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a b s t r a c t

Articular cartilage (AC) is an avascular and flexible connective tissue located on the bone surface in the
diarthrodial joints. AC defects are common in the knees of young and physically active individuals.
Because of the lack of suitable tissue-engineered artificial matrices, current therapies for AC defects, espe-
cially full-thickness AC defects and osteochondral interfaces, fail to replace or regenerate damaged carti-
lage adequately. With rapid research and development advancements in AC tissue engineering (ACTE),
functionalized hydrogels have emerged as promising cartilage matrix substitutes because of their favor-
able biomechanical properties, water content, swelling ability, cytocompatibility, biodegradability, and
lubricating behaviors. They can be rationally designed and conveniently tuned to simulate the extracel-
lular matrix of cartilage. This article briefly introduces the composition, structure, and function of AC and
its defects, followed by a comprehensive review of the exquisite (bio)design and (bio)fabrication of func-
tionalized hydrogels for AC repair. Finally, we summarize the challenges encountered in functionalized
hydrogel-based strategies for ACTE both in vivo and in vitro and the future directions for clinical
translation.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Articular cartilage (AC) is a materially nonlinear, heterogeneous,
anisotropic, poro-viscoelastic, and highly specialized connective
tissue physiologically without lymphatic channels, blood vessels,
and innervations [1]. AC can serve to reduce the friction and bear
the load in synovial joints, allowing for translation and rotation,
which are crucial for body movements [1]. It consists mainly of
an extracellular matrix (ECM) and a few chondrocytes (less than
10% of the volume in humans) in a hierarchical structure. Collagen
fibers impart high strength and elasticity, and chondrocytes con-
tribute to producing, secreting, organizing, and maintaining
organic components in the ECM [2,3]. AC has four anatomically
and functionally distinct zones. These four zones collectively
endow the AC with several highly specialized functions. Without
timely and proper therapies, severe AC damage will ultimately pro-
gress toward joint dysfunction and disability, due to its limited
intrinsic healing. To date, the true global incidence of AC lesions
remains inconclusive. Approximately 900000 US citizens annually
suffer from knee AC damage, and more than 200000 of these
require surgical interventions [4,5]. Nowadays, clinical therapies
for AC injuries, including non-surgical and surgical approaches
(microfracture, osteochondral autografts and allografts, autologous
chondrocyte implantation (ACI), and matrix-assisted ACI (MACI)),
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Fig. 1. Schematic diagram of conventional commonly-used surgical therapies and functionalized hydrogels-based tissue-engineered strategies for AC repair, and their
advantages and disadvantages. (a) Graphical illustration of conventional surgical therapies for AC repair, including microfracture, osteochondral autografts and allografts, ACI,
and MACI, and their challenges and drawbacks. (b) Emerging functionalized hydrogel-based strategies for ACTE and their advantages. PLA: polylactide; PLGA: poly(lactide-co-
glycolide); PGA: polyglycolide; PCL: polycaprolactone; GelMA: gelatin methacryloyl; MSC: mesenchymal stem cell; iPSC: induced pluripotent stem cell; mRNA: messenger
RNA; siRNA: small interfering RNA; miRNA: microRNA; antagoMiRs: a class of antisense oligonucleotides function as anti-miRNAs. (a) Reproduced from Ref. [1] with
permission of John Wiley and Sons, � 2020; (b) partially created from BioRender.
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continue to encounter formidable challenges with inconsistent
long-term results (Fig. 1(a)). Their indications, strengths, and
weaknesses have been previously summarized [6,7]. Existing limi-
tations have vastly upgraded ACTE to a higher level by integrating
material science, engineering, and biomedical science to generate
neocartilage for restoring and repairing damaged AC. At present,
numerous tissue-engineered strategies have emerged for (bio)fab-
ricating cartilage constructs with desirable mechanical and bio-
chemical capabilities [1]. Hydrogels have become promising
materials among these strategies because of their extensive char-
acteristics and capability to entrap cells [8]. The (bio)design and
(bio)fabrication of functionalized hydrogels have recently achieved
substantial improvements, reinforcing their validity for AC repair
72
and regeneration (Fig. 1(b)). These advancements include, but are
not limited to, the progression of hydrogel structural design (e.g.,
additional components, surface ultrastructure, inner structure
and three-dimensional (3D) architecture, mechanical properties,
structural flexibility, degradation profile, and zonal organization),
novel fabrication techniques (e.g., four-dimensional (4D)
(bio)printing), and cargos (e.g., therapeutic cell loading and spa-
tiotemporally controlled presentation and release of bioactive
factors and RNA-targeting molecules). Although AC is predicted
to be successfully engineered as one of the first batches of tissues,
tremendous challenges remain, and few research directions have
advanced to the clinical trial stage. One of the key reasons for this
is the biomechanical mismatch between adjacent native cartilage
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and implanted engineered constructs. Biochemically coherent neo-
cartilage can be easily fabricated in vitro, but its immature struc-
ture (e.g., isotropic) results in inadequate biomechanics
compared with native mature AC [9,10]. As a member of AO
Research Institute Davos Collaborative Research Program of Osteo-
chondral Defect, which has been committed to AC repair for many
years, our specialty and research emphasis involve both in vivo and
ex vivo AC regeneration using different biomaterial-based strate-
gies, including various functionalized hydrogels. This review sum-
marizes the current ‘‘state-of-the-art” approaches to engineer
innovative functionalized hydrogels for AC repair, with endeavors
for successful clinical applications.
2. AC in the human body

