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Abstract
Theory of dynamical cavitation threshold for vapor and non-condensable
gas bubble nuclei is proposed based on a model equation constructed from
Rayleigh–Plesset equation for glycerol, the liquid with viscosity higher than
that of water by 1500 times, under a finite duration of strong tension. The
model equation is ascertained to be valid in cases of strong tension under
which cavitation occurs. Our model enables the study of dynamics of nuclei on
the phase plane of the nucleus radius and the growth velocity, by which the full
details of the threshold are revealed. We propose a dimensionless parameter
to be used to classify the threshold of cavitation. Our model offers a simple
mathematical expression to calculate the maximum radii attained, while under
tension, for each of these three recognized patterns. For each observed pattern,
we present unique predictive correlations for the radius of the nucleus grow-
ing for the tension duration. Moreover, we elucidate that the dynamics of the
nuclei, grown up to certain sizes, is fully controlled by tension independent
of the viscosity. The discrepancy between the dynamical threshold and the
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conventional Blake’s threshold is discussed. Finally, the utility of the theory
presented here is demonstrated through numerical examples.

Keywords: diesel fuel atomization, dynamical cavitation threshold,
bubble dynamics

1. Introduction

Cavitation is the formation and subsequent growth of bubble nuclei contained in liquids when
liquid pressure drops below the saturated vapor pressure (Young 1999, Franc andMichel 2005,
Brennen 2013). The pressure reduction can be caused by high-speed flows of liquids or ten-
sion imposed on them. For example, 1MPa tension can be induced for a hundredmicroseconds
downstream of a cylinder installed within a duct when the liquid passing through the narrow slit
between the cylinder surface and duct walls flew at about 50 m s−1 (Washio 2014). Such flow
provides us a situation suitable for fundamental study on cavitation threshold based on bubble
dynamics—formation, growth, and translation of bubble nuclei. However, whether cavitation
takes place due to the fracture of water without pre-existence of the nuclei, as Washio insists,
is possible or not still remains vague. The theoretical tension strength of water at room tem-
perature is about 100 MPa, suggesting that acoustically induced cavitation would require a
sound pressure of at least 100 MPa (Young 1999). On the other hand, cavitation is observed
with pressure amplitudes of about 0.1 MPa in water, implying the presence of pre-existing
nuclei (Mørch 2015, Yasui 2018). Despite the uncertainty about the effects and pre-existence
of the nuclei, the method Washio proposed is quite suitable for the study of the threshold if it
is assisted with a threshold theory based on bubble dynamics.

Cavitation can also occur in internal flows, for instance, within fuel injector nozzles of
diesel engines. It plays an important role in promoting the breakup of fuel jets, where the fuel
is pressurized to and above 100 MPa to be suddenly depressurized. This will thereby result
in strong tension (around 10 MPa) and; consequently, cavitation (Sun et al 2021). Cavitation
can effectively control and promote fuel atomization. It is an impending issue for design and
optimization of the injector nozzles. Gianndakis et al (2008) presented informative results
on cavitation threshold in the nozzles by computational fluid dynamics (CFD) coupled with
bubble dynamics taking account of translational motion of bubble nuclei. However, why initial
radii of the nuclei assumed to pre-exist, as they pointed out by CFD simulation, do not affect
the threshold at all is to be understood. A crucial issue common to Gianndakis et al’ method
and Washio’s one mentioned above is the lack of understanding of the physics of threshold in
theoretical and numerical investigations. Despite this, studies of these nature on the cavitation
threshold might be remarkably advanced if a new perspective theory of the threshold under
tension is constructed based on bubble dynamics in an analytical manner and incorporated
into Gianndakis et al’ method or that of Washio.

Considering the above-mentioned situations of cavitation threshold, we understand that
construction of a new theory of cavitation threshold is impending. There is currently no theory
on the dynamics of the threshold although the threshold has been discussed on the growth
of a bubble nucleus in a quasistatic process as Blake’s threshold (Young 1999, Franc and
Michel 2005, Brennen 2013). Blake’s threshold is not a dynamical one—temporal factor on
the nucleus growth and viscosity effect of the liquid are not taken into account. On the con-
trary, cavitation actually occurs in viscous liquids under tension or positive pressures lower
than saturated vapor pressures during finite times. For example, again in case of Gianndakis
et al’ study (2008), cavitation is caused by very short (only for microseconds) transient strong
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tension (of about 10 MPa in magnitude). Blake’s threshold is of no use for such cavitation
problems. This is the reason why the authors stick to construct a new theory on the threshold,
i.e. ‘dynamical cavitation threshold,’ taking account of both temporal factor of the growth and
viscosity of the liquid in an analytical manner based on bubble dynamics.

