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SUMMARY

The research described in this doctoral thesis was part of the BaSyC consortium, which
aims to build synthetic cells from bottom up. My small role in this large collaboration
was to study the theoretical basis for cell division. This is a very complex process in
living organisms, involves many components and can be accomplished in a variety of
ways. To successfully replicate cell division in synthetic organisms it will be important
to identify the simplest mechanisms and understand the basic components of the cell
division machinery, that come together to reshape membranes and divide one compart-
ment into two. The theoretical framework used to study these self-assembly processes,
that lead to membrane deformations and division, is the framework of membrane me-
diated interactions. Let me use an example to explain this framework.

Imagine you sit down on a couch, while holding a saucer with a coffee cup on it. The
coffee is too hot, so you set it down next to you ont the couch and while you wait you get
lost in your thoughts. . . You feel like getting up and walking around in the room. While
you are still lifting your body up from the sitting position, you hear the clinking of the
cup against the saucer, and you see from the corner of your eye that the coffee cup is
shaking. Without having touched the cup you managed to spill the coffee. The surface
of the couch was deformed and pulled tight because you were sitting on it. When you got
up the surface relaxed back to its original shape. This movement of the surface caused
the cup to shake and spill its contents (see fig. 1 for an artist’s impression). Membrane
mediated interactions are just like that! When something deforms a membrane in one
place, that deformation is felt at a distance by other objects that inhabit the membrane.
Exactly how far and how strongly such signals are felt depends on how floppy or tense
a membrane is. When we study membrane mediated interactions, our main goal is to
quantify the effects membrane deforming objects can have on each other.

In chapter 1 I give an overview of the biological context relevant to my work, I in-
troduce the key elements of the membrane physics that help us to describe membrane-
mediated interactions quantitatively, and finally I discuss several computational meth-
ods that are widely used in membrane physics.

In chapter 2 I show how point like objects that generate forces on membranes, can
affect each other and bundle and perform collective action on the surface of a mem-
brane.

In chapter 3 I look at a model system of membrane tubes, covered by proteins that
can force the membrane to change its curvature. The research of protein decorated
membrane tubes is a highly active research field, motivated by the ubiquity of tubular
membrane shapes in biology.

Having met the limitations of purely analytical approaches in chapters 2 and 3, in
chapter 4 I introduce flippy, a simulation framework that I developed during my PhD.
flippy is a c++ library that implements a very popular simulation method of dynamically
triangulated membranes. flippy aims to streamline the process of setting up a simulation

ix



x SUMMARY

Figure 1: An artist’s impression of couch mediated interactions. (top left) Sitting down on the couch with a
cup of coffee. (top right) Setting down the coffee and getting lost in thoughts. (bottom left) Getting up from
the couch. (bottom right) Distortions in the couch tip the coffee cup off its saucer and spill the coffee.
Een artistieke impressie van sofa-gefaciliteerde interacties. (links boven) men gaat op de sofa zitten met een
kop koffie. (rechts boven) men zet de kop koffie neer en raakt verdwaalt in eigen gedachten. (links onder)
men staat op van de sofa. (rechts onder) Verstoringen in de kussens van de sofa kieperen het kopje van het
schoteltje en morst de koffie.

and helps physicists to skip the boring parts of reimplementing known algorithms, and
get straight to their research questions.

Chapter 5 is a study of emergent order in systems of self-propelled communicating
agents, like a swarm of ants or grasshoppers. This chapter is unrelated to the main topic
of my PhD, and grew out of a bachelor thesis that was jointly supervised in Idema and
Dubbeldam groups. In this work, my collaborators, and I managed to formulate a model
of behaviour of swarms, based on complex network theory and then subsequently solve
it analytically.

The final chapter 6 contains a discussion of preliminary simulation results of mem-
brane vesicle division, connecting back to the overarching goal of BaSyC, and ends with
my concluding remarks.



SAMENVATTING

Het onderzoek in deze dissertatie is onderdeel van het BaSyC consortium, wat als doel
heeft om synthetische cellen te bouwen uit alle benodigde bouwsteentjes (“bottom up”).
Mijn bescheiden rol in dit grote samenwerkingsverband was het bestuderen van de on-
derliggende theorie van celdeling. Celdeling is een zeer complex proces in levende orga-
nismen, omdat er vele componenten van de cel voor nodig zijn en omdat een cel zich op
verschillende manieren kan delen. Om de celdeling succesvol in synthetische organis-
men na te bootsen, is het dus belangrijk om de essentiële componenten van de celdeling
te begrijpen en bovendien het eenvoudigste mechanisme voor celdeling te identificeren
– de componenten die samen de cel en zijn membranen vormgeven en de cel in tweeën
delen. Het theoretische framework van membraan-gefaciliteerde interacties wordt ge-
bruikt voor studies naar deze zelfbouw processen die vervorming van membranen en
celdeling tot gevolg hebben. Ik gebruik een voorbeeld om dit framework te illustreren.

Stel dat u op een bank gaat zitten terwijl u een schoteltje met een kop koffie vast-
houdt. De koffie is nog te heet om te drinken, waardoor u het al wachtend naast u op de
bank neerzet en in gedachten verzonken raakt. . . U voelt de behoefte om op te staan en
door de kamer te lopen. Terwijl u opstaat uit de zittende houding, hoort u het kopje te-
gen het schoteltje kletteren, en ziet het kopje uit uw ooghoek bewegen. U heeft de koffie
gemorst zonder het kopje aan te raken. Het oppervlak van de bank vervormde en werd
strak getrokken terwijl u op de bank zat. Toen u opstond, ontspande het oppervlak naar
zijn oorspronkelijke vorm. Deze beweging van het oppervlak zorgde voor de beweging
van het kopje en het morsen van de koffie (fig. 1). Membraan-gefaciliteerde interacties
werken precies hetzelfde! Als een object het membraan van vorm veranderd, dan wordt
deze verandering op een afstand ook door andere objecten op het membraan gevoeld.
Hoe ver en hoe sterk zulke signalen reiken hangt af van hoe los of strak het membraan
is. Met het bestuderen van membraan-gefaciliteerde interacties is ons hoofddoel om
de effecten te kwantificeren die objecten op elkaar hebben tijdens het vervormen van
membranen.

In hoofdstuk 1 geef ik een overzicht van de biologische achtergrond die relevant is
voor mijn werk. Ik introduceer de essentiële elementen van membraanfysica waarmee
de membraan-gefaciliteerde interacties kwantitatief beschreven kunnen worden. Dit
hoofdstuk sluit af met een discussie van verschillende computationele methoden die
veel gebruikt worden in de membraanfysica.

In hoofdstuk 2 laat ik zien hoe puntige objecten die kracht uitoefenen op membra-
nen elkaar kunnen beïnvloeden en een gezamenlijke werking op het oppervlak van een
membraan kunnen hebben.

In hoofdstuk 3 beschouw ik een modelsysteem van membraanbuisjes die bedekt zijn
met eiwitten. Deze eiwitten kunnen het membraan dwingen om zijn kromming te ver-
anderen. Er is zeer veel onderzoek naar membraanbuisjes bedekt met eiwitten, gemoti-
veerd door de alomtegenwoordigheid van buisvormige membranen in de biologie.

xi



xii SAMENVATTING

Hoofdstukken 2 en 3 leggen de limieten van de puur analytische methoden bloot.
Met deze kennis, introduceer ik Flippy in hoofdstuk 4. Flippy is een framework voor
simulaties dat ik heb ontwikkeld tijdens mijn PhD. Het is een c++ bibliotheek die dy-
namisch getrianguleerde membranen implementeert, een veelgebruikte methode voor
simulaties. Door te helpen met het saaie werk, zoals het implementeren van bekende
algoritmes en het ontwerpen van simulaties, helpt Flippy om simulaties te stroomlijnen
en natuurkundigen hun onderzoek te laten doen.

Hoofdstuk 5 bevat een studie van orde die ontstaat in systemen van zelf aangedre-
ven, communicerende agenten. Voorbeelden hiervan zijn een zwerm van sprinkhanen
of mieren. Dit hoofdstuk is niet direct gerelateerd aan de hoofdlijnen van mijn PhD, en
ontstond uit een bachelor thesis die gezamenlijk werd begeleid door de Idema en Dub-
beldam groepen. In dit werk is het mij en mijn collega’s gelukt om een model voor het
gedrag van zwermen, gebaseerd op de theorie van complexe netwerken, te formuleren
en dit analytisch op te lossen.

Tot slot keert hoofdstuk 6 terug naar het doel van BaSyC met discussie van verken-
nende simulaties van deling van membraanblaasjes, eindigend met mijn slotopmerkin-
gen



1
INTRODUCTION

Every science begins as philosophy and ends as art; it arises in hypothesis and flows into
achievement.

Will Durant

Physics as the oldest among the sciences has long gone through it’s first two phases of phi-
losophy and science and has become art. We aspire to create a body of knowledge that did
not exist before, like a painter filling an empty canvas with its creation. Like the painter
we let ourselves be guided by the beauty of the nature and our intuition. The numbers and
the equations are our tools and to say physics is about them is to say that painting is about
brushes and canvases. Just as one may enhance the enjoyment of a piece of art by learning
about the context of its creation, so can one enhance the enjoyment and understanding of
science. The chapters of this thesis are the result of creative and scientific enterprise of my
collaborators and me, and I strongly believe that they can stand on their own. However,
I also believe that the introduction chapter provides an important context which will en-
hance the understanding and enjoyment of the subsequent chapters, by introducing the
reader to the field of theoretical and computational membrane physics.

1
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2 1. INTRODUCTION

1.1. WHY STUDY CELL DIVISION
During my PhD I was often asked to explain what I was working on. When I would say
that my thesis was related to studying cell division, I would always1 get the same reac-
tion: people would be surprised that there is still something left to study. When I first
interviewed for this PhD position in late 2017 and became vaguely aware, that the re-
search project was related to cell division, I also felt the same confusion. I remembered
that I had learned in school how cells divide, so I assumed this was a solved problem. So
how come they were still paying researchers to investigate it?
It is true we learn in school about cell division. We may learn which protein complexes
participate in it, which role different proteins perform what they do to the cell mem-
brane, how the material inside the cell redistributes, and we even learn how long all of
this takes. Even though a large variation in types of cells exists, we have a pretty good
idea how division machinery changes between them. However, when we reconstitute
proteins that participate in cell division in vivo inside membrane vesicles, the division
process does not take place, even though large scale membrane deformations are usu-
ally observed [1–3]. Examples of successful division experiments exist [4, 5], but they are
neither self-sustaining, nor is it clear how one would make them self-sustaining [6]. So
what are we overlooking? Is there some key biochemical mechanism that we have not
identified yet, is there something about the mechanics of the process that we do not un-
derstand and fail to replicate? These types of questions need to be answered if we want
to have a true bottom up understanding of cell division. This is the difference; we know
how cell division works, but we cannot divide cells. The former is comparatively easy,
it requires knowledge of the actors and the processes during cell division. The latter is
harder because it requires knowledge of all the peripheral things as well, so we cannot
only know the actors but also understand what makes these interactions so robust. Cell
division happens in vastly different organisms and environments after all. The precise
goal of my research is thus not to study cell division in general, but to study one of the ac-
tors in that process, the cell membrane. And to further the understanding of membrane
mechanics during large scale reshaping, so that we better understand the processes that
lead to cell division.
In this introduction I will first elaborate on what cell membranes, or more precisely
phospholipid membrane bilayers are and what role they play in biology. Then I will
present the theoretical foundation with which we approach the study of membranes in
physics. Finally, I will give a broad overview of computational methods, that are crucial
in the study of large scale membrane deformations.

1.2. MEMBRANES, WHAT ARE THEY GOOD FOR?!
Biological membranes are made of lipids. These molecules have hydrophilic heads that
like to dissolve in water and hydrophobic tails that are not soluble. A schematic repre-
sentation of such a molecule is shown fig. 1.1 (a). This means that the energetically most
favourable situation for a lipid molecule is for its head to be in contact with water and
its tail to be hidden from it. Depending on the temperature and concentration of the
lipids, different configurations for large scale lipid assemblies are possible [7]. However,

1Apart from the cases when I would be talking to biologists.
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in the biologically relevant region the lipids form two layers where the tail ends point to
each other and are hidden from water by the heads as shown in fig. 1.1 (b). This bilayer
of lipids forms a thin sheet (see fig. 1.1 (c)), which then closes into a spherical vesicle
(see fig. 1.1 (d)) to avoid heaving edges where the hydrophobic tails would be exposed
to water. Such vesicles that are enclosed by a single bilayer of a membrane are called
unilamellar vesicles. When these vesicles are very large, i.e. have a radius in the order of
tens of micrometers, compared to the membrane thickness of a few nanometers, they
are called giant unilamellar vesicles (GUV). GUVs are important model systems in bio-
physics and will feature in this thesis prominently.
Since lipid membranes self assemble purely because their configurations are energet-

a)

c)

b)

d)

Figure 1.1: A schematic representation of a) a single lipid, b) a cross sectional view of a lipid bilayer, c) a sheet
of a bilayer and d) unilamellar vesicle, enclosed by a lipid bilayer.

ically more favoured, there are no bonds that holds individual lipids together, and they
can freely diffuse in the bilayer. This means that if a shear stress is applied to it, the bi-
layer will simply flow and dissipate the stress. This is a rare material property and means
that membranes are two-dimensional fluids. Meanwhile, a stress, applied normal to the
membrane, will shift the lipids out of the bilayer which will expose lipid tails to the water.
Since this is unfavourable, lipid membranes resist deformations in the normal direction.
The precise way that membranes resist normal deformations is given by the membrane
surface energy. Knowledge of this energy allows us to predict membrane shapes under
different conditions and is the central object of study in membrane physics, from the
theoretical point of view. I will discuss this subject in more detail in section 1.3.
Before we dive into the technical details of vesicle shape prediction, it will be insightful
to discuss the various biological systems where membranes play a key role. Conceptu-
ally the easiest job that membranes perform in biology is that of a barrier. They separate
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inside from outside, and thus allow to form small compartments that regulate their in-
ternal composition locally. The most famous example of this is of course a cell. However,
cell membranes are much more complex than simple lipid bilayers as described above.
They consist only to roughly 50% of lipids (by weight), the rest are proteins [8, Ch.10].
The lipid part of the membrane is not made of a single type of lipids but typically con-
sists of a mixture of a large variety of them [9]. The proteins are dispersed in the lipid
bilayer as depicted in fig. 1.2. This description of lipid membranes is called the fluid
mosaic model and applies to most membranes that one encounters in biology [10]. This

a) b)

c) d)

Figure 1.2: A schematic representation of the fluid mosaic model. a) Membrane layer with different types of
proteins. b)-d) a cross sectional view of a lipid bilayer, with membrane adhered, trans membrane and mem-
brane intercalated proteins in b) c) and d) respectively.

diverse composition is what allows membranes to perform the diverse functions that are
required of them in an animal cell. The cell membrane itself needs to be more than just a
barrier to the outside, it also has to actively participate in the regulation of the processes
in the interior. This can be done by selectively regulating the flow of the material from
the inside to the outside, trough membrane associated proteins. Or through adopting
different shapes that further compartmentalize the interior space. Furthermore, during
cell division the membrane has to undergo dramatic deformations while keeping struc-
tural integrity and maintaining its other functions. Animal cells also contain many small
subunits called organelles that perform different functions, some of which are depicted
in fig. 1.3. We see that the shapes that these organelles take can be very complex. Even
the spherical looking nucleus from fig. 1.3 a) is a double-layered sphere with multiple
holes and a connection of the outer layer with the endoplasmic reticulum (ER), a very
important organelle that is among other things responsible for production of proteins
and lipids. The ER which can be seen in fig. 1.3 b) has two subunits: the rough ER which
also consists of folded double membrane and the smooth ER which consists of a network
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Figure 1.3: A schematic representation of an animal cell. In addition of being enveloped by membranes, cells
also contain organelles that perform specific functions and are themselves encapsulated by membranes. a)
Cell nucleus contains the DNA. b) Endoplasmic reticulum (ER) is responsible for the assembly of proteins
and then their folding into their functional shapes. c) Golgi apparatus. Its job is to package proteins in small
membrane envelopes for the transport to them where they are needed. d) Mitochondria, are responsible for
production of ATP, which is a molecule that stores energy. Figure adapted from a public domain picture from
wikimedia [11].

of tubes. The rough ER contains ribosomes (seen as the dark dots in fig. 1.3 c)), responsi-
ble for translating mRNA into amino acids. The ribosomes embed in the membrane after
they encounter an mRNA and start translation. The function of smooth ER can vary in
different cells, and its size and branching varies with it. The proteins that get assembled
in the ER then move on to the Golgi apparatus (the organelle that has a stacked mem-
brane structure seen in fig. 1.3 c)),which dispatches the proteins to their destinations [8,
Ch.12]. Another very important organelle the mitochondrion also consist of a double
membrane bilayer (seen in fig. 1.3 d)), where the inner membrane is folded several times
to increase its surface area. This aids the mitochondria to increase its production ca-
pacity for ATP. The main function of mitochondria is the production of ATP molecules
which are used in the cell as an energy source for protein activity. The proteins that cat-
alyze the ATP synthesis inside the mitochondria are embedded on the inner side of the
inner membrane, thus increasing the membrane area increases the production capac-
ity [8, Ch.14].

We see in these examples that the form of the membrane can be directly influenced
by the functional requirements of the organelle. This coupling of form to function is why
it is so insightful to understand mechanical properties of membranes. By understanding
what shapes membranes can adopt in different circumstances we can infer new infor-
mation about their function [12].

1.3. MEMBRANE PHYSICS
The theory that we use to describe the response of the cell membranes to environmental
stress, was first developed in the 1970s by Canham [13] and Helfrich [14]. The result-
ing membrane energy functional and its variants are called Canham-Helfrich energy.
Though this energy functional can be arrived at from a microscopic theory, it can also
be formulated by considering symmetry requirements on the system and understand-
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ing the energetics of different modes of deformation. In fig. 1.4 we can see different ways
which a flat patch of membrane can be deformed. Translations and rotations correspond
to global changes in the coordinate system, which do not contribute to the energy. While
it definitely costs energy to shear a membrane, the flow of the lipids dissipates this en-
ergy. Stretching2 of a membrane is an elastic deformation, that is hard to excite, and the

Figure 1.4: Different types of membrane transformation. a) Translation and rotation, b) shear, c) stretching, d)
bending.

stress sufficient to stretch a membrane can also rapture it [15, 16]. Bending is the only
elastic mode of the membrane deformation, that changes the energy stored in the sur-
face shape. Thus, we are looking for the local energy density, expressed in terms of the
local membrane curvature. We can then integrate this energy over the whole surface to
get the total bending energy. The local curvature is characterized by a two-dimensional
tensor Cαβ called the curvature matrix or the second fundamental form. Since the local
energy density must be a scalar, independent of the coordinate transformations, it has
to be expressed as a combination of elements of the curvature matrix and their covariant
derivatives. An infinite number of such invariant combinations can be constructed, but
since the elements of the curvature tensor have a dimension 1/length, these invariants,
can be ordered by their dimension. Up to the order 1/length2, we only have two invari-
ants: the local mean curvature H and the gaussian curvature CG [17]. Both invariants
can be constructed from the eigenvalues of the curvature matrix c1 = 1/R1 and c2 = 1/R2,
which themselves give the values for principal curvatures (see fig. 1.5 b)), representing
the largest and the smallest curvature at any given point of the membrane. The eigen-
vectors e1 and e2 meanwhile point in the direction tangential to the paths of highest and

2Here I mean an actual increase of membrane area per lipid molecules when I say stretching. There is another
effect of projected area stretching that enters versions of Canham-Helfrich energy and is also referred to as
stretching.
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Figure 1.5: Parametrization of a 2D manifold. a) A curved manifold with a local normal vector n and tangential
vectors e1 and e2. Thee tangential vectors are chosen such that they point in the direction of the principal
curvatures. b) Principal curvatures at a point of a manifold are the largest and the smallest curvatures at that
point.

lowest curvature at any given point (see fig. 1.5 a)).

e(x1, x2) = κ

2
(c1 + c2 −H0)2 + κ̄c1c2, (1.1)

where κ, κ̄ and H0 are parameters of the membrane, called bending modulus, saddle
splay modulus and spontaneous curvature respectively. The integral of this energy den-
sity over the surface leads to the total bending energy

Eb =
∫

dA
[κ

2
(2H −H0)2 + κ̄CG

]
, (1.2)

which is referred to as the Canham-Helfrich energy. We used common notation to de-
note the local mean curvature

H = 1

2
(c1 + c2), (1.3)

and Gaussian curvature
CG = c1c2. (1.4)

The area element of the curved surface is given by

dA =p
g dx1dx2 (1.5)

with g = det(g ) denoting the determinant of the metric tensor g which is defined as

gi j = ei ·e j . (1.6)

Inspecting eq. (1.2), we can interpret the physical meanings of the constants. The bend-
ing modulus κ represents the energy cost for the membrane to have a local total curva-
ture 2H deviate from the preferred spontaneous curvature H0. A large bending rigidity
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means that the membranes are stiffer. The usual values of κ for lipid membranes at
biologically relevant temperatures are at the order of 10 kBT . Spontaneous curvature
H0 is usually zero for membranes with symmetric bilayers [16]. Membranes that have
asymmetry in the lipid content between their bilayers, or are covered by proteins on one
side, will bend spontaneously to accommodate this asymmetry and are modeled with a
nonzero spontaneous curvature. Lastly, we have the saddle-splay modulus κ̄, which is
very hard to measure experimentally but is usually estimated at κ̄ = −κ. Since the sign
of the gaussian curvature can only be negative if different principal curvatures have dif-
ferent signs, i.e. if the membrane has a saddle point, higher magnitudes of saddle-splay
modulus indicate a higher cost of creating saddle shapes. However, the Gauss-Bonnet
theorem guarantees that the surface integral of the Gaussian curvature is constant, un-
less the boundary or the topology of the membrane surface changes. This means that
for a great number of the model systems, the last term in eq. (1.2) can be ignored, since
it only contributes a constant to the total energy.

