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Abstract
An experimental methodology is proposed to study aeroelastic systems with optical diagnostics. The approach locally evalu-
ates the three physical mechanisms that produce the forces involved in Collar’s triangle, namely aerodynamic, elastic, and 
inertial forces. Flow and object surface tracers are tracked by a volumetric particle image velocimetry (PIV) system based 
on four high-speed cameras and LED illumination. The images are analysed with Lagrangian particle tracking techniques, 
and the flow tracers and surface markers are separated based on the different properties of their images. The inertial and 
elastic forces are obtained solely analysing the motion and the deformation of the solid object, whereas the aerodynamic force 
distribution is obtained with pressure from PIV techniques. Experiments are conducted on a benchmark problem of fluid–
structure interaction, featuring a flexible panel installed at the trailing edge of a cylinder. Data are collected in the resonant 
regime, where the panel exhibits a two-dimensional motion. The estimation of inertial and elastic forces is obtained enforcing 
a high-order polynomial fit to the surface motion and deformation. The aerodynamic loads on the panel are challenged by 
the need to devise adaptive boundary conditions complying with the panel motion. The closure of Collar’s triangle yields 
overall residuals of about one-half of the inertial force taken as reference. The simultaneous measurement of the three forces 
paves the way to assessing the equilibrium of forces closing the Collar’s triangle. The latter can be intended for uncertainty 
evaluation or, when only two forces are measured, for estimation of the remaining Collar element.

Graphical Abstract

Extended author information available on the last page of the article

http://orcid.org/0000-0002-6943-8006
http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-022-03468-9&domain=pdf


 Experiments in Fluids          (2022) 63:128 

1 3

  128  Page 2 of 14

1 Introduction

Aeroelastic phenomena occur frequently in nature as well as 
in a wide number of engineering applications, most notably 
in civil (Sarkar et al. 1994), energy (Abdelkefi 2016) and 
power engineering (Marshall et al., 1996), and in the trans-
port sector (Wright and Cooper 2008). In the aeroelastic 
regime, a flexible body immersed in a flow is subjected to 
the aeroelastic system of forces, namely aerodynamic, elas-
tic, and inertial. Their mutual relationship was conceptual-
ised in the so-called Collar's triangle (Collar 1947).

Still, nowadays, fluid–structure interaction (FSI) prob-
lems are difficult to study both with experimental as well 
as computational techniques. Computer simulations of the 
fluid flow coupled with a time-varying structural boundary 
remain a challenging task. Computational aeroelasticity 
reduces nowadays practical problems into simpler geom-
etries (Schuster et al. 2003) for affordability. The numerical 
coupling of independent fluid and structural solvers, while 
improving the computational efficiency, poses new chal-
lenges at the fluid–structure interface, especially in the pres-
ence of structural or aerodynamic non-linearities, such as 
occurring in regimes with unsteady flow separation. This sit-
uation justifies the need to advance experimental approaches 
as a necessary tool for the validation of FSI simulations.

The first challenge encountered with FSI experiments 
is given by the problem of scaling. While Mach and Reyn-
olds numbers are the most relevant parameters for aerody-
namic scaling, FSI problems require consideration of the 
ratio of fluid and structure inertia alongside the structure 
relative stiffness (Friedmann 2004; Wan and Cesnik 2014).

Even when the problem is scaled to a satisfactory extent 
and the experiment is realised, monitoring the fluid flow and 
structure behaviour is hindered by the technical complexity 
of the needed instrumentation. Most of the works carrying 
out simultaneous measurements of flow and structure have 
been reported only in the last decade, and by combining 
optical techniques. Many studies have approached the flow 
measurements by planar particle image velocimetry; only a 
few have employed volumetric measurements (Kalmbach 
and Breuer 2013; Mitrotta et al. 2019). The measurement of 
the structure motions was performed either by digital image 
correlation (Bleischwitz et al. 2017; Marimon Giovannetti 
et al. 2017) or based on multiple-point laser triangulation 
(Kalmbach and Breuer 2013). Moreover, Timpe et al. (2013) 
directly measured the inertia forces on the structure with a 
force balance. Furthermore, Mitrotta et al. (2019) used the 
Lagrangian particle tracking technique (Schanz et al. 2016) 
to determine simultaneously the flow velocity and motion 
of the structure.

The combined use of PIV techniques (Adrian et  al. 
2011) and optical diagnostics like DIC or alike (DIC, Chu 

et al. 1985; ground vibration tests, Peeters et al. 2009; 
Image Pattern Correlation Technique or IPCT, Boden 
et al. 2014) to perform both tasks is a topic currently under 
development. Pressure from 3D-PIV enables the evalu-
ation of the fluid flow pressure both in the fluid domain 
as well as in close proximity of the solid object surface 
(Liu and Katz 2006; van Oudheusden 2013). Pioneering 
work that applies pressure from PIV to FSI problems with 
generic three-dimensional and flexible structures has been 
conducted by Percin et al. (2017) for the case of a flexible 
membrane under mechanical actuation.