This paper focusses solely on bubble dynamics study to provide insight into the dynamical
cavitation threshold of vapor and non-condensable gas bubbles—bubble nuclei—in glycerol
under a finite duration of strong tension for diesel fuel atomization. No serious attempt has been
made to perform the analysis until the present. It is, indeed, difficult to obtain an exact, analyt-
ical solution to the problem. However, with certain reasonable approximations it is possible to
obtain the analytical expression for dynamical cavitation threshold for the nuclei. Along this
line, the authors will apply the model equation which was constructed based on Rayleigh–
Plesset (R-P) equation (Fujikawa et al 2019). The trait of our model equation enables us to
deal with the dynamics of the nucleus on the phase plane of the nucleus radius and the growth
velocity; acceleration term is treated so as not to appear explicitly in the equation. Hence, it is
superior to other techniques that aim at directly solving the R-P equation. Our goal is to elu-
cidate what are controlling factors for the threshold of vapor and non-condensable gas bubble
nuclei and how large they grow in highly viscous liquids during infinite durations of strong
tension. Thereby, we will deduce simple predictive formulae for the threshold. We will cla-
rify the difference between our dynamical threshold and Blake’s quasi static one and we will
demonstrate how to use our theory. The limitation of the model equation will be discussed and
the extension of our model to cases with water as the liquid fluid will be demonstrated.

2. Problem statement, model equation, and its validation and limitation

2.1. Problem statement and model equation

First of all, let us state our problem to be dealt with in the present paper. We suppose that there
exists a stationary bubble nucleus in a highly viscous liquid, then the pressure of the liquid
surrounding the nucleus is suddenly changed from a high value to a strong tension one. The
nucleus begins to grow to a certain size, attaining a visible size—cavitation threshold and we
intend to use our model to predict the onset of this threshold.

Figure 1(a) shows the temporal variation of the pressure imposed on the liquid. The abscissa
denotes the time t and the ordinate indicates the liquid pressure pl (t) as a function of time only.
At time t= 0, the liquid is in the state of a pressure pl0 and the nucleus of a radius R0 is in
equilibrium with the liquid, whilst the pressure of the non- condensable gas within the nucleus
is pg0 and the saturated vapor pressure ispv. Just at the instant when the liquid is depressurized
by P(> 0) for a period T in a stepwise fashion, the nucleus begins to grow. During the nucleus
growth, the vapor pressure is assumed to remain constant at the ambient liquid temperature.
After the period T, the liquid pressure again restores in a stepwise manner to a higher pressure
pa. As shown in figure 1(b), the nucleus grows up to a large bubble with radius R1 during T and
continues to grow for t⩾ T in the high pressure pa, attains a maximum radius Rmax, and then
shrinks. In summary, we consider the cavitation threshold in the situation that the stationary
nucleus is exposed to strong tension instead of in the situation that the nucleus grows and
shrinks in a flowing liquid. Our model is developed for a specific problem where an initial
high-pressure state undergoes significant pressure changes leading to strong tension which, in
turn, can be linked to injector nozzles. Note in essence that, our theory is not tuned based on
the entire liquid pressure history (as the final pressure state is not a model input).
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Figure 1. The temporal variation of liquid pressure (a) and the nucleus radius change
(b). The liquid is initially in the state of a pressure pl0 from which it is depressurized by
P during a time T. The liquid subsequently restores to a high pressure pa. According to
the liquid pressure change, the nucleus grows from the radius R0 to Rmaxvia R1.

We will introduce the following dimensionless quantities with the asterisk:

R∗ =
R
R0

, t∗ =
t
T
, p∗ =

pT2

ρR2
0

, µ∗ =
4µT
ρR2

0

, σ∗ =
2σT2

ρR3
0

, (1)

where R is the nucleus radius which is a function of time, p is generally expressed to be the
pressure (pa, pl0, P), ρ is the liquid density, µ is the viscosity coefficient of the liquid, and σ is
the surface tension coefficient of the liquid. Paying attention to a ratio of µ∗ to p∗, we notice
that it is in inverse proportion to the tension duration T, for given µ and p.Keeping the viscosity
and pressure constant, the tension strength decays as the tension duration is longer, that is, the
effect of the viscosity on the nucleus growth becomes less pronounced for the longer tension
duration. The liquid is assumed to be incompressible, which is only valid before the threshold.
A bubble nucleus is also supposed to exist in the liquid (Young 1999) and we will confine to
cavitation threshold under at most 10 MPa according to Gianndakis et al (2008).