The bending energy alone rarely describes the membrane shape in equilibrium. Usu-
ally one also has two additional constraints that need to be considered, the area and the
volume conservation. These constraints are incorporated via Lagrange multipliers into
the energy expression, which leads to the total surface energy

Esurf =
∫

dA
[κ

2
(2H −H0)2 + κ̄CG

]
+σ

∫
dA+∆P

∫
dV , (1.7)

whereσ and∆P are Lagrange multipliers that fix the total area of the membrane and the
total volume enclosed by it. Typically, σ is interpreted as the tension of the membrane
and ∆P is interpreted as the Laplace pressure, i.e., the pressure difference between the
outside and the inside of the membrane ∆P = Pout −Pin. The constraint of the volume
conservation is not always used since the experimental justification for it does not al-
ways exist. It is only necessary, when considering closed membrane vesicles at time
scales below the timescale of the membrane permeability. However, the constraint of
area conservation is almost always enforced even in cases when the area is not neces-
sarily constant, but the membrane still can be considered to have a constant tension.
This is because σ can have several different meanings and its correct interpretation can
change from system to system. This is the most confounding issue when working with
eq. (1.7), a recent theoretical discussion of different interpretations of membrane ten-
sion and their relations with each other can be found in the reference [18] and a review
of experimental research related to calculating membrane tension in different regimes
can be found in the reference [16, Sec.4]. For now let us discuss few analytic ways that
one would use eq. (1.7) to obtain membrane shapes in equilibrium.

Before we obtain membrane shapes we need to obtain shape equations from eq. (1.7).
The most general way to do this is to assume that some explicit function r (x1, x2) de-
scribes the equilibrium shape of the membrane and then perform a variation around
that shape

r ′(x1, x2) = r (x1, x2)+h(x1, x2)n̂(x1, x2), (1.8)

where r ′(x1, x2) is the new perturbed shape, h(x1, x2) is a small height (|h| ≪ ∥r∥) away
from the equilibrium shape and n̂(x1, x2) is the normalized normal vector. If we ex-
press every quantity in eq. (1.7) in terms of the r (x1, x2) and then perform the variation
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from eq. (1.8), we will arrive at the general shape equation

∆P −2σH +κ (2H +H0)
(
2H 2 −2CG −H0H

)+2κ∇2H = 0, (1.9)

where ∇2 is the Laplace operator in curvilinear coordinates

∇2 = 1

g
∂xi (g i jpg∂x j ). (1.10)

The general shape equation shown in eq. (1.9) was first derived by Ou-Yang and Hel-
frich [19] and later an alternative method was introduced by Guven [20]. Given this
explicit function r (x1, x2), that provides a map from its local coordinates x1 and x2 to
the 3-dimensional embedding space, we can calculate the total curvature, area and en-
closed volume of the manifold and obtain the total energy. A concrete example of such
an embedding for a sphere with a fixed radius R is the explicit parametrization of r can
be given in the spherical coordinates as r (φ,θ) = RrS(1).
Where rS(1) = (cos(φ)sin(θ),sin(φ)sin(θ),cos(θ)) is the parametrization of a unit sphere.
If such an explicit parametrization of the initial geometry is provided, the variation be-
comes significantly simpler than in the general case. Mathematically this is done by
first explicitly parametrizing the manifold, then obtaining a function that describes its
shape and then performing functional variation to take the functional derivative of the
energy. In the case of our sphere example, a surface close to it could be represented
as r (φ,θ) = rS(1)(R +h(φ,θ)). This approach is called Monge gauge, it allows us to use
known geometries and express shapes as deviations from them. It has to be noted how-
ever, that a height function restricts us to shapes that have no overhangs with respect to
the reference frame. This is however a reasonable restriction for a lot of relevant cases,
and this rarely becomes an issue. Another problem is that the Monge gauge does not
fully get us to the finish line. We have just replaced one unknown function r by another
unknown function h. To make progress from here onward, one has to resort to a series
expansion in the height field. For our sphere example this would mean we have to as-
sume that ϵ= |h|/R ≪ 1 and expand in powers of ϵ. This expansion is usually truncated
at the second order in h and its derivatives. Varying that energy expression then leads to
a linear shape equation. A concrete example of such a derivation, from a general energy
expression to a concrete shape equation can be found in the supplement of chapter 2,
in particular section S.5.1. The resulting shape equation is still a two-dimensional PDE
and cannot always be solved. The necessity of a series expansion in small deformations,
limits the utility of the linearized Monge gauge approach, which is most useful for a lin-
ear stability analysis of a known minimal shape [21–24]
An alternative way to make progress with eq. (1.7) analytically, is a mean field approach.
In this case one assumes that the shape of interest is a stable minimum of the surface
energy, like a spherical vesicle or a tethered membrane tube. The deformations that are
considered are global, e.g., a spherical vesicle that could shrink or expand. This approach
can be very useful if the system under consideration is reacting to global stresses, and we
make use of it in chapter 3.

For the class of all shapes that have a rotational symmetry around some axis one
can simplify the description of the membrane from a two-dimensional surface to a one-
dimensional contour. This results into a change of shape equation from a PDE to a set
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of ODE’s. Since these ODEs are 4-th order and highly nonlinear, their solution is analyt-
ically impossible apart from few trivial geometries, but they can be solved numerically,
and we will discuss this later in section 1.4.1.

1.4. COMPUTATIONAL MEMBRANE PHYSICS
In this section I will give a short overview of numeric methods and simulation types
widely used in the membrane physics, e.g. to predict vesicle shapes. To select the meth-
ods that I present here, I simply chose ones that I had familiarity with. Either having used
them myself or having read about them in the literature, so while I hope that the list is
extensive it is not exhaustive. In the following subsections I make a distinction between
two types of computational approaches. Numeric methods typically solve differential
equations that describe a physical system, with the use of computers, because their so-
lutions are not obtainable by hand. Simulations, use equations that describe individual
agents of the simulation and interactions between these agents. Thus, the simulation
performs a coarse graining and brings the local agent level interactions to the global
level. This simulation of emergent behavior is what, for the purposes of this introduc-
tion, distinguishes simulations from numerics. In the latter case the coarse graining is
performed in theory and the resulting equation is numerically solved. This means that
simulations make less assumptions about the system and thus are often able to model a
wider variety of systems, while numeric solutions are usually significantly faster.

1.4.1. NUMERIC METHODS

NUMERIC INTEGRATION OF AXIS SYMMETRIC SHAPE EQUATIONS

Exploiting rotational axis symmetry is a powerful tool for calculating vesicle shapes,
since it effectively reduces the spatial dimension of the problem. This transforms the
shape equation from a nonlinear PDE to a nonlinear ODE and thus significantly sim-
plifies the computational complexity. In fact the original 1970 paper by Canham [13]
that introduced bending energy of the membrane as the determining factor of its shape,
exploited the rotational symmetry of red blood cells (RBC) to explain their biconcavity.
Although Canham did not actually solve a shape equation but used a modified Cassini
Oval to approximate the shape of the RBC and then integrated the square of the cur-
vature of the oval to calculate its bending energy, the use of rotational symmetry was
crutial for his approach to work. The 1973 paper by Helfrich [14] devotes a whole sec-
tion to problems with rotational symmetry and derives shape equations for specialized
shapes. The first catalogue of axis symmetric vesicle shapes was presented by Dueling
and Helfrich already in 1976 [25]. In 1991 Seifert et al. [26] used axis-symmetric shape
equations to obtain vesicle shape, phase diagrams, considering a large variety of mem-
brane parameters.

To obtain an axis symmetric shape equation, we need to describe the shape of the
contour, rotation of which around the symmetry axis will create the surface of the mem-
brane. The contour of the revolution is usually parametrized by its distance r (s) from
the axis of revolution, its projection z(s) on the axis of revolution and the slope ψ(s) of
the tangent vector at any given position s along the contour (see fig. 1.6). Not all three
parameters are independent however and using this method we get a set of three de-
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pendent ordinary differential equations(3rd order in ψ which translates to a 4th order
equation in r )

...
ψ =− 2cos(ψ)

r
ψ̈− 1

2
ψ̇2 − 3sin(ψ)

2r
ψ̇2 + 3cos2(ψ)−1

2r 2 ψ̇

+ σ

κ
ψ̇− cos2(ψ)+1

2r 3 sin(ψ)+ σ

κ

sin(ψ)

r
+ ∆P

κ
, (1.11)

ṙ = cos(ψ), (1.12)

ż =−sin(ψ), (1.13)

where the dot stands for a derivative with respect to the arc length s i.e., ḟ = d f
ds (for a

derivation see ref [27]). Many software packages exist that can perform numerical inte-

Figure 1.6: A schematic representation of an axis symmetric shape. a) Axis symmetric shape that can be ob-
tained through the revolution of the contour (black solid line) around the exes of symmetry. b) Parametrization
of the contour by the contour length s. r (s) is the distance from the axes of symmetry to the contour at the
contour point s and z(s) is the projection of the contour along the z-axis. The field ψ(s) that parametrizes the
contour shape is given by the angle between r (s) and the tangent of the curve at s.

gration of one dimensional equations, so this is usually technically not very challenging.
However, issues with numerical stability often arise, due to the non-linearity of the equa-
tions, especially when complex boundary conditions are involved. But this is a tried and
tested method that usually reliably delivers results for an axis symmetric systems. When
such a symmetry is however not present, one needs to go back to numerically solving
PDEs.

FINITE DIFFERENCE METHOD

General PDEs describing membrane shapes are two-dimensional equations, one needs
to discretize two-dimensional surfaces, which can be done in different ways and the
choice of this discretization influences the types of methods that we can use. Conceptu-
ally the simplest numeric method to solve two-dimensional shape equations is the finite
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difference method. This idea is as old as calculus itself and its development is attributed
to Brook Taylor’s 1715 work Methodus incrementorum directa et inversa [28]. As the name
implies, the core idea of the method is to use the differences between function values,
to approximate the derivatives of the function [29]. To this end we need to discretize the
space into a lattice and define any function, that we want to examine, on that lattice. In
1d a function f (x) then transforms into a vector of values f (xi ) (see fig. 1.7 a)). Where xi

is the i -th lattice point of the discretized x-axis, with an equal spacing ∆x on the lattice.
Our goal to express any n-th order derivative f (n) as a difference of function values on

Figure 1.7: Finite difference methods. a) Discretization of a one dimensional function ( f (x) → fi ) on a evenly
spaced lattice xi with lattice spacing ∆x. b) A two dimensional function discretized on a square lattice. c)
A stencil can vary in size and be symmetric or asymmetric. Larger stencils increase the accuracy of the dis-
cretized differential operators but using them requires more computation. Asymmetric stencils are used near
boundaries if there are not the same number of points available on both sides of the point of differentiation;
or in the case of initial value problems where function values are not available on one side of the point of dif-
ferentiation.

the lattice can be formalized as

f (n)(xi ) ≈
kmax∑

k=kmin

Ck f (xi +k∆x) =
kmax∑

k=kmin

Ck fi+k , (1.14)

where kmin ≤ 0 and kmax ≥ 0 set the number of the lattice points around point i that will
be used in the calculation. The collection of these points is called the stencil and the
stencil size is then S = kmax −kmin +1 (see fig. 1.7 c)). Comparing eq. (1.14) to the Taylor
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expansion of the function

f (xi +k∆x) =
∞∑

n=0

kn∆n

n!
f (n)(xi ), (1.15)

we get a system of S equations to determine the weights Ck

∆xm

m!

kmax∑
k=kmin

kmCk = δmn , (1.16)

where δmn denotes the Kronecker delta and 0 ≤ m ≤ S. The accuracy of the approxima-
tion in eq. (1.14) depends on the size of the stencil and goes as O

(
∆xS

)
[30]. The finite

difference method discussed here only works on a square lattice, which is a severe lim-
itation. This makes the method for example unusable for solving differential equations
in spherical geometry. This limitation can be overcome by extending the method. For
irregularly spaced lattice points one can use the divided differences [29, §9] and even
non-Cartesian lattices can be accommodated [31, Sec. 7.9], however these extensions
overly complicate the finite difference method, which really shines in simple geometries.
Usually when we want to solve differential equations in more complex geometries or in-
corporate boundary conditions that do not work on Cartesian grids, it is far smarter to
avoid the finite difference method altogether and use the finite element method (FEM),
which is an umbrella term for a variety of methods that are well suited for solving PDEs in
complex geometries and with complex boundary conditions [31, Sec. 7.12]. In contrast
to the FDMs I have not made use of this method myself, thus I am not able to elaborate
on them in detail3. However, a discussion of numerical methods would not be complete
without mentioning FEMs, since they seem to be more popular than the finite difference
methods, in the literature (Especially the thin shell FEM family [33]). And seem to be
quite capable to describe membrane reshaping in complex geometries [34, 35], as well
as being a necessary step in the phase field methods (discussed later in section 1.4.2).

1.4.2. SIMULATION METHODS
Biological membranes exhibit a large variety of complex behaviour. Depending on the
biological agents that the membranes are interacting with the reshaping of the mem-
brane can happen through many pathways and the span several orders of magnitude [36].
Accordingly, there is a large variety of models to choose from, that capture membrane
behaviour at different length scales. A somewhat old but excellent review of different
simulation methods is provided by ref. [37]. And a newer review with a narrower focus on
membrane protein interactions is provided by ref. [38]. Starting from the smallest length
scale to the largest, we have all atom membrane simulations [39, 40], coarse grained lipid
simulations [41–43], self assembled [44, 45] and triangulated membrane [46] simulations
and finally phase field methods4 [47, 48] and cellular Potts models [49].

All atom simulations are very close to actual experiments and use first principle in-
teractions between molecules, however this is an expensive approach and only small

3For general information on FEMs the reference [31] and a more recent textbook [32] can be recommended.
4Phase field methods are actually a numeric method and not a simulation according to my earlier classifica-

tion, but I included them here since they better fit in the context of discussing different length scales.
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length scale models

< 1nm atomic scale all atom simulation, coarse grained
molecular models

∼ 1−100nm membrane thickness,
small vesicles

coarse grained lipid models

≫ 1nm membrane compart-
ment, organelles to cells,
large to giant vesicles

self assembled membranes, triangulated
membranes

≫ 1µm several membrane com-
partments; multicellular
and tissue scale

cellular potts model, phase field methods

Table 1.1: Overview of computational membrane models organized by length scale.

patches of the membrane over a small duration of time can be analyzed. Coarse grained
lipid simulations allow to investigate the behaviour of larger membrane patches while
still retaining individual lipids as elements in the model. These simulations differ in
the level of coarse graining and explicit [50, 51] or implicit [43] inclusion of the sol-
vent. Implicit solvent simulations with coarse grained lipids make assumptions about
the solvent-lipid interactions and have a simplified model of how individual lipids in-
teract with each other. This coarse graining of interactions looses information on the
sub-molecular level but makes it possible to look at larger membrane patches or even
at small vesicles [52, 53]. Coarse grained lipid models are a valuable asset if we need to
perform simulations of small vesicles and need to take the leaflets of the bilayer indi-
vidually into account, like when analyzing the effects of lipid flip-flop on vesicle equi-
librium shapes [54]. If truly large scale simulations are required then we have to give
up the lipid level resolution and coarse grain the membrane further. Meshless coarse
grained and triangulated membrane simulations have been used effectively to describe
large scale membrane reshaping of large vesicles5and membrane patches [18, 55–57],
as well as to describe pattern formation of membrane deforming objects, like curvature
inducing proteins [57, 58] and colloids [59–62]. The membrane particles in these simula-
tions usually represent a small patch of membrane instead of individual lipids, thus the
cost of doing simulations on the large scale is the lost ability to track membrane layers
and individual lipids separately. Finally, rounding off this list are the cellular Potts model
and the phase field methods, that can be used to model single cell migration or interac-
tions between cells and tissue level dynamics [63–67]. As we see each level of description
has its limitations and strengths. With current level of technology it is impossible to per-
form an all-atom or even coarse grained lipid simulation on the scale of a cell, however
multiscale simulations as a goal are actively being pursued [68–70].

In the following section I will go into more details of one particular method, the dy-
namically triangulated membrane monte carlo method DTMMCs. As already discussed,
triangulated methods are a coarse grained descriptions of the membrane and allow the
modeling of global reshaping of cell sized membrane compartments. This was the pri-

5Vesicles with radius larger than a µm.
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mary reason for choosing this method for simulating membranes during my PhD.

DYNAMICALLY TRIANGULATED MEMBRANE MONTE CARLO (DTMMC) SIMULATIONS

In dynamically triangulated membrane methods, the modeled surface is approximated
by a triangulation and then the elastic energy of this triangulated surface is calculated.
This is accomplished by keeping track of the areas, volumes and normal vectors associ-
ated to each node of the triangulation as depicted in fig. 1.9. The expressions of the local
curvature volume and area are presented in section 2.2 of chapter 4. Once we have a
triangulated surface we can update the coordinates of the triangulation nodes randomly
(see fig. 1.8 a)) and keep track of the overall elastic energy. To make the triangulated sur-
face fluid in its tangential direction, we have to allow for free movement of the nodes
of the triangulation, and allow the nodes to exchange edges with each other (see fig. 1.8
b)). This is called bond flipping and the reason the method is called dynamic (because
the triangulation is changing during the simulation). However, these bond flips needs to

Figure 1.8: Visual representation of a dynamic triangulation. Grayed out beads and edges represent the old
state. a) Visualization of a membrane bead move. Each bead can be moved individually and upon the change
of the bead position the edges and triangles connected to the bead also change, which translates into the local
geometry change and leads to the change of surface energy. b) Bond flipping. In a dimond configuration
like depicted here a bond can flip between two pairs of the beads. This flip leads to the destruction of two old
triangles and the formation of two new ones, which also leads to changes in local geometry and surface energy.

be done carefully such that they dont accidentally puncture the surface, this makes the
bond flips computationally expensive compared to node moves. In each update step we
can either move a bead or flip a bond, calculate the energy difference Eol d −Enew and al-
ways accept the new state if the energy has been lowered, i.e. if Eol d > Enew . If the energy

has been increased we only accept the move according to the probability exp
(

Eol d−Enew
kB T

)
.

This is the Metropolis algorithm [71] and using this update rule we can reach a shape that
is fluctuating around a minimum energy configuration. To obtain the proper minimum
energy shape the temperature can be lowered to approach a fluctuation free zero tem-
perature shape that is the minimum of the free energy. A caveat here is that the minimum
one finds may not be a global minimum, this means that the minimization procedure is
usually more complex than just equilibrate the energy and then lower the temperature
and usually involves some kind of temperature cycling to explore the energy landscape.
This problem however exist for all Monte Carlo simulations and a large body of litera-
ture exists, that deals with strategies to overcome the problems with complicated free
energy landscapes[72, 73]. We discuss a specific example of such a procedure to obtain
the equilibrium shapes in section 3 of chapter 4. Even with this caveat DTMMCs can be
very powerful due to their versatility and speed. An implementation that is economical
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Figure 1.9: Example of a triangulated membrane. Color indicated local mean curvature. Regions of zero mean
curvature are white and the intensity of the red color increases with curvature.

with calculation of local quantities can perform tens of millions of moves per second
(see flippy chapter), which allows us to investigate large scale membrane reshaping phe-
nomenon effectively.
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2
MEMBRANE-MEDIATED

INTERACTIONS INDUCE

SPONTANEOUS FILAMENT

BUNDLING

The plasma membrane and cytoskeleton of living cells are closely coupled dynamical sys-
tems. Internal cytoskeletal elements such as actin filaments and microtubules continu-
ally exert forces on the membrane, resulting in the formation of membrane protrusions.
In this paper we investigate the interplay between the shape of a cell distorted by push-
ing and pulling forces generated by microtubules and the resulting rearrangement of the
microtubule network. From analytical calculations, we find that two microtubules that
deform the vesicle can both attract or repel each other, depending on their angular separa-
tions and the direction of the imposed forces. We also show how the existence of attractive
interactions between multiple microtubules can be deduced analytically, and further ex-
plore general interactions through Monte Carlo simulations. Our results suggest that the
commonly reported parallel structures of microtubules in both biological and artificial
systems can be a natural consequence of membrane mediated interactions.

This chapter is based on: A.Vahid, G.Dadunashvili, T.Idema, Membrane-mediated interactions induce spon-
taneous filament bundling (in preparation)
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2.1. INTRODUCTION

Cells are enveloped by a plasma membrane which serves as a selective soft physical bar-
rier and is home to many functional proteins. The stability and shape of cellular mem-
branes are determined not only by inherent properties of the membrane, but also by
interactions with the cell’s cytoskeleton [1]. The highly dynamic cytoskeletal network is
vital for numerous biological processes, including cell motility, cell migration, and cell
signaling [2, 3]. A typical feature occurring in such processes is the formation of mem-
brane protrusions. Protrusions commonly emerge in the form of microvilli, filopodia or
lamellipodia [4, 5]. These leading-edge protrusions, the existence of which is vital for
responding to external cues, can be driven, controlled and elongated by a complicated
crosstalk between the membrane and underlying filaments.
The spatial arrangement of cytoskeletal filaments, force generation mechanisms, and
cytoskeletal networks coupling to the shape of cells have been investigated extensively,
both theoretically and experimentally [6–10]. For example, when growing encapsulated
microtubules inside an artificial spherical membrane, it has been shown that the vesicle
exhibits a diverse range of morphologies, from a simple elongated shape to dumbbell-
like geometries [7]. The diversity in the shape of such vesicles results from both the elon-
gation dynamics of the filaments inside them and the material properties of the mem-
brane. Such spatial rearrangement of filaments stems from the conditions imposed on
them from various elements, one of which is the cell shape.
In this paper, we investigate the interplay between the shape of vesicles that are de-
formed by internal force generating filaments like microtubules, and the rearrangement
of those filaments. In a biological cell, microtubules undergo treadmilling and dynamic
instabilities (catastrophes) which are controlled by associated proteins [11]. Only a few
of the microtubules that grow inside a cell can reach the cell membrane [12]. The push-
ing and pulling forces generated by those few microtubules can be harnessed for cre-
ating protrusions of the membrane [13]. Membrane mediated interactions between
microtubule-induced protrusions may influence the arrangement of other functional
filaments in addition to microtubules themselves [14, 15]. Therefore, we study how the
presence of a lipid bilayer membrane, which has both elastic and fluid properties, alters
the interaction between microtubules. This interaction could both drive processes like
the formation of filament bundles or inhibit microtubule aggregation.
We use a modified version of the theoretical framework that has been developed for in-
vestigating membrane mediated interactions between proteins embedded in or bounded
to a fluid membrane [16, 17]. We first explain the model in detail. We then study the ef-
fects of all the possible elements on the interaction between microtubules. We reveal
that the relative orientation of the deforming forces (generated by the microtubules) de-
termines the nature of their interactions. In particular, we demonstrate that bundling
is a stable effect observed for any number of interacting microtubules with forces of the
same orientation. Our results thus elucidate the effective role of the membrane in deter-
mining the equilibrium arrangement of protrusions imposed by the cytoskeleton.
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Figure 2.1: A schematic representation of a spherical membrane vesicle containing microtubules. Inset: local
(small) deformation R u(θi ,φi ), caused by a microtubule, which is exerting a force of magnitude fi , along the
radius of the vesicle.