Finally, the evaluation of inertia forces, traditionally per-
formed by means of accelerometers (as in-ground vibration 
tests, Peeters et al. 2009; or under in-flight conditions, Kehoe 
1995), has also been surrogated by optical diagnostic meth-
ods. For example, the videogrammetric model deformation 
(VMD, Burner and Liu 2001) measurement technique cap-
tures the attitude of wings by tracking rows of markers on 
the model. Similarly, a new sensing approach (de Figueiredo 
et al. 2020) measures natural frequencies of aeronautical 
structures using a computer vision system. From the above, 
it can be stated that the use of optical techniques, such as 
PIV, offers the potential to provide a holistic analysis for FSI 
problems, compared to probe-based measurements.

Once it has been shown that aeroelastic forces can be 
measured by combining different optical techniques to study 
FSI phenomena, an element of novelty can be introduced: 
the principle of force equilibrium applied to Collar’s triangle 
of aeroelasticity, formulated as the Collar criterion. The fea-
sibility of invoking the Collar criterion to relate two or more 
elements of the Collar triangle is scrutinised in the present 
study. The potential benefit of such approach is to obtain a 
global evaluation of the experimental uncertainties when all 
forces are measured. Alternatively, when only two forces are 
accessed, the third one may be inferred using such equation.

The present work describes the foundational aspects of 
the experimental hardware and procedures needed to diag-
nose the aeroelastic forces non-intrusively by use of PIV 
techniques. The measurements are intended for the closure 
of Collar’s triangle by a single experiment, that is, simulta-
neously determining all dynamic forces acting within the 
FSI problem. The demonstration makes use of a benchmark 
problem for aeroelasticity, i.e. the oscillation of a flexible 
thin plate trailing a circular cylinder immersed in a fluid 
stream.

2  FSI measurement working principle

Let us consider a flexible, thin panel of length L, width W 
and thickness T ( T << L,W  ) in oscillatory motion induced 
by aerodynamic forces arising from the air flow as illustrated 
in Fig. 1. The aerodynamic loads consist of pressure p and 
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friction � . The object opposes deformation by its stiffness, 
and acceleration motions by its inertia. Considering a square 
tile of such panel, i.e. a small element of side length l (see 
Fig. 1), the equilibrium of forces acting on such element 
reads as:

where Fi , Fe and Fa stand for the inertia, elastic, and aerody-
namic forces, respectively. For the current work, the afore-
mentioned vector identity will be reduced to the dominant 
direction of motion, z or transverse component, under the 
assumption of small deformations. As a consequence, the 
vector Eq. 1 is projected along z and rewritten as a scalar 
relation. Note that z will be used as coordinate along the 
thickness of the element, with z = 0 corresponding to the 
middle of the plate in the undeformed state. In addition, for 
a simplified treatment of the problem, the quantities will be 
hypothesized uniform along the spanwise direction y; thus, 
the forces will be related solely to the streamwise compo-
nent, x. The accuracy of the latter hypothesis is verified for 
the experiment presented in the remainder of the work.

2.1  Inertia force

A tile subject to non-zero elastic and aerodynamic forces 
will accelerate in proportion to such forces. Based on New-
ton third principle, the reaction force Fi due to inertia acts 
in the direction that opposes its acceleration a. For a tile 
element, the expression of the inertia force reads as:

(1)
∑

F = Fi + Fe + Fa = 0

In the above equation, �m is the density of the mate-
rial, and the displacement of the plate mid-point along 
z is denoted by h, as illustrated in Fig. 1. The measure-
ment of the object displacement and motion is typically 
performed by means of optical markers applied onto the 
surface of the panel. The markers' positions in time are 
recorded, while their velocities and accelerations are com-
puted from time derivatives of the positions. The inertial 
force is then obtained by knowledge of the tile’s specific 
mass and volume.

2.2  Elastic force

Elastic forces arise as a reaction of the object opposing 
deformation. The present discussion pertains to the lin-
ear elastic regime. For small displacements, the force can 
be considered to act normal to the surface and tensional 
forces (e.g. arising from aerodynamic skin friction) are 
neglected. In the above conditions, the whole elastic force 
reduces to the bending stress only.