Then, the R-P equation for the radial motion of the nucleus is given in the dimensionless
form as follows (Young 1999, Franc and Michel 2005, Brennen 2013):

R
d2R
dt2

+
3
2

(
dR
dt

)2

+
µ

R

(
dR
dt

)
+

σ

R
−
pg0
R3

− pv+ pl (t) = 0, (2)
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where the asterisk is dropped and will be omitted hereafter. Initial conditions required to solve
(2) are R(t= 0) = 1 and dR/dt(t= 0) = 0. The gas is assumed to obey the isothermal law
(Fujikawa 1980). As the nucleus is initially in equilibrium with the liquid, the following pres-
sure balance holds: pg0 + pv = pl0 +σ. A sudden drop in the liquid pressure pl (t) in (2) can
be expressed as pl (t) = pl0 −P, which means that the liquid is exposed to a tension state for
pl (t) = pl0 −P< 0; tension strength is defined as ∆P= P− pl0 > 0, i.e. pl (t) =−∆P. We
should emphasize that cavitation threshold is possible only if ∆P≫ 1. Otherwise, we have
R= O(1). We further need a condition for the initial radius so that the nucleus can start to
grow under a given tension strength:

σ

∆P+ pg0 + pv
< 1 . (3)

For convenience, (3) can be expressed as (R(t= 0))dim > (2σ/(∆P+ pg0 + pv))dim in the
dimensional form where the subscript dim denotes dimensional quantities, which enables us
to understand (3) more intuitively (Fujikawa et al 2019).

Making use of an identity d2R/dt2 = (1/2) · d(dR/dt)2/dR and pl (t) =−∆P< 0, (2) can
be rewritten as:

1
2

d
dR

(
dR
dt

)2

+
3
2R

(
dR
dt

)2

+
µ

R2

dR
dt

+
σ

R2
−
pg0
R4

− ∆P+ pv
R

= 0 . (4)

Equation (4) will be solved subject to two simplifications; i.e. (a) when the acceleration
term in (4) is discarded, and, (b)when an inviscid liquid assumption can be made in (4), that is
µ= 0. In the simplification (a), it compromises accuracy in the nucleus growth, which suggests
that validity and limitation of the analysis must be made clear. In view of the assumption (a),
we can integrate (4), resulting in:(

dR
dt

)2

+
2µ
3R

dR
dt

−
2pg0
3R3

+
2σ
3R

− 2
3
(∆P+ pv) = 0. (5)

On the other hand, under the assumption (b), equation (4) can be solved as follows. Since
equation (4) for µ= 0 is still in an intricate form, it is further transformed into a well-known
type of the first-order differential equation by some variable changes, through which the gen-
eral solution of equation (4) is obtained as:(

dR
dt

)2

− 2pg0
lnR
R3

+
σ

R
+

a
R3

− 2
3
(∆P+ pv) = 0, (6)

where the constanta is an integration constant. Equation (6) is the solution to the R-P equation
for the inviscid liquid, thus, correct from the view point of bubble dynamics, whilst (5) solely
reveals correct forms on the viscosity term and the inertia terms—the first and last terms. Based
on these facts, noticing the forms of (5) and (6) and taking account of the viscous term in (5)
into consideration in (6), we obtain:(

dR
dt

)2

+
2µ
3R

dR
dt

− 2pg0
lnR
R3

+
σ

R

(
1− 1

R2

)
− 2

3
(∆P+ pv)

(
1− 1

R3

)
= 0, (7)

where the constant a in (6) is determined from the initial conditions as a=
2(P− pl0 + pv)/3−σ.

We must note that (7) is a model equation based on the simplifications (a) and (b). Compar-
ing (4) with (7), we notice the different points as follows—the viscous term in (7), the factor
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Figure 2. Comparison of equations (4) and (7) for temporal variations of the growth
velocity for the nucleus with R0 = 1 (1 µm) under different tension strength in glycerol.

1/R2 in the fourth term, and the factor 1/R3 in the last term. The two factors are negligibly
small when R≫ 1 which is the case with cavitation threshold. As for the viscous term in (7),
which is crucial, validation and limitation of the model equation must be clarified as will be
done by comparing it with (4) in the next subsection.