AC is hyaline-like and located in synovial joints, including the
shoulder, elbow, hip, and knee (Fig. 2(a)). Owing to its unique com-
position and structure, repairing or restoring the osteochondral
interface in full-thickness AC defects is challenging [7]. AC injuries
can result in severe musculoskeletal morbidities. Therefore, timely
and proper diagnosis and treatment of AC are paramount for pro-
tecting joint health. Healthy AC relies heavily on maintaining
stratified biological, structural, and biomechanical properties.
Fig. 2. The physiology of AC in knee joints. (a) AC is located in synovial joints, includin
including femur, synovial membrane, AC, joint cavity, synovial fluid, and tibia. AC covers
(c) AC is organized into four main zones: the superficial zone (SZ), the middle zone (M
chondrocytes, collagen II, and glycosaminoglycans (GAGs); water contents within AC; and
diagram of the most superficial layer in AC. Three dominant macromolecules, including l
acid (HA, blue) involved in AC lubrication. (e) Hematoxylin–eosin (H&E) staining and (f)
New Zealand rabbit. The white dash line demonstrates the tidemark. (g) Safranin O/fast g
old rabbit. (h) Safranin O/fast green staining of the late stage of knee OA progression in a
from Ref. [1] with permission of John Wiley and Sons, � 2020.
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2.1. Composition, structure, and function of AC

The main function of AC is to provide a lubricated and smooth
surface to articulate and facilitate load transmission with low fric-
tion (Fig. 2(b)). AC mainly consists of the ECM and chondrocytes.
Apart from water (65%–80% of the total weight), the ECM primarily
consists of collagen, proteoglycans, and a low proportion of other
glycoproteins and non-collagenous proteins [11]. This composition
is conducive to retaining water inside the ECM, which is crucial for
sustaining its special biomechanical features. Within the ECM, rod-
like tropocollagen molecular structures (1.4 mm in diameter and
300 nm in length) polymerize to form collagen fibers with diame-
ters 25 to 40 nm.

AC has four distinct zones (Fig. 2(c)). The superficial zone (SZ) is
the thinnest layer (approximately 10%–20%) in the AC. Within the
SZ, three important macromolecules—lubricin, aggrecan, and hya-
luronic acid (HA)—are involved in AC lubrication. Maintaining very
low friction of the AC surfaces is attributed to the boundary lubri-
cation and fluid film (Fig. 2(d)). Additionally, the SZ contains flat-
tened ellipsoid chondrocytes and collagen fibrils (primarily type
II and IX collagens) that pack tightly and align parallel to the AC
surface, reinforcing its tensile strength and resistance to shear
and compressive forces. Therefore, disruption of the SZ can lead
to biological and biomechanical changes in the AC, indicating the
initial degenerative pathologies during osteoarthritis (OA)
g the shoulders, elbows, hips, and knees. (b) Brief diagram of a human knee joint,
the ends of the bones in the knee joint and plays a vital role in transmitting loads.