Considering a thin deformable body, a 1-D simplifica-
tion of the Kirchhoff–Love plate theory provides a relation 
between the deformation of the tile and the elastic forces, 
given its physical attributes. According to such theory, 
and invoking the strain–displacement and the stress–strain 
relations, the stress along the body reads:

(2)Fi = −ma = − lwT�m ⋅

d2h

dt2

Fig. 1  Schematic of a cylinder-trailing foil system (left) and forces acting on a tile element (right). The coordinate system (streamwise, x; span-
wise, y; transverse, z) chosen for the current work is included as reference



 Experiments in Fluids          (2022) 63:128 

1 3

  128  Page 4 of 14

where E is the Young modulus, and ν is the Poisson ratio. 
The linear dependence on z indicates tensile/compressive 
stresses at the opposite faces of the panel. The non-uniform 
normal stress distribution gives rise to a moment reaction. 
Finally, considering the tile moment equilibrium, the elastic 
reaction force, which results normal to the surface, can be 
expressed as,

The complete derivation of the Kirchhoff–Love plate the-
ory for 3D solids can be found in the book of Panc (1975). 
Once the material properties are known, the experimental 
evaluation of the elastic force relies on the assessment of 
the 4th spatial derivative of the instantaneous deformed 
shape h(x). The latter is regarded as a challenging task for 
an experiment, where even a small extent of measurement 
noise propagates and amplifies through the multiple opera-
tions of spatial differentiation.

2.3  Aerodynamics force

Aerodynamics loads are usually decomposed into normal 
(pressure) and shear (friction) stresses. Friction is negligi-
ble in most aeroelastic regimes (Fung 2008). Moreover, the 
pressure loads on a thin panel reduce the discussion to the 
pressure difference Δp from its opposite sides. The aerody-
namic force acting on the tile reads as:

The pressure field can be inferred from the velocity (and 
acceleration) distribution invoking the momentum equa-
tion. The latter in turn requires the numerical solution of the 
Poisson equation for pressure (van Oudheusden 2013). The 
instantaneous aerodynamic force is not straightforward to 
obtain from fluid flow measurements as it typically requires 
high-quality time-resolved 3D measurements (Beresh 2021). 
Moreover, the choice of boundary conditions can largely 
affect the evaluation of the pressure field (Neeteson et al. 
2016). To minimize errors due to low spatial resolution or 
unwanted light reflections close to solid surfaces, the surface 
pressure is typically estimated imposing Dirichlet bound-
ary conditions for the pressure values in the external flow 
region, where the Bernoulli relation between pressure and 
velocity holds true. In the rotational flow region (shear lay-
ers and separated wake), the integration of the pressure can 
follow the 3D propagation scheme recently proposed by Jux 
et al. (2020). It should be stressed that the evaluation of the 
unsteady pressure distribution over a generic surface, curved 

(3)�x = −
E

1 − �2
z ⋅

�2h

�x2

(4)Fe = −
ElwT3

1 − �2
⋅

�4h

�x4

(5)Fa = Δplw

and in motion, time-resolved three-dimensional flow field 
measurements are required that surround such surface.

2.4  Collar’s triangle of forces

Equation 1 can be rewritten combining the explicit terms 
obtained in Eqs. 2, 4 and 5. The resulting equilibrium of 
forces is expressed as:

From such equation, the structural parameters (plate 
thickness T) and material properties (density �m , Young 
modulus E, and Poisson ratio ν) need to be known. The cor-
responding values applying to the current experiment are 
gathered in Table 1. The remaining elements in the equation, 
such as the pressure difference Δp , the local acceleration 
and the spatial derivatives of the deformed shape need to be 
measured to close the problem.

It is worth mentioning that although the above identity 
theoretically holds, the experimental determination of such 
forces has inherent uncertainties. The latter is mostly associ-
ated with the measurement techniques adopted to monitor 
the flow and object motion. Therefore, one can already pre-
dict a residual force when computing the force equilibrium 
for Collar’s triangle, referred to as Collar closure criterion 
(CC) force �CC:

In the present study, an optical diagnostic system based 
on PIV techniques is developed for the purpose of determin-
ing the above forces. The fluid flow velocity is obtained over 
an extended three-dimensional domain by tracking large 
tracers (sub-millimetre helium-filled soap bubbles, HFSB, 
Scarano et al. 2015) along their trajectories to determine 
the flow pressure. The acceleration of the structural ele-
ment is measured by tracking the motion of surface mark-
ers with the same algorithm as for the fluid tracers. Finally, 

(6)−T�m ⋅

d2h

dt2
+

ET3

1 − �2
⋅

�4h

�x4
+ Δp = 0

(7)�CC = −T�m ⋅

d2h

dt2
+

ET3

1 − �2
⋅

�4h

�x4
+ Δp

Table 1  Physical properties of the flexible foil and tile

Dimensions Thickness, T (mm) 0.25
Length, L (mm); l (mm) (tile) 95, 10
Width, W (mm); w = l(mm) (tile) 200, 10
Aspect ratio, L/W 0.475

Material Density, �m (kg/m3) 1290
Young modulus, E (GPa) 1.0
Poisson ratio, � (−) 0.3

Interaction parameters Mass ratio, m* = (�m/�f ).(T/L) (−) 2.77

Cauchy number, Ca = (�f  U
2 W L3)/EI (−) 7.8
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the deformation of the panel is inferred from the analysis 
of the markers position and their relative displacement, 
respectively.