2.2. Validation and limitation of model equation

To verify the validity and limitation of (7) for highly viscous liquids, we will inspect the growth
of a 1 µm-radius nucleus (R0 = 1 µm) in glycerol when glycerol is initially pressurized at
100 MPa and suddenly exposed to tension at 20◦C for 100 µs (Gianndakis et al 2008, Sun et al
2021). The duration of 100 µs is a time of the nucleus experiencing tension in a 5mm-tension
domain when the flow velocity is 50m s−1. The tension strength and the duration are set as
parameters in this paper. Thermophysical properties (20◦C) are: ρ= 1.257× 103 kg m−3, µ=
1.499 Pa · s, σ = 6.340× 10−2Nm−1 and pv = 1.160× 10−2 Pa. The following are dimen-
sionless quantities: pl0 = 7.955× 108, µ= 4.770× 105, σ = 1.009× 106, pv = 9.228× 10−2,
and pg0 = pl0 − pv+σ = 7.965× 108. The constraint given by (3) for the nucleus growth
fully holds throughout the paper; the numerical value of the left-hand side of (3) is less
than σ/pg0 = 1.267× 10−3 for any ∆P> 0. For convenience, the dimensional pressure to
1 in the dimensionless form corresponds to 1.257× 10−1Pa (e.g. 100 MPa corresponds to
7.955× 108) and the dimensional velocity of 1 corresponds to 1× 10−2ms−1 (e.g. 1 m s−1

corresponds to 1× 102).
Figure 2 compares (4) and (7) on the growth velocity of nucleus up to t= 1 (the ten-

sion duration) for A: ∆P= 7.955× 107(10 MPa in dimensional value), B: ∆P= 1.591×
107 (2 MPa), C: ∆P= 7.955× 106 (1 MPa), and D: ∆P= 3.022× 106 (0.380 MPa). It
should be noted that nuclei larger than 1.2 nm in initial radius can grow for the condition
of the case A from (3). The last case, case D, may be the lowest limit under which the model
equation is (barely) valid for glycerine. The spike-like small protuberance seen near the ori-
gin in each case is due to the gas pressure, not due to inaccuracy of calculation (more details
on this in section 3.1). The black lines are obtained by solving (4), whilst the red lines are
obtained by solving (7). The results demonstrate that the discrepancies between (4) and (7)
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Figure 3. Comparison of equations (4) and (7) on temporal variations of the radius with
R0 = 1 (1 µm) under different tension strength in glycerol.

become small as the tension strength is increased, for example, the discrepancy is less than
0.6% for A (the strongest tension case), 4.2% for B, 9.0% for C, and 30% for D (the weak-
est tension case). Paying attention to acceleration times for A through D, we notice that they
become longer as the tension strength is decreased, which reveals that the viscous term in (5)
obtained by discarding the acceleration term in (4) was adopted in (6) in order to construct the
model equation, in short, the longer the acceleration time, the larger the discrepancy. There-
fore, the model equation has the limitation in accuracy depending on the viscosity and the ten-
sion strength; for reference, the viscosity-tension ratio is respectively µ/∆P= 5.996× 10−3

for A, 2.998× 10−2 for B, 5.996× 10−2 for C, and 1.578× 10−1 for D. However, such limit-
ation in weaker tension states is not fatal because the model equation is constructed by focus-
sing solely on the dynamical cavitation threshold under very strong tension states as diesel fuel
atomization or other similar phenomena.

Figure 3 compares (4) and (7) on the nucleus radii up to t= 1 for A, B, C, and D in figure 2.
The black lines are obtained by solving (4), whilst the red lines are obtained by solving (7).
The white circles represent the radii evaluated by analytical formula at t= 1, (19), which will
be derived in the next section. For A, which is near the conditions dealt with by Gianndakis
et al (2008), the radius attains 7.0× 103 at t= 1 and (4), (7), and (19) coincide well with each
other within 0.6%. In summary, the model equation can predict the growth behaviour of the
nucleus when tension is strong.

3. Parametric classification of nucleus growth under strong tension

3.1. Detailed and global growth behaviour of nucleus for (∆P + pv)/µ2 ≪ 1

Before proceeding to analysis of the model equation (7), we should emphasize again that cavit-
ation threshold under tension is the global growth process of a bubble nucleus up to R≫ 1 in
the time domain [0, 1], as shown in figures 2 and 3. However, we will inspect not only the
global behaviour but also the detailed one just after the growth start as precisely as possible.
We will here focus on the growth behaviour of the nucleus for the case A shown in figures 2
and 3: ∆P= 7.955× 107 (10 MPa) . Paying attention to the orders of pg0/µ2 = O

(
10−3),

7
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(∆P+ pv)/µ2 = O
(
10−4), and σ/µ2 = O

(
10−6), we can approximate (7) is for dR/dt> 0

and R= O(1) as:

dR
dt

∼
3pg0
µ

lnR
R2

+
∆P+ pv

µ
R, (8)

where the second term on the right-hand side of (8) is approximated as 1− 1/R3 ∼ 1. Thus, (8)
may lack accuracy in the neighbourhood of R= 1. The first term of (8) is a gas-viscosity coup-
ling term, and the second term is a tension-viscosity coupling term. As numerically estimated
above, (8) holds under the conditions:

∆P+ pv
µ2

≪ 1, (9)

and R= O(1) ; giving a short comment to (9), its inverse case, i.e. µ2/(∆P+ pv)≪ 1, is the
case for water, which is relevant to cavitation threshold in submerged water jets (Peng et al
2019) and purification of sewage water (Soyama 2021).