Z), the deep zone (DZ), and the calcified zone (CZ). The number, size, and shape of
mechanical properties of AC display a depth-dependent manner. (d) The structural

ubricin (yellow), bottle-brush-like aggrecan (dark blue), as well as linear hyaluronic
safranin O/fast green staining of the AC on the formal condyle from a 16-week-old
reen staining of an osteochondral defect (OCD) in the formal condyle of a 16-week-
Sprague-Dawley rat. The black arrow indicates the degenerated AC. (c) Reproduced
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progression. Underneath the SZ is the middle zone (MZ), which
serves as a functional and anatomical border between the deep
zone (DZ) and the SZ. In general, MZ accounts for 40%–60% of AC
and consists of large diameter collagen fibrils with oblique organi-
zations, a high concentration of proteoglycans, and low-density
and spherical chondrocytes embedded in abundant ECM. Function-
ally, the MZ provides a transition between the compressive forces
of the DZ and the shearing forces in the SZ. The DZ accounts for
approximately 30% of the total AC. Within the DZ, the collagen fib-
rils deposit radially with the largest diameters, and the proteogly-
can content is the highest, but the water concentration and
chondrocyte density are the lowest. The chondrocytes are
spheroid-shaped, and the collagen fibers are aligned perpendicular
to the AC surface. The functions of the DZ are facilitating load dis-
tribution, and empowering the greatest compression resistance.
The tidemarks (Figs. 2(e) and (f)) represent a boundary between
the DZ and the calcified zone (CZ), identifying the transition to a
less resilient subchondral bone (SB). Through anchoring to the col-
lagen fibrils of the DZ and the hydroxyapatite crystals of the SB, CZ
plays an integral role in securing the cartilage to the bone. The vol-
ume percentage of CZ varies from 3.23%–8.80% [12]. In the calcified
matrix, scarce hypertrophic chondrocytes demonstrate a very low
level of metabolism. The CZ acts as a barrier to prevent blood vessel
invasion from the SB.
2.2. The biomechanical properties of AC

The prominent roles of human AC involve avoiding abrasive
wear between the bone extremities, safeguarding the SB from
overloading, as well as bringing low-friction joint surfaces, which
are dependent on the biomechanical properties of the AC. More-
over, the biomechanical properties of AC are highly attributed to
its unique and complicated structure and its ECM composition
including a fluid phase and a solid matrix. During mechanical load-
ing, interstitial fluid is redistributed through the pores of the per-
meable matrix, leading to predominantly poro-elastic conduction.
AC displays properties such as aggregate modulus (0.1–2.0 MPa),
compressive strength (14–59 MPa), stiffness (�1MPa), tensile
resistance (15–35 MPa), tensile elongation at break (80%), and
Poisson’s ratio (0.06–0.30) [13,14].
y https://www.clinicaltrails.gov.
2.3. AC defects

AC injuries contain a broad scope of damage, ranging from par-
tial AC defects to osteochondral defect (OCD) (Fig. 2(g)) and end-
stage degenerative OA (Fig. 2(h)), which is largely aggravated and
perpetuated by inflammatory flares. AC defects usually derive from
traumatic destruction or degenerative joint diseases and most
commonly occur in the knee joint. Patients with AC defects experi-
ence inflammation, stiffness, and restricted mobility. A compre-
hensive grading system has been formulated by the International
Cartilage Regeneration & Joint Preservation Society (ICRS) for the
evaluation of focal cartilage lesions [5]. Among them, the two
major categories are partial-thickness and full-thickness AC
defects. The difference between them is whether the damage
involves the underlying SB. The former defects only cause injuries
in zonal AC and result in insufficient self-healing responses. How-
ever, the latter have injuries that penetrate both the AC and SB.
Therefore, defect sites have full access to blood cells, macrophages,
and mesenchymal progenitor cells, bringing to the spontaneous
immune responses coupled with healing processes. Unfortunately,
a common result at the defect site is fibrocartilages with undesir-
able biomechanics and permeability, triggering a transient sponta-
neous repair process and subsequent AC degeneration. Although
sporadic chondrogenesis may still occur, perfect resurfacing is rare,
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resulting in bone-to-bone articulation accompanied by significant
pain, inflammation, and disability.
3. Tissue-engineered cartilage for AC regeneration

