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ABSTRACT

Some applications require high level of image-based classification certainty while keeping the total illumination
energy as low as possible. Examples are minimally invasive visual inspection in Industry 4.0, and medical imaging
systems such as computed tomography, in which the radiation dose should be kept “as low as is reasonably
achievable”. We introduce a sequential object recognition scheme aimed at minimizing phototoxicity or bleaching
while achieving a predefined level of decision accuracy. The novel online procedure relies on approximate weighted
Bhattacharyya coefficients for determination of future inputs. Simulation results on the MNIST handwritten
digit database show how the total illumination energy is decreased with respect to a detection scheme using
constant illumination.

Keywords: Active fault diagnosis, Auxiliary signal design, Machine Vision, Computational Tomography, Med-
ical imaging, Industry 4.0

1. INTRODUCTION

Visual observation of objects often induces the dilemma of maximizing information gain, while minimizing
damage to the object. For example, product inspection in Industry 4.0 is often required to be minimally
invasive, such that the products maintain their usability after inspection. Also in medical imaging systems such
as computed tomography, the radiation dose should be kept “As Low As is Reasonably Achievable”, following the
internationally known ALARA-principle. Most of these imaging systems are working with single-shot acquisition,
using only one single image for recognizing the object. Counter-intuitively, multiple-shot acquisition can actually
lead to a lower total illumination energy while increasing the recognition performance.

Bajcsy and Aloimonos et al. recently revisited1 their contributions on active perception from the year
1988,2,3 advocating the use of “intelligent control strategies applied to the data acquisition process which will
depend on the current state of data interpretation.” This would lead to improved robotic perception of the
world. Recently, this paradigm was successfully implemented in two applications under the name Closed-Loop
Active Model Diagnosis (CLAMD).4,5 The inputs to the imaging system were determined sequentially after
each measurement, in order to ensure quick and reliable diagnosis. Theory for CLAMD is developed under the
names active fault diagnosis6 and auxiliary signal design.7,8 Although these fields report absence of “widespread
adoption in practical applications,” the theory is actually very applicable, for instance in imaging systems.

This paper uses CLAMD for high-performance object recognition with minimal phototoxicity. The proposed
closed-loop imaging scheme consists of a neural network cluster for diagnosing the object with a certain confidence,
and of a controller for determination of the next minimally invasive yet discriminating illumination input. The
vast majority of the computations can be done offline, such that fast online execution is ensured. Simulation
experiments test the procedure on the MNIST handwritten digit dataset,9 after which the results can be compared
to an open-loop approach. The methods in Section 2 consist of a problem formulation, after which the proposed
solution is clarified. Simulation results are displayed and discussed in Section 3 and lastly the conclusions are
presented in Section 4.
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2. METHODS

2.1 Problem Formulation

Consider the objects to be imaged xk for each time step k. The objects xk can represent one of the NM classes,
therefore NM hypotheses are defined:

Mi : xk ∈ Xi ∀k (1)

with i ∈ {0, 1, . . . , NM − 1} and Xi the set of images corresponding to class i. The images are formed using

yk = xk · uk + vk, (2)

with uk ∈ Rm×m
+ the illumination input, yk ∈ Rm×m

+ the output intensity, vk ∈ Rm×m the noise at time step k,
and the symbol · represents element-wise multiplication. With all measurements available up to (and including)
yk−1, the hypothesis probabilities Pk−1(Mi) evolve according to the Bayesian update rule

Pk−1(Mi) =
p(yk−1|Mi, uk−1)Pk−2(Mi)

p(yk−1|uk−1)
, (3)

where p(yk−1|Mi, uk−1) ∈ R+ is the probability density function (PDF) of output image yk−1, conditioned on
hypothesis Mi and input uk−1. The initial conditions P0(Mi) can be set to any prior probabilities.

The goal is to minimize the probability misdiagnosis after the next measurement yk, which is defined as10

Pe(uk) =
∑
i

∑
j ̸=i

∫
Rj

p(yk|Mi, uk)Pk−1(Mi) dyk (4)

where
Rj =

{
yk

∣∣ p(yk|Mj , uk)Pk−1(Mj) > p(yk|Mi, uk)Pk−1(Mi) ∀i ̸= j
}
.