We now consider the extremes for (8), radii for which can be obtained from the tran-
scendental equation, (∆P+ pv)R3/(3pg0)− 2lnR+ 1= 0, resulting in (dR/dt)max = 1208 at
R= 1.824 and (dR/dt)min = 1095 at R= 3.612, and the two terms on the right-hand side in (8)
become balanced at R= 1.038 and R= 3.297. Inspecting details about which term prevails in
the growth, we can understand that the growth is subject to the tension-viscosity coupling term
between R= 1 and R= 1.038 and beyond R= 3.297, whilst it is subject to the gas-viscosity
coupling term between R= 1.038 and R= 3.297. The tension-viscosity coupling term dom-
inates (93%) at R= 10 up to which (8) approximately holds, as will be clarified below. Based
on the above discussion, we can understand that the spike-like small protuberances near the
origin seen in figure 2 are all the appearance of (dR/dt)max.

For R≫ O(1), on the other hand, if (∆P+ pv)/µ is large, (7) may be approximated as:

dR
dt

∼− µ

3R
+

[( µ

3R

)2
+

2
3
(∆P+ pv)

]1/2
, (10)

where the condition (9) is sufficiently fulfilled because of (∆P+ pv)/µ2 ∼ O
(
10−4) and

both viscous (the terms with µ/3R) and the tension (the term with∆P+ pv) effects control the
velocity; the viscous effect decays as the nucleus grows and an inviscid behaviour is expected
when R→∞.

Figure 4 plots dR/dt against R for the range of R= 1∼ 50, where the black line
(R= 1∼ 13) is the result of solving (8) and the red line is obtained by solving (7), and
the blue line (R= 8∼ 50) is obtained by solving (10). As seen, (8) is a good approxima-
tion to (7) up to R ∼ 10 whilst (10) is also a good approximation to (7) beyond R ∼ 10,
showing that (8) and (10) asymptotically become closest at R ∼ 10. Hereafter, we will use
the symbol Rtr in a general form instead of R ∼ 10. Thus, Rtr (= 10) denotes the transition
radius through which the growth mechanism changes from the gas-viscosity coupling beha-
viour to the tension-viscosity coupling one. It depends on the conditions given but is roughly
O(10) independent of conditions, for example, even for water under weak tension (of about
0.1 MPa). The deviation of (8) from (7) beyond Rtr is due to the breakdown of the assumption,
(µ/3R)2 ≫ 2(∆P+ pv)/3+ 2pg0lnR/R3, whilst the deviation of (10) from (7) before Rtr is
due to the neglect of 2pg0lnR/R3 in (10). Summarizing the results, we understand that (8) is
rather exact for the gas-viscosity coupling growth up to Rtr whilst (10) is rather exact for the
tension-viscosity coupling growth beyond Rtr. After Rtr, (10) soon approaches (7) and varies
up to t= 1

(
R= 7.0× 103

)
along the curve A shown in figure 2, which means that (10) is

valid for R> Rtr.
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Figure 4. Comparison among (7), (8), and (10) for temporal variations of the growth
velocity for the nucleus with R0 = 1 (1 µm) under∆P= 7.955× 107 (10 MPa) in gly-
cerol. The growth is subject to the gas-viscosity coupling term up to R= 3.297, after
that the tension-viscosity coupling term prevails up to Rtr (= 10).

3.2. Classification of dynamical cavitation threshold

As clarified in the section 3.1, (10) prevails in the domain [Rtr, R1] in which R1 is the radius
at t= 1. Its solution in [Rtr, R1] is given as (note that Rtr is the known quantity as evaluated in
3.1, whilst R1 is a quantity to be sought):

t (Rtr)+ F(R1) = 1, (11)

where:

t (Rtr) =
2µ

Rtr+1
Rtr−1 (∆P+ pv)+

6pg0
(Rtr−1) 2

[
1− lnRtr+1

Rtr

] , (12)

F(R1) =

√
3

2(∆P+ pv)

(√
R2
1 +α−

√
R2
tr +α

)

+
µ

2(∆P+ pv)
ln

[(
R1

Rtr

)2√R2
tr +α+

√
α√

R2
1 +α+

√
α

]
, (13)

in which:

α=
µ2

6(∆P+ pv)
, (14)

and t(Rtr) is the time obtained from the radius variation (Rtr− 1)and the mean
growth velocity during the radius changing, the latter of which is derived from (8);
t(Rtr) = 6.977× 10−3 (≪ 1) for the conditions given in 3.1, and F(R1) denotes the time while
the nucleus grows from the radius Rtr to R1. For the conditions, (11) can be approximated as:√