3  Experimental apparatus and procedure

3.1  Flow facility and model

The experiments were conducted at the Aerodynamics labo-
ratory of TU Delft, in an open-jet open-return wind-tunnel 
of 600 × 600  mm2 exit cross section. A cylinder of 90 mm 
diameter was installed vertically with a flexible transpar-
ent foil attached along the rear mid-plane. The foil (size 
105 × 200mm2 ) undergoes a 2D motion excited by the 
periodic shedding of vortices in the Karman wake of the 
cylinder. The maximum amplitude of oscillations in a 2D 
regime is observed at a free stream velocity U∞ = 2.25m∕s 
( Re = 1.35 × 10

4 ), where experiments are conducted. The 
foil optical transparency allowed to track flow tracers at both 
sides of it even when looking from only one side. How-
ever, the amount of detected flow tracers behind the foil was 

slightly lower than in the region with direct view, as a result 
of incomplete light transmission through the foil.

For the measurement of the foil kinematics, a regular pat-
tern of 210 bright surface markers was applied to the foil. 
The markers had an average diameter dm = 0.8mm and a 
pitch pm = 1cm . The overall experimental setup is illustrated 
and provided in Fig. 2.

3.2  Flow measurement

The flow was seeded with neutrally buoyant sub-millime-
tre (mean diameter d ≈ 350μm ) helium-filled soap bub-
bles (HFSB, Scarano et al. 2015), released by an in-house 
200-generator seeding rake installed in the tunnel settling 
chamber (similarly to Jux et al. 2020). The nominal produc-
tion rate of the flow tracers is 6 ×  106 bubbles/s, resulting in 
a seeding concentration of ~ 10 bubbles/cm3 for a free stream 
velocity U∞ = 2.25m∕s at the test section (seeded stream-
tube of 60 ×25cm2 ). For the current experiment, only 100 
generators were operated to reduce the seeding concentration 
to ~ 5 bubbles/cm3, so as to satisfy the condition on the maxi-
mum number of particles per pixel (ppp = 0.05) for 4-camera 
tomographic systems (Elsinga et al. 2006; Scarano, 2013).

A measurement volume of 22 × 40 × 20cm3 was illu-
minated vertically (spanwise direction) by two LaVision 
Flashlight 300 LED banks located under the test section. In 
the current experiments, flow tracers were measured at both 
sides of the transparent foil. A mirror was installed at the top 
plane of the test section to increase the light intensity in the 
measurement volume, thus allowing to identify the tracer 
particles also in the region behind the foil. The imaging 
system consisted of four high-speed cameras ( 1024 × 1024 
pixels, 12 bit, 20 μm pixel pitch) mounted in a tomographic 
configuration 90 cm away from the foil, as shown in Fig. 2. 
The cameras subtended an aperture of approximately 30 
degrees. Details of the optical system used in the experi-
ments are summarized in Table 2.

The image acquisition and processing were conducted 
with the LaVision Davis 10.0.5 software. Sets of 5000 
images were recorded in continuous mode at a rate of 1 kHz. 
Samples of the latter can be visualized in Fig. 3. For the 
calibration process, a geometrical calibration (Soloff et al. 

Fig. 2  Experimental arrangement with cylinder and foil and system 
of coordinates. Illumination (by LED units) and tomographic imaging 
system (four CMOS cameras). The system in action is illustrated by a 
video in Online Resource 1

Table 2  Optical system 
information

Tomographic system

Illumination 2 × LaVision Flashlight 300 LED
Cameras 2 × Photron FastCam SA1.1 (1024 × 1024 pixels, 5400 fps)

1 × Photron FastCam SA5 (1024 × 1024 pixels, 7000 fps)
1 × HighSpeedStar 8 (1024 × 1024 pixels, 7000 fps)

Imaging 3 × Objectives Nikkor 50 mm—f# 1/11.2
1 × Objectives Nikkor 60 mm—f# 1/11.2

Acquisition frequency 1000 Hz
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1997) was followed by the volume self-calibration (Wie-
neke 2008) and optical transfer function determination (OTF 
calibration, Schanz et al. 2012). The surface markers were 
visually distinguished from the flow tracers based on their 
distinct optical characteristics. In order to track most fluid 
tracers (spherical bubbles) and most structural markers (2D 
flat bright circles), the volume self-calibration and the OTF 
calibration were performed separately with clean runs con-
taining only one tracer type. Both the flow tracers’ veloci-
ties and the foil markers motions were evaluated by means 
of the Shake-the-Box Lagrangian Particle Tracking (LPT) 
algorithm (Schanz et al. 2016). Based on the work of Bat-
tacharya and Vlachos (2020), particle location uncertainty 
is expected below 0.3 pixels for IPR-based reconstructions 
and further decreases to 0.1 pixels when the particles are 
track over multiple time instants with the STB algorithm 
(Sciacchitano et al. 2021).

4  Data reduction for load estimation

The following section describes the data reduction procedure 
to obtain the distribution of forces along the foil from the 
analysis of the tracers and markers motion.