At present, numerous AC repair and regeneration techniques
have been extensively used, and some have achieved desirable
clinical results to some degree, according to properly chosen indi-
cations [15,16]. Nevertheless, every prevailing approach possesses
its pros and cons, and none, individually or in combination, can
provide most patients with reliable long-term efficacy. Therefore,
the research and development (R&D) of innovative technologies
and further optimization of existing therapeutic strategies are of
paramount importance. As an emerging interdisciplinary area, tis-
sue engineering (TE) fully exploits the basic theories and methods
of various subjects (e.g., material science, engineering, chemistry,
and biomedical science), aiming to (bio)fabricate biomimetic sub-
stitutes for restoring, maintaining, or improving the functionality
of impaired tissues [17]. TE involves using various cell sources,
scaffolds, and bioactive factors, leading to an exponential increase
in the number of possible combinations [17] (Fig. 3(a)). Besides,
advances in (bio)printing, mechanobiology, induced pluripotent
stem cells, decellularized organs, immunomodulation, biorthogo-
nal chemistry, and gene-editing technology have tremendously
promoted the development of TE (Fig. 3(b)). The ever-increasing
incidence of challenging aging-related musculoskeletal disorders
(e.g., knee OA) and advances in technologies for AC repair are criti-
cal drivers for nurturing the prosperity of the global market for
ACTE [1,18]. The market was estimated at 4.2 billion USD in
2016, and it is now on track to achieve a compound annual growth
rate of 5.4% during 2016–2025, despite the coronavirus disease
2019 (COVID-19) pandemic. To date, several tissue-engineered car-
tilage products have obtained clinical approval worldwide; how-
ever, US-approved therapies based on TE are still ACI and MACI
[19]. Meanwhile, hundreds more are presently in different stages
of clinical trialsy.
4. Functionalized hydrogels as instructive scaffolds for ACTE

Because AC is a complicated tissue with abundant water con-
tent and favorable viscoelastic characteristics, hydrogels are con-
sidered ideal biomaterial matrices for AC repair. Over the past
decade, researchers have published over 2000 scientific papers
on the topic of ‘‘cartilage and hydrogel” (Fig. 3(c)) to markedly fos-
ter the development of ACTE. Hydrogels are crosslinked polymeric
or nonpolymeric networks containing enough water to enable
these optimal biomaterials to engineer tissues rich in moisture
content, for example, AC [21]. At the molecular level, the molecular
weight, mesh size, and polymer chain between the crosslinks are
the three most prominent parameters to define the structures of
the hydrogels (Fig. 4(a)) [22]. Hydrogels are generally classified
into different categories based on different aspects, such as mate-
rial sources, pore size, interchain crosslinking methods, and electri-
cal charge [23] (Fig. 4(b)). Several natural and synthetic polymers
(Fig. 4(c)), inorganic substances, and composite biomaterials are
typically used to form hydrogels for cartilage repair via many dif-
ferent approaches (Fig. 4(d)), including physical crosslinking,
chemical crosslinking, self-assembly, enzymatic crosslinking, as
well as photo-crosslinking [21]. Among the polymers, owing to
their excellent tunable property profiles regarding degradability,
biomechanics, controllability, reproducibility, and molecular
weight, synthetic polymer-derived hydrogels can be self-
reinforced to improve their mechanical performance for bearing