3
2∆P

R1 +
µ

2∆P
ln

[(
R1

Rtr

)2
√
Rtr

2 +α+
√
α

R1

]
∼ 1. (15)

9
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Let us rearrange the second term on the left-hand side of (15) by grouping the known and
unknown terms as:√

3
2∆P

R1 +
µ

2∆P
lnβR1 =Π, (16)

where:

Π= 1− µ

2∆P
ln
2
3
µ, (17)

β =
1

Rtr

√
∆P

(√
9∆P
4µ2

+
3

8Rtr
2 +

√
3

8Rtr
2

)
. (18)

Equation (16) is more compact than (15) because the second term of (15) is split into
(µ/2∆P) ln(βR1) and (µ/2∆P) ln(2µ/3), in which (µ/2∆P) ln(βR1) is unknown whilst
(µ/2∆P) ln(2µ/3) is known; the first term of (16), i.e.

√
3/2∆PR1, is unknown. The para-

meter Π defined by (17) represents the measure for effects of the viscosity and the tension
strength on the nucleus growth. Therefore, we may be able to find out a simpler threshold con-
dition for (µ/2∆P) ln(2µ/3)≪ 1, depending on magnitudes and signs of (µ/2∆P) ln(βR1).
For example, for the case of figure 4, (µ/2∆P) ln(2µ/3) = 3.800× 10−2, thus, Π ∼ 1 and
β = 7.056× 10−6, thus, (µ/2∆P) ln(βR1) =−9.018× 10−3, resulting in R1 ∼

√
2∆P/3.

This is the simplest case of (16). On the other hand, in case where (µ/2∆P) ln(2µ/3) is lar-
ger than 1, Π becomes negative, which is the case of tension weaker than D in figures 2 and
3. Summarizing the above discussion, we can classify (16) into the more perspective cases
according to numerical value and signs of the parameters Π and (µ/2∆P) ln(βR1).

(1) In case where Π> 0 and Π is not too small compared with unity
This is the case where numerical value ofΠ is close to one, in other words, µ/∆P≪ 1 and

(µ/2∆P) ln(βR1)∼ O
(
10−2); for example, the case of figure 4. Then, we obtain R1 from

(16) as:

R1 ∼
√

2∆P
3

Π. (19)

Equation (19) denotes that the nucleus radius attained during tension application is domin-
ated by not only the tension strength but also the viscosity through the parameter Π. For the
conditions given in figure 4, Π= 0.962 and R1 = 7.0× 103 (7mm in dimensional value). As
the numerical value of Π is close to 1, the nucleus growth is almost governed by the tension,
not the viscosity. Thus, we understand, from (10) and the present result, that the bubble during
the tension duration continues to grow between R ≫ µ/(3

√
2∆P/3) and R1 = 7.0× 103 as

if it grows in an inviscid liquid; dR/dt∼
√

2∆P/3= constant. Then, the tension strength can
be obtained from (17) and (19) as:

∆P ∼ 1
2

3
2
R2
1 +µ ln

2
3
µ+

√(
3
2
R2
1 +µ ln

2
3
µ

)2

−
(
µ ln

2
3
µ

)2
 , (20)

by which we can evaluate the tension strength needed for the nucleus growing up to the radius
R1 for the tension duration. This equation is useful for predicting the tension strength for the
radius R1 we want to have.

Figure 5 shows the relation of R1 and ∆P, obtained by (20), between R1 =
5.0× 102 (0.5mm) and R1 = 1.0× 104 (10mm) for R0 = 1 (1 µm). From this figure, we can
predict the tension strength under which the nucleus grows up to a certain radius. In the figure,

10
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Figure 5. Relation between R1 and ∆P between R1 = 5.0× 102 (0.5mm) and R1 =

1.0× 104 (10mm) for R0 = 1 (1 µm) in glycerol.

the initial nucleus radius is given to be the above value, but it will be demonstrated in subsec-
tion 3.5 that the initial radius does not influence the radius R1 when tension is strong.

(2) In case of Π= 0
Equation (16) is then reduced to:√

3
2∆P

R1 +
µ

2∆P
lnβR1 = 0, (21)

which is the transcendental equation and the case of ∆P= 3.022× 106 (0.380 MPa), for
which R1 ∼ 6.1× 102 (0.61mm). The tension and viscosity effects both prevail in the nucleus
growth. For a further development of tension-viscosity coupling growth, we need to prolong
the reference time. As discussed, about curve D in figures 2 and 3, this case is not accurate
because the growth is still accelerating, due to weak tension, where the model equation is
barely valid. Yet, the result might be informative.