4.1  Structural forces

As explained in Sect. 2, inertial and elastic forces are deter-
mined from the time and space derivatives, respectively, 
of the measured instantaneous foil’s shape. In order to 
avoid noise propagation through the derivation process, a 

spatio-temporal least-square regression is performed on the 
locations of the markers to generate a coherent smooth sur-
face. The regression makes use of a high-order polynomial 
in space (5th for x-direction and 2nd for y-direction) and 
a 2nd order in time, which is applied to all the measured 
markers over time stencil of 17 samples (~ 10% of one oscil-
lation cycle). The resulting foil’s shape is calculated on a 
Cartesian grid with 0.5 cm spacing in both streamwise and 
spanwise (x and y, respectively) directions. Therefore, the 
foil can be considered as discretised by adjacent square tiles, 
each centred at a grid node and having a surface area of 0.25 
 cm2 (0.5 cm × 0.5 cm). The derivations in time and space to 
determine the acceleration and elastic force, respectively, are 
conducted analytically based on the polynomial description 
of the foil’s instantaneous shape. The uncertainty of the elas-
tic and inertia forces is quantified based on the uncertainty 
of the regression coefficients of the least-square fit (Mont-
gomery et al. 2021) and linear error propagation.

The comparison between the raw markers’ measurements 
and the foil’s position and acceleration based on the regres-
sion analysis is illustrated in Figs. 4 and 5. Figure 4 com-
pares the kinematics in time of a tracked surface marker 
with that of its projection onto the reconstructed surface. 
From this figure, the periodicity of the foil’s motion both 
in terms of displacement and acceleration is evident, with 
the oscillation period equal to T = 175 ms. The use of the 
least-square regression allows to reconstruct missing time 
samples throughout the entire sequence (Fig. 4-left) and to 
clearly suppress the noise in the foil’s acceleration (Fig. 4-
right). Figure 5 displays the instantaneous location of the 
markers (in black circles) and the fitted surface at one of the 

Fig. 3  Left: digital recording capturing the marked surface and HFSB flow tracers (see also animation in Online Resource 2). Right: digital 
recording of surface markers only (motion video in Online Resource 3)
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extrema of the cycle, showing a contour of the transverse 
displacement. Even when some of the markers are not cor-
rectly reconstructed, the regression surface provides a full 
description of the entire foil.

4.2  Fluid load

Finally, the surface pressure distribution along the foil is 
evaluated for the determination of the aerodynamic forces. 
The volumetric pressure field is computed based on the solu-
tion of the Poisson equation for pressure in incompressible 
fluids (De Kat and van Oudheusden 2012), which results 

from the divergence of the equation of conservation of 
momentum:

The computation of the pressure field relies upon the 
material derivative of the velocity Du∕Dt , which is readily 
available from the LPT measurements, and the viscous dis-
sipation �∇2u . Due to the high Reynolds ( Re = 2 × 10

4 ), 
the latter term is neglected for the pressure computation. 
As shown by van Oudheusden et al. (2007) for a flow prob-
lem at similar Reynolds number, even in regions of high 
flow curvature, the viscous contribution to the pressure 
gradient is two orders of magnitude smaller than the other 
contributions.

Dense velocity reconstruction from particle tracks is per-
formed with the VIC# algorithm implemented in DaVis 10.1 
(Jeon et al. 2018). The approach is based on the Vortex-in-
Cell method for VIC + (Schneiders and Scarano 2016) and 
optimises the vorticity field that best fits the measured veloc-
ity and acceleration by minimizing a cost function J built 
upon the disparity between the computed and the measured 
variables. Pressure integration is performed simultaneously 
to the velocity reconstruction by solving the Poisson equa-
tion with Neumann conditions at every boundary and a con-
stant Dirichlet condition at a free stream location.

Because the applicability of the VIC# algorithm is lim-
ited to Cartesian domains not containing solid objects, the 
pressure reconstruction is only performed over two sepa-
rate regions of the measurement domain that span from its 

(11)∇2p = ∇ ⋅

(

−�f
Du

Dt
+ �∇2u

)

Fig. 4  Kinematics of a measured surface marker (dotted blue) and projection onto the fitted surface (solid red) at the location (x/L = 0.75, 
y/W = 0.5). Left: marker displacement; Right: marker acceleration

Fig. 5  Instantaneous description of raw markers (in black circles) 
with the fitted surface colour-coded by transverse displacement h (in 
[m]). Video of moving system is provided in Online Resource 4
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outmost boundaries to the limits of the foil motion (approx-
imately 4 cm away from the neutral position of the foil). 
Hence, the foil does not enter the fluid domain under con-
sideration for the VIC# reconstruction (black rectangles in 
Fig. 6). For the determination of the actual surface pres-
sure on the foil, the pressure is then extrapolated towards 
the foil location (from both sides) via a nearest neighbour 
approach, neglecting the change of static pressure across the 
shear layer and the wake (Schlichting and Gersten 2016).

