantage of a much higher spatial resolution of 
~ 20 m. Over the Antarctic continent, the current two-satellite 
constellation of the Copernicus Sentinel-2 mission records land surface 
changes every 2–3 days under cloud-free conditions. In GEE, Sentinel-2 
L2A products over Antarctica are available since 2018; therefore, the 
Sentinel-2 L2A and L1C images that we use in this study, were acquired 
partially in austral summer 2018/19 and entirely in austral summers 
2019/20 and 2020/21. 

To mask out clouds in Sentinel-2 images, we establish the best cloud 
masking algorithm for Antarctic conditions. There exist several ways for 
cloud masking of Sentinel-2 images in GEE, including (1) SCL (a scene 
classification map), (2) s2cloudless (available on https://medium. 
com/sentinel-hub/improving-cloud-detection-with-machine-learning-c 
09dc5d7cf13, accessed on 02 August 2021), (3) modified s2cloudless 
(available on https://developers.google.com/earth-engine/tut 
orials/community/sentinel-2-s2cloudless, accessed on 02 August 
2021), and (4) a machine-learning-based method developed by the 
German research centre for geosciences (referred to as GFZ method; 
Hollstein et al., 2016). We demonstrate the results from these four al-
gorithms under three scenarios (i.e., remote sensing images appearing 
fully hazy with optically thin layer of clouds, partially cloudy/hazy, and 
heavily cloudy) in the Queen Fabiola Mountains, Dronning Maud Land 
(Fig. A.14). SCL is the least accurate cloud mask in identifying clouds, 
water, and shadows, resulting in inaccurate cloud shadow detection 
using the modified s2cloudless which relies on SCL outcomes. 

S2cloudless is the most accurate in detecting clouds, and the GFZ pro-
vides the most accurate cloud shadow masks. Therefore, we decide to 
create a hybrid cloud masking scheme combining the cloud mask from 
s2cloudless and the cloud shadow mask from the GFZ method. 

2.2. Candidate endmember spectra collection and simulation 

In order to implement SMA, a spectral library consisting of spectra 
representing the potential types of land cover (i.e., endmembers) for the 
study area is indispensable. Conventionally, endmembers can be ac-
quired from remote sensing images, field/laboratory measurements, and 
simulations. In this study, we first collected hyperspectral measurements 
from earlier publications of field or laboratory work (Hui et al., 2014; 
Zatko and Warren, 2015; Hannula et al., 2020), and from the spectral 
library ECOSTRESS (previously known as the ASTER spectral library; 
Meerdink et al., 2019). Given that all these candidate spectra are 
hyperspectral, they were resampled to MODIS band configurations using 
the ‘hsdar’ package in R (https://cran.r-project.org/web/packages/hsda 
r/hsdar.pdf, accessed on 02 August 2021). These spectra are used to 
build the initial spectral library (block I spectra integration in Fig. 1). 

We expanded the initial spectral library by using two additional 
sources of spectra. The first source is TARTES, a two-stream radiative 
transfer model for light in snow (Libois et al., 2013), from which we 
generated snow spectra. TARTES is a fast optical radiative transfer 
model used to compute the spectral albedo of a snowpack, defined as a 
set of homogeneous horizontal layers of snow with a specific surface 
area (SSA), density, impurities, and grain shape. For this study, we 
modeled the spectral albedo of a 10 m snowpack consisting of spherical 
grains with a constant density of 300 kg⋅m− 3, and no impurities. For 
fresh snow spectra, the optical diameter of the spherical snow grains 
varied between 60 and 210 μm. For coarse-grained snow, the diameter 
varied between 750 and 1500 μm. The second source for candidate 
endmember spectra was derived from multi-temporal MODIS images 

Fig. 1. Overall flowchart illustrating the employed data sets, methods, and the corresponding intercomparisons and evaluations.  
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using the four-step automatic endmember extractor (hereinafter noted 
as AUTO-EM) developed in GEE. First, AUTO-EM classifies cloud-free 
pixels in a MODIS image into blue ice, bare rock, deep water, and 
slush based on published methods (summarized in Table B3). To 
enhance classification accuracy, we tightened some thresholds (indi-
cated by * in Appendix B) suggested by the original methods. This may 
underestimate the areal extent of a certain class but increase the reli-
ability of the classification. Second, to capture the most stable pixel of a 
certain class, we selected the pixel with the highest frequency classified 
as the target class during the austral summers between 2000/01 and 
2020/21. This procedure was carried out separately for the months 
December, January and February, in order to allow for temporal vari-
ations. An overview of all collected endmembers is summarized by land 
cover type in Table 1. Third, these spectra are inserted into the initial 
spectral library, together with the resampled spectra originated from 
TARTES simulations, and field or laboratory measurements. 

2.3. Endmember selection and spectral library generation 

The total number of endmember spectra for the SMA needs to be 
reduced to n + 1, where n is the number of bands in the input imagery, 
due to the mathematical principle and ‘sum-to-one’ constraint of SMA. 
To arrive at a final selection of endmembers from the candidate spectra 
described above, we made use of two scoring techniques called EMC and 
AMUSES (automated music and spectral separability based endmember 
selection). EMC is a combination of EAR (endmember average root mean 
square error; Dennison and Roberts, 2003), MASA (minimum average 
spectral angle; Dennison et al., 2004), and CoB (count based endmember 
selection; Roberts et al., 2003). The other technique is AMUSES, which 
stands for automated music and spectral separability-based endmember 
selection (Degerickx et al., 2017). To combine these two metrics for the 
endmember selection, we developed our own endmember selection 
score (ESS). The ESS of a selected endmember es (ESSes) is calculated as 
the weighted sum of the min-max normalized EMC indices (EARes, c, 
MASAes, c, and CoBin, es: CoB within its own class) within a certain 
spectrum/land cover class c, and AMUSESes outcomes, according to Eqs. 
(1)–(2): 

x′

=
x − min(x)

max(x) − min(x)
, (1)  

ESSes ,c =0.2×
(

EAR’
es ,c+MASA’

es ,c+
(

1− CoB’
in,es

))
+0.4×

(
1− AMUSES’

es

)
,

(2)  

where x′ is the min-max normalized endmember selection index (x). The 
weights are manually signed to balance the EMC scores and AMUSES 
score, as well as each EAR, MASA, and CoB within the EMC scores. 
Meanwhile, slightly more focus is given on EMC scores to guarantee a 
better spectral representativeness within the spectral library. 