(3) In case of Π< 0
This is the case ∆P< 3.022× 106 (0.380 MPa) and the model equation becomes inaccur-

ate for the smaller tension strength. Thus, considering the inaccuracy of (7) and the insufficient
nucleus growth under the weak tension (∆P< 3.022× 106), the case of Π< 0 may not be so
meaningful in cavitation threshold.

In summary, the most important result in this subsection is the case (1) where the tension
prevails for cavitation threshold and the model equation holds. For the case (2), the equation
is barely valid because the nucleus growth is still in the acceleration process, nevertheless, it
is useful. Note that the conditions discussed here for glycerol are not the case for water at high
temperatures and weak tension; then we must return to (11) through (14).

3.3. Dynamical cavitation threshold and Blake’s quasistatic threshold

As discussed in Introduction, Blake’s threshold is known well (Young 1999, Franc and Michel
2005, Brennen 2013), which is constructed for the situation that a nucleus grows from the

11
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Figure 6. Behaviour of the nucleus with R0 = 1 (1 µm) in glycerol while the liquid
pressure restores to the atmospheric pressure (7.955× 105 (0.1 MPa)).

instant when the liquid pressure is reduced to a certain value for an infinite time in a quasistatic
manner:

Rc =

√
3pg0
σ

, (22)

pc = pv−
2σ
3Rc

, (23)

where Rc is called the critical radius and pc is the critical pressure; both are nondimensional-
ised. These equations imply that the nucleus continues to grow after its radius attains Rc when
the liquid pressure is kept at pc above which the radius varies in equilibrium with the ambi-
ent pressure. For the initial nucleus radius and initial liquid pressure given in figure through
4, Rc = 4.866× 10 (4.866× 10 µm) and pc =−1.382× 104

(
−1.737× 103Pa

)
. Comparing

the tension strength for this case (∆P=−pc > 0) with the tension values for the case (1) and
the case (2) in the preceding section 3.2, we understand that the tension strength evaluated
by Blake’s threshold is far less than the values evaluated by our dynamical threshold, which
means that a tension stronger than that of Blake’s threshold is required in cases of finite dur-
ations of tension, that is, the dynamical threshold; however, note that Blake’s threshold is the
important condition necessary for the nucleus starting to grow.

3.4. Bubble behaviour under atmospheric pressure after the tension release

We can evaluate the maximum bubble radius Rmax when the liquid pressure again restores in
the stepwise fashion to a high pressure pa (here, for brevity an atmospheric pressure) after the
tension was released (Fujikawa et al 2019):

Rmax ∼ R1

(
∆P
pa

)1/3

, (24)

whereR1 = 7.0× 103 and ∆P= 7.955× 107 for the case of figure 4 and pa = 8.059× 105,
resulting in Rmax ∼ 3.2× 104 (32mm). The predicted maximum radius shown by the white
circle is compared with the numerical solution of (4), the solid line, in figure 6. The bubble

12
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Figure 7. Relation between (R0)dim and (R1)dim for (R0)dim = 10−2 µm ∼ 1 µm and
(∆P)dim = 10 MPa

(
7.955× 107

)
in glycerol.

nucleus attains the maximum radius at t= 33.1 (3310 µs). For reference, the radius evaluated
by (19) at t= 1 (100 µs) is presented by the white square. Relative errors between the two
predicted values and the numerical solution of (4) are less than 1.17%. The nucleus continues
to grow even under the atmospheric pressure up to the large size for the longer period after the
tension was released. At the maximum radius, the pressure of the gas is 2.4× 10−5 which is far
lower than the vapor pressure

(
pv = 9.228× 10−2), producing strong shock waves repeatedly

during shrinking phases where the R-P equation becomes invalid as the liquid compressibility
prevails (Fujikawa andAkamatsu 1980). Note that the nucleus is supposed to grow in an infinite
space of liquid. Its behaviour in a confined space of liquid is discussed in the thesis by the
second author (Fujikawa 1980).

3.5. Effects of tension strength and duration, viscosity, density, and nucleus radius on
dynamical cavitation threshold

Again, let us return to (19) for the case where Π> 0 and Π is not too small compared with
unity. Hence, in terms of dimensional quantities it reads:

(R1)dim ∼

[
T

√
2∆P
3ρ

(
1− 2µ

T∆P
ln
8
3
µT

ρR2
0

)]
dim

, (25)

where the subscript dim denotes the dimensional quantities. Equation (25) indicates that the
bubble radius attained during the tension application is expressed by the tension strength
and duration, the viscosity, the density, and the nucleus radius. The nucleus grows to the
maximum radius proportionally to both the tension duration and the square root of the ten-
sion strength, and the growth is hardly influenced by the initial nucleus radius because the
second factor in the round brackets changes in the logarithmic-varying manner of (R0)dim
together with the viscosity, the density, and the tension duration; ln(8µT/3ρR2

0 ) ∼ O(10) for
(R0)dim = 10−2µm ∼ 1µm and 2µ/T∆P ∼ 3× 10−3.