In order to determine an upper bound of the uncertainty 
of the reconstructed pressure, the aforementioned approach 
is performed from the outer regions towards the mid location 
( z = 0 ) at downstream locations of the trailing edge of the 
foil. The directions of extrapolation and the mid location are 
shown with black arrows and a red cross in Fig. 6, respec-
tively. The difference in static pressure at the latter loca-
tion when computing it from opposite directions, �p = 1.7 
Pa, gives an estimation of the uncertainty of pressure jump 
across the foil.

5  Results

The flow velocity fields are analysed first, before discuss-
ing the loads of Collar’s triangle and the resulting structural 
motion. Despite the 3D flow measurement, given the oscil-
lations feature a quasi-2D behaviour and for sake of concise-
ness, only 2D flow data will be presented and discussed. The 
latter assumption is verified on both structural and flow data. 
The foil deformation presents a 2.5% deviation over different 
locations along the span of the foil. For the flow, the stream-
wise velocity component is taken as reference. The standard 
deviation along the span reaches at most 10% of the local 
average velocity, which is ascribed to the inherent turbulence 
of the flow. Hence, spanwise averaging is considered a valid 
approach in this problem to enhance the data density without 
any loss of flow or structural information.

A view in the median x–z plane illustrates velocity vec-
tors and contours of the streamwise component (Fig. 7-top 
row). The values shown are averaged along the y-direction, 
where also the foil location is indicated. The velocity field 
reveals the oscillatory behaviour of the wake as expected 
in the regime of Kármán vortex shedding. The foil position 
also reveals its oscillatory motion. However, the foil does not 
appear to be in phase with the wake axis oscillations. The 
position and phase of the vortices shed in the cylinder wake 
are made more evident by displaying the transverse velocity 
component, where a negative blob followed by a positive one 
indicates a counter-clockwise rotating Kármán vortex. The 
dominant frequency of the flow could be already inferred 
from the sequence, and it corresponds to that of the flapping 
foil, f ≈ 5.7Hz . The latter is verified from the time evolution 
of the transverse flow velocity, displayed in blue in Fig. 8. 
Note that the computed Δp is also included in Fig. 8 and 
exhibits a different frequency, in particular double to that of 
the transverse velocity. This can be explained from the fact 
that low-pressure regions arise at the vortex core locations 
regardless of the rotation direction of the vortex, thus result-
ing in double the pressure dominant frequency with respect 
to the flow. Nevertheless, the measured flow dominant fre-
quency agrees well with the characteristic frequency for 
cylinder shedding wakes in the sub-critical regime, St ≈ 0.2 
(Williamson 1996), apparently, unaffected by the presence 
of the flexible foil.

Figure 7 (bottom row) illustrates a sequence of the pres-
sure field time evolution. Recall that, due to the limitations 
of the available pressure solvers, an accurate pressure field 
could be calculated in the outer regions, i.e. away from the 
foil. Therefore, for the current visualization, the effect of the 
foil (imparting a small pressure discontinuity at its opposite 
faces) is neglected, and the pressure equation is solved in 
the entire measurement domain. Despite the expected errors 
at the vicinity of the solid interface, the pressure fields pro-
vide insights to the structure and phase of the aerodynamic 
forcing mechanism. The presence of low-pressure blobs, 

Fig. 6  Left: particle tracks in 
a slide of the measurement 
domain colour-coded by stream-
wise velocity. Right: instan-
taneous streamwise velocity 
reconstructed at the same time 
instant. Pressure evaluation in 
the regions highlighted by black 
rectangles
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corresponding to the core of Kármán vortices, is observed, 
alternating from the opposite sides of the foil and travelling 
at the same convection speed of the vortices. During the 
passage of a low-pressure blob, the foil is accelerated in the 
direction of the vortex and continues after the vortex has 
passed the foil tip under the effect of inertia.

A time evolution of the computed surface pressure along 
the streamwise direction x is provided in Fig. 9. Note that 
as the foil deflects, the projection to the x-axis reduces 
the range to 0 < x∕L<0.9 depending on the motion phase. 

Regarding the forcing, the most effective appears to occur 
when the low-pressure region transits from the foil mid-
length ( x∕L = 0.6 ) to its end ( x∕L = 0.9 ). In this situation 
of maximum forcing, both the pressure load (a pulling force) 
and the foil velocity vector are aligned, thus resulting in a 
positive work performed by the flow to the foil. This mecha-
nism is enhanced by the high-pressure regions (red orange 
in Fig. 7), which build up in the outer region when the foil 
is at the limit of the motion and aid to push the foil back 
towards the neutral position. The above effects ultimately 
lead to an oscillatory aeroelastic regime with pronounced 
periodic behaviour.