In this way, we selected the most representative spectrum for the 
following surface types: (1) blue ice, (2) coarse-grained snow, (3) fresh 

snow, (4) bare rock, (5) deep water, (6) slush, and (7) wet snow, as the 
selected endmembers for spectral mixture analysis inputs for the entire 
Antarctica. The selected spectra with the highest scores are the most 
(intra-and inter-class) representative ones within the initial spectra li-
brary (according to EMC), as well as in the real MODIS images (ac-
cording to AMUSES). In terms of water and slush, their spatial patches 
can be larger. Therefore, it is easier to obtain pure pixels in the satellite 
images. Compared with the water endmember from ECOSTRESS, the 
satellite-image-derived ones are more representative within the initial 
spectral library and in the real MODIS images. When it comes to snow 
endmembers, identifying fresh/coarse-grained/wet snow spectra from 
satellite images is very challenging. For pure fresh and coarse-grained 
snow surfaces, we deem the simulated spectra to be the state-of-the- 
art, since their optical properties are very well understood theoreti-
cally. Yet, for wet snow, it is also challenging to model it using radiative 
transfer model, such as TARTES. Therefore, the ground measurement is 
more well-suited. The only case, when manual interference is imple-
mented, is selecting the best bare rock endmember. After the visual in-
spection and analysis, we selected the rock spectrum measured in the 
field campaign (Hui et al., 2014) with the second-highest ESS instead of 
the highest-ESS one. The reason is that the rock endmember of the 
highest ESS is derived using AUTO-EM from MODIS imagery. However, 
its spectral profile is contaminated by other endmembers, most likely 
snow, which disagrees with the definition of the endmember. Such a 
phenomenon often appears in a 500×500 m MODIS rock pixel and 
makes AUTO-EM erroneously identifying it as the most stable rock 
endmember. The spectra in the final library are shown in Fig. 2, and the 
full table EMC, MASA, Cob, and ESS results are available on https://doi. 
org/10.5281/zenodo.6624077 (accessed on 8 June 2022). 

2.4. Spectral mixture analysis (SMA) for estimating blue ice fraction 

The fraction of blue ice area in each daily MODIS observation of the 
Antarctic continent is computed using SMA. To accelerate data pro-
cessing, we first excluded areas having a snow grain size of <400 μm, 
assuming that these are areas without blue ice (Hui et al., 2014). Second, 
cloud-free pixels from MODIS Terra and Aqua were combined. If both 
satellites return a cloudy pixel for a particular day, we take the mean 
pixel value from a 6-day window centered around it. For a very limited 
amount of pixels (Fig. 3), remaining gaps had to be filled with the mean 
pixel value from a 30-day window around that day. In linear SMA, the 
spectral properties of a pixel are modeled as a linear combination of 
endmember spectra weighted by their corresponding fractional abun-
dance (Roberts et al., 1998; Smith et al., 1990). Mathematically, linear 
SMA can be described as below: 

ρb =
∑N

i=1

(
fi × ei,b

)
+ εb, (3)  

∑N

i=1
fi = 1, (4)  

where ρb is the observed reflectance of a certain pixel in band b, fi is the 
fractional abundance of the ith endmember (ei), ei, b is the reflectance of ei 
in band b, N represents the total number of endmembers, and εb stands 
for residuals of the linear fit in band b. Finally, we add the computed 
slush fraction to the blue ice fraction, because most slush areas agree 
with the definition of melt-induced blue ice areas by Winther et al. 
(2001), given their thaw-frozen cycle and blue appearance. 

2.5. Generation of the Sentinel-2-derived evaluation data set 

For an evaluation of the MODIS-based blue ice fraction, we generate 
a set of Sentinel-2-derived high-resolution blue ice area maps across six 
test sites. After applying the cloud mask, blue ice areas are mapped using 
band (ratio) thresholding, the leading method in blue ice area mapping 

Table 1 
The number of spectra obtained from different sources: TARTES simulations, 
automatic endmember extractor (AUTO-EM), and field/laboratory measure-
ments from ECOSTRESS (Meerdink et al., 2019), Hui et al. (2014), Hannula et al. 
(2020), and Zatko and Warren (2015).   

TARTES AUTO-EM Field Measurement 

Fresh Snow 6 – 2 
Medium-grained Snow – – 1 
Coarse-grained Snow 6 – 1 
Wet Snow 6 – 2 
Blue Ice – 18 1 
(Deep) Water – 9 1 
Slush – 18 3 
Bare Rock – 18 1  
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at high resolution. The band ratio (BR) between band a and band b (BRa, 

b) can be calculated as: 

BRa,b =
ρa − ρb

ρa + ρb
, (5)  

where ρa and ρb are the surface reflectance of band a and band b, 
respectively. In this study, we used the BR8A, 12 (Band 8A: near-infrared, 
Band 12: shortwave infrared) for Sentinel-2, which is equivalent to the 
BR4, 7 (Band 4: near-infrared, Band 7: shortwave infrared) for Landsat 
ETM+ proposed by Hui et al. (2014). Instead of using a fixed threshold, 

we applied the Otsu method (Otsu, 1979) to dynamically search for an 
optimal threshold (th) for each Sentinel-2 image. The Otsu method de-
termines th by maximizing the inter-class variance or minimizing the 
intra-class variance using exhaustive search: 

th = argmax
t

{
δ2

inter(t)
}
= argmin

t

{
δ2

intra(t)
}
, (6)  

where δinter
2 (t) and δintra

2 (t) are intra-and inter-class variance under the 
partitions of using a different threshold t. 

Finally, blue ice areas are identified in the Sentinel-2 images if: (1) 
the reflectance of band 1 is greater than 0.8, (2) the reflectance of band 

Fig. 2. Overview of endmembers in the spectral library for the spectral mixture analysis (SMA). Each endmember is coloured based on its RGB reflectance.  

Fig. 3. Overview of the selected test areas: (a) red rectangles indicate the locations of six test areas: the Petermann Ranges (AOI 1), Sör-Rondane Mountains (AOI 2), 
Queen Fabiola Mountains (AOI 3), Amery Ice Shelf (AOI 4), Shackleton Ice Shelf (AOI 5), and Victoria Land (AOI 6), on a background map of blue ice areas from 
Quantarctica (QANT-BIA) (Matsuoka et al., 2021) based on the Landsat image mosaic of Antarctica (LIMA) product (Bindschadler et al., 2008) using the Hui et al. 
(2014) method, and the grounding line information is derived from Bindschadler et al. (2011); (b) the median of the number of successive days without valid 
observations indicates the average length of data gaps in the moderate resolution imaging spectroradiometer (MODIS) images during the austral summers 2000/01 to 
2020/21. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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8A is between 0.3 and 0.7, and (3) BR8A, 12 is greater than th. We also 
tested the original method proposed by Hui et al. (2014) using their 
original of th = 0.90. Because the blue-ice spectral profile in VIS-NIR 
(visible and near infra-red) bands is very steep, the blue ice classifica-
tion can be very sensitive to the value of this threshold th. Therefore, we 
also took an adapted threshold of th = 0.85. A comparison of these Hui- 
based methods and the Otsu-method is performed in Section 5.2. Once 
the blue ice areas are classified in the Sentinel-2 images, they are 
downscaled to the 500 × 500 m MODIS pixel grid. If the MODIS pixel is 
classified as cloudy, it will be discarded. Cloud pixels in Sentinel-2 are 
also excluded from the analysis. 