2.2. MODEL
Our model is based on minimizing the energy of the system consisting of the membrane
and force imposing microtubules, depicted in figure 2.1, to obtain the equilibrium shape.
We use the Canham-Helfrich functional [18, 19]to characterize the energy, due to elastic
deformations of a closed membrane vesicle.

Eel =
∫

dS
(
2κH 2 +σ)+∆P

∫
dV , (2.1)

with H , κ, σ and ∆P the mean curvature, bending modulus, surface tension and the
pressure difference (between inside and outside of the vesicle), respectively. The first
term in the elastic energy penalizes high curvature, while the second and third terms
penalize the change in projected surface area and enclosed volume of the vesicle. In
order to describe microtubules deforming the membrane, we impose deformations at n
points r(θi ,φi ) as boundary conditions

EPF =
∫

dS (f ·∆)R u(θ,φ), (2.2)

where f ∈Rn is the vector of forces, exerted on the membrane by the microtubules. This
vector contains the projections of the point forces along the radial direction of a spheri-
cal vesicle. We denote by∆ the vector of Dirac-delta functions at the points (θi ,φi ),

∆i =δ(r̂(θi ,φi ))

= sin(θ)√
det g

δ(cos(θ)−cos(θi ))δ(φ−φi )

def= sin(θ)√
det g

∆̄i .

(2.3)
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Here g is the metric tensor of the membrane, defined as gµν = ∂µr ·∂νr . The metric also

appears in the surface area element dS =√
det g dθdφ=

p
det g

sin(θ) dΩ.
Combining eqns. 2.1 and 2.2 gives us an expression for the total energy of a vesicle, as a
function of the magnitudes and positions of n point forces. The road from the general
energy functional to the macroscopic energy function can be broken down into seven
steps, which are detailed in the appendix.
Most importantly, we can derive a linearized shape equation, by using the Monge gauge
(eqn. S.5.13) and then minimizing the surface energy functional with respect to small
deformations:

∇4
s u + (2− σ̄)∇2

s u −2σ̄u =
n∑

i=1
f̄i ∆̄i = f̄ · ∆̄, (2.4)

where u(θ,φ) is the relative deviation of the vesicle from a perfect sphere of radius R at
position (θ,φ) as defined in eqn. S.5.13. We also introduced the non-dimensionalized

parameters σ̄= σR2

κ and f̄i = fi R
κ . After finding the Green’s function of the left hand side

(eqn. S.5.25), its superposition gives the full solution of the inhomogeneous equation
(eqn. S.5.29), i.e. the deformation field u at any point (θ,φ). After a couple more steps
we obtain the final energy function

Etot =−κ∑
j>i

f̄i f̄ j

ℓmax∑
ℓ=2

cℓ(σ̄)Pℓ
[
cos

(
αi j

)]
, (2.5)

where Pℓ denotes ℓ-th Legendre polynomial and cos(αi j ) is the angle between the i -th
and j -th microtubules at (θi ,φi ) and (θ j ,φ j ). The exact relation between these angles
is given in eqn. S.5.28. Finally cℓ(σ̄) is an expansion coefficient determined by solving
the shape equation. The upper cutoff ℓmax corresponds to a high frequency (low wave
length) cutoff which is justified by the fact that the membrane is not actually continuous
but consists of lipids. In all of the proceeding analysis we used ℓmax = 20.

2.3. RESULTS AND DISCUSSION

2.3.1. ANALYTIC RESULTS FOR TWO MICROTUBULES
The system of two microtubules acting on a membrane can be treated fully analytically
and can provide a valuable insight, for the n > 2 microtubule interactions. For simplicity
we assume that both forces generated by the microtubules1 have the same magnitude f̄ .
Then eqn. 2.5 simplifies to

Etot =−κs f̄ 2
ℓmax∑
ℓ=2

cℓ(σ̄)Pℓ [cos(α)] . (2.6)

Where s = sign( f̄1 f̄2) and α ∈ [0,π] is the angle between the two forces. Since α is the
only configuration variable, we can easily plot the total surface interaction energy of the
system. We do this because we are only interested in the interaction energy between
the point forces and not in the actual energy of the vesicle surface. The exclusion of the

1From now on we will refer to the forces generated by the microtubules simply as point forces.
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“self-interaction energy", which is the diagonal part in eqn. S.5.31, does not mean that
it is physically not measurable. It simply does not contribute to the rearrangement of
point the forces. Note that the energy only depends on relative sign of the point forces
s and not on each sign separately. Meaning that in our model it is the same when both
point forces pull or push. This is a consequence of linearizion and would not hold true if
the deformations u(θ,φ) become comparable with the vesicle size R.
In the case of two point forces of the same sign (both pushing or pulling) we can see a

0 π
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2 π
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Figure 2.2: Total interaction energy for two point forces. The parameter s determines whether both forces are
pushing (pulling) or one is pushing and the other pulling. a) s = 1. Both forces are pushing (pulling) and they
experience strong short range attraction and weak long range repulsion. The critical angle determines weather
the microtubules will coalesce or repel each other to the opposite poles. b) s =−1. In this case the forces have
strong short range and weak long range repulsion, leading to a critical angle αcr ≈ 1.4. In both subplots the
vertical red (dashed) line denotes αcr.

strong short range attraction together with a long range repulsion. This means that on a
closed vesicle two point forces would either coalesce or repel each other until they reach
the opposite poles of the vesicle, in both cases leading to emergent order (polar and ne-
matic respectively). If the energy barrier at αcr is too high ( E(αcr)−E(π) ≫ kB T ), the
final state will depend on initial conditions. Forces that start close together will coalesce
and forces that start further apart than αcr will align at the opposite ends. In the case
of one pulling and one pushing force we have only one ground state, in which the two
point forces have a relative angle αcr ≈ 1.4 rad.
Since the physical parameters of the system can be grouped into f̄ and σ̄, and κ is simply
rescaling the energy, we can plot the full phase space of the system. Fig. 2.3 shows the
magnitude of 〈α〉, which is the expected equilibrium angle between two point forces in
the system, for given pair of parameters f̄ and σ̄. As we can see, for the most of the phase
space 〈α〉 = 0, meaning that the two point forces are coalesced in the equilibrium. How-
ever for small enough forces (or stiff enough membranes) 〈α〉 ≈ π

2 . In this disordered
state the value of α is essentially random and the average is π

2 due to symmetry. Unfor-
tunately the equilibrium average cannot predict the second (meta)stable state at α= π,
since the latter is not a global minimum. The most interesting feature of figure 2.3, how-
ever, is that the shape of the plot is effectively independent of σ̄. This intriguing property
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π
2

Figure 2.3: Expectation value of the equilibrium angle, between two point forces 〈α〉, as a function of the mag-
nitude of the force f̄ and the membrane tension σ̄. If the expected equilibrium angle between the point forces
is 0 then they will coalesce. If 〈α〉 ≈ π

2 then the system is in a disordered state where the orientation of two
point forces is random and the π

2 state is “winning" in the average by having the largest degeneracy. Black line

denotes the boundary of the tether pulling region, f̄ = 2π
p

2σ̄. The black dot denotes the typical values used
in our simulations, placing us firmly in the small deformation regime.

of the model is hiding in eqn. S.5.26. If we expand cℓ(σ̄) for large σ̄ we get

cℓ(σ̄) = 1

4πσ̄

2ℓ+1

ℓ(ℓ+1)−2
= c̄ℓ

4πσ̄
. (2.7)

This expansion is justified since the biologically relevant cases have σ̄≳ 103. In fact for
very small σ̄we see the shape of the phase space plot depends on both σ̄ and f̄ . For large
values of σ̄ eqn. 2.5 simplifies to

Etot = κ f̄ 2

4πσ̄

∑
j>i

si s jγ
(
αi j

)
. (2.8)

In 2.8 we again assumed for simplicity that all forces have the same magnitude, si =
sign( f̄i ) and we defined the two point interaction propagator

γ(αi j ) =−
ℓmax∑
ℓ=2

c̄ℓPℓ
[
cos

(
αi j

)]
, (2.9)

which contains the interaction part of the energy and is separated from the physical pa-
rameters of the model. Hence the nature of these interactions can be studied, without
the need to consider specific values of the material parameters.
As we stated in section 2.2, our analysis relies on the small deformation assumption. In
order to remain in this regime we use forces throughout our analysis which are signif-
icantly below the force f̄t = 2π

p
2σ̄ needed to stabilize a tether pulled from a vesicle,

though the actual force needed to pull the tether is roughly 13% greater than this, for a
point force as shown in [20]. It is also worth noting that in reality the forces acting on
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the membrane are not point like but rather distributed over a patch of finite size. Both
experiments and theory show that in the case of such forces the barrier to pull a tether is
much higher compared to f̄t [21]. This means that the regime of small deformations is
not only a theoretically convenient approximation but rather a biologically relevant and
stable geometric phase of a deformed vesicle .We use f̄t as our threshold for a “large"
force (corresponding to a large deformation). In our analysis and simulations we use a
micron sized membrane, i.e. R ≈ 103 nm and material parameters and forces in typical
range, κ≈ 10kBT , and σ≈ 2×10−2 kBT /nm2 [22, Table 2]. This leads to σ̄≈ 103. For an
estimate of the force magnitude, we use the force that a typical cytoskeletal filament can
generate [23, Ch.3], which is around 5pN and translates into f̄ ≈ 100. This is far below
the tether force of f̄t(σ̄= 103) ≈ 400.

2.3.2. INTERACTIONS BETWEEN MULTIPLE MICROTUBULES
Eqn. 2.8 for the total energy of a system with two microtubules suggests that the αi j

dependent part of the equation is a generic function that does not depend on system
parameters. To calculate the total energy of n point forces, we simply add the two point
interaction propagator for all interacting pairs, thus we expect the extrema of γ(αi j ) to
still be present in the total interaction term, which we name Γ

Γ({αi j }) = ∑
j>i

γ(αi j ). (2.10)

This means that the minimal energy states which are present in the n point force system
are the same states as in the two point force system. Technically eqn. 2.10 does not pro-
hibit the existence of additional energy minima. We therefore explore the state space of
n = 8−16 microtubules using a Monte Carlo method. The results strongly suggest that
there are no new stable configurations. The five configurations presented in fig.2.4 are
the straightforward combinations of the three equilibrium configurations seen in fig.2.2.
To convince ourselves that the two point force analysis is also a good quantitative pre-

dictor of n point interactions we look at the dependence of the final configuration on the
initial conditions. The prediction of eqn.2.8 is that each point force has a cone of attrac-
tion around it with an opening angle ofαcr . If two point forces (of the same kind, i.e, both
pushing or both pulling on the membrane) fall into each other’s cones of attraction they
are likely to coalesce and if they fall outside of each other’s cones they are more likely to
end up at the opposite poles. To this end we ran several Monte Carlo simulations where
we placed all particles inside a cone of opening angleαcone at the beginning and then let
the system converge against a final state. The difference in numbers of aligned pairs ver-
sus anti-aligned pairs can be estimated by a quantity proportional to the average relative
angle 〈αi j 〉. We hence define a polar order parameter

P = 1− 〈αi j 〉
π/2

(2.11)

which is one in the polar phase i.e. when 〈αi j 〉 = 0, and it is zero in the nematic and
disordered phases when 〈αi j 〉 = π

2 . Hence to truly distinguish between the polar and
nematic ordered states we need a second parameter D which measures the level of noise
in the system and acts as a “disorder" parameter. As such (P = 1,D = 0) and (P = 0,D = 0)
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0 π/2 π 0 π/2 π

0 π/2 π0 π/2 π0 π/2 π

a) b)

c) d) e)

Figure 2.4: All five configurations of the final state of the Monte Carlo simulations of multiple point forces act-
ing on the vesicle. Large 3D images are the actual plots of the final state of the simulation, accompanied by a
sketch of the 2d cross section of the state (top) and a histogram (bottom) of the initial (light/orange bars) and
final (dark/blue bars) distributions of the angles αi j between the point forces. In all simulations we used the

following parameter values: f̄ = 100, σ̄ = 2000, R = 1µm and κ = 10kBT . a) and b) 10 pushing microtubules.
c) and d) 5 pushing and 5 pulling microtubules. e) 2 pushing and 1 pulling microtubules. a) Since all micro-
tubules were close together initially they coalesced in one point. b) Here we have a broad initial distribution
of microtubule positions consequently the final state has two points of bundled microtubules aligned at the
opposite ends. c) Even if the initially all microtubules are close together, it is still likely that at least one of the
flavors of microtubules (pushing or pulling) will create two poles of bundles. d) The most often observed con-
figuration of the final state, where both flavors of microtubules are in nematic alignment. e) This state is very
rare outside of 2 and 3 microtubule systems. Essentially for both flavors to be in polar alignment the initial
conditions need to be perfectly tuned. Here we achieve this by having only one pulling force, hence depriving
that flavor the possibility to make a nematic pattern and start with all microtubules close together such that
the pushing ones are more likely to coalesce.

states correspond to polar and nematic orders respectively. The definition of D can be
found in appendix S.6. In Fig. 2.5 we plot the dependence of the polar order parameter P
on the opening angle of the initial state bounding cone and see that with growing cone
angle αcone we find a transition between polar and nematic end-states. This transition
happens in the vicinity of αcr as predicted from two point interaction analysis. Thus our
point that n > 2 behavior does not qualitatively differ from two microtubule interactions
is supported by this statistical analysis of the Monte Carlo simulations.

2.4. CONCLUSION

Together with actin and intermediate filaments, microtubules form an architecture that
governs the shape of a cell, and therefore that of the plasma membrane surrounding
it. The membrane, in turn, mediates the interaction between attached microtubules.
Using analytical and numerical tools, we studied the effect of membrane mediated in-
teractions on the rearrangement of microtubules. We found that force generating micro-
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P
n=6

n=8

n=12

n=16

0 π
2 π

0

1

αcone

Figure 2.5: The dependence of the polar order P parameter on the opening angle of the cone of initial config-
urations αcone, which represents the maximum mutual angle, any two point forces can have at the beginning
of the simulation. Each point is an average over several runs (the number varies between 10 and 30 Monte
Carlo runs depending on αcone). The error bars display the sample standard error. Different shades of blue
(solid with error bars) and orange (horizontal dot-dashed) lines depict the polar order and disorder parameters
respectively, and the shade of the color indicates the amount of point forces pushing on the membrane. In all
simulations we used the following parameter values: f̄ = 100, σ̄= 2000, R = 1µm and κ= 10kBT . The vertical
red (dashed) line marks the position of the critical angle between two interacting point forces αcr ≈ 1.4.

tubules, when colliding with a deformable obstacle like a fluid membrane, can coordi-
nate their growing state through the shape of distorted membrane between them. Our
results suggest that the elastic properties of cellular membranes facilitate the bundling
of microtubules. In particular, we showed that two vesicle-encapsulated microtubules
attract each other for small angular separations and repel for large angles. As we demon-
strated for up to 16 microtubules numerically and motivated analytically for any num-
ber, the outcome of collective interactions between multiple filaments is microtubule
coalescence, which may be harnessed for protrusion formation [14, 24]. Putting all the
results together, our study suggests a possible mechanism underlying the preference of
filaments for organizing in parallel configurations [25].
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S.5. DERIVATION OF MACROSCOPIC ENERGY
In this part of the appendix we want to step through the derivation of the macroscopic
energy. I.e. we want to show the steps that bring us from eqn.’s 2.1 and 2.2 to the eqn. 2.5.
The total energy which is simply the sum of eqns. 2.1 and 2.2 reads as

Etot = Eel +EPF =
∫

dS
(
2κH 2 +σ+ (f ·∆) |rref − rdef|

)+∆P
∫

dV. (S.5.12)

In the deformation term we used a coordinate free way to describe deviations from the
reference state |rref − rdef|, where rref and rdef describe the membrane surface in the ref-
erence and deformed states respectively. To proceed we need to have a way to talk about
the geometric quantities like H dS and V, this means that we need to choose a coordi-
nate system and parametrize our membrane surface in that system, i.e. define a specific
functional form of r .

S.5.1. STEP 1: MONGE GAUGE IN SPHERICAL COORDINATES
We want to make use of the small deformation regime later to expand the surface energy
and derive an analytically solvable shape equation. The natural parametrization for sys-
tems slightly deviating from a reference state is the Monge gauge. We use the spherical
coordinates version of it to describe the membrane

r (θ,φ) = R
[
1+u(θ,φ)

]
, (S.5.13)

with R the radius of the undeformed (reference-)sphere and u(θ,φ) the relative defor-
mation field, with respect to that reference-sphere. It is worth noting that this descrip-
tion itself is very general and can describe almost all shapes (apart from the ones with
overhangs2). The small deformation regime is an additional assumption of

u ≪ 1. (S.5.14)

For this parametrization we can see how the magnitude of the deformation becomes:

|rref − rdef| = Ru(θ,φ), (S.5.15)

as used in the main text.

S.5.2. STEP 2: SECOND ORDER EXPANSION IN ENERGY

Assuming small deformations, we expand H 2 and
√

det g up to the second order, and
gµν = ∂µr ·∂νr and H = 1

2 gµνCµν, and

Cµν = ∂2r

∂µ∂ν
· ∂µr ×∂νr∣∣∂µr ×∂νr

∣∣ , (S.5.16)

is the curvature tensor, also known as the 2nd fundamental form, with µ,ν ∈ {θ,φ}. In or-
der to reliably perform this expansions we used MATHEMATICA, which gave the following

2In 3D this would be a shape enclosing a volume which does not contain a point that can be connected to all
points on the surface with a straight line that crosses this surface only at that point.
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results3: √
det(g )

R2 = 1

2
csc(θ)u2

φ+ (u +1)2 sin(θ)

+ 1

4
csc(θ)u2

θ

(
2sin2(θ)+ ((2−3u)u −1)u2

φ

)
,

(S.5.17)

(2HR)2 = 3u2 −2u +1

+ 1

4
(cot(θ)uθ+uθθ) (cot(θ)uθ+uθθ+12u −4)

+ 1

4
csc2(θ)uφφ

(
2(cot(θ)uθ+uθθ+6u −2)+csc2(θ)uφφ

)
,

(S.5.18)

where we abbreviated the derivatives as indices i.e. fµ = ∂µ f . The expansions were
performed up to the second order in u and all of its derivatives. Upon defining non-
dimensionalized gradient and Laplacian operators in spherical coordinates, also known
as surface gradient and Laplacian,∣∣∇s f

∣∣2 = f 2
θ + sin−2(θ) f 2

φ (S.5.19)

∇2
s f = cot(θ) fθ+ fθθ+ sin−2(θ) f 2

φφ (S.5.20)

and reshuffling some terms we get

Etot = κ
∫

dΩ

[
2

(
1+ 1

4

(∇2
s u

)2 −∇2
s u +u∇2

s u + 1

2
|∇s u|2

)

+ σR2

κ

(
(1+u)2 +1

2
|∇s u|2

)

−∆PR3

3
(1+u)3 −

n∑
i=1

fi R

κ
∆̄i u

]

= κ
∫

dΩ

[
2

(
1+ 1

4

(∇2
s u

)2 −∇2
s u + 1

2
u∇2

s u

)

+ σR2

κ

(
(1+u)2 − 1

2
u∇2

s u

)

−∆PR3

3
(1+u)3 −

n∑
i=1

fi R

κ
∆̄i u

]
.

(S.5.21)

In the last equality sign we used partial integration to eliminate the absolute value signs

∫
dΩ |∇s u|2 =

��������:0∫
dΩ∇s · (u∇s u)−

∫
dΩu∇2

s u

3this equations are directly exported form MATHEMATICA and are hence not in the most readable form.
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S.5.3. STEP 3: ENERGY VARIATION
In previous step we arrived at a simplified energy functional in terms of a deforma-
tion field u(θ,φ). Next step is to find a surface configuration described by u(θ,φ) that
minimizes this energy. For this end we vary the energy with respect to this field (i.e.
u → u +δu), and further leverage the small deformation limit to replace ∆P with the
Laplace pressure with the value for the sphere ∆P ≈ 2σ/R we get a shape equation.

∇4
s u + (2− σ̄)∇2

s u −2σ̄u −2σ̄u2 = f̄ · ∆̄ (S.5.22)

S.5.4. STEP 4: LINEARIZATION
Upon throwing away the nonlinear term in the shape equation S.5.22, we arrive at eqn. 2.4.