https://www.clinicaltrails.gov


Fig. 3. The basic concept and recent progress of TE and tissue-engineered cartilage for AC regeneration. (a) The three key elements for TE. (b) Recent advances related to TE.
(c) The number of papers published and citations on the topic of ‘‘hydrogel and cartilage” have been increasing significantly in the past two decades (as of July 1, 2021).
AMIC: autologous matrix-induced chondrogenesis; CRISPR: clustered regularly interspaced short palindromic repeats. (a) Reproduced from Ref. [18] with permission of
Springer Nature, � 2014; (b) reproduced from Ref. [20] with permission of Springer Nature, � 2016.
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loads at synovial joints. Nevertheless, synthetic polymers can elicit
unfavorable immune responses and severe toxicity and exhibit
lower biological activities [24]. In contrast, hydrogels derived from
natural polymers (polysaccharide-based and protein-based bioma-
terials) have some intrinsic advantages, such as high biocompati-
bility, biodegradability, and macromolecular similarity to native
ECMs, which allow for improving bioactivity and cell adhesion
[25]. However, rapid degradation, inconsistent hydration, unfavor-
able elastic properties, and poor stability hinder the further appli-
cations of natural hydrogels [25]. At present, a variety of hybrid
hydrogels have been developed to surmount the shortcomings of
both synthetic and natural hydrogels. The advantages and disad-
vantages of several commonly utilized hydrogels for AC repair
and regeneration were compared and summarized in Refs. [26]
and [27].

Hydrogels are beneficial for encapsulating chondrocytes or stro-
mal cells rather than merely enhancing adhesion. They help main-
tain the round morphology and chondrogenic phenotype of these
cells. Also, hydrogels are able to create a favorable 3D local
microenvironment for cells. In this microenvironment, cells and
networks mutually affect each other. Cells can sense numerous
biochemical and biophysical cues within hydrogels, and these
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signals can guide cell behaviors (e.g., migration, proliferation, and
differentiation) [28]. Meantime, cell-mediated remodeling of bio-
mimetic encapsulating hydrogels can affect their structures,
mechanical properties, and degradation profiles [28,29]. Besides,
as a permeable matrix, hydrogels can function as the controlled
delivery and release of soluble biochemical factors. Cell and hydro-
gel mixtures can be directly injected into the defect sites to allow
gelation in situ [30], eradicating the steps of cell encapsulation and
post-scaffold (bio)fabrication procedures, and offering the option
of minimally invasive surgery. Alternatively, these mixtures can
be precisely (bio)designed and (bio)fabricated in vitro to form
implantable hydrogels using 3D-(bio)printing (3DBP) platforms.

Traditional chemical hydrogels are crosslinked via covalent
bonds and may have disadvantages (such as brittleness, difficulty
in injectability after gelation, and limited cell proliferation and
migration). However, some functional hydrogels, for example, a
novel class of supramolecular hydrogels, may show the advantages
of effective cell delivery, dispersion and survival, self-healing, and
shear-thinning properties, which are beneficial for cartilage repair.
Functionalized hydrogels can chemically, mechanically, and elec-
trically mimic the functions of biological tissues [31]. Among these,
functionalized hydrogels engineered via modern manufacturing



Fig. 4. Functionalized hydrogels as optimal scaffolds for ACTE. (a) Structure of hydrogels at the molecular level. (b) Physical and chemical aspects for the classification of
polymer hydrogels. (c) Chemical structures of some natural polymers (HA, alginate (ALG), agarose, and chitosan) and synthetic polymers including PLA, PLGA, PGA,
poly(ethylene glycol) (PEG), PCL, and poly(vinyl alcohol) (PVA). (d) Examples of hydrogel formation through several different methods. (d-I) In situ gelation through ionic
interaction between Ca2+ and ALG, and the chemical crosslinking strategy. (d-II) In situ gelation through the enzymatic crosslinking reaction between H2O2 and horseradish
peroxidase (HRP). (d-III) In situ gelation through the photo-crosslinking approach. (d-IV) Heparin and star-PEG are crosslinked to form a hydrogel. Mc: molecular weight of
polymer chain between the crosslinks; hv: light energy. (a) Reproduced from Ref. [22] with permission of Elsevier, � 2020; (d) reproduced from Ref. [21] with permission of
IntechOpen, � 2016.
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technologies have led to various functional biomaterials with
versatile surface effects, bringing great potential in numerous
applications. Some conclusions can be drawn from here, especially
for stimuli-responsive hydrogels. In the scenario of ACTE, the
76
functionalized hydrogels can be defined as ‘‘a class of biomimetic
hydrogels formed by many innovative (bio)design and (bio)fabri-
cation technologies to achieve similar structural, mechanical, and
biological properties of native cartilage tissues for treating
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cartilage defects.” Functionalized hydrogels can serve as drug/
nutrition carriers, elastomers, and scaffolds to enable cartilage
regeneration. Functionalized hydrogels have evolved into a
research hotspot for AC repair owing to their bio-inspired tunable
macro-and micro-structures and favorable biochemical and
biophysical functions, particularly under the circumstances of
minimally invasive therapies [32,33].
5. (Bio)design of functionalized hydrogels for cartilage
regeneration