2.6. Evaluation of blue ice fraction results 

To evaluate the MODIS-derived blue ice fraction results using SMA, 
we analyzed the results from two perspectives: (1) the fit of the original 
MODIS reflectance using SMA, and (2) the accuracy of the blue ice 
fraction estimation. To achieve this, we use two metrics, i.e., RMSE of 
SMA itself (RMSEREF ∈ [0,1] or, equivalently, [0%,100%]) and RMSE of 
the SMA blue ice fraction results compared with the aggregated blue ice 
areas using Sentinel-2 (RMSEBIF ∈ [0,1] or, equivalently, [0%,100%]), 
which are calculated as follows: 

RMSEREF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

b=1
(ρb − ρ’

b)
2

M

√
√
√
√
√

, (7)  

RMSEBIF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
fSMA,i − fS2,i

)2

N

√
√
√
√
√

, (8)  

where ρb and ρb
’ are MODIS-observed and SMA-modeled reflectance in 

band b, and M stands for the total number of bands which equals 6 in this 
study. The fractions fSMA, i and fS2, i are SMA-estimated and Sentinel-2- 
derived blue ice fraction of the cloud-free pixel i, and N stands for the 
total number of cloud-free MODIS pixels with valid contemporaneous 
Sentinel-2-derived blue ice fraction. fS2, i is calculated using the 20×20 
m Sentinel-2-derived blue ice area results, which are then aggregated to 
blue ice fraction while matching the 500×500 m MODIS pixels. 
RMSEREF measures the performance regarding the linear fit of the end-
members to the observed reflectance. It evaluates the performance of 
endmember selection for a pixel. On the other hand, RMSEBIF measures 
the agreement between MODIS-derived and Sentinel-2-derived blue ice 
fraction. 

For the development and validation of FABIAN, we identified six test 
areas (Fig. 3) across the Antarctic continent in different climatological 
settings. All of these areas are identified as blue ice areas in the Landsat- 
based LIMA product (Bindschadler et al., 2008). Three test areas are 
located in Dronning Maud Land, East Antarctica: the Petermann Ranges, 
the Sör-Rondane Mountains, and the Queen Fabiola Mountains. The 
other three areas are located on the Amery Ice Shelf, the Shackleton Ice 
Shelf, and in Victoria Land. 

2.7. Auxiliary data 

For the generation and evaluation of the blue ice fraction calcula-
tions, we used five auxiliary data sets: (1) a MODIS-based snow grain 
size product (Scambos et al., 2007) which is used to mask out non-blue 
ice areas; (2) Sentinel-2-based supraglacial lake extents (Dirscherl et al., 
2021), which provide a time-series information on the evolution of 
supraglacial lakes in blue ice areas; (3) meteorological parameters (i.e., 
2 m temperature, wind speed, sublimation, surface melt, and snowfall) 
simulated by the regional climate model RACMO version 2.3p2 (Van 
Wessem et al., 2018), which is used to interpret blue ice variation in 
terms of climatological and meteorological drivers. RACMO2 is 

demonstrated to have an excellent simulation of surface mass balance 
over a wide range of climatological conditions (Van Wessem et al., 
2018), surface meteorology (van Wessem et al., 2015), and in predicting 
the location of wind-induced blue ice areas (van den Broeke et al., 
2006); (4) a 90 m digital elevation model (TanDEM-X 90 m DEM; Rizzoli 
et al.,2017) provided by the German aerospace center (DLR), which 
helps in identifying nunataks and topographical features in blue ice 
areas; and (5) blue ice areas from Quantarctica (Matsuoka et al., 2021) 
based on the LIMA product (Bindschadler et al., 2008) using the Hui 
et al. (2014) method (hereafter referred to as QANT-BIA). 

3. Results and discussion 

3.1. Overall blue ice dynamics characterized by FABIAN 

FABIAN provides daily blue ice fractions at the MODIS pixel level 
(500 × 500 m) during austral summers 2000/01 to 2020/21. It is a more 
up-to-date blue ice product proving pixel-based blue ice fraction 
(numeric) information, compared to previous static mono-temporal blue 
ice maps which provides binary information on a pixel level. Such a 
long-term daily blue ice fraction information also allows the detection of 
intra-and inter-annual variation of blue ice. We take the median of 
summertime blue ice fraction as a measure for annual blue ice abun-
dance, and the coefficient of variation to assess blue ice exposure. The 
spatial patterns of median blue ice fraction and coefficient of variation, 
based on all austral summer data between 2000/01 and 2020/21, are 
displayed in Fig. 4. In general, the location and extent of areas with high 
median blue ice fractions agree with the blue ice areas from QANT-BIA 
(shown as purple outlines). It indicates that the median blue ice fraction 
can be used as a proxy for blue ice area detection (e.g., based on simple 
thresholding). Also, on a regional scale (Fig. 4b, e, h, and k), the median 
blue ice fraction is useful to delineate blue ice areas. The best agreement 
(~89%) in blue ice areas between FABIAN (with larger than 50% blue 
ice fraction) and QANT-BIA is found in the Queen Fabiola Mountains 
whose blue ice areas are mostly wind-induced (according to Winther 
et al. (2001)). In the rest of the selected regions in Fig. 4, FABIAN is more 
likely to underestimate than overestimate blue ice areas, especially in 
the Petermann Ranges. This is most likely due to the elevation difference 
and mechanisms of blue ice area formation (i.e., erosion, sublimation, 
surface melt, and wind) between wind-induced and melt-induced blue 
ice areas. The northern part of the Petermann Ranges is situated at low 
elevations, which leads to possible surface melt during austral summer. 
The southern parts, however, are mostly wind-induced blue ice areas 
near summits/nunataks (shown as brown triangles in Fig. 4, which are 
identified by the geographic names information system developed by 
the United States geological survey), which are exposed to strong winds. 
Melt-induced blue ice areas are formed due to surface melt that occurs 
episodically. Therefore, the FABIAN median blue ice fraction in these 
melt-induced blue ice areas is often lower than in wind-induced blue ice 
areas. The only exception is observed in the middle of large melt- 
induced blue ice areas, over which blue ice fraction is high (particu-
larly on ice shelves). In large melt-induced areas at low elevations zones, 
Winther et al. (2001) found the concentration of ice-bound snow crystals 
increases after melt-freeze cycles, resulting in an increment in surface 
albedo. While melt water and/or debris may present constantly in the 
center of these large melt-induced blue ice areas, which maintains the 
spectral similarity to wind-induced blue ice. 