The time evolution of the foil’s motion is illustrated in 
Fig. 10. Contours of position, tiles’ acceleration, and elastic 
force per tile are provided on the deformed shape of the foil. 
Position (left column) and acceleration of the foil (centre 
column) are in phase-opposition, as expected from the sec-
ond derivative of an oscillatory motion. The inertia force 
(not shown here) is opposite to the acceleration; hence, it 
exhibits the same trend as the foil’s displacement. Simi-
larly, to the acceleration, the elastic force opposes to the foil 
position, as the deformation promotes internal stresses and 
moments that act against it to recover the undeformed state. 
This working mechanism is analogous to that of a mass-
spring system in oscillation.

Figure 11 illustrates the foil motion by the time evolu-
tion of three markers located at the mid-span of the foil and 
at 1/4, 1/2 and 3/4, respectively, of the foil’s chord length. 

Fig. 7  Time sequence of flow velocity and pressure after spanwise averaging. Colour contours of streamwise (top) and transverse (middle) veloc-
ity component. Bottom row: static pressure field. Animation provided in Online Resource 5

Fig. 8  Transverse flow velocity (blue, circles) and static pressure 
(red, crosses) at a location downstream of the foil, averaged along the 
span ( x∕L = 1.1, z∕L = 0)
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Fig. 9  Left: time evolution map of surface pressure (in Pascals) along the normalized streamwise direction x∕L . Right: time evolution of surface 
pressure for extracted locations x∕L = 0, 0.25, 0.5, 0.75

Fig. 10  Time sequence of measured structural variables: displacement h (top), tiles’ acceleration (related to the inertia forces, centre), and elastic 
force along z (bottom) acting on a tile of 0.5 × 0.5  cm2. Animation provided in Online Resource 6
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The in-phase displacement, for all positions, indicates that 
the foil motion is dominated by its first mode of oscilla-
tion, and a stationary wave at the frequency ffoil = 5.7Hz 
is observed. This frequency is very close to the first natural 
frequency (regardless damping) of the studied configura-
tion, f1,natural = 5.17Hz . This mode of oscillations is consist-
ent with the theory of oscillating cantilevered beams (Den 
Hartog 1985), where the displacement increases more than 
linearly from root to tip.

6  Discussion on the closure of Collar’s 
triangle

The time evolutions of all measured aeroelastic forces acting 
on tiles of 0.25  cm2 area (0.5 cm × 0.5 cm) are presented in 
Fig. 12. The value of such forces is extracted at the three tile 
locations x∕L = {0.25, 0.5, 0.75}(y∕W = 0.5 ). An observa-
tion can be made of the relative phase of the forces with 
respect to the motion of the foil. The tile’s inertia force 

features a standing wave in-phase with the displacement h, 
which is consistent with the operator of second derivative 
between position and acceleration for an oscillatory signal. 
Therefore, the tile acceleration signal is in phase-opposition, 
(i.e. π phase-shift) to the displacement. Based on Eq. 2, the 
inertia (red line in Fig. 12) has opposite sign to the accel-
eration, leading to a condition of zero phase shift (in-phase 
signals) between displacement and inertia force. As expected 
from the measurement technique, the inertia force has the 
lowest uncertainty of the triangle, �inertia = 6 × 10

−6 N.
The elastic force (in yellow, Fig. 12) should exhibit a 

value that is in phase opposition to the displacement and 
the inertia force. This behaviour is found back at x∕L = 0.75 
(Fig. 12-right). However, the variations in time do not fea-
ture a sinusoidal behaviour and the signal appears to be 
corrupted by spurious fluctuations at a frequency higher 
than that of the primary oscillation. At points closer to the 
root of the foil ( x∕L = 0.25 and x∕L = 0.75 ), it appears that 
these spurious fluctuations compromise the evaluation of 
the elastic force as the noise level attains the same level of 
the expected magnitude of the elastic force. Overall, based 
on error propagation through the spatial regression onto the 
fourth derivative of the deformation, the elastic force pre-
sents the highest uncertainty �elastic = 2 × 10

−4 N.
Finally, the aerodynamic force (shown in blue in Fig. 12) 

displays the lowest force levels among the three components 
and for the three locations of the foil. Differently to inertia 
and elastic forces, the aerodynamic force appears as a trav-
elling wave with a different delay to the foil motion at each 
chord location. The latter can be also observed from the 
surface pressure in Fig. 9. This effect is explained by the 
streamwise convection of Kármán vortices featuring low-
pressure blobs at their core. The uncertainty for the aerody-
namic force resulted in �aero = 4.3 × 10

−5 N.
The condition of maximum forcing for the aerodynamic 

force occurs when the aerodynamic force and the foil veloc-
ity are in phase. In such condition, the alignment between 
the aerodynamic force and the foil velocity vectors transfers 

Fig. 11  Time evolution of foil displacement at x∕L : 0.25, 0.5 and 
0.75, at the mid-span location ( y∕W = 0.5)

Fig. 12  Instantaneous time-evolution of aeroelastic forces at different chord locations x∕L : 0.25 (left), 0.5 (centre), and 0.75 (right). Measure-
ments at mid-span location y∕W = 0.5
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the maximum work from the flow to the foil. Therefore, the 
aerodynamic force must anticipate the foil’s motion (dis-
placement) by a phase shift of about �∕2 (phase quadrature). 
From the present experiments (Fig. 12), it appears that such 
condition is best attained around the position x∕L = 0.75.