5.1. Addition of ECM components into functionalized hydrogels

Many components, such as exogenous cells, growth factors [34],
therapeutic peptides [35], prochondrogenic molecules [36], and
RNA-targeting molecules (e.g., small interfering RNA (siRNA),
microRNA (miRNA), messenger RNA (mRNA), and a class of anti-
sense oligonucleotides function as anti-miRNAs (antagoMiRs))
[37] can be added into hydrogel precursors to function as tradi-
tional biological cues for cartilage regeneration. Apart from the
above components, ECM has drawn widespread attention to be uti-
lized in hydrogels as a functional factor for cartilage regeneration,
due to the intrinsic advantages of natural biomimetic materials.
Usually, ECM is prepared as solubilized or particle-based compo-
nents into functionalized hydrogels for repairing AC defects
[38,39].
5.1.1. ECM components as solubilized form
The two main ECM components of cartilage, collagen and gly-

cosaminoglycans (GAGs), are widely applied in hydrogels to
restore the ECM of cartilage. Solubilized collagen and GAGs alone
can function as hydrogels without other polymers or additional
chondrogenic components in composite hydrogel systems [40].
Although collagen II dominates the collagen components in carti-
lage, several prior studies have used collagen I-based hydrogels
for cartilage repair because of its availability and homogeneity.
Adding collagen II to composite hydrogels enhances cartilage-
specific ECM production, promotes chondrocyte proliferation, and
improves cartilage repair [41]. In a seminal study by Kilmer et al.
[42], a blend of collagen I/II hydrogel promoted GAG production
and AC repair in the femur cartilage defect area of rabbits. In addi-
tion, hybrid hydrogels with a combination of GAGs and collagen,
closer to the natural cartilage matrix, showed superiority and could
replace collagen hydrogels as the ‘‘gold standard” for ACTE [40].
However, GAGs are the only side chains of proteoglycans, which
are the main functional units of the non-collagen component of
cartilage. Adding 0.25% proteoglycan mimics into 2.25% agarose
hydrogels improved their compression and stress relaxation prop-
erties [43]. Surprisingly, it also decreased the metabolic activity
and viability of human adipose-derived mesenchymal stem cells
(MSCs). Further modification to maintain proteoglycan integrity
and cell viability simultaneously might enhance the mechanical
properties and biocompatibility of hydrogels for cartilage
regeneration.

Another strategy for reconstructing natural cartilage ECM is the
application of decellularized ECM (dECM) to hydrogels. The decel-
lularized natural cartilage matrix, which mainly contains collagen,
is enzymatically degraded, solubilized, and then re-polymerized;
however, the bioactivity of enzyme-digested dECM remains con-
troversial [44]. Furthermore, the solubility of dECM is quite low
(up to 3% w/v [39]) with enzymatic and acidic digestion, resulting
in the inability to reach the normal proportion of collagen within
healthy cartilage. Through the digestion–lyophilization–redissolu-
tion method, dECMwas significantly enriched with a concentration
of up to 6% (w/v) [45]. Devitalized cartilage (DVC), which lacks
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additional chemical processes to remove cell contents, is thought
to be more chondroinductive than cartilage dECM [46]. However,
solubilized DVC has similar limitations (e.g., low concentration
and bioactivity). The ability of DVC to elicit an immune response
while maintaining cell composition is also a challenge that requires
further investigation.