As a proxy of blue ice exposure, the geographical variation of the 
coefficient of variation is also shown in Fig. 4. There is a negative cor-
relation between the median blue ice fraction and its temporal coeffi-
cient of variation. Given the blue ice classification produced by Winther 
et al. (2001), the areas with high coefficients of variation are mostly 
melt-induced blue ice areas, melt streams, ponds/lakes, as well as edges 
of wind-induced blue ice areas. Blue ice fractions within these areas are 
more variable during an austral summer, because these surfaces tend to 
change rapidly from one type to another. For example, a snow surface 
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can turn to slush and further to blue ice due to melt, leading to shallow 
melt features. Moreover, snowfall-induced blue ice fraction fluctuations 
last longer in melt-induced blue ice areas than in wind-induced blue ice 
areas, due to the relatively low wind speed to remove the fresh snow, 
and the subsequent formation of superimposed (refrozen) ice and/or wet 
snow layers. Besides, after snowfall, melted blue ice may transform back 
to frozen ice as temperature drops. Therefore, the coefficient of variation 
of blue ice fraction in these blue ice areas is high (details see Fig. 9). In 
contrast, wind-induced blue ice areas show low coefficients of variation 
of blue ice fraction (Fig. 4c, f, i, and l). Inter-annual variations of wind- 
induced blue ice areas are mainly triggered by the changes in wind 
patterns and snowfall events. Although snowfall events would lead to a 
significant temporary drop in blue ice fraction, the accumulated snow is 
often swept away by wind almost instantly in wind-induced blue ice 

areas (Sinisalo and Moore, 2010), which leads to a high abundance and 
low variation of blue ice fraction. 

The results in Fig. 4 indicate that the daily FABIAN product can be 
used to compute inter-annual variations of blue ice area extent. The 
resulting annual blue ice coverage variations are displayed in Fig. 5a 
over the entire ice sheet. The height of a single brick in a bar (i.e., an 
austral summer) stands for the area (in percentage of Antarctic conti-
nent) of pixels with a certain range of annual median blue ice fraction. 
The results show that pixels with annual median blue ice fraction ≥ 50% 
through an austral summer is a potential indicator to qualify blue ice 
areas, as previously estimated from Hui et al. (2014) (1.67%) and 
Winther et al. (2001) (0.80% with a maximal potential extent to 1.60%). 
We also calculated the coefficient of variation of blue ice fraction for 
each ‘brick’ in Fig. 5a, shown in Fig. 5b, representing the temporal 

Fig. 4. Median blue ice fraction in the austral summers between 2000/01 and 2020/21 (m). Detailed maps from (b) the Queen Fabiola Mountains, (e) Amery Ice 
Shelf, (h) Victoria Land, and (k) Petermann Ranges. The corresponding coefficient of variation is shown in panels (c, f, i, l). The background images (a, d, g, j) of each 
zoom-ins are from the Landsat image mosaic of Antarctica (LIMA) product (Bindschadler et al., 2008). The dark blue solid lines delineate the blue ice areas from 
Quantarctica (QANT-BIA) (Matsuoka et al., 2021) based on the LIMA product (Bindschadler et al., 2008) using the Hui et al. (2014) method. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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exposure of blue ice with different median blue ice fractions. Clearly, 
higher annual median blue ice fractions correspond to lower coefficients 
of variation. To geolocate these pixels with low blue ice fractions but 
high variations, we calculated the overlap areas between the pixels 
within a certain median blue ice fraction range and QANT-BIA. It con-
firms that areas with low annual median blue ice fractions are more 
likely to be temporally constraint melt streams, ponds/lakes, or the 
expanded melt-induced blue ice areas. In this context, we conclude that 
the median of annual blue ice fractions can be used as a proxy of blue ice 
occurrence. Together with the corresponding coefficient of variation 
results, median blue ice fractions hold a potential to separate wind-and 
melt-induced blue ice areas. 

Still, FABIAN detects fewer blue ice areas than QANT-BIA (Fig. 4). 
There are several possible explanations: first, FABIAN agrees well with 

the original results produced by Hui et al. (2014) (Fig. 3 in Hui et al., 
2014), whereas QANT-BIA overestimates the blue ice fraction relative to 
Hui et al. (2014) and FABIAN. This seems to indicate that QANT-BIA 
lacks a snow grain size mask (Section 2.4), which is used in both our 
study and Hui et al. (2014). A second reason leading to the blue ice area 
disparities is the different spatial resolution between the MODIS and 
LIMA product. In this regard, some small patchy blue ice areas are 
omitted or only detected as very-low blue ice fraction areas in FABIAN. 

3.2. Wind- vs. melt-induced blue ice 

Apart from monitoring dynamics of blue ice areas at the continental 
scale with respect to their abundance and exposure, FABIAN is also able 
to characterize blue ice areas at the regional scale with respect to their 

Fig. 5. Blue ice dynamics characterized by FABIAN (Fractional Austral-summer Blue Ice over ANtarctica): (a) annual blue ice area (annual median blue ice fraction ≥
50%) estimated by FABIAN, where the height of a single brick in a bar (i.e., an austral summer) stands for the area (in percentage of Antarctica) of pixels with a 
certain range of annual median blue ice fraction; (b) coefficient of variation concerning the blue ice fraction for each brick in subplot a; and (c) overlap areas between 
the pixels within a certain median blue ice fraction range and blue ice areas from Quantarctica (QANT-BIA) (Matsuoka et al., 2021) based on the Landsat image 
mosaic of Antarctica (LIMA) product (Bindschadler et al., 2008) using the Hui et al. (2014) method. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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types. Wind-and melt-induced blue ice areas are formed by very 
different mechanisms, and their dynamics and anomalies express 
changes and variability of climatic drivers on different timescales. 
Zooming in to the regional scale, we demonstrate the ability of FABIAN 
to differentiate between wind-and melt-induced blue ice areas. A good 
example is the area of Lambert Glacier and Amery Ice Shelf, one of the 
most frequently studied blue ice areas. Previously, Winther et al. (2001) 
provided a blue ice area map differentiating between wind-and melt- 
induced blue ice areas based on prior knowledge and satellite observa-
tions. Using FABIAN, it is possible to investigate detailed spatiotemporal 
blue ice dynamics in both wind-and melt-induced blue ice areas, 
respectively. 

As an example, we selected two blue ice areas located 480 km apart. 
The blue ice area near Goodspeed Nunataks (Fig. 6, ~1600 m a.s.l.) is 
wind-induced, while the blue ice area near Gillock Island (~460 m a.s.l.) 
is melt-induced. Between 2000 and 2021, the RACMO2-estimated 
annual mean 2 m air temperature of the Goodspeed Nunataks blue ice 
area is − 30.8∘C, and the highest daily mean temperature in this period is 
− 2.1∘C. Surface melt therefore hardly occurs here. The blue ice area near 
Gillock Island has, on average, an annual surface melt of 87 mm w.e. per 
year, most of which in summer. The annual mean 2 m temperature is 
− 19.7∘C, and the daily mean can be as high as 3.3∘C during summer. 