S.5.5. STEP 5: GREEN’S FUNCTION
To solve the eqn. 2.4 we first find its Green’s function. This is a function G(θ−θi ,φ−φi )
that solves the equation:

∇4
s G + (2− σ̄)∇2

s G −2σ̄G = δ(φ−φi )δ (cos(θ)−cos(θi )) (S.5.23)

After expanding the delta functions in terms of spherical harmonics

δ(φ−φi )δ (cos(θ)−cos(θi )) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

Y m
l (θ,φ)Y m∗

l (θ,φi )

where ‘∗ ‘ denotes complex conjugate, we get a solution

G(θ−θi ,φ−φi ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

cℓ(σ̄)Y m
l (θ,φ)Y m∗

l (θ,φi ). (S.5.24)

The first two modes in the expansion however need to be excluded. Since the zeroth
mode (ℓ = 0) corresponds to the motion of the center of mass, which is irrelevant for
our purposes and the first mode (ℓ = 1) corresponds to the conservation of the volume
which is already accounted for in the energy functional with the ∆P term. Furthermore
we use the addition theorem for spherical harmonics to simplify the second sum to ℓ-th
degree Legendre polynomial, and finally arrive at

G(θ−θi ,φ−φi ) =
∞∑
ℓ=2

cℓ(σ̄)Pℓ [cos(αi )] (S.5.25)

with the summand coefficients given by

cℓ(σ̄) = 2ℓ+1

4π
(
ℓ2(ℓ+1)2 − (2− σ̄)ℓ(ℓ+1)−2σ̄

) , (S.5.26)

and αi defined as the angle between the i -th deforming point force and and any other
point on the membrane given by θ and φ.

cos(αi ) = sin(θ)sin(θi )cos(φ−φi )+cos(θ)cos(θi ). (S.5.27)

If this other point happens to be a position of j -th point force, then we get

cos(αi j ) = sin(θ j )sin(θi )cos(φ j −φi )+cos(θ j )cos(θi ). (S.5.28)

This makes G(θ−θi ,φ−φi ) a propagator of deformation from (θi ,φi ) to (θ,φ).
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S.5.6. STEP 6: GENERAL SOLUTIONS
The superposition of Greens’ functions gives the deformation field u:

u(θ,φ) =
n∑

i=1
fi G(θ−θi ,φ−φi ) = f̄ · Ḡ, (S.5.29)

and hence
u0 = M · f̄ (S.5.30)

Where u0i = u(θi ,φi ) is the vector of deformations at positions (θi ,φi ) and Mi j =G(θi −
θ j ,φi −φ j ) is the deformation interaction matrix. The diagonal elements Mi i are the self
interaction terms and do not depend on the positions of the deformations.

Substituting u back in the energy functional gives us the macroscopic surface energy
which only depends on the position and magnitude of deformations

Etot = κ

2
uT

0 ·M−1 ·u0 +8π

(
1+ σ̄

3

)
(S.5.31)

S.5.7. STEP 7: LEGENDRE TRANSFORMATION

We use the Legendre transformation to transform u0 into its conjugate variable f̄, then
omit all constant4 terms in the energy, use the symmetry of M and substitute the defi-
nition of the Green’s function from the eqn.S.5.25

Etot =−κ∑
j>i

f̄i f̄ j

ℓmax∑
ℓ=2

cℓ(σ̄)Pℓ
[
cos

(
αi j

)]
Actually σ can be either understood as penalizing the projected area of the vesicle,

i.e. the energy cost per surface area to flatten out the thermal fluctuations of the vesicle.
Or as a chemical potential giving the energy cost of incorporating new lipids in the mem-
brane. The actual stretching of the membrane, i.e increase of the surface area per lipid
is energetically so costly that the membrane will rapture long before that mode of defor-
mation is accessed [22, Table 2]. Point forces act along the radial direction of a spherical
vesicle, i.e. fi = fi · R̂i . Here fi is the i -th point force and R̂i is the radial unit vector with
spherical angles

(
θi ,φi

)
.

S.6. DISORDER PARAMETER
To analyze the results of the Monte Carlo simulations we introduced the polar order pa-
rameter P in eqn. 2.11. Unfortunately P = 0 is ambiguous since it could correspond to
either nematic order or disorder. To distinguish between these states we defined a disor-
der parameter

D = 1

π/
p

12

STD(α<
i j )+STD(α>

i j )

2
, (S.6.32)

where the prefactor 1
π/

p
12

is the standard deviation of an uniform distribution on the

interval [0,π] and serves as a normalization factor. STD stands for the standard deviation

4Constant with respect to the position of deformations {(θi ,φi )}.



2

36 2. MEMBRANE-MEDIATED INTERACTIONS & FILAMENT BUNDLING

of a sample and α<
i j and α>

i j are the mutual angles in the final state that are smaller or

greater than π/2. They can be formally defined as

α
≶
i j = {αi j ⋚

π

2
|∀i , j }. (S.6.33)

This parameter measures how narrow the peaks of the final distribution ofαi j are around
the states 0 andπ. Broad peaks would mean microtubules that did not fully coalesce, i.e.,
a disordered final state.
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3
ENTROPY OF MIXING GOVERNS THE

STABILITY OF PROTEIN DECORATED

MEMBRANE TUBES

Membrane tubes are a common sight in biological context, from organelle shapes like the
tube network of smooth endoplasmic reticulum to the filopodia in moving cells, tubes play
an important part of life on the nano- and micro-scales. Because of this importance the
study of formation and stability of tubular structures has been an active research topic
in biophysics for more than two decades. One important factor in stability of membrane
tubes is the interaction with curvature inducing proteins, like the ones containing banana
shaped BAR domains. These protein decorated membranes can sustain highly curved
shapes like tubes because the proteins can scaffold the membrane and induce curvature.
But the story is more complex than the proteins just scaffolding the tube. Just like the
proteins influence the membrane shape, the membrane shape influences the local protein
concentrations and thus a feedback loop is created that can lead to complex behaviour and
pattern emergence. Here we start from general principles that have been well established
and systematically derive conditions for stability of homogeneous protein distributions.
Surprisingly we find indications for two distinct mechanisms of instability that can lead
to demixing.

39



3

40
3. ENTROPY OF MIXING GOVERNS THE STABILITY OF PROTEIN DECORATED MEMBRANE

TUBES

1. INTRODUCTION
Biological membranes are a quasi two-dimensional fluids that behave like an elastic
solid when deformed out of plane. When coupled with objects like colloids or proteins
that can locally induce curvature, the membranes act like a background potential and
mediate effective interactions between these deforming objects. This effect arises from
the membrane’s tendency to reduce its overall curvature, is known as curvature medi-
ated interaction and leads to a wide variety of emergent patterns in biology [1–5]. One
very commonly occurring shape is that of tubes, seen in cellular organelles like the mi-
tochondrion and the endoplasmic reticulum [6, Ch.12]. Consequently, the study of cre-
ation and stability of membrane tubes has been an active field of research for last two
decades. In this chapter we look at a model system of membrane tubes pulled from vesi-
cles (see fig. 1.1). One can add proteins to the solution surrounding membrane tubes
(or encapsulate the proteins inside the vesicles the tubes are pulled from), which have
strong binding affinity to the membrane and induce curvature (see fig. 1.2 b) and c)).
A phenomenon that is observed in this model system is the phase separation of these
curvature inducing proteins into high and low density phases on the tube which in turn
leads to highly and weakly curved regions [7, 8]. It has long been established both the-

Figure 1.1: Sketch of the model system. When one pulls on a vesicle, the initial deformation looks like a dimple,
however at a large enough strain a shape transition occurs and a membrane tube is formed.

oretically and experimentally that such tubular shapes can be formed and maintained
through a variety of mechanisms; like through application of pushing and pulling forces
[9–11], enrichment of anisotropic lipids in the membrane [12, 13] and through action of
rod shaped proteins with intrinsic curvature [14, 15]. We also know that the converse
can be true and an initial shape deformation can lead to demixing of multi-component
membranes [16–18] or spatial pattern formation of membrane associated proteins [7].
Generally the line between curvature sensing and curvature induction by membrane
associated proteins is blurred, and depending on concentration or preexistence of de-
formations, proteins can either sense or induce curvature [19]. Starting in the early 80’s
with the work of Leibler [20] there have been many analytical models describing inter-
actions between curvature inducing proteins and elastic membranes. These models are
based on the idea that the proteins modify the material parameters of the membrane;
changing the spontaneous curvature of the membrane by introducing additional asym-
metry on one side (see fig. 1.2 b)) or influencing the bending rigidity of the membrane.
The models for two-component membranes are mathematically similar, replacing the
bare membrane and protein decorated membrane by lipid A and lipid B. Starting from a
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Figure 1.2: Sketch of the model system. Black dashed lines in drawings a), b) and c) are the neutral surfaces of
the membrane. a) Bare membrane without proteins with material parameters, bending rigidity (κb ), sponta-
neous curvature (H0b ) and tension (σb ). b) Membrane decorated with proteins that induce positive curvature,
these proteins would prefer to attach on the outside of a tube. c) Membrane decorated with proteins that in-
duce negative curvature, these proteins would prefer to attach on the inside of a tube. b) and c) have the same
theoretical description, the presence of the proteins can modify the material parameters to new values, κp ,
H0p and σp . d) Distinct macroscopic states of the system. (left) Bare membrane, (middle) homogeneously
distributed proteins inducing same curvature everywhere (right) proteins are demixed into the high density
and low density (or bare) phases and accordingly affect the tube curvature differently. When starting from a
bare membrane, addition of proteins can lead to a transition into a state of homogeneously distributed pro-
teins i) or a state of demixed proteins ii). In this work we start from the homogeneous state and analyze its
stability by studying the demixing transition iii).

general model, we want to analyze which material parameters of the membrane need to
be modified by proteins to reproduce experimentally observed demixing on membrane
tubes.

2. MODEL

Our goal is to describe the separation of curvature inducing proteins on membrane tubes
into high density, highly curved and low density, less curved regions, which corresponds
to transition ii) in fig. 1.2 d). It is mathematically convenient to model a tube which
is homogeneously covered by a low density of proteins (consequently only slightly re-
ducing the overall tube radius) and then analyze the stability of this state, i.e. study the
transition iii). If the free energy density of the homogeneously covered tube is concave
then the system will phase separate. A general free energy of membrane bound diffusing
proteins can be written as a combination of the Canham-Helfrich free energy for fluid
membranes [21, 22]

ECH =
∫

dA
[κ

2
(H −H0)2 +σ

]
− f L, (2.1)
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and the Flory-Huggins free energy for polymer mixing [23, 24]

EFH = kBT

ap

∫
dA

(
c log(c)+ (1− c) log(1− c)+χc(1− c)

)
. (2.2)

The constants κ and H0 in eq. (2.1) are the membrane bending rigidity and spontaneous
curvature, H is the local mean curvature of the membrane, σ is a Lagrange multiplier
that constrains the area of the membrane, corresponding to the membrane tension and
f is the force required to pull out a tube of length L from the vesicle. The eq. (2.2), de-
scribes the free energy of the protein density distribution, given by c, the relative area
coverage fraction of the proteins, where c = 0 represents an empty region and c = 1 rep-
resents a region maximally packed with proteins. The free energy has an overall scal-

ing factor kBT
ap

, where kB is the Boltzmann constant T the absolute temperature and ap

the area occupied by a single protein. χ is the interaction parameter, encoding direct
protein-protein interactions like electrostatic repulsion. We are only concerned with
membrane mediated interactions here thus we will assume χ = 0 for the remainder of
this work. The integrals in both equations (2.1) and (2.2) are integrated over the full
area of the membrane tube. We also restrict ourselves to systems where proteins can
scaffold the membrane tube and thus reduce the pulling force necessary to sustain the
tube to zero (i.e. f = 0) [7, 15]. To couple the membrane deformations and the protein
concentration, we need to make the parameters in eq. (2.1) dependent on local protein
concentration c. In the most general form this leads to the total system free energy

E =
∫

dA

[
κ(c)

2
(H −H0(c))2 +σ(c)+ kBT

ap

(
c log(c)+ (1− c) log(1− c)

)]
. (2.3)

While each material parameter can have a complex dependence on the protein concen-
tration c here we will consider a simple linear dependence

κ(c) = κb + c(κp −κb) (2.4a)

H0(c) = H0b + c(H0p −H0b) (2.4b)

σ(c) =σb + c(σp −σb). (2.4c)

Since the the relative protein concentration can only take values between 0 and 1 (c ∈
[0,1]), the equations (2.4) interpolate between the material parameter values for the
bare membrane (subscript b) and modified parameters for the protein decorated mem-
brane (subscript p). The model system that we want to describe consists of symmetric
membranes, thus we can eliminate the spontaneous curvature of the bare membrane
i.e. H0b = 0. Furthermore, we assume that the proteins do not modify the tension of the
vesicle, i.e. σp = σb . This is based on the fact we consider proteins that do not inter-
act directly, thus we do not expect them to build any superstructure that can withstand
forces in the lateral direction like a membrane cytoskeleton would. This leaves us with
five model parameters to consider: κb , κp , H0p , σp and ap .

To study the demixing of a homogeneous state we can look at the convexity of the
mean field free energy density. This means that we can replace the spatial integral, the
local curvature and the local protein concentration (that would depend on their local
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cylindrical coordinates θ and z) with their mean values∫
dA → 2πRL

H(θ, z) → 1

R
c(θ, z) → c

This leads to the free energy

E = 2πRL

[
κb + c(κp −κb)

2

(
1

R
− cH0p

)2

+σb +
kBT

ap

(
c log(c)+ (1− c) log(1− c)

)]
,

which we nondimensionalize by scaling the energy by κb and expressing all length in
terms of R0, the radius of the undecorated tube, introducing

R̄ = R

R0
(2.5a)

L̄ = L

R0
. (2.5b)

Ē = E

κb
(2.5c)

κ̄p = κp

κb
(2.5d)

H̄0p = H0p R0 (2.5e)

σ̄b = σbR2
0

κb
= 1

2
(2.5f)

α= kBT R2
0

κb ap
(2.5g)

to write

Ē = 2πR̄L̄

[
1+ c(κ̄p −1)

2

(
1

R̄
− cH̄0p

)2

+ 1

2
+α(

c log(c)+ (1− c) log(1− c)
)]

. (2.6)

To eliminate the rescaled tension in eq. (2.5f), we used the known relation between the
radius bending rigidity and tension of a bare membrane tube [11], given by R0 =

√
κb/(2σb).

Finally, we can also eliminate the rescaled radius, since we know that the membrane
tubes will adapt the radius to minimize the energy. The condition

∂R̄ Ē |R̄=R̄∗ = 0 (2.7)

thus gives us the membrane radius R̄∗ (see section S.5 for the full expression). Substi-
tuting the radius R̄∗ back into eq. (2.6) and dividing by the non dimensional tube area
Ā = 2πR̄L̄ gives us an expression for free energy density

ē (c) = Ē

Ā
(2.8)

which only depends on three model parameters κ̄p , H̄0p and α. The full expression can
be seen in the supplement section S.6. An example of such energy for parameter val-
ues of κ̄p = 1.5, H̄0p = 1.5 and α = 1 is given in fig. 2.3 a). We see that the free energy
density has a concave region (second derivative is negative) around c ≈ 0.3 indicated
by red color. Negative second derivative indicates that the system is unstable for these
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parameter values and the proteins will demix into high and low density phases, which
can be determined through the common tangent construction and for this example are
c1 ≈ 0.23769 for the low density and c2 ≈ 0.45157 for the high density. A stability phase
space for fixed H̄0p and α can be seen in the carrot plot (fig. 2.3 b)), where the red color
indicates the region of local instability, i.e. the boundary line between red and blue re-
gions is the spinodal. The binodal line, which would indicate a globally unstable region
is not shown in the plot. Since in our system the protein concentration on the tube can
change freely, we are interested in the presence of instability for any concentration c.
Thus, it is sufficient for us to find the region of local instability, which does not require
the common tangent construction.

Figure 2.3: Spinodal demixing. a) Scaled free energy density per unit area ē as a function of the protein concen-
tration c (Solid blue line with a red region). The parameter values are chosen as κ̄p = 1.5, H̄0p = 1.5 and α= 1.
The concave region of the free energy density (second derivative is negative) around c ≈ 0.3 is indicated by
red color. The solid black line is the common tangent of the energy density at the low (c1 ≈ 0.23769) and high
protein concentrations (c2 ≈ 0.45157). b) Phase diagram of the stable and unstable regions. The blue region
has a positive second derivative of the free energy, i.e., a stable region. The red region has a negative second
derivative of the free energy density, i.e. the homogeneous state is unstable and will decompose into high and
low density phases trough spinodal decomposition. The uncolored area with the dotted boundary indicates
the region where the stability analysis breaks down because the initial state is not well defined (see section S.5
for details). The X -axis: area coverage fraction of the proteins c, which varies from zero, no coverage, to one,
full coverage. The Y - axis: bending rigidity of the protein covered tube κ̄p measured in units of the bending
rigidity of the bare membrane κb . The remaining parameters are fixed to H̄0p = 1.5 and α = 1. Gray dashed
line corresponds to the value of κ̄ from part a).

3. RESULTS AND DISCUSSION
Looking at the fig. 2.3 we can see that the system is unstable for quite a large range of
κp , but this figure only shows us the stability of the system for fixed values of H̄0p and
α. In order to get a full picture we can distill the information provided by the entirety of
the energy plot like in fig. 2.3 a) into one number. If the energy is concave for any range
of c for a triplet of parameters (κ̄p , H̄0p ,α) then we consider the system to be unstable
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for that triplet. Then sweeping over a wide range of combinations of triplets, we can
build a view into the volume of the stability phase space, seen in figure fig. 3.4 a). Blue
points correspond to a locally stable system and red points correspond to locally unsta-
ble ones. Strikingly we see that there are two distinct collections of red points, one large

Figure 3.4: Stability of the homogeneous protein concentration on the tube. a) Full phase diagram of stability.
For each triplet of parameters eiter a red or a blue point is plotted. The blue region is stable while the red region
is unstable. Some combination of the parameters yielded complex values for the tube radius and accordingly
the energy, those are outside the validity of our model and are not plotted (see section S.5 for more details).
There are two distinct regions of instability. b) Single cross section of the full phase space. H̄0p -α plane for
fixed κ̄p = 4. The ragged boundary edges in both plots are due to the limited resolution of the grid (κ̄p , H̄0p ,α),
and become smoother when the number of grid points is increased.

patch at large values of α and another smaller patch at value of α very close to zero. This
means that there are two distinct instabilities through which the homogeneous concen-
tration of the proteins demix. These unstable regions are separated by a large stable
region. The parameter α that separates the two unstable regions represents the rela-
tive importance of entropic and mechanical terms in the energy (2.6). We can see from
the definition (2.5g) that α is large if the initial tube radius squared is large compared
to the protein area, or if the bending rigidity of the bare membrane is small compared
to thermal fluctuations. This is to say that for small proteins on a large soft tube, the
configuration matters more than for large proteins on small rigid tubes. What we can
see in fig. 3.4 is that the configuration entropy has as strong impact on the stability of
the system. The importance of mixing entropy for demixing is not very surprising on its
own. In a theoretical study of tubulation induced by proteins which contain BAR do-
mains (banana shaped curvature inducing proteins) it has already been noted by Góźdź
et al. [18] that the mixing entropy can have a stabilizing effect on the homogeneity of
protein distributions, whereas the absence of the entropic term in the energy leads to
the formation of membrane tethers at lower overall concentration of BAR domain con-
taining proteins. If the entropic term was considered in the energy then a much higher
concentration of proteins was required to induce tubulation. What our work shows is
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that these two types of behaviour are not merely two limits of the same phase transition
but two different and disconnected branches, which implies that the phase transition
mechanism is a different one. When we look at horizontal cross-sections from fig. 3.4
a) at high (α = 1) and low (α = 0) entropic contributions (see fig. 3.5 (left) and (right)
respectively), we observe two different shapes of demixing regions indicating different
responses to changes in parameters. At low entropy the protein induced bending rigid-
ity κ̄p and protein induced curvature H̄0p have a purely antagonistic relationship. In-
duced spontaneous curvature only acts as a stabilizer, in contrast to bending rigidity
which promotes mixing. This behaviour is reminiscent of formation of patches of liquid
ordered (LO) and liquid disordered (LD) domains in multi component lipid membranes,
where LO phase is characterized by a strong bending rigidity and the LD phase by weak
bending rigidity1 [25]. The relationship between H̄0p and κ̄p is more complicated in the

Figure 3.5: Phase diagram of stability. In the red region the homogeneous state demixes while it is stable in the
blue region. (left) Horizontal cross section of the full phase space for α= 0. (right) Horizontal cross section of
the full phase space for α= 1.

parameter regime where the mixing entropy has a significant contribution. Now both in-
duced curvature and bending rigidity act as stabilizers and the demixing transition only
occurs for specific combinations of these parameters. Furthermore, the relationship is
now inverse, i.e. the stronger the induced curvature, the less induced bending rigidity is
required to stabilize the system.

1Our model predicts a stable phase for Ĥ0p = 0 which may seem contradictory to the comparison with LO-
LD domain formation since these domains form for symmetric lipids without any spontaneous curvature,
however in that case line tension between the domains appears and acts as a stabilizing factor. Since we do
not account for line tension our theory, a difference in the behaviour at Ĥ0p = 0 is to be expected.
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4. CONCLUSION
In this chapter we started form a general energy functional of a system for curvature in-
ducing proteins coupled to membrane deformations, systematically expanded all model
parameters in powers of protein area coverage fraction c and then evaluated the stabil-
ity of the system for different model parameters, by monitoring the convexity of the free
energy density per unit area. Our results are consistent with previous work, that iden-
tifies the entropy of mixing as an important influencer of the stability behaviour, and
further sheds light on this phenomenon. The systematic elimination of model param-
eters through model simplification and nondimensionalisation allowed us to visualize
the full phase space of our system and realize that the high and low entropy cases are not
merely two limits of the same behaviour but two different and disconnected regions of
instability that likely come about through different mechanisms.

S.5. TUBE RADIUS: FULL EXPRESSION AND STABILITY ANALYSIS
The expression for the tube radius that minimizes free energy is given by

R̄∗ =
(

c(κ̄p −1)+1

c2H̄0p
2(c(κ̄p −1)+1)+2α log(1− c)−4αc tanh−1(1−2c)+1

) 1
2

. (S.5.9)

Since eq. (S.5.9) contains a square root it can become complex for some parameter com-
binations. These regions of complexity imply that our starting point of a homogeneously
covered membrane tubes is not a minimal shape and thus our stability analysis is not
valid in this parameter regime. The numerator of eq. (S.5.9) can never become nega-
tive since we only consider κ̄> 0 and 0 < c < 1. This means that the region boundary of
model breakdown is given by the denominator of eq. (S.5.9). Plotting the parameters α,
H̄0p and κ̄p against the protein density (see fig. S.5.6) reveals the regions of instability,
from which we can read off to which parameter values we should restrict our analysis.
We can plot the full parameter space (see fig. S.5.7) of the model breakdown if we assign
each triplet a binary value (breakdown or not) if at any protein concentration for that
triplet eq. (S.5.9) can become complex.