In the current application we limit the so-called input energy

vec(uk)
⊤vec(uk) ≤ ε. (5)

This input will be evaluated in the “Controller”-block in Figure 1. The closed-loop procedure has the purpose
of reducing phototoxicity while increasing the reliability of diagnosis. One can for instance limit the total energy∑

k ε by limiting the number of measurements, or alternatively predefine a desired probability of misdiagnosis
and iterate the scheme until this confidence is achieved.

Figure 1. Control scheme. The (unknown) object xk is fed to the imaging system together with illumination input uk.
Its output is corrupted with noise vk, after which yk is measured. The neural network cluster updates the probabilities
of each hypothesis, after which the controller determines the input for next measurement.
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Figure 2. Neural network cluster from Figure 1 unfolded. The images yk are split up in n2 subimages. Each subimage is
fed to s different neural networks which are trained for varying prospected inputs ū. The neural network scalar outputs
z are converted to their corresponding relative likelihood p(z|Mi, ū), using the probability density functions obtained in
the training phase of the neural networks. Regarding the actual input uk which was fed to the system to obtain yk, the
relative likelihoods are then linearly interpolated. Finally, the results of the n2 estimated relative likelihoods are combined
by successive Bayesian updates as in (3).

2.2 Multiple-Input Inference Implementation

For simplification of the problem, the images are split up in n2 subimages with uniform input uk,ℓ ∈ R for
ℓ ∈ {1, 2, . . . , n2}. For each subimage, s neural networks are trained with varying prospected inputs. As depicted
in Figure 2, the relative probabilities of the neural network outputs are evaluated using the accompanying
PDFs for each hypothesis Mi. These PDFs were constructed by fitting Gaussian kernel density estimates to
the neural network output distributions. Since multiple neural networks with different uniform illumination
intensities are used for one single subimage, the outcome of the PDFs are linearly interpolated with respect to
the actual illumination input. For combining the outcomes all subimages, the Bayesian update rule (3) is applied
repetitively and for each hypothesis.

2.3 Closed-Loop Input Determination

The probability of misdiagnosis in (4) is bounded by10

Pe(uk) ≤
∑
i

∑
j>i

√
Pk−1(Mi)Pk−1(Mj)Bij(uk) (6)

for which the Bhattacharyya coefficient is defined as

Bij(uk) =

∫ √
p(yk|Mi, uk)p(yk|Mj , uk) dyk. (7)

Furthermore, this inequality also holds for the subimages:

Pe,ℓ(uk,ℓ) ≤
∑
i

∑
j>i

√
Pk−1(Mi)Pk−1(Mj)Bij,ℓ(uk,ℓ). (8)

The total error probability is then obtained by applying the Bayesian update rule (3) to the hypothesis probabil-
ities of all individual subimages, assumed independence of the measurements. The task now is to distribute the
inputs uk,ℓ such that the total error probability is minimized. The next step approximates the Bhattacharyya
coefficient with an affine function.

2.3.1 Least-squares approximation of Bhattacharyya coefficient

A least-squares fit to the Bhattacharyya coefficient can be performed by fitting the function

B̂ij,ℓ(uk,ℓ) = 1 + aij,ℓuk,ℓ (9)
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to the data gathered with the s training instances. Its solution is

aij,ℓ =
Bij(ūℓ)

⊤ūℓ − ∥ūℓ∥1
ū⊤
ℓ ūℓ

(10)

with ūℓ = [ū⊤
ℓ,1, . . . , ū

⊤
ℓ,s]

⊤ the inputs for which the neural networks are trained.

2.3.2 Input determination using least-squares fit

Using approximation (9), the double sum in (8) can be simplified to∑
i

∑
j>i

√
Pk−1(Mi)Pk−1(Mj)Bij,ℓ1(uk,ℓ) ≈ ck − bk,ℓuk,ℓ (11)

with

bk,ℓ = −
∑
i

∑
j>i

aij,ℓ

√
Pk−1(Mi)Pk−1(Mj) (12)

ck =
∑
i

∑
j>i

√
Pk−1(Mi)Pk−1(Mj). (13)

Now, one can see that a large coefficient bk,ℓ implies a high degree of distinction between relevant models with
high belief states Pk−1(Mi), at subimage ℓ. This reasoning suggests that

bk,ℓ1 > bk,ℓ2 =⇒ uk,ℓ1 > uk,ℓ2 (14)

(with ℓ1 ̸= ℓ2 two different realizations of ℓ) is a sound rule for approximately minimizing the right-hand side of
(6), and therefore for minimizing the error probability.