The median blue ice fraction for the region of Lambert Glacier and 
Amery ice shelf is shown in Fig. 6. The top subplots summarize the 

Fig. 6. Maps of overall median blue ice fraction over the Lambert Glacier adjacent to Amery Ice Shelf between austral summers 2000/01 and 2020/21, and its annual 
details near the Goodspeed Nunataks and Gillock Island (top). The subplots on the bottom are time series of (semi-) cloud-free Sentinel-2 images during the austral 
summer 2019/20. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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median blue ice fractions for each austral summer between 2000/01 and 
2020/21 near the Goodspeed Nunataks and Gillock Island. Generally, 
the blue ice area near the Goodspeed Nunataks has a higher annual 
median blue ice fraction than those near Gillock Island. Near the 
Goodspeed Nunataks, the pattern of high annual median blue ice frac-
tion (>50%) is consistently present in all austral summers between 
2000/01 and 2020/21, except for 2001/02. In that exceptional year, 
seasonal snow very likely concealed those blue ice areas. Although snow 
is often blown off of wind-induced blue ice areas, patchy snow can 
sometimes persist for weeks or even years (Sinisalo and Moore, 2010). In 
Gillock Island, there are no areas with consistently high annual median 
blue ice fractions. 

Intra-annual variations are summarized in the bottom subplots for 
the austral summer 2019/20 based on (semi-) cloud-free Sentinel-2 
observations. It clearly illustrates that the blue ice areas near the 
Goodspeed Nunataks are invariant during the austral summer, and no 
melting features (streams, ponds/lakes) have been observed. Yet, the 
development of melt ponds/lakes is clearly observed near Gillock Island, 
and that blue ice was expanding throughout the austral summer. 

3.3. Blue ice variability and meteorological conditions 

FABIAN is based on daily observations, instead of a static mosaic. 
Thus, FABIAN can be combined with daily output of meteorological 
variables from (regional) climate models in order to explain the dy-
namics and appearance of blue ice in terms of the surface meteorology. 
Blue ice fraction fluctuates from year to year, and in this section, we 
relate these variations to surface meteorological conditions. To this end, 
we use 2 m temperature, snowfall, wind speed, surface melt, and sub-
limation retrieved from the regional climate model RACMO version 
2.3p2 (Van Wessem et al., 2018), RACMO2 henceforth. Time series for 
wind-induced blue ice areas (near the Goodspeed Nunataks in Fig. 7) 
and melt-induced blue ice areas (in Gillock Island in Fig. 8) are shown 
for the sub-period 2011/12–2018/19, for a better visualization. In the 
wind-induced blue ice area (Fig. 7), RACMO2 simulates no surface melt 
but sublimation instead, fitting the definition given by Bintanja (1999). 
The lower blue ice fraction in the austral summer 2015/16 coincides 
with a period of low wind speed at the start of that season in RACMO2. It 
could mean that winter snowfall was able to accumulate for a longer 
period. Within a single austral summer, changes in wind patterns also 
lead to blue ice fraction anomalies without significant snowfall (purple 

Fig. 7. Blue ice fraction during austral summers (ASs) derived from FABIAN (Fractional Austral-summer Blue Ice over ANtarctica) and contemporaneous meteo-
rological conditions derived from the regional atmospheric climate model RACMO2 (Van Wessem et al., 2018) at a wind-induced blue ice location (73.40∘S, 62.40∘E) 
near the Goodspeed Nunataks. The solid red line represents the daily mean 2 m temperature, and the red area stands for the range between the maximum and 
minimum of daily 2 m temperature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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arrows in Fig. 7). Such areal changes in wind-induced blue ice areas 
have been explained previously by altered wind circulation (Bintanja 
and Van den Broeke, 1995a, 1995b; Brown and Scambos, 2004). Also, a 
high-snowfall event (indicated with red arrows in Fig. 7) can tempo-
rarily reduce the blue ice fraction, shown as a very sharp drop (more 
than 50%). Often, these reductions in blue ice area extent do not last 
long, because the relatively strong winds normally erode the snow 
quickly (Sinisalo and Moore, 2010). However, in the melt-induced blue 
ice areas, the wind speed is lower than in the wind-induced blue ice 
areas (Fig. 8). It also reveals the major difference between wind-and 
melt-induced blue ice areas formation, according to their definitions 
(Winther et al., 2001; Bintanja, 1999). 

In the melt-induced blue ice area of Gillock Island in most years, 
there is a seasonal cycle of blue ice fraction, with a maximum occurring 
around the middle of austral summer. It can be explained by the seasonal 
cycle in temperature (Fig. 8) and the related occurrence of surface melt. 
The timing of high blue ice fraction agrees with the occurrence of surface 
melt and coincidence with the periods with high 2 m temperature. 
Sublimation also has a stronger seasonal cycle in the melt-induced blue 
ice area, because of the nonlinear dependency of saturated water vapor 

pressure on temperature and the strong variation in surface type 
throughout the season. Blue ice has a lower albedo (0.56) than snow 
(0.80) (Bintanja and Van den Broeke, 1995a, 1995b), it absorbs more 
solar radiation than snow, which amplifies its sublimation rate during 
summer (Bintanja and Van den Broeke, 1995a, 1995b). Similar to wind- 
induced areas, snowfall (including its magnitude and lasting period) is 
the most direct factor influencing the daily blue ice fraction in melt- 
induced blue ice areas. Unlike the quick recovery of blue ice fraction 
in wind-induced blue ice areas, blue ice fraction in melt-induced blue ice 
areas tends to rise more slowly with the melt of the snowpack. Likewise, 
snow is harder to remove once it has melted, resulting in less efficiently 
removed by increased wind to erode the accumulated snow (red arrows 
in Fig. 7). Winds are also considerably weathered away from the kata-
batic wind zone in the escarpment. In this manner, daily blue ice fraction 
time series vary smoother in melt-induced blue ice areas than those in 
wind-induced blue ice areas. 

Due to similar spectral properties, differentiating between wind-and 
melt-induced blue ice areas is challenging solely based on satellite im-
ages (Winther et al., 2001). However, FABIAN opens up the possibility to 
make the distinction based on the temporal signature of blue ice 