S.6. FULL EXPRESSION OF THE ENERGY
After plugging in the expression (S.5.9) into eq. (2.8) we get the full expression for the
energy density

ē(c) = 1

2
+α[

(1− c) log(1− c)+ c log(c)
]

+ 1

2

(√
c2H̄ 2

0p (c(κ̄p −1)+1)+2α log(1− c)−4αc tanh−1(1−2c)+1− cH̄0p

√
c(κ̄p −1)+1

)2
.

(S.6.10)

The minimization of the energy and all the numerical calculations for the phase space
generation were done in a mathematicaMATHEMATICA [26] notebook which is available
online [27].
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Figure S.5.6: Phase diagram of inaccessible regions. In hatched regions the combination of the parameters is
such that the expression for the tube radius eq. (S.5.9) becomes complex. In these regions our approach breaks
down. The X -axis indicates the area coverage fraction of the proteins c, which varies from zero, no coverage,
to one, full coverage. The Y - axis indicates one of the model parameters, while the other two are fixed. (left) α
is variable while H̄0p = 1.5 and κ̄p = 2. (middle) H̄0p is variable while α= 2.5 and κ̄p = 2. (right) κ̄p is variable
while α= 2.5 and H̄0p = 1.5.

Figure S.5.7: Full phase diagram of inaccessible regions. Solid points indicate the combination of parameters
for which the expression for the tube radius eq. (S.5.9) is not complex.
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4
FLIPPY: USER FRIENDLY AND OPEN

SOURCE FRAMEWORK FOR LIPID

MEMBRANE SIMULATIONS

Eukaryotic cells are both encapsulated and compartmentalized by lipid bilayer mem-
branes. More than just acting as boundaries, the shapes of these membranes influence the
function of the cell and its compartments. Physically, membranes are two dimensional
fluids with complex elastic behavior, which makes it impossible, for all but a few simple
cases, to predict membrane shapes analytically. Instead, the shape and behavior of bio-
logical membranes can be determined by simulations. The setup and use of such simula-
tions however require a significant background in programming. Open-source and user-
friendly packages for these simulations are currently lacking. Here, we present “flippy”, an
open source package for simulating lipid membrane shapes, their interaction with pro-
teins or external particles, and the effect of external forces. Our goal is to provide a tool
which is easy to use without sacrificing performance or versatility. “flippy” is an imple-
mentation of a dynamically triangulated membrane. We use a mathematically rigorous
way of discretizing the surface, which is independent of the topology and thus can be used
for flat, spherical or tubular membranes. This discretization also allows the inclusion of
local spontaneous curvature. Finally, in flippy we can also include regions of purely elastic
(non-fluid) membranes, and thus explore a rich variety of shapes as encountered in living
systems.

This chapter is based on: G.Dadunashvili, T Idema, flippy: User friendly and open source framework for lipid
membrane simulations (in preparation)
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1. INTRODUCTION
Lipid bilayer membranes form the envelopes of all known cells, and of many organelles
contained in cells. These biological membranes are highly flexible materials, capable
of adopting many nontrivial shapes, corresponding to specific cell functions and in re-
sponse to environmental circumstances. Therefore, we can infer which processes are
going on inside a cell or organelle from the shapes of their membranes [1]. The inverse
of this is also true in synthetic biology. In recent years attempts have been made to create
aspects of membrane bounded, self replicating systems from bottom up [2–5]. Achieving
symmetric division, that is stable over many generations, is a major challenge in bottom
up assembly of living cells. A key part of the problem is to understand how membrane
reshaping is driven by external mechanical and chemical cues. Unfortunately predict-
ing shapes of membranes analytically is very difficult, and therefore limited to cases of
membranes with few constraints and high symmetry. Even numeric solutions to ana-
lytic equations are usually only possible in highly symmetric cases. In order to predict
membrane shapes for generic problems we need to use simulations. If we are inter-
ested in large scale membrane reshaping then full atomistic simulations are out of ques-
tion due to computational constraints. Luckily there are several types of simulations
to choose from, which describe the membrane on a coarse grained level, like self as-
sembled membranes [6], phase fields based methods [7] and dynamically triangulated
membrane Monte Carlo (DTMMC) simulations [8]. The latter method is very appealing
from a theoretical perspective since it is based on minimizing membrane surface energy,
which makes the interpretation of results easy and leaves an opportunity to connect the
findings to an analytical model [9]. Thus, it is not surprising that the method of dynami-
cally triangulated membrane simulations has found broad adoption in the field and has
been used to model diverse set of experimental systems from membranes responding to
osmotic conditions [9] and shear flow [10], to interactions of membranes with colloidal
particles [11–15] and with proteins [16–18].

The apparent popularity of DTMMC simulations coupled with the rareness of pub-
lication of simulation code is the primary reason that compelled us to write the flippy
software package. The biggest strength of an open source project is that it can grow and
improve through the input of the community. While DTMMC simulations are popular,
they are hard to write, and even harder to optimize. Even with only basic functionality, a
DTMMC code quickly becomes large and hard to maintain. Therefore, to make further
progress in development of DTMMC simulations, we need an open source library with a
vibrant community and developer base around it. flippy is designed with this objective
in mind.

2. DESIGN AND IMPLEMENTATION

2.1. DESIGN GOALS

In our opinion, an ideal simulation framework for membranes would not involve pro-
gramming at all on the side of the end user. Simulating a membrane under a certain
physical constraint would be akin to conducting the same experiment. This approach
would drastically reduce the barrier to simulations. A fully interactive framework would
only require the understanding of the experimental setup, and enable experimental re-
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searchers to directly compare their results to simulations. With this end-goal in mind,
we designed a relatively small software library with a manageable amount of content.
This starting point allows us to grow the library slowly, based on user feedback. Even
though using a c++ library requires much more knowledge than just using interactive
software, we keep user-friendliness and a high level of abstraction as our primary goals.
We want our package to help biophysicists to get to implementing the specifics of their
system, without needing to reinvent the wheel and code the whole dynamically triangu-
lated membrane from scratch.

2.2. MATHEMATICAL BASIS OF THE IMPLEMENTATION
Since we aspire to a user-friendly framework, flippy needs to implement utilities that will
be used in almost every DTMMC simulation. This means that the triangulation provided
by flippy needs to keep track of several key geometric quantities, like the local curvature
vector, local area and local unit bending energy of each node. We also keep track of the
global counterparts of these quantities, i.e. the total area and total unit bending energy of
the triangulated shape. Since total curvature vector does not have a widely used physical
interpretation, flippy does not keep track of that quantity. In addition, flippy also needs
to keep track of the global volume of a triangulation , if the volume is mathematically
defined for that shape. For the definitions of these quantities, we follow Guegen et al.[9].
Each node i has a local neighbourhood of nodes (its next neighbours). These nodes are
stored in a counterclockwise manner (see fig. 2.1A), such that a cross product of edge
vectors ℓ⃗i j and ℓ⃗i j+1 that point from node i to nodes j and j + 1 respectively, always

points to the outside of a triangulation. The definition of an edge vector ℓ⃗i j is given by

ℓ⃗i j = x⃗ j − x⃗i , (2.1)

where x⃗i is the lab frame coordinate of the i -th node. The counterclockwise orientation
of next neighbours guarantees that all face normal vectors

n⃗i , j , j+1 = ℓ⃗i j × ℓ⃗i j+1 (2.2)

can be relied to point to the outside of the shape. We want to assign an area Ai to each
node, which does not overlap with the areas of the neighbouring nodes (highlighted red
in fig. 2.1B). This means that we need to construct a Voronoi cell around each node.
Following the construction in [19], the area of a Voronoi cell of node i inside a triangle
i , j , j +1 is given by

Ai j = 1

8

(
cot

(
α

j+1
i j

)
∥ℓ⃗i j ∥2 +cot

(
α

j
i j+1

)
∥ℓ⃗i j+1∥2

)
, (2.3)

if the triangle i , j , j +1 is not obtuse (in the case of the obtuse triangle the Voronoi area
extends outside that triangle and thus overlaps with areas of other nodes). The angles

α
j+1
i j andα j

i j+1, are the angles of the corners at the neighbours j +1 and j opposite to the

edges i , j and i , j +1 respectively (see fig. 2.1B). Accounting for the possibility of obtuse
angles, we get a conditional expression for the area A′

i j , belonging to the node i inside
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the triangle i , j , j +1 as

A′
i j =


Ai j , if triangle i , j , j +1 is not obtuse
1
2 Ai , j , j+1, if triangle i , j , j +1 is obtuse at node i
1
4 Ai , j , j+1, if triangle i , j , j +1 is obtuse at node j or j +1

(2.4)

where Ai , j , j+1 is the area of the triangle i , j , j +1 (see fig. 2.1C). Summing the node areas
inside each triangle gives us the total node area

Ai =
∑

j
A′

i j . (2.5)

The curvature vector of the node i is then defined as

K⃗i = 1

2Ai

∑
j

(
cotα j+1

i j +cotα j−1
i j

)
ℓ⃗i j . (2.6)

Figure 2.1: Visualization of the triangulation. A: Triangulated sphere with Nnodes = 2252. Black edges high-
light the local neighbourhood of a node. Circular arrows show the counterclockwise orientation of the nodes.
This choice guarantees that all normal vectors point to the outside of the sphere. B: An arbitrary node i , with

its curvature vector K⃗i and a highlighted angle α
j
i , j+1 at neighbour j opposite to the edge i , j +1. Superscript

j denotes the neighbouring node to which the angle belongs and subscript i , j +1 denotes the edge opposite
of the angle. C: Node i with its associated Voronoi area Ai highlighted in red. The node has an associated area
inside each triangle it is part of. We also highlight the triangle i , j , j +1 (light red with stripes) with the face nor-
mal n⃗i , j , j+1 and the area Ai , j , j+1. The part of this triangle that is associated to node i is highlighted in dark red
and has the area Ai j . The convention here is to use the central node and the right most node in the subscript.
Since the nodes are ordered counterclockwise this convention is unambiguous. D: Volume associated to node
i is made up of tetrahedrons, that have as their base the triangles that make up the Voronoi cell of the node.
The head of the tetrahedron points to some lab frame origin O . Vi j is the part of the volume associated to node
i that has its base in the triangle i , j , j +1.
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This vector can be used to calculate the mean curvature at the node

|Hi | = 1

2
∥K⃗i∥. (2.7)

For closed shapes, flippy can also calculate their volume. To do so, we connect every
triangle that makes up a node’s Voronoi cell to the origin of the lab frame to create tetra-
hedra with signed volumes (see fig. 2.1D)

Vi j = Ai j x⃗i ·
n⃗i j , j+1

∥n⃗i j , j+1∥
. (2.8)

The local sum over the volumes of these tetrahedra gives us the node associated volume

Vi = x⃗i ·
∑

j
Ai j

n⃗i j , j+1

∥n⃗i j , j+1∥
, (2.9)

which could be positive or negative depending on the position of the lab frame. Thus
the local node volume does not necessarily have a physical interpretation, but the sum
over all node volumes gives the correct total volume enclosed by the triangulation.

2.3. LANGUAGE CHOICE
flippy is implemented in c++, more specifically in the most modern standard of it (as of
writing c++ 20). Since we aspire to develop a user-friendly package with low barrier to
entry, one might expect flippy to be implemented in a scripting language that has a wide
adoption. While it is true that a scripting language like Python would make the instal-
lation and adoption of the package much easier, the sacrifice in speed would make the
code far less useful. Thus having an implementation in a compiled language is neces-
sary to create fast simulations that enable users to quickly try out different parameters
and get quick feedback. This is also more compatible with our end goal of creating a real
time interactive simulation framework, since then the language implementation will be
completely hidden from the end user, but the improvement in speed will be crucial.

DEPENDENCIES

The fact that c++ does not have a centralized package manager usually makes it hard
to obtain or use external libraries. In our experience this is in fact the largest inconve-
nience, related to using the c++ language. In order to minimize this friction as much as
possible, we opted to implement a header only library and eliminate almost all external
dependencies. Our code only relies on an external JSON parser to easily save simulation
data, but this parser is itself licenced under the same open source licence as flippy which
enabled us to bundle it with flippy [20]. This makes using our software package as easy
as it gets for c++ libraries.

2.4. TESTING AND BUG REPORTING
Every large code base is prone to hidden bugs and unexpected behaviours in new use
cases. In order to minimize errors we implemented an extensive unit testing framework,
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and we are happy to report that our code base has over 95% coverage. This means that
almost every function that is implemented in our base is covered by at least one test
case, and we intend our libray of unit tests to continuously grow. We are aware that unit
tests cannot guarantee that the code is bug free, and we intend to use the bug reporting
facilities of the github repository to enable our users to report bugs and help improve the
package.

3. RESULTS
In this section we want to demonstrate flippy’s ability to abstract away the implementa-
tion details of a dynamic triangulation and Monte Carlo updating scheme. To this end,
we want to go through the process of simulating a simple experimental system of a de-
flated giant unilamellar vesicle (GUV), and use flippy to predict the equilibrium shape of
the vesicle. The full code of this simulation can be obtained on github, for more details
please see the Availability and future directions section. In the following text we will only
present the key elements of the code.

The system of a deflated GUV can be modeled by the following surface energy

Esurf =
κ

2

∫
dA(2H)2 +K A

(A− At )2

At
+KV

(V −Vt )2

Vt
, (3.10)

Where κ is the bending rigidity and H is the local mean curvature of the membrane. The
integral

∫
dA goes over the whole area of the vesicle. This part of the energy describes

the tendency of the biological membranes to minimize their local square mean curva-
ture [21, 22]. The Lagrange multipliers K A and KV fix the area A and volume V to their
target values At = A0 = 4πR2

0 and Vt = 0.6V0 = 0.6 4π
3 R3

0 , where R0 is the radius of the ini-
tial (pre deflation) spherical GUV. Since the deflation of the vesicle does not change its
area, we keep it fixed to the initial value. However, the target value of the volume is fixed
to 60% of the initial volume, to account for deflation. We picked 60% of the initial volume
because, for this value we expect the equilibrium configuration to be a biconcave shape,
providing an easy visual way to judge the success of the simulation.

In order to model this system with flippy we need to define an energy function. Since
this energy will be used by the MonteCarloUpdater, its signature needs to follow a spe-
cific convention

double surface_energy (fp :: Node <double , int > const &,
fp :: Triangulation <double , int > const & ,
EnergyParameters const & )

where the first argument needs to be a flippy Node type, representing the node which
is being updated, the second argument needs to be a Triangulation type represent-
ing the triangulation that is being updated, and the third argument can be any type,
and is intended to be a user defined data struct containing all the parameters of the
energy function. The actual function body is then a straight forward implementation
of eq. (3.10)

double surface_energy ([[ maybe_unused ]] fp :: Node <double , int > const & node ,
fp :: Triangulation <double , int > const & trg ,
EnergyParameters const & prms ){
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double V = trg. global_geometry (). volume ;
double A = trg. global_geometry (). area;
double dV = V-prms.V_t;
double dA = A-prms.A_t;
double energy = prms. kappa *trg. global_geometry (). unit_bending_energy +

prms.K_V*dV*dV/prms.V_t + prms.K_A*dA*dA/prms.A_t;
return energy ;

}

here the first variable in the function signature is designated [[maybe_unused]], since
in this particular implementation of the energy we are not interested in local properties
of any given node and thus do not use this variable.

The second step in the implementation of the model is to declare a triangulation:

fp :: Triangulation <double , int > tr(n_triang , R_0 , r_Verlet );

where the template parameters double and int specify which internal representation
of floating point and integer numbers the Triangulation class is supposed to use. The
first argument of the instantiation n_triang specifies the level of triangulation, which
sets the fineness of the mesh. The second argument R_0, sets the initial radius of the
triangulated sphere and the last argument r_Verlet, relates to the implementation of
membrane self intersection avoidance. flippy implements a Verlet list to check spatial
closeness of the nodes efficiently [23].

The third step is to declare a Monte Carlo updater, that will use the energy function
to update the triangulation according to a Metropolis algorithm [24]:

fp :: MonteCarloUpdater <double , int , EnergyParameters ,
std :: mt19937 , fp :: SPHERICAL_TRIANGULATION >

mc_updater (tr , prms , surface_energy , rng , l_min , l_max );

The signature of this class instantiation is quite large since the updater needs to have
knowledge of the energy function, all necessary update parameters and the triangula-
tion. The first two template parameters specify the internal representation of numbers
just like in the case of the Triangulation class, it is important that these parameters are
the same in both case. EnergyParameters specifies the user defined struct type name,
that contains the parameters used inside the energy function. std::mt19937 specifies
the type of the random number generator that we will be providing to the updater, for
generating random numbers for the Metropolis algorithm. The last parameter specifies
the type of the triangulation (currently spherical and planar triangulations are possible).
The instance of the updater itself has six arguments, the first four provide the updater
with references to the already declared instances of triangulation class, energy param-
eters struct, energy function and random number generator. The last two arguments
specify minimum and maximum allowed distances between the nodes of the triangula-
tion. All the complexity of creating and maintaining a dynamic triangulation is hidden in
the above three conceptual steps; define the energy, initiate a triangulation, and initiate
an updater that will use the energy to update the triangulation. All that is left to do is to
create an update loop that specifies in what order and how often we want to update the
triangulation. A simple example of this would be the following:

for(int mc_step =0; mc_step < max_mc_steps ; ++ mc_step ){
for (int node_id : shuffled_ids ) {
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displ = { displ_distr (rng), displ_distr (rng), displ_distr (rng )};
mc_updater . move_MC_updater (guv[ node_id ], displ );

}
std :: shuffle ( shuffled_ids . begin (), shuffled_ids .end (), rng );
for (int node_id : shuffled_ids ) {

mc_updater . flip_MC_updater (guv[ node_id ]);
}

}

where in every update step, we loop over each node and use the methods that are part of
the MonteCarloUpdater class to move nodes and flip bonds. Between the move and flip
passes over the nodes we shuffle the shuffled_ids vector, which was defined before the
loop and contains the ids of the nodes.

The MonteCarloUpdater class is provided by flippy because, a Metropolis updating
scheme is a popular one. However, the Triangulation class itself is completely agnos-
tic towards the updating scheme that is used on it. The user is free to implement another
updating scheme if the Metropolis algorithm is not suitable to their problem, and still be
able to use the triangulation provided by flippy. This also enables us to easily extend
flippy with new updaters.

Finally, we want to address the question of data serialization. To make the saving of
the state of the simulation easy, flippy’s Triangulation class has a method that saves
the representation of the data as a json object, which is a text-based human-readable
data format [25]. flippy comes bundled with an open source json parser [20]. A single
statement is sufficient to create json data of the current state of the triangulation

fp :: Json data = tr. make_egg_data ();

and a utility function in flippy allows to save this data to a text file as follows:

fp :: json_dump (" test_run_final ", data );

The make_egg_data methods naming refers to the fact that this json data contains the
necessary information to reinitialize the triangulation (like an egg contains all the nutri-
ents for the chicken that will hatch from it), thus allowing the user to continue simulation
from a save-file. If we use this simple code [26] (which is comfortably below 100 lines,
including all imports, variable definitions and comments) we will obtain (in few min-
utes) the expected biconcave shape (see fig. 3.2 B and C). This example shows clearly
that flippy is capable of simulating a simple physical system in few lines of code, where
all unnecessary complexity is abstracted away in the library and all the complexity that
is still left in the user written code, contains necessary information about specific char-
acteristics of the simulated system in question. And importantly this abstraction and
simplicity does not come at the cost of unreasonable runtime of the simulation.

4. AVAILABILITY AND FUTUREDIRECTIONS
The source code of flippy is currently available on github [27]. The code used for the
simulation in the Results section is also part of flippy’s github repository, and the most
up-to-date version of it can be found in the demo/biconcave_shapes_MC folder of the
repository [27]. The version of the code that was most up to date at the time of writing
this paper, and was used to generate the code snippets in the Results section as well as
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Figure 3.2: Result of the Monte carlo Simulation The triangulation consisted of 642 nodes. A: Initial condition.
A slightly oblate spheroid. B: Simulation that ran for 104 Monte Carlo steps per node (took 10 seconds). C:
Simulation that ran for 105 Monte Carlo steps per node (took approximately 7 minutes). C is not a longer run
of B but a new simulation that ran longer than B. All simulations were done on Intel i7-8650U 1.9GHz processor.

the data for fig. 3.2, can be found in reference [26] We use this code for several projects
internally and have developed a robust workflow for introducing updates. New features
are first used and tested by us before incorporating it into flippy, which makes easier
to detect and eliminate problems that slip by our unit testing framework. We intend to
maintain and develop the code for years to come, while feedback and contributions from
users are highly encouraged.
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Mostowy, J. G. Snedeker, A. Šarić, et al., “Mechanical force induces mitochondrial
fission”, Elife 6, e30292 (2017).

[17] G. Kumar, N. Ramakrishnan, and A. Sain, “Tubulation pattern of membrane vesi-
cles coated with biofilaments”, Physical Review E 99, 022414 (2019).
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5
EMERGENT ORDER IN A

CONTINUOUS STATE ADAPTIVE

NETWORK MODEL OF LIVING

SYSTEMS

Order can spontaneously emerge from seemingly noisy interactions between biological
agents, like a flock of birds changing their direction of flight in unison, without a leader
or an external cue. We are interested in the generic conditions that lead to such emergent
phenomena. To find these conditions, we use the framework of complex networks to char-
acterize the state of agents and their mutual influence. We formulate a continuous state
adaptive network model, from which we obtain the phase boundaries between swarming
and disordered phases and characterize the order of the phase transition.