Once the foil reaches a steady-state oscillatory regime 
(of approximately constant amplitude and frequency), only 
a small aerodynamic force is required to maintain the sys-
tem in such regime, where the sum of elastic and inertia 
forces conserve most of the system kinetic energy. Instead, 
the work produced by the aerodynamic force is dissipated 
by structural damping. The evaluation of structural losses, 
however, goes beyond the scope of the current study and is 
not examined further.

The closure of Collar’s triangle concludes this work and 
is achieved by imposing the equilibrium of the aeroelastic 
forces. The equilibrium addresses the dominant effects along 
the z-component of the force vector. When uncertainties 
pertaining to the experimental approach and the subsequent 
modelling to estimate the forces are accounted for by a term 
�CC, Eq. 1 is rewritten as:

This residual was anticipated in Sect. 2 as the Collar clo-
sure criterion (CC), �CC, and quantifies how accurate the 
measurement of three aeroelastic forces is altogether. For 
the present experiments, the closure of Collar’s triangle (i.e. 
the magnitude of the residual force, �CC ) is evaluated for 
the afore-analysed tile locations. In view of the oscillatory 
nature of the forces, the standard deviation (STD) of the 
error is reported in Table 3 taking the inertia force as a refer-
ence for the amplitude.

While the inertia force increases downstream, �CC 
increases towards the root. This is ascribed to the uncertainty 
of the elastic force, which appears to be maximum at the 
foil’s root, with the small displacements. The ratio between 
the Collar force and the inertia force as provided in Table 3 
can be seen as an indicator of the accuracy of the closure of 
Collar’s triangle of forces. It is evident that from the foil’s 
root to approximately the half chord (x/L = 0.5), the residual 
of Collar’s force strongly distorts the equilibrium. As previ-
ously mentioned, this is ascribed to the large uncertainty of 

(8)Fi + Fe + Fa = �CC

the elastic force associated with the fourth spatial derivative 
of displacements, and the vanishing magnitude of the inertia 
force close to the foil’s root. Instead, towards the foil’s tip 
(x/L ≥ 0.75), the residual tends to become a vanishing com-
ponent, indicating the feasibility of Collar’s triangle closure 
by non-intrusive experimental means.

Aside from the uncertainty of the elastic force the hypoth-
esis of small displacements will require further scrutiny. 
When the latter assumption is not satisfied, aerodynamic 
elastic and inertia forces will need to be evaluated with their 
full vectors and the local orientation of the foil needs to be 
accounted for.

7  Conclusions

A non-intrusive measurement methodology for aeroelastic 
experiments based on the Lagrangian particle tracking tech-
nique is proposed to simultaneously estimate aerodynamic, 
elastic and inertial loads from a deforming model. The 
method relies on the tracking of flow tracers to characterize 
the flow, and of surface markers to describe the dynamics 
of the structure. An experiment was carried out to show the 
applicability of the proposed methodology. The measure-
ments regarded a flexible transparent foil attached to a solid 
cylinder and interacting with the wake of the latter. Both the 
flow tracers (neutrally-buoyant HFSB) and surface markers 
applied onto the panel were tracked in time with a single 
optical tomographic system.

The results show the potential of evaluating the aeroelas-
tic forces from Lagrangian particle tracking measurements 
of the flow tracers and the markers on the flexible structure. 
The inertia forces were successfully evaluated via time-
derivation of the markers’ displacements. The pressure on 
the foil surface was obtained extrapolating the solution of 
the Poisson problem from the outer flow field to the foil. 
The elastic forces required evaluation of the fourth spatial 
derivative of the displacement and turned out to be the most 
challenging quantity to determine.

Flow analysis results show that pressure blobs associated 
with the Karman vortices determine the unsteady aerody-
namic forcing. A phase shift exists between such external 
loading and the inertial and elastic response.

The Collar closure criterion is introduced that considers 
the residual of the force equilibrium equation as a meas-
ure of the accuracy of the overall experiment. The criterion 
yields unfavourable results close to the foil root where dis-
placement and acceleration are vanishing. At the foil trail-
ing edge, a consistent combination of the aeroelastic forces 
is observed, indicating the feasibility of the present optical 
diagnostic approach for aeroelastic systems characterisation.

Table 3  Collar closure criterion force and inertia force for a tile loca-
tion at y∕W = 0.5

x/L = 0.25 x/L = 0.5 x/L = 0.75

STD F
i
 (mN) 4.4 ×  10–2 9.4 ×  10–2 13.2 ×  10–2

STD �
CC

 (mN) 11.2 ×  10–2 8.7 ×  10–2 6.2 ×  10–2

STD �
CC

/STD Fi 2.5 0.9 0.47
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