Fig. 8. Blue ice fraction during austral summers (ASs) derived from FABIAN (Fractional Austral-summer Blue Ice over ANtarctica) and contemporaneous meteo-
rological conditions derived from the regional atmospheric climate model RACMO2 (Van Wessem et al., 2018) at a melt-induced blue ice location (70.55∘S, 72.96∘E) 
in Gillock Island. The solid red line represents the daily mean 2 m temperature, and the red area stands for the range between the maximum and minimum of daily 2 
m temperature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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fraction, which is a unique advantage of our FABIAN to previous mosaic- 
based and mono-temporal blue ice products on an annual basis. We 
illustrate the potential separation into wind- and melt-induced blue ice 
areas based on the annual median blue ice fraction and coefficient of 
variation of annual blue ice fraction for each pixel, applied over the full 
Antarctic continent. Fig. 9 shows the results for blue ice fraction over the 
full Antarctic continent for two austral summers with a low blue ice 
fraction (2002/03, shown in a—c) and a high blue ice fraction (2006/ 
07, shown in d—f), identified in Fig. 5a. As a general pattern, blue ice 
with a high annual median blue ice fraction has a low coefficient of 
variation, and vice versa. In panels a and d of Fig. 9, we colour-code the 
feature space by surface melt flux from Trusel et al. (2013). For the same 
value of annual median blue ice fraction, pixels with surface melt are of 
higher coefficients of variation, which indicates the melt-induced blue 
ice areas are more variable in time than wind-induced blue ice areas. 
When colour-coding by elevation (Fig. 9b and e), pixels with the same 
annual median blue ice fraction level, have a higher coefficient of 
variation at lower elevation. It confirms that melt-induced blue ice 
areas, which are located at lower elevation, are more variable than 
wind-induced blue ice areas (Winther, 1994; Liston et al., 1999). Finally, 
when colour-coded according to RACMO2 surface mass balance, blue ice 
areas with negative surface mass balances correspond to zero surface 
melt, located at high elevation zones. It agrees with the definition of 
wind-induced blue areas of negative surface mass balance by van den 
Broeke et al. (2006). A quadratic function (cyan lines in Fig. 9) can be 
used to approximate a distinction between the blue ice area types. This 
quadratic function can statistical-significantly (p-values < 0.001 with 
Welch’s t-test) separate samples of variables (i.e., melt flux, elevation, 
and surface mass balance) from the left and right of the quadratic 
function. Along these lines, a further refined distinction between wind- 
and melt-induced blue ice areas can be developed. 

3.4. Complex surface types in melt-induced blue ice areas 

Strictly speaking, ‘melt-induced blue ice areas’ are not pure bare ice 
surfaces but showing a blue-ice-appearance/spectrum, since they also 
include slush, melt streams, and shallow supraglacial lakes. It is not only 
by its definition (Winther et al., 2001), but also in FABIAN due to our 
endmember selection, and pooling of slush and blue ice into one single 
‘blue-ice’ surface type. However, perfectly distinguishing between wind- 
and melt-induced blue ice areas using optical imagery is mainly chal-
lenged by their spectral similarity under the presence/concentration of 
ice-bound snow crystals, encapsulated air bubbles, and debris Winther 
et al. (2001). At an annual scale, FABIAN holds a potential to separate 
these two blue ice types (Section 3.1). However, at a daily basis, its 
indication and uncertainty, particularly regarding melt-induced blue ice 
areas, still need to be evaluated. 

In this section, we take as an example a time series of a melt- 
refreezing cycle of a supraglacial lake (the entire supraglacial lake 
including (partially) frozen one illustrated in Fig. 10) evolving over a 
blue ice area at Amery Ice Shelf during austral summer 2019/20 based 
on FABIAN, cloud-free Sentinel-2 images, Sentinel-2-derived blue ice 
area maps (based on the method in Section 2.5), and Sentinel-2-derived 
supraglacial lake maps (Dirscherl et al., 2021) (Fig. 10). It is a supra-
glacial lake of which the northern part is open water, and its southern 
part consists of frozen lakes surrounded by melt streams. At the begin-
ning of the ablation season, Sentinel-2 shows that both the north and 
south parts are partially classified as blue ice areas. FABIAN indicates a 
low blue ice fraction, but an increasing wet snow fraction, which in-
dicates the melting of the snow layer above the supraglacial lake. In the 
middle of the ablation season, the south part of the supraglacial lake 
turns into open water. Accordingly, the extent of Sentinel-2-based blue 
ice areas shrinks. FABIAN indicates an increase in both blue ice fraction 

Fig. 9. Binned scatter plots illustrating intra-annual dynamics of Antarctic blue ice fraction (BIF) over the full Antarctic continent for two summers with a low BIF 
(2002/03, shown in a—c) and a high BIF (2006/07, shown in d—f), identified in Fig. 5a, coloured according to the median of annual melt flux, elevation, and annual 
surface mass balance. The melt flux (Trusel et al., 2013) is derived from the QuikSCAT (Quick Scatterometer), elevation information is obtained from the TanDEM-X 
90 m digital elevation model (Rizzoli et al., 2017), and surface mass balance is simulated by the regional atmospheric climate model RACMO2 (Van Wessem et al., 
2018). The cyan line is a quadratic function separating potential wind-and melt-induced blue ice areas: y = 0.0125(100x − 130)2, where y is annual median BIF, and 
x is the coefficient of variation of annual BIF. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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and water fraction. Near the end of the ablation season, when the 
supraglacial lake starts to refreeze, Sentinel-2 classifies the southern 
refrozen part as blue ice area. FABIAN continues to indicate a decrease 
in water fraction and zero wet snow fraction, instead the blue ice frac-
tion continues to increase which is likely due to slush or shallow refrozen 
ponds/lakes. 

Although FABIAN captures the overall dynamics of wet snow, blue 
ice, and water, there is on average a ~56% underestimation of blue ice 
areal extent when compared to Sentinel-2-based blue ice area. We sus-
pect that wet snow and water contaminate our estimate of blue ice 
fraction in melt-induced blue ice areas, especially in outlet glaciers. To 
investigate this in more detail, we have compared Sentinel-2 blue ice 
area with different FABIAN surface type mixtures: (1) the original blue 
ice fraction, (2) the FABIAN blue ice fraction adding the wet snow 
fraction, (3) FABIAN blue ice fraction adding the water fraction, and (4) 
FABIAN-derived blue ice fraction adding both the wet snow fraction and 
water fraction. The median RMSESMA between Sentinel-2 and each of 
these four FABIAN settings are summarized in Table 2 and shown as 
maps in Fig. C.15. In wind-induced blue ice areas, RMSESMA is at most 
slightly improved (mostly < 1%) when additional surface types are 
added, or it even deteriorated like in Victoria Land (AOI 6). In contrast, 
obvious improvements (~ 3%) are found in melt-induced blue ice areas 
like Lambert Glacier (AOI 4). It suggests that the blue ice fraction is 

partially calculated as other endmember fractions that are similar to 
blue ice. 

3.5. Sentinel-2 accuracy and cloud cover 

We use Sentinel-2 high-resolution maps as a benchmark to validate 
FABIAN at the coarser spatial scale of MODIS. In contrast to previous 
studies (Winther et al., 2001; Hui et al., 2014), we used individual 
Sentinel-2 images instead of cloud-free mosaics. In these images, clouds, 

Fig. 10. Dynamics of blue ice, wet snow, and a supraglacial lake (SGL) evolving over a blue ice area (BIA) at Amery Ice Shelf during austral summer 2019/20. The 
satellite images, blue ice areas, and supraglacial lake extents (Dirscherl et al., 2021) are derived from Sentinel-2, and the endmember fractions in the time series plot 
are derived from FABIAN (Fractional Austral-summer Blue Ice over ANtarctica). The blue ice area extent shown in the overview map of the line-plot is derived from 
Quantarctica (QANT-BIA) (Matsuoka et al., 2021) based on the LIMA product (Bindschadler et al., 2008) using the Hui et al. (2014) method. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
The root mean square error (RMSE in %) of spectral mixture analysis (SMA) in 
estimating blue ice fraction (BIF) or combined with wet snow fraction (WSF) 
and/or water fraction (WAF), compared to the Sentinel-2 observations during 
the austral summer 2018/19 to 2020/21 in each area of interest (AOI). Bold 
numbers indicate the lowest RMSE values in a certain AOI.   