This chapter is based on: C.T. van de Kamp, G. Dadunashvili, J.L.A. Dubbeldam, T Idema, Emergent order in a
continuous state adaptive network model of living systems.
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1. INTRODUCTION
Swarming is a collective phenomenon which is encountered in many biological systems,
such as schools of fish, swarms of locusts and flocks of birds. Some swarming phenom-
ena in biological systems can be guided by external cues, or a leading individual, but a
large variety of biological systems display spontaneously emerging, self-organized group
behavior [1]. Even unicellular organisms, such as the bacterium E. coli and the amoeba
D. discoideum, have been observed to display such collective behavior [2].

Models of swarm formation can be broadly put into two categories. The first group
we call mechanistic models. Their microscopic interactions are solely based on first
principles, and they do not encode the tendency to order explicitly. This works well if
all microscopic forces that determine the dynamics are known. Such models have been
successfully used to describe the dynamics of self propelled particles of different shapes
that exhibit exclusion interactions [3–5]. The second group, that we call heuristic mod-
els, are well exemplified by opinion formation in social groups. We know that people
can convince others to join their cause. However, we do not yet understand the details
of how one individual can cause another to form an opinion, thus we have a need for a
heuristic rule that postulates how two individuals can form a consensus. Such heuristic
treatment is in general needed when it is clear that there is a microscopic tendency to
align, but we do not know the details of interactions; in context of opinion dynamics,
such a model was first put forward by Vicsek et al. [6].

Giving up the connection to the mechanistic first principles opens a door to an in-
teresting opportunity. One can recognize that the heuristic of be more like your neighbor
is now the central aspect of the evolution of the system, instead of spatial dynamics of
the particles. Thus we are shifting our attention from spatial dynamics to the topology
of interactions, a problem for which the language of complex networks is uniquely well
suited. In this framework the system is represented by a dynamic network. The agents,
corresponding to the nodes of the network, can occupy different states, representing the
direction of movement, and the changing topology of the network encodes the temporal
dynamics of the interactions. An example of such a system can be seen in fig. 1.1. One
such dynamic network model, for a system with a discrete state space, has been pro-
posed by Chen, Huepe and Gross [7]. This model predicts a first or second order phase
transition from a disordered to an ordered state, depending on the number of possible
internal states. The first order phase transition has previously been observed in agent
based models that follow the spatial dynamics of individuals, and has been confirmed
both in experiments with active matter and observations of living systems [8–10]. The
character of the transition can also depend on finite system size effects [11, 12] and on
subtle changes in the way the noise is incorporated [13]. Earlier network models [7, 14,
15] have focused on a discrete state space. All the aforementioned biological systems,
however, have a continuous state space. Our intuition from equilibrium statistical me-
chanics tells us that the nature of the state space can matter a lot [16–18]. It has been
demonstrated that in nonequilibrium systems, details affect the type of phase transi-
tion. Therefore, in this paper we investigate the swarming transition in a continuous
state space.

In this letter we present the numerical solutions of our model accompanied with an-
alytic expressions for the phase space boundary, that we found through stability analysis
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Figure 1.1: An illustration of a swarming phase transition in an adaptive network. Top: Each node represents an
agent that can point in any direction on a plane. These agents are connected to each other through links, which
represent mutual awareness. Top left: The agents do not have a common heading direction and the system
is disordered. Top right: Through interactions the agents can form a coherently moving swarm and choose
an overall heading direction. Bottom: How often a certain state occurs in the network tells us if the network
is ordered or disordered. Bottom left: different states occur with roughly the same frequency, whereas on the
Bottom right: one direction is the most common.

of the disordered phase. Our results clearly show that continuous state adaptive net-
work models are able to describe spontaneous emergence of order in active systems. We
find that the balance of time scales in the model determines the type of phase transition.
Our model has two main time scales, the time scale of information propagation through
the network, and the time scale of network reshaping. When the latter is significantly
faster than the former, we get a mean field like situation, where the network is updated
so fast that every node has contact with a random selection of nodes, replacing the link
structure by an average connectivity number. The phase transition in this case becomes
second order, while in the case that the time scales are of comparable magnitude, we
find a first order transition. A meta phase transition between the first and second order
regimes, similar to this one has been reported before in the context of active adaptive
systems [12].

2. MODEL

We model a system of self-propelled particles with a constant speed and changing di-
rection in two dimensions. Each particle corresponds to a node in a network, with an
internal state that represents the direction of movement. We represent this internal state
by an angle θ ∈ (−π,π]. Nodes may be connected by links, indicating mutual awareness.
We will refer to individuals connected by a link as neighbors.

In our system not only the states of individual agents can evolve dynamically, but
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Figure 2.2: (a-c) Illustration of the dynamic rules of the model. The internal state of each node (circle) is
represented by the direction of the arrow. These dynamics take place irrespective of any additional links that
may be present, but are not drawn. (d-g) Visualization of interaction subgraphs. Every subgraph depicts a
node in state θ that is interacting with its neighbors. f (θ), l2(θ,θ′; t ), l3(θ;θ′,θ′′; t ) and l∗(θ;θ′,θ′′θ′′′; t ) are the
relative densities of the respective subgraphs in the network at time t .

also the relationship of the agents with their surroundings. Analogously to [7], we distin-
guish four types of dynamics, given by four rules:
Rule 1 Individuals spontaneously change their heading direction to another uniformly
chosen direction with rate w0.
Rule 2 Individuals adopt to the average direction of two neighbors with rate w2.
Rule 3 Arbitrarily chosen not-neighboring individuals become neighbors with a cou-
pling rate c.
Rule 4 Arbitrarily chosen neighbors loose mutual awareness with a decoupling rate d .

An illustration of the model is given in fig. 2.2. The first two rules are comparable
to the rules in the Vicsek model [6]; rule 1 is similar to the noise that is added to each
particle’s updated heading direction, whereas rule 2 corresponds to the tendency of in-
dividuals to align with their neighbors within a certain radius. The radius is modeled in
the network with the links, since we do not keep track of the physical position of indi-
viduals in space. The interactions described by rule 3 and rule 4 are needed since non-
neighboring individuals, moving in different directions, might become aware of each
other and conversely individuals which are neighboring, but head in different directions,
may loose mutual awareness; therefore, their link must be created or removed respec-
tively. Since we want to look at the behavior of groups comprised of agents of the same
species, we assume that the rates are global. We define the state distribution function
f (θ; t ) which represents the fraction of the agents in the state θ ∈ (−π,π] at time t . Thus
the integral of f (θ, t ) over the whole domain is normalized at any time. The cartoon in
fig. 1.1 is an illustration of such a state density that starts out as a random, noisy distri-
bution over the states and evolves into a state corresponding to a collective motion in
one predominant direction. Moreover, we define the link distribution function l2(θ,θ′; t )
as the density of neighboring individuals, one of which is heading in direction θ while
the other one has direction θ′, at time t . Note that in contrast to f (θ; t ), the link density
l2(θ,θ′; t ) is not normalized since the overall number of links can grow or shrink, making
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the normalization of l2 time dependent. We also define higher order interaction terms
like the path-like three node and star-like four node subgraph densities l3(θ;θ′,θ′′; t ) and
l∗(θ;θ′,θ′′,θ′′′; t ) analogously. A visual representation of these subgraphs can be seen in
fig. 2.2. We note that the link density functions obey certain symmetries. In particular,
we have l2(θ,θ′; t ) = l2(θ′,θ; t ) and for higher order terms all non central nodes can be
exchanged in any order.

One can derive the master equations for the continuous state model using the four
rules, which govern the dynamics of the state and link density distributions. These equa-
tions can be interpreted as the extension of the master equations in [7], into the contin-
uous state set.

∂t f (θ; t ) = w0

(
1

2π
− f (θ; t )

)
+w2F int [l3;θ; t ] (2.1a)

∂t l2(θ,θ′; t ) = w0Lnoise [
l2;θ,θ′; t

]+w2Lint [l3, l∗;θ,θ′; t
]

+ c f (θ; t ) f (θ′; t )−d l2(θ,θ′; t ). (2.1b)

The first term of eq. (2.1a) scales with w0 and models the spontaneous direction changes
of nodes. F int in the second term is a functional that describes three-body interactions
that cause a change of the state of an agent. The eq. (2.1b) contains four contributions.
Lnoise accounts for changes in link density, due to the random changes of states of al-
ready linked agents. Lint represents the changes of the link density due to the changes of
states of already linked agents, but in this case the changes were induced by interactions
between neighbors. The last two terms represent the change in link density due to link
creation or deletion and scale with the rates c and d respectively. Both Lnoise and Lint

integrate to zero over the whole domain (see S.5) i.e.
∫ π
−πdθ

∫ π
−πdθ′ L = 0, thus we can

show that the overall link density, that we define as

k(t ) =
∫ π

−π
dθ

∫ π

−π
dθ′ l2(θ,θ′; t ), (2.2)

always evolves to a steady state. Integrating eq. (2.1b) over θ and θ′ yields a simple dif-
ferential equation ∂t k(t ) = c −dk(t ) which has the solution

k(t ) =
(
k(0)− c

d

)
exp(−d t )+ c

d
. (2.3)

Thus we find for the steady state link density ks = c/d . During our analysis we found
that the system was not qualitatively affected by changes in the value of ks (see S.5), so
from now on, unless explicitly stated otherwise, we will assume that ks = 1, i.e. c = d .
We will refer to both rates as the rate of link dynamics. The parameter space can be
reduced further by rescaling time with the rate w2. Going forward we will set w2 = 1,
which implies that time is measured in units of 1/w2 and all other rates are measured in
multiples of w2.

In order to solve eq. (2.1) we need to relate higher order subgraph density functions
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l3 and l∗ to the link density function l2

l3(θ;θ′,θ′′; t ) = l2(θ,θ′; t ) l2(θ,θ′′; t )

f (θ; t )
, (2.4)

l∗(θ;θ′,θ′′,θ′′′; t ) = l2(θ,θ′; t ) l2(θ,θ′′; t ) l2(θ,θ′′′; t )

f (θ; t )2 . (2.5)

We call the resulting model the moment closure approximation (MCA) model. The MCA
model can be solved directly, and we can obtain a phase space, with ordered and disor-
dered phases. In the case of a high rate of link dynamics, i.e. d →∞, the time evolution
of the link density in eq. (2.1b) leads to the steady state of

l2(θ,θ′; t ) = c

d
f (θ; t ) f (θ′; t ). (2.6)

Equation (2.6) shows that for large sampling rates, the probability of two states being
linked is proportional to the relative abundances of those states. In this case eq. (2.1a)
becomes independent of the link density and reduces to a single differential equation
for f (θ; t ). We recognize this as the mean field approximation of the full model. We call
the steady state solution of the mean field model fs (θ), which is disordered if all states
occur with same frequency i.e. fs (θ) = 1

2π . We call the solution ordered if one state is
more abundant than all others, see fig. 1.1. To properly quantify this notion of order we
introduce an order parameter a1, which is the amplitude of the first symmetric Fourier
mode in the series expansion of fs (θ), given by

fs (θ) = 1

2π

[
1+2

∑
n≥1

an cos(n(θ−θs ))

]
. (2.7)

In eq. (2.7) the an are the mode amplitudes and θs is the direction preferred in the steady
state. Since cos(θ−θs ) is a function with a single peak around θs , the contribution of the
first mode to the series expansion of fs (θ) gives us a quantitative understanding of how
ordered the system is. The atypical normalization of the Fourier series is chosen to have
0 ≤ a1 ≤ 1. Thus a1 = 0 is associated with the disordered and a1 = 1 with the ordered
state.

3. RESULTS
We first solved the model in the mean field approximation, since in this case we only have
an equation for f (θ; t ) to solve, with w0 as its only control parameter. Using the Fourier
series expansion in eq. (2.7), we can reduce the differential equation for the mean field
system to a set of algebraic equations for the Fourier modes in steady state

∂t an =
(

sin( nπ
2 )

nπ
− 1

4
−w0

)
an +

∞∑
p,q>0

γnpq

(2π)2 ap aq , (3.8)

where γnpq =∫ π
−πdθ

∫ π
−πdφcos

[
p

(
θ+ φ

2

)]
cos

[
q

(
θ− φ

2

)]
cos(nθ) . From eq. (3.8) we can extract the ex-

act value of the critical noise

wcr
0 = 1

π
− 1

4
, (3.9)
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: numerical result
: analytic approximation
: analytic result (exact)

Figure 2.3: Bifurcation diagram of the system in the mean field approximation. The order parameter a1 is
plotted versus control parameter w0. The dots represent numerical solutions, whereas the curve represents
the best analytic approximation, after closing the system of Fourier coefficients at the fourth order.

and the scaling behavior of the order parameter close to the critical point a1 ∝ (w0 −
wcr

0 )1/2. Our analytic approximation of a1 is obtained by closing eq. (3.8). This proce-
dure provides a generic n-th order polynomial for a1 if closed at that order. Thus the
best possible analytic solution is a root of a fourth order polynomial, which is plotted in
fig. 2.3 as a solid black line. This solution gets progressively worse away from the critical
point, but close to it our numerical and analytic results are in great agreement. Further-
more, we see that this phase transition is unambiguously second order and has a critical
exponent of 1/2, which was obtained analytically and is exact (see S.5).

For the MCA model we have an additional control parameter d , which sets the time
scale of the link dynamics. Therefore, we get a critical line

dcr =−9

4
−w0 + π−2

2π(w0 −wcr
0 )

(3.10)

which can be seen in fig. 3.4, as the red dash-dotted curve. The vertical red dashed line
is drawn at the value wcr

0 , this value is reached when d goes to infinity. This critical line
is obtained by linear stability analysis of the disordered state and is exact, just like the
mean field model. The disordered state becomes unstable left of the critical line. Our
numerical solutions were obtained by solving the system from an ordered initial condi-
tion. Thus the numerical solutions approach the phase transition from the ordered side.
The existence of numerical results with nonzero order parameter, on the right of the line
indicates hysteresis. Unfortunately, the methods that allowed us to obtain analytic val-
ues of the order parameter near criticality in the mean field model do not work here.
However the numerical results in fig. 3.4, clearly show a discontinuous change in the
value of the order parameter at the critical line. Together with the bistable region, this is
a clear sign of a first order phase transition. To exclude artifacts related to slow conver-
gence to steady state, we repeated the runs for 3×105 and 9×105 time steps measured
in units of 1/w2. The results remained unchanged (see S.5).
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Figure 3.4: Phase diagram for the MCA system in which both parameters w0 and d are varied. Squares repre-
sent numerical solutions. The curve is analytically determined and converges to wcr

0 for d →∞. Left from this
curve the disordered state is linearly unstable which leads to a1 > 0, such that the final system state is ordered.
Right from this curve the disordered state is linearly stable, but the system can remain ordered (blue squares)
if the initial condition of the system was ordered.

4. DISCUSSION

The continuous state adaptive network model can describe the emergence of swarming.
The key parameter in this transition is the relative strength of the noise compared to the
agent interactions. The critical noise value, at which the swarming transition occurs, can
be changed by tuning the timescale of the network dynamics. However, if this timescale,
given by 1/d , becomes much smaller than the timescale of the node dynamics, set by
1/w2, two interesting things happen. First, the region of stability shrinks and the swarm-
ing phase transition changes from a first, to a second order transition. The shrinking of
the stable region, for fast link dynamics, is surprising because, the limit of this regime is
the mean field approximation. Using the intuition from equilibrium statistical mechan-
ics, one would expect the critical noise to be higher in the case of the mean field model,
since we expect mean field models to overestimate the tendency to order. However, we
get the opposite result. The critical noise is maximal for d = 0; most likely due to the de-
coupling of the link dynamics from the state dynamics. This decoupling can slow down
the propagation of orientational information through the system. The second striking
effect seen in our system is the meta phase transition. While changing the rate of the
link dynamics, the swarming transition becomes second order. Further investigation is
necessary, but it seems that this effect can be explained by the observation that the type
of noise affects the type of phase transition. According to Pimentel et al. [19] intrinsic
noise in agent states leads to a second order transition, while extrinsic noise, caused by
imperfect sampling of neighbors, leads to a first order phase transition. This fits well with
our findings, since the mean field system only has intrinsic noise caused by spontaneous
direction change, while the MCA system introduces an additional noise source, through
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changing topology. We do not know if this meta transition happens at a finite value of
d or strictly at d →∞, but regardless of the point where the meta transition happens, it
constitutes a significant change in the behavior of the system. Biological systems that
are described by this model, would therefore not always need nucleation points, such as
small co-moving groups, for global swarms to emerge. If such systems could facilitate
a quickly changing neighborhood topology, they would be able to smoothly transition
into a swarm state.
The new model that we have put forward in this letter demonstrates that the timescale
separation between the topology- and state-dynamics of the network has a strong im-
pact on the nature of the swarming transition.
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S.5. SUPPLEMENTAL MATERIAL
Here we want to present the governing equations for the time evolution of the state den-
sity f (θ; t ) and the link density l2(θ,θ′; t ), i.e. eq. (1). These equations describe the dy-
namics according to the four rules, as given in the main text. Each rule has an associated
type of dynamics and thus an associated term in the equations of both densities, which
we indicate with a corresponding superscript. E.g. ∂t f (1)(θ; t ) accounts for the effects of
rule 1 on the time evolution of f (θ; t ). Then the general form of our equations for state
and link densities reads as follows:

∂t f (θ; t ) =
4∑

i=1
∂t f (i )(θ; t ) (S.5.11a)

∂t l2(θ,θ′; t ) =
4∑

i=1
∂t l (i )

2 (θ,θ′; t ) (S.5.11b)

DYNAMICS ASSOCIATED WITH RULE 1
The effect of the dynamics of type 1 on the state density function f (θ; t ) is captured by
the following equation

∂t f (1)(θ; t ) = w0

∫ π

−π
dθ′

1

2π

[
f (θ′; t )− f (θ; t )

]
(S.5.12)

where 1/(2π) is the probability measure of a state change, which is a uniform distribution
on the state space, since rule 1 prescribes random state changes that do not depend on
the initial and final state. Using the fact that f (θ; t ) is normalized we get

∂t f (1)(θ; t ) = w0

(
1

2π
− f (θ; t )

)
. (S.5.13)
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The change in link density due to interactions of type 1 is described by

∂t l (1)
2 (θ,θ′; t ) = w0

∫ π

−π
dθ′′

1

2π

[
l2(θ,θ′′; t )+ l2(θ′,θ′′; t )−2l2(θ,θ′; t )

]
, (S.5.14)

where the first two terms account for the creation of a θ – θ′ pair, through the change of
a single state. The last term accounts for the destruction of already existing θ – θ′ links,
through the change of one of the states, which can happen two different ways, and hence
the factor of two. Performing the integral on the last term gives

∂t l (1)
2 (θ,θ′; t ) = w0

2π

∫ π

−π
dθ′′

[
l2(θ,θ′′; t )+ l2(θ′,θ′′; t )

]−2w0l2(θ,θ′; t ). (S.5.15)

DYNAMICS ASSOCIATED WITH RULE 2
The next step will be to obtain similar equations for the second type of dynamics. For
the state density f (θ; t ), these interactions can be described as follows,

∂t f (2)(θ; t ) = w2

∫ π

−π
dθ′

∫ π
2

0
dξ

[
l3(θ′;θ−ξ,θ+ξ; t )− l3(θ;θ′−ξ,θ′+ξ; t )

]
. (S.5.16)

First term represents nodes in an arbitrary state θ′, in between two nodes that average to
the state θ. This way an extra θ node is created due to three body interactions at rate w2.
Second term corresponds to removal of θ nodes due to these interactions. We need to be
careful that we take a proper circle average of the directions. This can be implemented in
the equations by integrating over ξ from 0 toπ/2. The next differential equation captures
the change in the link density function ∂t l2(θ,θ′; t ) due to three body interactions

∂t l (2)
2 (θ,θ′; t ) =

w2

∫ π

−π
dθ′′

∫ π/2

0
dξ l∗(θ′′;θ,θ′+ξ,θ′−ξ; t ) (S.5.17a)

+w2

∫ π

−π
dθ′′

∫ π/2

0
dξ l∗(θ′′;θ′,θ+ξ,θ−ξ; t ) (S.5.17b)

−w2

∫ π

−π
dθ′′

∫ π/2

0
dξ l∗(θ;θ′,θ′′+ξ,θ′′−ξ; t ) (S.5.17c)

−w2

∫ π

−π
dθ′′

∫ π/2

0
dξ l∗(θ′;θ,θ′′+ξ,θ′′−ξ; t ) (S.5.17d)

+w2

∫ π

−π
dθ′′ l3(θ′′;θ,−θ+2θ′; t ) (S.5.17e)

+w2

∫ π

−π
dθ′′ l3(θ′′;θ′,−θ′+2θ; t ) (S.5.17f)

−w2

∫ π

−π
dθ′′ l3(θ;θ′,θ′′; t ) (S.5.17g)

−w2

∫ π

−π
dθ′′ l3(θ′;θ,θ′′; t ). (S.5.17h)

The eq. (S.5.17a) and eq. (S.5.17b) account for four-point subgraphs where one of the
nodes is already pointing in the right direction θ or θ′ and the center one can average
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with the remaining two neighbors to change into θ′ or θ respectively and thus create a θ
– θ′ link. The terms of eq. (S.5.17c) and eq. (S.5.17d), describe situations where a θ – θ′
link already exists in a star like subgraph and gets destroyed. Again, we integrate over all
ξ for which our averaging operation is defined properly. Three-point subgraphs with the
potential to form an θ–θ′ link are taken into account in eq. (S.5.17e) and eq. (S.5.17f). In
these cases θ′′ changes to θ or θ′, while the one of the neighbor nodes is already in θ′ or
θ configuration respectively. Finally, eq. (S.5.17g) and eq. (S.5.17h) account the loss term
on the three-point subgraphs level.