Figure 7 shows the relation between (R0)dim and (R1)dim for (R0)dim = 10−2 µm ∼ 1 µm
and (∆P)dim = 10 MPa

(
7.955× 107

)
and clearly demonstrates that (R1)dim and (R0)dim are
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Figure 8. Three dimensional features among(∆P)dim, (T)dim, and (R1)dim for Π= 0.5
and (R0)dim = 1µm in glycerol.

hardly correlated. Such indifference of nucleus radius to the grown bubble radius was poin-
ted out by Gianndakis et al (2008) although the reason has remained unclear. However, from
figure 7, we understand that the dynamics of the nucleus grown up to the large radius (R1)dim
is fully controlled by the tension and the nucleus grows at a constant speed (see the curve A in
figure 2), in consequence, its growth in this stage is free from the initial radius of the nucleus.

Figure 8 shows three dimensional features among (∆P)dim, (T)dim, and (R1)dim in case
where Π= 0.5 and (R0)dim = 1µm. The figure is depicted on the (∆P)dim − (T)dim plane by
the relation:

(∆P)dim ∼
(
4µ
T
ln
8
3
µT

ρR2
0

)
dim

, (26)

and the relation (R1)dim ∼ 0.5
(
T
√
2∆P/ρ

)
dim

against the (∆P)dim − (T)dim plane. Equation

(26) is obtained from (25) for Π= 0.5 and holds for (R0)dim = 10−2 µm ∼ 1 µm, as shown
in figure 7. Figure 8 clearly demonstrates that the larger the tension strength, the shorter the
tension duration for the parameter fulfillingΠ= 0.5, and the smaller the bubble radius attained
during the tension application. The grown bubble is visible. Like this example, we can predict
the bubble radius for a supposed tension strength and a duration, which enable us to evaluate
the radius of the grown-up bubble under the supposed tension strength and the duration for
configurations of experimental facilities; figures like figure 8 can be depicted for any values
of Π and are informative for the design of the facilities.

Finally, the tension strength and its duration depend on both given conditions and config-
urations for fuel injector nozzles in diesel engines. Therefore, we should first understand a
nozzle performance by, for example, CFD simulations as correctly as possible and evaluate
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the growth behaviour of bubble nuclei in the nozzles. Only thereafter, we may find optimal
conditions applying the dynamical cavitation threshold theory proposed in this paper.

4. Conclusions

We presented details of dynamical cavitation threshold for vapor-gas bubbles in glycerol
under a finite duration of strong tension based on the bubble- dynamical model equation. The
equationwas examined for different tension values. It was observed that discrepancies between
the R-P equation and the model equation diminish as tension imposed on glycerol becomes
stronger. The model equation is found to be valid in cases of strong tension with which the
threshold is concerned. We classified the threshold into three patterns according to signs and
numerical value of the parameter defined by the viscosity and the tension strength. The max-
imum radii attained during the tension application were given in simple formulae for the cases
where the threshold was concerned with. The results suggested that the nucleus radius attained
is completely dominated by the parameter and cavitation threshold for usual conditions takes
place in later stages of the tension and viscosity-controlled growth. We also elucidated that
the tension strength needed for the nucleus growing to a certain size is expressed by both the
viscosity and the bubble radius we want to obtain, which is the useful result for performance
optimization of fuel injector nozzles. The discrepancy between the dynamical threshold and
Blake’s threshold was elucidated. The dynamical threshold theory was applied to cavitation
situations and how to use it was demonstrated through the examples. The theory will be useful
for not only the diesel fuel atomization but also understanding cavitation threshold experiments
based onWashio’s method (Washio 2014) and applications to submerged water jets (Peng et al
2019) and purification of sewage water (Soyama 2021). Furthermore, as discussed in the sub-
section 3.5, cavitation threshold is strongly dependent on tension durations, suggesting that,
in actual flow situations, the threshold of bubble nuclei may be affected by places where the
nuclei exist in the flow under tension—in the main flow or inside the boundary layer. This is
a challenging issue of the threshold in the near future.

Finally, we successfully applied ourmodel equation to the dynamical cavitation threhold for
glycerol in this paper, but we recommend that the equation should be validated by compring it
with the R-P equation for unexamined liquids where we will be in uncharted waters; the model
equation has been ascertained to be valid for water, liquid hydrogen, liquid oxigen, olive oil,
and glycerol for strong tension until the present.
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