BIF BIF + WSF BIF + WAF BIF+ WSF + WAF 

AOI 1 30.43 29.86 30.10 29.68 
AOI 2 28.36 27.97 28.05 27.94 
AOI 3 26.18 26.64 25.47 26.22 
AOI 4 37.09 34.84 36.12 34.48 
AOI 5 35.11 35.23 33.96 34.54 
AOI 6 24.70 31.80 25.55 34.10  
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haze and cloud shadow are not always fully detected by the applied 
cloud and shadow mask (Fig. A.14). In this section, we explore the 
performance of the blue-ice classifiers under different cloud conditions, 
including haze and shadow. In cloud-free conditions, all three classifiers 
show similar blue ice classifications (Fig. 11). When it becomes cloudy, 
the three classifiers start to differ strongly. We discover a phantom blue 
ice area phenomenon, i.e., an overestimation in blue ice area in regions 
with snow in cast shadow, particularly in the results from the modified 
classifier (Fig. 11h, m–n). It has also been found in blue ice area maps 
produced using the Otsu method, but only in (illuminated) shadow/haze 

boundaries (Fig. 11r–s). This is due to the spectral mixture of (fresh and 
coarse-grained) snow, shadow and thin haze, resulting in a blue-ice-like 
spectrum which confuses the applied blue ice area classifier. Also, an 
underestimation of blue ice areas under haze is shown in blue ice area 
maps using the original (Fig. 11g–j) and modified (Fig. 11i–o) classifier, 
i.e., thresholding based on a fixed global value. Occasionally, it also 
occurs in blue ice area maps (Fig. 11r–t) produced using dynamic 
thresholding (i.e., the Otsu method), but over a relatively smaller area. 
This is partially the result of undetected clouds and haze, but also due to 
an inaccurate atmospheric correction, leading to distortions in the 

Fig. 11. Results of the blue ice area classification near the Queen Fabiola Mountains (AOI3) based on Sentinel-2 images in false-colour (R: band 12, G: band 8A, B: 
band 3) combination (a–e) using the Hui et al. (2014) method with the originally fixed threshold (0.90, f–j), modified threshold (0.85, k–o), and dynamic threshold 
using the Otsu method (p–t) under different cloudy conditions: cloud-free (a, f, k, p), heavily cloudy (b, g, i, q), heavily hazy with snow in cast shadow (c, h, m, r), 
lightly hazy with snow in cast shadow (d, i, n, s), cloudy and hazy with snow and blue ice area in cast shadow (e, j, o, t). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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spectral profiles. Detailed quantitative comparison of results from 
different classifiers can be found in Appendix D. Although the Otsu- 
classified blue ice areas provide the best results, the aforementioned 
over− /under-estimations in blue ice area (due to undetected clouds, 
haze, and their shadow) can still propagate to the blue ice area- 
aggregated blue ice fraction. Thus, attention is needed when 
comparing blue ice area-aggregated blue ice fraction with SMA- 
estimated blue ice fraction. 

3.6. Uncertainty in spectral mixture analysis (SMA) 

The performance of SMA in modeling the observed surface reflec-
tance and blue ice fraction is displayed in Fig. 12. The applied SMA does 
not show an obvious spatial pattern in RMSEREF, indicating that there 
are no crucial endmembers missing. The area with the highest RMSEREF 
is Victoria Land (AOI 6), especially in areas with sea-ice and mountains, 
where the selected rock and deep water endmembers are not sufficiently 
representative. In the remaining areas, the RMSEREF values are also high, 
particularly in the areas with steep slopes, especially at the foot of the 
mountains. Since the surrounding high-elevation terrain casts shadow 

Fig. 12. Overview of the root mean square error of spectral mixture analysis (SMA) in modeling the observed surface reflectance (RMSEREF) during the austral 
summer 2000/01 to 2020/21, the root mean square error of SMA in estimating blue ice fractions (RMSEBIF) compared to the Sentinel-2 observations during austral 
summer 2018/19 to 2020/21 in each area of interest (AOI): (a) the Petermann Ranges, (b) Sör-Rondane Mountains, (c) Queen Fabiola Mountains, (d) Amery Ice 
Shelf, (e) Shackleton Ice Shelf, and (f) Victoria Land. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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on these areas, their spectra are contaminated by shadow, resulting in 
high RMSEREF values. Perhaps, this effect could have been mitigated by 
including a shadow endmember in the SMA. But as we think the shadow 
endmember is the least crucial, we did not select it in our study. 

The validation based on the contemporaneous Sentinel-2-derived 
blue ice fraction is summarized in Fig. 12, and previously in Table 2. 
In general, the median RMSE ranges from 24.7% to 37.1%. The spatial 
pattern shows that RMSESMA is significantly lower (around 10% ~ 20%) 
over wind-induced blue ice areas than in melt-induced blue ice areas 
(around 20% ~ 30%). Over bare ice, RMSESMA can increase to 40%, e.g., 
over Amery Ice Shelf and Shackleton Ice Shelf. It is seemingly linked to 
the representativeness of blue ice endmembers. In wind-induced blue ice 
areas, blue ice is quite uniform in its appearance, while melt-induced 
blue ice shows strong variations in surface type and appearance, 
including ice, slush, shallow melt streams and lakes. This transition was 
pointed out by Winther et al. (2001): when liquid water is present in 
melt-induced blue ice areas, the reduction of reflectance can lead to the 
confusion between wind-and melt-induced blue ice. Such cases occur 
very likely over bare ice and at edges of wind-induced blue ice areas. 
Depending on the status of the blue ice area, the real-time blue ice area 
spectrum might not be a linear mixture of the selected endmembers. It is 
worth mentioning that there is uncertainty also in Sentinel-2-derived 
blue ice areas (Section 3.5), which can propagate to the blue ice frac-
tion results. By manual inspection, we find that RMSESMA is higher 
especially in the melt-induced blue ice areas. 

3.7. Uncertainty from gap-filling 

In order to produce a daily blue ice fraction from MODIS data, we 
had to fill data gaps due to clouds and missing data. This produces an 
uncertainty, which is likely to become larger as the length of the data 
gap increases. The median number of successive days without valid 
MODIS observations for austral summers 2000/01 to 2020/21 is sum-
marized in Fig. 3 on a pixel basis. After combining Terra and Aqua ob-
servations, the probability of MODIS cloudiness is less than 20% in 

Antarctic blue ice areas. Data gap length is higher in coastal Antarctica 
than in the interior of the ice sheet, and especially high in mountainous 
areas such as the Antarctica Peninsula, Amery Ice Shelf, and coastal 
Dronning Maud Land. In blue ice areas, the median data gap is less than 
one week. In this study, we masked out cloud pixels in MODIS imagery 
according the ‘1 km Reflectance Data State’ band. It is produced by the 
MODIS cloud mask algorithm (Baum et al., 2012; Frey et al., 2008; 
Ackerman et al., 1998), and its overall accuracy were reported better 
than 85% compared with ground LiDAR (light detection and ranging) 
observations (Frey et al., 2020; Ackerman et al., 2008). For local studies, 
additional attentions should also be paid to the under-and over-detec-
tion of cloud pixels, which can affect not only the accuracy of the 
retrieved blue ice fraction, but also the length of data gap. 