DYNAMICS ASSOCIATED WITH RULE 3 AND RULE 4

Since the dynamics described in rule 3 and rule 4 only affect links,

∂t f (3)(θ; t ) = ∂t f (4)(θ; t ) = 0. (S.5.18)

Link creation dynamics, between two nodes of type θ and θ′ is given by the density of
already existing nodes and the link creation rate c

∂t l (3)
2 (θ,θ′; t ) = c f (θ; t ) f (θ′; t ). (S.5.19)

Link deletion dynamics is given by the number of already existing links and the deletion
rate d

∂t l (4)
2 (θ,θ′; t ) =−dl2(θ,θ′; t ). (S.5.20)

FULL EQUATIONS

Putting everything together in eq. (S.5.11) we arrive at

∂t f (θ; t ) = w0

(
1

2π
− f (θ; t )

)
+w2

∫ π

−π
dθ′

∫ π
2

0
dξ

[
l3(θ′;θ−ξ,θ+ξ; t )− l3(θ;θ′−ξ,θ′+ξ; t )

]
,

(S.5.21a)

for the state density distribution and we can identify the definition of the functional
F int[l3;θ; t ] from the second term as

F int[l3;θ; t ] =
∫ π

−π
dθ′

∫ π
2

0
dξ

[
l3(θ′;θ−ξ,θ+ξ; t )− l3(θ;θ′−ξ,θ′+ξ; t )

]
. (S.5.22)

For the link density distribution we get
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∂t l (2)
2 (θ,θ′; t ) =

w0

2π

∫ π

−π
dθ′′

[
l2(θ,θ′′; t )+ l2(θ′,θ′′; t )

]−2w0l2(θ,θ′; t ) (S.5.23a)

+w2

∫ π

−π
dθ′′

{
l3(θ′′;θ,−θ+2θ′; t )+ l3(θ′′;θ′,−θ′+2θ; t )− l3(θ;θ′,θ′′; t )

− l3(θ′;θ,θ′′; t )

+
∫ π/2

0
dξ

[
l∗(θ′′;θ,θ′+ξ,θ′−ξ; t )+ l∗(θ′′;θ′,θ+ξ,θ−ξ; t )

− l∗(θ;θ′,θ′′+ξ,θ′′−ξ; t )− l∗(θ′;θ,θ′′+ξ,θ′′−ξ; t )
]}

(S.5.23b)

+ c f (θ; t ) f (θ′; t )−dl2(θ,θ′; t ). (S.5.23c)

The functional w0Lnoise is given by eq. (S.5.23a) and w2Lint is given by eq. (S.5.23b). As
mentioned in the main text Lnoise and Lint integrate to zero. We demonstrate this later
in section S.5, but it should already be conceptually clear, since these two functionals
account for conservative dynamics that come from the state change. No links are created
or destroyed during this type of changes, and thus we do not expect this to cause any
global changes in the overall link density.

PROPERTIES OF Lnoise AND Lint

We first show that Lnoise integrates to zero. This is done by straight forward integration,

∫ π

−π
dθ

∫ π

−π
dθ′Lnoise[l2;θ,θ′; t ] =

1

2π

∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′

[
l2(θ,θ′′; t )+ l2(θ′,θ′′; t )

]−2
∫ π

−π
dθ

∫ π

−π
dθ′l2(θ,θ′; t )

= k(t )+k(t )−2k(t ) = 0,
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where we used the definition of k(t ), as provided in eq. (2) of the main text. The proof
that Lint integrates to zero is also a straight forward integration. Writing everything out∫ π

−π
dθ

∫ π

−π
dθ′Lint[l3, l∗;θ,θ′; t ] =∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′

∫ π/2

0
dξl∗(θ′′;θ,θ′+ξ,θ′−ξ; t )

(S.5.24a)

+
∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′

∫ π/2

0
dξl∗(θ′′;θ′,θ+ξ,θ−ξ; t )

(S.5.24b)

−
∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′

∫ π/2

0
dξl∗(θ;θ′,θ′′+ξ,θ′′−ξ; t )

(S.5.24c)

−
∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′

∫ π/2

0
dξl∗(θ′;θ,θ′′+ξ,θ′′−ξ; t )

(S.5.24d)

+
∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′l3(θ′′;θ,−θ+2θ′; t ) (S.5.24e)

+
∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′l3(θ′′;θ′,−θ′+2θ; t ) (S.5.24f)

−
∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′l3(θ;θ′,θ′′; t ) (S.5.24g)

−
∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′l3(θ′;θ,θ′′; t ), (S.5.24h)

one can see that one gets pairs of equations eq. (S.5.24a), eq. (S.5.24c); eq. (S.5.24b),
eq. (S.5.24d); eq. (S.5.24e), eq. (S.5.24g) and eq. (S.5.24f), eq. (S.5.24h) that only differ by
relabeling of their integration variables but have opposite signs, so everything adds up
to zero.

S.5.1. MOMENT CLOSURE APPROXIMATION
In this section we derive eq. (3) and eq. (4) from the main text. Moment closure effec-
tively means that the probability of finding higher order structures decomposes into the
product of the probabilities of finding lower order structures. For triplets of θ′ – θ – θ′′
where θ is the middle node, like depicted in figure (2f) of the main text, this means

p(θ;θ′,θ′′; t ) = p(θ′,θ′′|θ; t )p(θ; t ) (S.5.25a)

= p(θ′|θ′′,θ; t )p(θ′′|θ; t )p(θ; t ) (S.5.25b)

= p(θ′|θ; t )p(θ′′|θ; t )p(θ; t ), (S.5.25c)

where p(θ;θ′,θ′′; t ) is the full probability of finding the triplet θ′ – θ – θ′′, at time t . Note
that the semicolon after the first argument does not denote a conditional probability,
but it simply separates the central node from the peripheral nodes. p(θ′,θ′′|θ) is the
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conditional probability that the peripheral nodes have the angles θ′ and θ′′, given that
the central node has the angle θ. p(θ; t ) is the prior probability of finding a node, which
has the angle θ, i.e. p(θ; t ) = f (θ; t ). Going from eq. (S.5.25b) to eq. (S.5.25c) we made
the closure assumption p(θ′|θ′′,θ; t ) = p(θ′|θ; t ), saying that the probability of finding
one peripheral node does not depend on the state of the other peripheral node. Now we
simply relate the probability of finding a state, to the density of states

l3(θ;θ′,θ′′; t )

∥l3∥
= p(θ;θ′,θ′′; t ) (S.5.26)

l2(θ;θ′; t )

k
= p(θ;θ′; t ) = p(θ′|θ; t )p(θ; t ), (S.5.27)

(S.5.28)

where k is the norm of the link density as defined in eq. (2) of the main text and ||l3|| is
the norm of the triplet density, defined as

∥l3∥ =
∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′l3(θ;θ′,θ′′; t ). (S.5.29)

Putting everything together, we get

l3(θ;θ′,θ′′; t ) = ∥l3∥
k2

l2(θ,θ′; t )l2(θ,θ′′; t )

f (θ; t )
. (S.5.30)

Repeating the same steps for the star like, four point subgraphs we get,

l∗(θ;θ′,θ′′,θ′′′; t )

∥l∗∥
= p(θ;θ′,θ′′,θ′′′; t )

= p(θ′,θ′′,θ′′′|θ; t )p(θ; t )

= p(θ′|θ; t )p(θ′′|θ; t )p(θ′′′|θ; t )p(θ; t )

= p(θ′,θ; t )

p(θ; t )

p(θ′′,θ; t )

p(θ; t )

p(θ′′′,θ; t )

p(θ; t )
p(θ; t )

= l2(θ,θ′; t )l2(θ,θ′′; t )l2(θ,θ′′′; t )

f 2(θ; t )k3 , (S.5.31)

where ∥l∗∥ is the norm of the density of star like subgraphs and is defined as

∥l∗∥ =
∫ π

−π
dθ

∫ π

−π
dθ′

∫ π

−π
dθ′′

∫ π

−π
dθ′′′ l∗(θ;θ′,θ′′,θ′′′; t ). (S.5.32)

Rearranging terms in S.5.31 gets us to,

l∗(θ;θ′,θ′′,θ′′′; t ) = ∥l∗∥
k3

l2(θ,θ′; t )l2(θ,θ′′; t )l2(θ,θ′′′; t )

f 2(θ; t )
. (S.5.33)

The only differences between the here derived eq. (S.5.30) and eq. (S.5.33) and the clo-
sure relations given in eq. (4) and eq. (5) of the main text, are the prefactors of ∥l3∥/k2 and
∥l∗∥/k3. These prefactors represent the topology of the underlying graphs, on which our
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dynamics take place. k is the link density, i.e. the number of links in the network relative
to the number of nodes, and since each link is shared by two nodes, we can estimate the
average node degree n = 2k. ∥l3∥ is the number of triplets a node is the center of and
∥l∗∥ is the number of quadruplets a node is the center of. In a fully connected graph
with the node degree n each node will be the center of

(n
2

)
triplets and

(n
3

)
quadruplets.

This means that the upper bounds on our prefactors are,

∥l3∥
k2 ≤ n(n −1)/2

(n/2)2 = 2+O (n−1) (S.5.34)

∥l∗∥
k3 ≤ n(n −1)(n −2)/6

(n/2)3 = 4

3
+O (n−1). (S.5.35)

The actual values will be dependent on the exact realization of the random network
topology, and one needs to make an assumption at this point. For our model we set
both of these ratios to one,

∥l3∥
k2 = 1 (S.5.36)

∥l∗∥
k3 = 1. (S.5.37)

Since these values are below the fully connected network bounds, we interpret them as
equivalent to choosing a sparse network topology.

Using the moment closure relations as given in eq. (4) and eq. (5) of the main text, we
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get a closed system of differential equations for the state and link densities,

∂t f (θ; t ) =w0

(
1

2π
− f (θ; t )

)
+w2

∫ π

−π
dθ′

∫ π
2

0
dξ

[
l2(θ′,θ−ξ; t )l2(θ′,θ+ξ; t )

f (θ′; t )
− l2(θ,θ′−ξ; t )l2(θ,θ′+ξ; t )

f (θ; t )

]
(S.5.38a)

∂t l (2)
2 (θ,θ′; t ) =

w0

2π

∫ π

−π
dθ′′

[
l2(θ,θ′′; t )+ l2(θ′,θ′′; t )

]−2w0l2(θ,θ′; t )

+w2

∫ π

−π
dθ′′

{
l2(θ′′,θ; t )l2(θ′′,−θ+2θ′; t )

f (θ′′; t )
+ l2(θ′′,θ′; t )l2(θ′′,−θ′+2θ; t )

f (θ′′; t )

− l2(θ,θ′; t )l2(θ,θ′′; t )

f (θ; t )
− l2(θ′,θ; t )l2(θ′,θ′′; t )

f (θ′; t )

+
∫ π/2

0
dξ

[ l2(θ′′,θ; t )l2(θ′′,θ′+ξ; t )l2(θ′′,θ′−ξ; t )

f 2(θ′′; t )

+ l2(θ′′,θ′; t )l2(θ′′,θ+ξ; t )l2(θ′′,θ−ξ; t )

f 2(θ′′; t )

− l2(θ,θ′; t )l2(θ,θ′′+ξ; t )l2(θ,θ′′−ξ; t )

f 2(θ; t )

− l2(θ′,θ; t )l2(θ′,θ′′+ξ; t )l2(θ′,θ′′−ξ; t )

f 2(θ′; t )

]}
+ c f (θ; t ) f (θ′; t )−dl2(θ,θ′; t ). (S.5.38b)

We used eq. (S.5.38) to obtain the numeric results for the MCA model, since it has good
numerical stability. But it is possible to simplify the equations further by exploiting the
symmetry of l2 in its arguments and factor many terms. Which we will make use of in
section S.5.3 and section S.5.4 to find the phase transition analytically.

S.5.2. MEAN FIELD APPROXIMATION

Since the closed system from eq. (S.5.38) is still difficult to analyze, both numerically
and analytically, one can simplify the model further and close it on the level of the state
density f (θ; t ). This is a good approximation for diverging rates of link dynamics i.e.
d → ∞ and c → ∞, while c/d = ks = const. Then the last two terms in eq. (S.5.38b)
dominate the dynamics of l2 and lead to the steady state,

l2(θ,θ′; t ) = c

d
f (θ; t ) f (θ′; t ) = ks f (θ; t ) f (θ′; t ), (S.5.39)
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where l2 is directly determined by the state density f , which can still change through it’s
own dynamics. Substituting eq. (S.5.39) into eq. (S.5.38a) we get,

∂t f (θ; t ) = w0

(
1

2π
− f (θ; t )

)
+w2k2

s

{∫ π
2

0
dξ f (θ−ξ; t ) f (θ+ξ; t )− f (θ; t )

∫ π

−π
dθ′

∫ π
2

0
dξ f (θ′−ξ; t ) f (θ′+ξ; t )

}
.

(S.5.40)

We used eq. (S.5.40) for numerical solutions, because it is numerically stable. But if we
recognize that ∫ π

−π
dθ′

∫ π
2

0
dξ f (θ′−ξ; t ) f (θ′+ξ; t ) = 1

4
, (S.5.41)

then, the mean field equation simplifies to

∂t f (θ; t ) = w0

2π
−

(
w0 +

w2k2
s

4

)
f (θ; t )+ w2k2

s

4

∫ π

−π
dξ f

(
θ− ξ

2
; t

)
f

(
θ+ ξ

2
; t

)
, (S.5.42)

Where we used eq. (S.5.63) to change the integration boundary of the ξ integral and
eq. (S.5.41) is a special case of eq. (S.5.65).

S.5.3. SOLUTION OF THE MEAN FIELD MODEL

CRITICAL NOISE

To obtain the value of the critical noise, wcr
0 we perform the linear stability analysis of

eq. (S.5.42), by expanding the state density around the uniform state, in Fourier modes.
In our simulations we had observed that the steady state distribution is always sym-
metric around the mean, thus we used the expansion in symmetric modes, as shown in
eq. (7) of the main text. Here we also set θs = 0, without loss of generality, and start from

f (θ; t ) = 1

2π

[
1+2

∞∑
n=1

an cos(nθ)

]
. (S.5.43)

Plugging eq. (S.5.43) in eq. (S.5.42) we get

2
∞∑

n=1
∂t an cos(nθ) =− w2k2

s

4
−

(
w0 +

w2k2
s

4

)
2

∞∑
n=1

an cos(nθ)

+ w2k2
s

4

1

2π

∫ π

−π
dξ

[
1+2

∞∑
n=1

an cos

(
n

(
θ+ ξ

2

))][
1+2

∞∑
m=1

am cos

(
m

(
θ− ξ

2

))]
=−

(
w0 +

w2k2
s

4

)
2

∞∑
n=1

an cos(nθ)+ w2k2
s

4

1

2π
2

∞∑
n=1

an 2
∫ π

−π
dξcos

(
n

(
θ+ ξ

2

))
+ w2k2

s

4

4

2π

∞∑
m,n=1

an am

∫ π

−π
dξcos

(
n

(
θ+ ξ

2

))
cos

(
m

(
θ− ξ

2

))
,
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canceling the factor of two on both sides and using,

∫ π

−π
dξcos

(
n

(
θ+ ξ

2

))
= 4sin

( nπ
2

)
n

cos(nθ),

we get,

∞∑
n=1

∂t an cos(nθ) =−
(

w0 +
w2k2

s

4

) ∞∑
n=1

an cos(nθ)+ w2k2
s

4

∞∑
n=1

an
4sin

( nπ
2

)
nπ

cos(nθ)

+ w2k2
s

4π

∞∑
m,n=1

an am

∫ π

−π
dξcos

(
n

(
θ+ ξ

2

))
cos

(
m

(
θ− ξ

2

))
.

Finally to get rid of the sums we multiply both sides with cos(pθ) and integrate over θ.
This allows us to use ∫ π

−π
dθcos(nθ)cos(pθ) =πδnp , (S.5.44)

to get the nonlinear amplitude equation

∂t an =
(

w2k2
s

(
sin

( nπ
2

)
nπ

− 1

4

)
−w0

)
an + w2k2

s

(2π)2

∞∑
p,q=1

ap aqγnpq , (S.5.45)

where we relabeled the indices p, n, m to n, p, q , and introduced

γnpq =
∫ π

−π
dθ

∫ π

−π
dξcos

(
p

(
θ+ ξ

2

))
cos

(
q

(
θ− ξ

2

))
.

To determine the linear stability of the disordered phase we only need to look at the
linear part of eq. (S.5.45),

∂t an = (wcr
0 (n)−w0)an . (S.5.46)

With wcr
0 (n) = w2k2

s

(
sin

( nπ
2

)
nπ − 1

4

)
. The solution of eq. (S.5.46) is

an(t ) = an(0)exp
[
(wcr

0 (n)−w0)t
]

. (S.5.47)

If (wcr
0 (n) − w0) > 0 for any integer n ≥ 1 than the amplitude of that mode will start

growing and will destabilize the disordered state. For this to happen wcr
0 (n) has to be

positive in the first place, which is only the case for n = 1. Then the condition for the
critical noise becomes

w2k2
s

(
1

π
− 1

4

)
−w0 > 0, (S.5.48)

and we get the general result for the critical noise

wcr
0 = w2k2

s

(
1

π
− 1

4

)
. (S.5.49)
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APPROXIMATE SOLUTION OF THE NONLINEAR EQUATION

We start by evaluating integral for γnpq , which leads to

γnpq = 2π

p2 −q2

(
ζnpq −ζnqp

)
, (S.5.50)

where

ζnpq = cos
( pπ

2

)
sin

( qπ

2

)[
(p −q)

(
δp,q−n +δp,q+n

)− (p +q)
(
δp,−q+n +δp,−q−n

)]
(S.5.51a)

= 1

2

[
sin

(
(p +q)

π

2

)
− sin

(
(p −q)

π

2

)][
(p −q)

(
δp,q−n +δp,q+n

)− (p +q)δp,−q+n

]
.

(S.5.51b)

In eq. (S.5.51b) we dropped δp,−q−n since this would lead to a−p−n which are zero be-
cause all indices must be positive. Plugging the definitions of γnpq and ζnpq in the non-
linear part of eq. (S.5.45) we get

1

(2π)2

∑
p,q

ap aqγnpq = 1

(2π)2

∑
p,q

ap aq
2π

p2 −q2

(
ζnpq −ζnqp

)
. (S.5.52a)

= 1

2π

∞∑
p,q=1

ap aq
2ζnpq

p2 −q2 (S.5.52b)

= 1

2π

∞∑
p,q=1

ap aq

[
sin

(
(p +q)

π

2

)
− sin

(
(p −q)

π

2

)][
δp,q−n +δp,q+n

p +q
− δp,−q+n

p −q

]
(S.5.52c)

= sin
( nπ

2

)
2π

∞∑
q=1

aq

(
(−1+ (−1)q )an−q

n −2q
+

(
1− (−1)q

)
aq−n

2q −n
+ (−1+ (−1)q )aq+n

n +2q

)
(S.5.52d)

= sin
( nπ

2

)
2π

(
n−1∑
q=1

(−1+ (−1)q )an−q aq

n −2q
+

∞∑
q=n+1

(
1− (−1)q

)
aq−n aq

2q −n
+

∞∑
q=1

(−1+ (−1)q )aq+n aq

n +2q

)
(S.5.52e)

= sin
( nπ

2

)
2π

(
n−1∑
q=1

(−1+ (−1)q )an−q aq

n −2q
+ (1− (−1)n)

∞∑
q=1

(−1)q an+q aq

n +2q

)
. (S.5.52f)

We relabeled p and q in the second term of eq. (S.5.52a). In eq. (S.5.52e) we again make
use of the property an = 0 ∀n ≤ 0 to constrain the boundaries of the first two sums. After
shifting the index in the second sum p → p +n we arrive at the final form eq. (S.5.52f).
Substituting eq. (S.5.52f) back into the amplitude equation, we get(

w2k2
s

(
sin

( nπ
2

)
nπ

− 1

4

)
−w0

)
an+

w2k2
s

sin
( nπ

2

)
2π

(
n−1∑
q=1

(−1+ (−1)q )an−q aq

n −2q
+ (1− (−1)n)

∞∑
q=1

(−1)q an+q aq

n +2q

)
= 0, (S.5.53)
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for steady state. Since sin
( nπ

2

)= 0 for even n, the nonlinear term is zero for even n unless
n = 2q . This leads to

a2q =
a2

q

4 w0

w2k2
s
+1

. (S.5.54)

Truncating eq. (S.5.53) up to the second mode, we get a quadratic equation for the order
parameter, which has the solution

a1 ≈ 1

4ks

(
3(1+4w0)

πw2
(wcr

0 −w0)

) 1
2

. (S.5.55)

Truncating eq. (S.5.53) up to 4th order leads to the best possible analytical approxima-
tion, that can be obtained through this method. The resulting equation for a1 was ob-
tained using the symbolic language MATHEMATICA [20] and is too large to reasonably be
displayed in this supplement. The plot of the 4th order approximation of a1 is displayed
as a solid black line in figure 3 of the main text. Truncating at 5th order already leads to
a generic quintic polynomial for a1, which cannot be solved analytically [21].

S.5.4. PHASE TRANSITION IN THE MCA MODEL

Since our numerical data shows that the phase transition in the MCA model is first order,
we expect to have two phase boundaries. One can be obtained from the stability analy-
sis of the ordered phase and the other from the stability analysis of the disordered phase.
Using the methods described in section S.5.3, we could only perform the stability anal-
ysis of the disordered phase. Analyzing the stability of the ordered phase would involve
expanding the state density f (θ; t ) around δ(θ), which is was not feasible.