With the energy constraint in (5), a possible input choice is

uk,ℓ =
n

m

√
bk,ℓ∑n2

i=1 bk,i
ε . (15)

This solution will not lead to an overall minimum error probability, yet requires low computational effort. More-
over, the Bhattacharyya coefficients and their least-squares approximations can be calculated offline, implying
that only Equations (12) and (15) need to be determined online. The next section validates the improvement in
recognition performance as compared to using a constant uniform input.

3. SIMULATION RESULTS

For the objects xk, we used the MNIST handwritten digit dataset,9 normalized to the segment [0, 1]. The noise
vk is Gaussian with zero mean and variance Rv = 0.04 and the input energy for each measurement k is limited
to ε = 64. The images are split into n2 = 49 subimages. For each subimage, s = 5 neural networks are trained
using inputs ūℓ = [0.2, 0.4, 0.6, 0.8, 1.0]⊤. The neural network internal architecture is similar to a previous
contribution,4 having three layers with 128, 10 and 1 neurons, respectively, with the first two layers a rectified
linear unit (ReLU) activation function. It is optimized using the Adam optimizer11 in the Tensorflow package.12

Whereas the open-loop procedure uses constant and uniform illumination over the whole image, the closed-
loop input is determined using (15). Two realizations of the closed-loop algorithm for true hypotheses M5 and
M7 are shown in Figure 3. The challenging noise conditions in the output yk require multiple measurements in
order to find the true hypothesis with high confidence. Taking previous measurements into account, the input
energy is distributed efficiently in order to achieve this high confidence in a small number of measurements.

For a Monte-Carlo simulation, 100 realizations are generated for each class, making a total of 1000 real-
izations. With a desired confidence of Pk(Mi) ≥ 0.98 for any hypothesis Mi, the distribution of number of
measurements before decision is presented in Figure 4. From the left plot it can be seen that the closed-loop
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approach requires in general fewer measurements as compared to the open-loop approach. Moreover, on average
only 3.22 measurements are required instead of 4.37. The error rates are with 3.6% for open-loop and 2.7% for
closed-loop slightly higher than the desired 2%. This is probably due to inaccuracies in obtaining the probability
density functions from the neural network outputs. Besides, there might be a dependence between measurements
in different subimages, whereas independence was assumed. Interestingly, the error rate was for the open-loop
approach higher, while it uses on average more measurements than the closed-loop approach. So in fact, the
open-loop approach would require even more measurements to obtain an error rate equivalent to the closed-loop
approach.

The right plot in Figure 4 confirms the decrease in average number of measurements for each hypothesis. The
digits 0 and 1 are on average diagnosed in fewer measurements than the remaining digits, which is presumably
due to their apparent uniqueness in graphical appearance.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. Realizations of the closed-loop algorithm with true hypothesis M5 (top) and M7 (bottom).
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Figure 4. Distribution of number of measurements before a decision with 98% desired confidence is taken, for open-loop
(blue) and closed-loop solution (red). Overall distribution (left) and average number of measurements per hypothesis
(right). The final error rates of the open- and closed-loop approaches were 3.6% and 2.7%, respectively.

4. CONCLUSIONS

This paper demonstrated the use of CLAMD in reliable object recognition while minimizing phototoxicity. The
closed-loop methodology distributes the input illumination based on belief states and spatial model divergences.
As compared to open-loop, simulation results show for the closed-loop approach a decrease in average required
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number of measurements for a high-confidence decision. Furthermore, the average number of measurements was
smaller for each individual hypothesis. By further investigating inputs which are closer to the optimum that
minimizes the error probability, a larger improvement can be achieved. Additionally, future developments should
aim for practical implementation of closed-loop recognition, for instance in medical imaging systems. This would
lead to improved recognition performance with decreased phototoxicity.
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