To assess the uncertainty associated with gap-filling, we performed a 
leave-n-out (1 ≤ n ≤ 7) cross-validation, in which we purposely left out 
one to seven consecutive days of data (Fig. 13) in all available time- 
series with a number of ≥n + 2 consecutive valid observations. The 
median RMSE of the interpolation is around 15%, increasing slightly 
along with the number of successive days without valid observations. 
The RMSE range between lower and upper quantile is lower in melt- 
induced blue ice areas than in wind-induced blue ice areas, particu-
larly when the period without successive observations increases. This is 
in line with the dynamics of blue ice areas presented in Section 3.3. In 
wind-induced blue ice areas, snowfall events lead to very sharp (more 
than 50% per day) but brief (recovered often within two days) drops in 
blue ice fraction, and the accumulated snow is often swept away by 
strong winds, resulting in a quick recovery of the blue ice fraction. In 
seasonal blue ice areas however, the dynamics of daily blue ice fraction 
is cyclical and more gradual in time, suggesting that the variation of blue 
ice fraction during a short period of interpolation is less than the steep 
drop and climb in wind-induced blue ice areas. The RMSE range be-
tween lower and upper quantile decreases with the increases of suc-
cessive days without valid observations in melt-induced blue ice areas, 
but not in wind-induced blue ice areas. As illustrated in Fig. 7, given the 
nature of wind-induced blue ice areas, where the accumulated fresh 

Fig. 13. The root mean square error (RMSE) based on leave-n-out (1 ≤ n ≤ 7) cross-validation of two selected demonstrative wind-induced (near the Goodspeed 
Nunataks; blue cross at 73.93∘S, 66.80∘E) and melt-induced (in Gillock Island; green cross at 70.55∘S, 72.96∘E) blue ice areas (BIAs). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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snow is often quickly swept away, the corresponding blue ice fraction is 
often increased within few days. If clouds are still there (missing data), 
this increase will be averaged through the cloudy period, resulting in a 
high RMSE. While in the melt-induced blue ice areas, the increase of 
blue ice fraction is much slower due to melt presence. Such a gradual 
increase of blue ice fraction is less dependent on number of cloudy days 
(i.e., missing data), resulting in a lower RMSE. 

4. Conclusions 

In this study, FABIAN is presented, which is a daily product of blue 
ice fraction over Antarctica covering the austral summers from 2000/01 
to 2020/21. FABIAN estimates daily blue ice fraction using spectral 
mixture analysis (SMA) performed on moderate resolution imaging 
spectroradiometer (MODIS) observations in Google Earth Engine. The 
input spectra are measured in lab or field campaigns, observed by 
MODIS, and simulated using a physical model. After a careful end-
member selection, the applied linear SMA accurately estimates the 
observed MODIS reflectance without a significant spatial pattern in the 
corresponding root mean square error images in blue ice areas, sug-
gesting that the endmember selection for blue ice areas was appropriate. 
Based on blue ice fractions aggregated from higher-resolution blue ice 
area maps derived from contemporaneous Sentinel-2 images, FABIAN- 
derived blue ice fractions agree better in wind-induced blue ice areas 
(median RMSEBIF between 10% and 20%) than in melt-induced blue ice 
areas (median RMSEBIF between 20% and 30%) across the six selected 
test sites in coastal East Antarctica. To fill the original data gaps in 
MODIS observations, weekly and monthly mean values are used. Ac-
cording to a leave-n-out (1 ≤ n ≤ 7) cross-validation, the median RMSE 
produced by this interpolation is around 15%. 

FABIAN demonstrates its capacity to identify blue ice areas, and the 
intra-and inter-annual pattern of blue ice fraction variation at a conti-
nental and regional scale. Together with the regional climate model 
RACMO2, FABIAN reveals blue ice dynamics under the influence of air 
temperature, wind, and snowfall, which are in line with previous studies 
based solely on model simulations. So far, the main challenge for 

FABIAN in accurately estimating blue ice fraction is dealing with wet 
snow, slush or shallow melt ponds/lakes, as their spectral profiles can be 
similar to the blue ice spectrum in MODIS bands. As a direction for 
future research and refinement, we suggest that endmember selection 
could be further optimized at a pixel scale (e.g., using multiple end-
member spectral mixture analysis, MESMA (Roberts et al., 1998)), and/ 
or that the set of endmember candidates could be further extended with 
high-quality spectra measured in situ in Antarctica. 
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Fig. A.14. Cloud masks for Sentinel-2 imagery based on the scene classification map (SCL), s2cloudless, GFZ method, and hybrid method, under different cloudiness: hazy (a-e), partially cloudy/hazy (f-j), heavily 
cloudy (k-o).  
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Appendix B. Automatic endmember (AUTO-EM) generator for endmember derivation  

Table B.3 
Classification methods applied in the automatic endmember (AUTO-EM) generator for endmember derivation from the moderate reso-
lution imaging spectroradiometer (MODIS) imagery.  

Endmember Thresholds References 

Blue ice 0.90 < BR47 (Hui et al., 2014)  
0.30 < ρNIR < 0.70   
0.85 < ρblue

*  

Bare Rock NDSI < 0.75 (Burton-Johnson et al., 2016)  
0.25 < ρSWIR  

Slush 0.12 < NDWIICE < 0.14 (Bell et al., 2017; Zatko and Warren, 2015; Yang and Smith, 2012)  
0.40 < ρblue  

Water 0.25 < NDWIICE < 0.45 (Bell et al., 2017; Yang and Smith, 2012; Burton-Johnson et al., 2016)  
ρblue < 0.2  

* Indicates where the original threshold(s) have been adjusted or additional threshold(s) have been added. For the information on the 
indices calculation and original thresholds, we suggest readers refer to the original publications. 

Appendix C. Complexity of changing blue ice states in melt-induced blue ice areas

Fig. C.15. The root mean square error of spectral mixture analysis (SMA) results (with different combinations of blue ice, wet snow, and water fractions) from 
FABIAN (Fractional Austral-summer Blue Ice over ANtarctica) in estimating blue ice fractions compared with the Sentinel-2 observations during the austral summer 
2018/19 to 2020/21 in each area of interest (AOI): (1) the Petermann Ranges, (2) Sör-Rondane Mountains, (3) Queen Fabiola Mountains, (4) Amery Ice Shelf, (5) 
Shackleton Ice Shelf, and (6) Victoria Land. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Appendix D. Agreement among different blue ice area classifiers   
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