STABILITY ANALYSIS OF THE DISORDERED PHASE IN MCA MODEL

Again we assume the symmetry of f (θ; t ), furthermore we assume that, at least to the
linear order in Fourier modes, we can expand l2(θ,θ′; t ) separately in its arguments, i.e.

l2(θ,θ′; t ) = ks

4π2

(
1+2

∞∑
n=1

bn cos(nθ)+2
∞∑

n=1
bn cos(nθ′)

)
+O (bnbm) (S.5.56)

= ks

4π2

(
1+2

∞∑
n=1

bn
[
cos(nθ)+cos(nθ′)

])
, (S.5.57)

where we also dropped the anti-symmetric part of the Fourier expansion. We are only
interested in stability of the state density distribution, which we assume to be symmetric,
and since to the linear order the time evolution of symmetric and anti-symmetric modes
decouples, we make the analysis easier, by only considering the symmetric modes of the
link density distribution. Note that to the linear order, there is no additional information
stored in the second variable of l2, this means that we can integrate it out to simplify
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eq. (S.5.38), which gives us

∂t f (θ; t ) =w0

(
1

2π
− f (θ; t )

)
+ k2

s

4

[∫ π

−π
dθ′

I 1
2 ,l (θ′;θ; t )

f (θ′; t )
− l 2(θ; t )

f (θ; t )

]
(S.5.58a)

∂t l (θ; t ) =w0

(
1

2π
− l (θ; t )

)
+d

(
f (θ; t )− l (θ; t )

)+ks

[∫ π

−π
dθ′

I1,l (θ′;θ; t )

f (θ′; t )
− l 2(θ; t )

f (θ; t )

]
+ k2

s

4

[∫ π

−π
dθ′l (θ′)

I1,l (θ′;θ; t )

f 2(θ′; t )
− l 3(θ; t )

f 2(θ; t )

]
, (S.5.58b)

where, we already set w2 = 1 which rescales time and

l (θ; t ) =
∫ π

−π
dθ′ l2(θ,θ′; t ) = 1

2π

(
1+2

∞∑
n=1

bn cos(nθ)
)
+O (bnbm), (S.5.59a)

I 1
2 ,l (θ;θ′; t ) =

∫ π

−π
dξ l2(θ,θ′+ ξ

2
; t ) l2(θ,θ′− ξ

2
; t ), (S.5.59b)

I1,l (θ;θ′; t ) =
∫ π

−π
dξ l2(θ,θ′+ξ; t ) l2(θ,θ′−ξ; t ). (S.5.59c)

We plugged the Fourier expansions of eq. (S.5.43) and eq. (S.5.59a) in eq. (S.5.58), and
kept only linear terms in Fourier modes. Since eq. (S.5.58) consists of much longer equa-
tions then eq. (S.5.42), we automated this process with MATHEMATICA [20] and got,

∂t

(
an

bn

)
= M ·

(
an

bn

)
, (S.5.60)

where

M =
 c2−4d 2w0

4πd 2 − c2(
πq−2sin

( πq
2

))
2π2d 2q

c2+2cd+2d 3

2πd 2

4c2 sin
( πq

2

)−πq(3c2+8cd+4d 2(d+w0))
4π2d 2q

.

 (S.5.61)

In this case the eigenvalues of M indicate the stability of the system. Only the largest
eigenvalue can become positive, which gives us a condition

wcr
0 (c,d) =

−π(
c2 +4cd +2d 3

)+2c2 +2
√

c4 +2πc2d 3 +π2d
(
2c3 +4c2d +4cd 3 +d 5

)
4πd 2 ,

(S.5.62)
for critical noise. Below wcr

0 the disordered phase is linearly unstable. We plot the critical
surface wcr

0 (c,d) in fig. S.5.5. We see that the critical surface trivially depends on c and
d . For c >> d the values of wcr

0 (c,d) become very large, which is expected since c >> d
is equivalent to a very dense network. In order to stay in the sparse network limit and
simplify the expressions, we set c = d , which is the convention that we used in the main
text. Making this substitution in eq. (S.5.62) and solving for d leads us to eq. (10) from
the main text.
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0 1 2
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1

2

Figure S.5.5: Critical surface wcr
0 (c,d). For values below wcr

0 (c,d), disordered phase is linearly unstable.

S.5.5. INTEGRAL TRANSFORMATIONS
Here we show two general results that we used to arrive at simplified forms of differential
equations. First we used the sign reversal symmetry of the ξ integral∫ π

2

0
dξ g (θ−ξ)h(θ+ξ) = 1

2

∫ π
2

− π
2

dξ g (θ−ξ)h(θ+ξ) = 1

4

∫ π

−π
dξ g

(
θ− ξ

2

)
h

(
θ+ ξ

2

)
, (S.5.63)

and after defining

I (θ) =
∫ π

−π
dξ g

(
θ− ξ

2

)
h

(
θ+ ξ

2

)
, (S.5.64)

we show a general relation,∫ π

−π
dθI (θ) =

∫ π

−π
dθ

∫ π

−π
dξ g

(
θ− ξ

2

)
h

(
θ+ ξ

2

)
(S.5.65a)

=
∫ π

−π
dξ

∫ π− ξ
2

−π− ξ
2

dθ g (θ)h(θ+ξ) (S.5.65b)

=
∫ π

−π
dξ

∫ π

−π
dθ g (θ)h(θ+ξ) (S.5.65c)

=
∫ π

−π
dθ g (θ)

∫ π+θ

−π+θ
dξ h(ξ) (S.5.65d)

=
∫ π

−π
dθ g (θ)

∫ π

−π
dξ h(ξ) (S.5.65e)

= G H (S.5.65f)

which holds for any functions g (θ) and h(θ) which are periodic on (−π,π]. We used the
property of periodicity in eq. (S.5.65c) and eq. (S.5.65e) to discard the shift of the integral
boundaries, since the integral is over the whole domain of a periodic function. And G
and H denote the integrals over the full period of the functions g and h respectively.
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My PhD was part of the BaSyC consortium, which has the goal to Build a Synthetic
Cell. My project was part of the cell division work package and as I understood it at the
time, my goal was to better understand cell division. As part of the first generation of
PhDs hired by BaSyC it was clear to me that I was unlikely to see the completion of this
immense task during my four years in Delft, and thus I would work on the fundamen-
tal parts of the problem . The question that I needed to answer early on was how I to
interpret the general goal of "better understanding cell division". The answer to these
questions was heavily informed by my training as a theoretical physicist and the existing
expertise in the Idema group. Very early on I decided to contribute to the understanding
of the physical mechanisms underlying cell division, by studying membrane mediated
interactions, which can lead to self-assembly of protein structures on the membrane
and its subsequent reshaping. In introductory chapter 1, I first elaborate on the biolog-
ical context relevant to the membrane physics, then introduce the theory behind mem-
brane mediated interactions and present several numerical methods that can be used to
model membranes and their interactions with membrane deforming objects. The early
projects that I was involved in were all based on analytical approaches which have the
great advantage of delivering easily interpretable results. These projects are presented
in chapters two and three. In chapter 2 I studied the interaction of point like force gen-
erating objects on the membrane. These point like objects are supposed to model the
action of filamentous proteins like the actin network or the microtubules that can push
into the membrane and generate force through polymerization. We found that the local
force generation by the filaments induces membrane deformations that create effective
attractive potentials between the filaments and leads to their bundling. In chapter 3 we
looked at proteins that generate local deformations instead of forces and analyzed the
role of feedback between the mixing entropy of such proteins and the change in curva-
ture and structural properties of membranes. We showed that, depending on the charac-
teristics of the proteins, the system can undergo two different types of phase separation,
which may have different implications on the shape instability of the membrane.

While working with these analytic approaches their shortcomings became clear. The
Canham-Helfrich energy (see eq. (1.2) in the introduction) gives rise a shape equations
that is highly nonlinear and contains fourth order derivatives of the shape field. This
hinders us to make any progress analytically, without strong simplifying assumptions.
This limited the analysis in the second chapter to the small deformation regime, and
we needed to employ the mean field approximation in the third chapter, which means
that while we know that the demixing is happening, we can not be sure what the result-
ing patterns look like. To overcome the limitations of analytic approaches that neces-
sitate strong approximations, it was clear that simulation methods would be necessary.
Dynamically triangulated membrane Monte Carlo (DTMMC) simulations were my the
method of choice. DTMMCs allow us to describe large scale membrane deformations
and easily simulate interactions of the membrane with deforming objects while not sac-
rificing the easy interpretability, since they are based on minimizing the discretized ver-
sion of the Canham-Helfrich energy, it is usually easy to interpret the observed effects.
The popularity of this method speaks on its own. The only problem with simulations
is a high entry barrier, necessitated by upfront setup of the simulation. In chapter 4 I
present flippy, an open source c++ library that I built and published to make DTMMC
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simulations very easy to set up, since it abstracts away several hundreds of lines of tech-
nical code into few lines of high level definitions. flippy implements the dynamic tri-
angulation and its update rules, such that the end user does not need to think about
those tedious details and can focus on higher level issues that directly relate to the sys-
tem properties that they are investigating. During the supervision of bachelor students
working on this topic, I observed that flippy can indeed shorten a period of several weeks
of simulation setup to few hours. In section 1 of this chapter I present the preliminary
results that I obtained using flippy.

1. PRELIMINARY RESULTS ON VESICLE DIVISION BY EXTERNAL

FORCES

1.1. INTRODUCTION
Division of membrane compartments is an important step for building a synthetic cell
that can grow and reproduce. In 2018 Deshpande et al. [1] published experiments on
mechanical division of liposomes through external forces. In these experiments a large
membrane compartment, a liposome, is first deflated through osmotic pressure to give
it excess area (fig. 1.1 T.1), then lead through a microfluidics setup and collided with a
wedge (fig. 1.1 T.2), which splits the liposome in two daughter liposomes (fig. 1.1 T.3), in
successful cases. This system presents an interesting opportunity to study membrane
deformations in isolation, without having to account for other actors like proteins. Our

Figure 1.1: A cartoon depiction of different stages of the liposome during the splitting experiment. P.0: assem-
bly phase where almost spherical liposomes are produced. P.1: the cells are deflated through osmotic pressure
to a fraction ν of their original volume to make volume and surface conserving splitting possible. P.2: the cell
collides with a wedge and undergoes bending and stretching. P.3: if the split was successful two new cells are
created which have half of the surface area of the original cell. z-axis is coming out of the plane and z = 0 is
chosen s.t. the experimental setup is sliced through the middle. x-axis is chosen such that the splitter is flip
symmetric with respect to it.

central interest was the modeling of the deformations induced by the wedge. It is most
convenient to predict the shape right before splitting (see fig. 1.1 (P.2)). This allows us to
sidestep the problem with unknown gaussian curvature modulus and enables us to use
the triangulated representation of the membrane that cannot easily accommodate topo-
logical changes, like splitting. We reproduced the four experimentally observed cases:
(1) symmetric splitting, in which case the daughter vesicles have similar sizes (experi-
mentally a 3% deviation in the diameter of the two daughter liposomes was reported);
(2) asymmetric division, in which case only one daughter vesicle survives the division
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and the other bursts; (3) bursting, in which case the mother liposome bursts upon en-
countering the edge and (4) snaking, where the liposome does not divide and simply
flows through on one of the sides of the wedge.

1.2. METHODS
To simulate the experimental system we implemented a Monte Carlo simulation in c++.
The vesicle was implemented as a dynamic triangulation using flippy1 [2], while the
wedge was implemented as a rigid body, that had volume exclusion interactions with
the beads of the membrane triangulation2. The membrane triangulation was updated
according to the Canham-Helfrich bending energy [4, 5]

ECH =
∫ [κ

2
dA(2H)2 + κ̄KG

]
, (1.1)

where κ and κ̄ are the bending rigidity and the saddle-splay moduls of the membrane
and H and KG are membrane’s local mean curvature and the Gaussian curvature respec-
tively. Since we are only modeling the deformation before splitting as seen in fig. 1.1 (P.2),
we can disregard the Gaussian part of the bending energy, which only changes value dur-
ing topological transitions. Bending energy can be discretized in a variety of ways on a
triangular grid. We use the builtin bending energy from flippy (presented in detail in sec-
tion 2.2), which follows the definition from Gueguen et al. [6]. In addition to the bending
energy we also enforce the conservation of area A and volume V , with harmonic poten-
tials

E A = K A
(A− A0)2

A0
(1.2)

EV = KV
(V −Vt )2

Vt
. (1.3)

The constants K A and KV penalize area and volume extension. Area is fixed to its initial
value A0 = 4πR2

0 which is the area of a sphere with radius R0. Volume is fixed to the target
value Vt = νV0, which is a fraction of the spherical volume V0 = 4π

3 R3
0 . The parameter ν

giving that fixes the ratio of the target volume and spherical volume, is the most impor-
tant parameter in the simulation. It is equivalent to the reduced volume that is usually
defined as

ν= 6
p
π

V

A
3
2

, (1.4)

which gives the ration between the actual volume (V ) of the liposome and the volume of
a sphere with the same surface area (A). The variation in the reduced volume ν is neces-
sary to reproduce the different experimental outcomes. This is in qualitative agreement
with the experiments, the reduced volume was correlated with successful division. The
interactions between the wedge and the membrane triangulation beads3 is mediated by

1We implemented the flippy software package ourself and it is described in detail in chapter 4.
2Code and data simulation data presented in this chapter can be seen online [3].
3The representation of the membrane as a triangulation of connected beads with a finite radius is discussed

in chapter 4
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a soft repulsion potential. For this interaction we used the repulsive part of the Lennard-
Jones potential

Eint =
{

Kint
( rb

d

)12
if d < rb

0 otherwise
(1.5)

where Kint is the cost of full overlap per bead, d is the distance between the center of
the bead and the closest wedge surface, rb is the radius of the bead, which also happens
to be the touching distance of the beads and the wedge surface. This potential is only
turned on if the triangulation beads actually overlap with the wedge i.e. if d < rb . The
total system energy then reads

Etot = ECH +E A +EV +Eint. (1.6)

This energy is used to update the membrane triangulation. In each update step we either
move a bead or flip a bond between pairs of beads (see fig. 1.8 from section 1.4.2 for an
illustration). The resulting change in the surface changes the total energy. We calculate
the total energy before and after an update as E old

tot and E new
tot and respectively. Then the

acceptance probability of the membrane update pm is given by the expression

pm = max(exp(∆E),1), (1.7)

with
∆E = E old

tot −E new
tot . (1.8)

Finally we have the work W performed by the flow of the fluid which pushes the lipo-
some into the wedge. We want to avoid the complications of modeling an actual fluid
flow around a vesicle, instead we push the wedge into the liposome and add the work to
the total energy. Then the acceptance probability of a wedge update pw is given by the
expression

pw = max(exp(∆E +W ),1). (1.9)

The values of the constants used in the simulation are provided in section S.1.4, together
with some explanation of how the values were chosen.

1.3. RESULTS AND DISCUSSION
Monte Carlo simulations provide us with liposome shapes deformed by the wedge. We
managed to reproduce all four cases of experimentally observed behaviour. In fig. 1.2
a) and b) we see the vesicle right before division. In both cases the wedge presses the
membrane walls together, and we identify this as successful splitting. We observe that
the lobes are not perfectly symmetric in either case and the asymmetry is more pro-
nounced in fig. 1.2 b), which leads us to believe that the asymmetric division is largely
controlled by the random configuration in which the vesicle encounters the splitter. The
configuration in fig. 1.2 c) with reduced volume ν = 0.75 is interpreted as the bursting
event. Since after the monte carlo simulation equilibrates we see that the vesicle width
is not sufficiently narrow at the tip of the wedge. Finally we show a snaking configu-
ration in fig. 1.2 d). In this case the reduced volume was too close to that of a sphere
(ν = 0.85) and the vesicle was not significantly deformed when encountering the edge
but was instead deflected to one of the sides.
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Figure 1.2: Four outcomes of the experiment reimplemented in the simulation. a) & b) Two runs of a simulation
with same initial conditions and reduced volume (ν= 0.65). We see that the lobes of the dividing liposome are
more symmetric in a) than in b). c) & d) Bursting and snaking, same initial conditions as before, with different
reduced volume parameters of ν= 0.75 and ν= 0.85 respectively.

The advantage of simulating a system is that we can get access to more information.
In this case the shape of the liposome along the z-axes is the new information that was
not accessible in the experiments, that only provided a top-down view. In fig. 1.3 we can
see four progressive snapshots of the simulation corresponding to fig. 1.2 a). From this
viewpoint we see that the wedge does not cut the liposome across its full height, but a
neck starts to form which gradually narrows to a point where it can easily be pinched.
This information together with the reported 10% leakage from the experiment strongly
indicates that the division happens through splitting of liposomes that creates small
pores on daughter vesicles, that are resealed again. According to the theory on the dy-
namics of transient pores by Brochard-Wyart et al. [7], the maximum radius (rmax) of a
pore that can automatically reseal itself, is given by a simple relation

rmax = γ

σ
, (1.10)

whereγ is the edge tension of a pore, which was estimated to be around 27pN for DOPC [8],
the same type of lipid a used in the splitting experiments. σ denotes the membrane ten-
sion which is very hard to measure or estimate and can vary anywhere between 10−3

pN/nm and 10 pN/nm [9]. The value of σ will depend on the amount of stretching that
the liposome experiences, and we believe that it will be the deciding factor for successful
splitting. Further simulations are necessary to extract an estimate of the tension in the
vesicle during division and correlate the resulting rmax values with successes and failures
in vesicle division. However, here we can provide another result that supports the idea
that in-plane tension plays the key role in the division process. We conducted the simu-
lation from fig. 1.3 again, under the same conditions with single change. We turned off
the bond flipping between the beads of the triangulation, meaning that the triangulated
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Figure 1.3: View of the collision revealing the shape of the liposome along the height of the wedge (z-axis). a)
Initial deformation during early collision (frame 69). b) Neck starts to form (frame 90). c) Neck becomes very
pronounced (frame 115) d) Final frame of the simulation with touching neck beads.

surface that describes the membrane shape was no longer fluid. This simple change
completely destroyed the neck formation process, as seen in fig. 1.4. The height of the
liposome in the middle remains the same between an early snapshot (fig. 1.4 a)) and
the final snapshot (fig. 1.4 b)), a neck never forms and membrane walls never come very
close.

In conclusion we can say that our preliminary results point strongly in favour of split-
ting and resealing of the liposome with an intermediate state of daughter liposomes with
leaky pores, as the division mechanism. We believe that this process is strongly influ-
enced by in plane tension and furthermore we see that the inhibition of fluidity of the
membrane completely destroys the neck formation process that precedes the division
of the vesicles. Suggesting that the optimal conditions for liposome division through
external forces are provided by floppy liposomes composed of lipids with high fluidity.

S.1.4. SUPPLEMENT: SIMULATION PARAMETERS

DATA AVAILABILITY

The simulation code and data of the results presented in this chapter is available for
download online [3]. The code is contained in the liposome_splitting sub-folder
and the data is contained in the data sub-folder. The simulation parameters are pro-
vided to the binary via a configuration file config.json. The data folders for different
simulations contain three files: data_reload_0.json which contains different types of
data like the total bending energy, total area, total volume etc. This data was not used in
this chapter but would be necessary for more quantitative analysis. The file data.xyz
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Figure 1.4: Triangulation of tethered beads that can not exchange their neighbours This simulation ran for the
same amount of Monte Carlo time staps as all the previous ones. If we run the simulation twice as long (not
shown here) then random fluctuations push more triangulation beads on one side of the splitter and the whole
liposome eventually snakes around it. Top panels show the top-down view and the bottom panels show the
back-to-front view of a colliding liposome. a) Initial deformation during early collision. b) final configuration
at the and of the simulation. The bottom panels look similar at the beginning and at the end of the simulation,
since no neck formation takes place.

contains coordinates of membrane beads and beads representing the wedge4 for saved
time frames; the_egg_last.json which contains the full triangulation details and the
position of the wedge from which the simulation state can be reconstructed, thus en-
abling to continue the simulation from the last frame. Both data_reload_0.json and
the_egg_last.json contain a sub-field called metadata which contains a local copy
of the config.json file which seeded the parameter values of each simulation. Even
the seed for the random number generator is saved, meaning that these simulations are
fully reproducible.

In table 6.1 we show the most important set of parameters used in the simulations
and give our motivations for choosing their specific values.

4Note that the internal representation of the wedge inside the simulation is not that of a collection of beads,
but that of an prism made of planes. It is just much simpler to visualize the wedge as a collection of beads.
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2. OUTLOOK
Looking forward, we should decide how theoretical physicists can contribute to the en-
deavour of artificial cell division in BaSyC. If we take the completion of the initial goals
(i.e. actually building a synthetic cell) seriously, then I believe that there is very little
room for purely theoretical projects in the cell division work package of BaSyc. Build-
ing something is a very applied task from the point of view of a theoretical physicist and
to contribute to the process of building, the transition out of the fundamental research
phase is crucial. Which entails heavy utilization of computational methods to model
specific experimentally inspired scenarios of vesicle division. We developed flippy with
exactly this application in mind. Lowering the barrier to model a diverse set of exper-
imental conditions and a short feedback cycle between experiment and theory will be
essential to construct a dividing membrane compartment.
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parameter name
in simulation

symbol
in latex

value [units] note

bead_diameter db = 2rb 1.0 [a.u] Canham-Helfrich theory is scale in-
variant so there is no natural length
scale in the simulations. Beads as the
smallest objects are used as the length
unit.

R_guv R0 10 [db] This value was chosen such that the
triangles were not too large.

N/A kBT 1 This value is not explicitly set in the
parameters but is implicit in the code.
Sets the energy scale of all other pa-
rameters.

bending_rigidity N/A 10 [kBT ] Typical literature value (at least or-
der of magnitude) for lipid membrane
bending rigidities [10].

K_A N/A 1000
[kBT /d 2

b ]
Large enogh to fix the target value well.
Discovered through trial and error.

K_V N/A 600 [kBT /d 3
b ]

K_int Ki nt 50 [kBT ] We chose a large value to be sure that
the exclusion interactions are close to
hard body exclusion.

area_target A0 4πR2
0 Area is fixed to that of the initial sphere

volume_target N/A varying be-
tween 0.65V0

and 0.85V0

Target volume is the control parame-
ter. We change it between the regimes
where there is plenty of excess area for
two daughter spheres to where there is
not enough.

work N/A 10000 [kBT ] Large enough for updates to happen

max_to_average
_bond_length
_fraction

N/A 2.5 If the edges of the triangles in the
membrane triangulation are allowed
to stretch too much the membrane
can start self intersecting and non
physical configurations will start min-
imizing the energy. This sets the ration
between the maximum bond length
and the initial average bond length.
This value was chosen after some trial,
it works well.

N_bond_flips_per
_mem_update

N/A varying, 0 or 1 Number of bond flip updates per
move update. Setting it to 0 turns of
the bond flip update.

full_opening_angle N/A 70° Angle of the wedge tip, value is the
same as in the experiment.

Table 6.1: Most important parameters used in the simulations.
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