5.1.2. ECM components as particle-based form
In contrast to the poormechanical properties and low porosity of

hydrogels formed by solubilized ECM components, hydrogels
formed by particle-based ECM components present advantages
in terms of biological and mechanical properties for cartilage
regeneration [47]. In addition, tissue structure components can be
pulverized and freeze-dried into particles. The natural architecture
and topology can be largely preserved in dECM/DVC particles,
making it possible to fabricate tissue-specific hydrogels with vary-
ing geometries and porosities. The preservation of GAGs during
decellularization is crucial to maintain the mechanical properties
and to retain growth factors in the dECM particles of hydrogels
[48]. Collagen I hydrogels incorporated with dECM particles
enhancedchondrogenic gene expressionofMSCs,whichwas further
amplified by transforming growth factor b3 (TGF-b3) [49]. To retain
dECM particles inside a hydrogel and mimic the natural cartilage
composition, dECM particles could be chemically crosslinked with
modifiedGAGs [50] (Fig. 5(a)). DVCparticles appeared to be superior
to dECM in both chondroinductivity and mechanical strength [46].
Moreover, Levinson et al. [51] incorporated autologous cartilage
particles into fibrin/collagen hydrogels to support chondrocyte
outgrowth and survival. However, limited tissue sources restrict
the extensive application of autologous cartilage particles.

In addition to designing hydrogels with monotonous additional
components,many studies have focusedondiverse ingredientswith
various physical forms. Our recent study showed that embedding
microparticles (MPs) within a continuous hydrogel matrix was an
effective approach to the improvement of shear strength and com-
pressive moduli [52]. Owing to the physical interactions between
the polymer chains, such as hydrogen bonding or intramolecular
entanglements, MPs impart a drag force within the hydrogel net-
work, improving the resistance to deformation. These results were
also consistent with other reports that two-phase polymer compos-
ites containing encapsulated MPs demonstrated notably improved
toughness [53], stiffness, and elasticity [54]. Solubilized collagen
and GAGs hydrogels incorporated with dECM particles were pre-
ferred and considered close to the natural matrix [48]. Furthermore,
Beck et al. [55] added non-solubilized DVC particles to a solubilized
DVC hydrogel, in which solubilized DVC might open up more reac-
tive sites on the cartilage ECM, and DVC particlesmimicked the nat-
ural structure of cartilage ECM. The data demonstrated
improvements in the mechanical properties and chondrogenic
bioactivity of the hydrogels both in vivo and in vitro.

To maintain the natural function and components of the carti-
lage matrix, a hybrid of dECM particles and native cartilage-
derived intact proteoglycans at physiological concentrations might
be a promising functionalized hydrogel-based strategy for cartilage
regeneration. Moreover, hydrogels fabricated by ECM from
immune-exempt tissues are also very promising. Taking the
advantages of naturally intact and unmodified structure and com-
position, Lindberg et al. [56] presented highly permissive and
bioactive ECM hydrogels from vitreous humor tissue and ECM-
based hydrogels significantly augmented the proliferation and
chondrogenic differentiation of human MSCs.

5.2. Lubrication design of functionalized hydrogels

Healthy AC has a low-friction coefficient due to the lubrication
effect of the joint surface and synovial fluid. One tissue-engineered



Fig. 5. The representative (bio)design of functionalized hydrogels-based strategies for cartilage regeneration. (a) Low-friction, biphasic, and boundary lubricating triple-
network hydrogel for AC repair. (b) Biomimetic cartilage-lubricating hydrogels for cartilage regeneration in a rat model with early OA. (c) The chondroitin sulfate (CS)
molecules are chemically modified with N-hydroxysuccinimide to facilitate the binding with the amine groups on tissue particles. (d) Collagen fiber orientation inside the
extrusion-printed filaments of hydrogels. (e) Spatial distribution of the two different bioinks and cells in a 3D-(bio)printed construct. (e-I) Zonal distribution of bioinks in the
layered scaffolds. (e-II) Longitudinal cross-section of the bioprinted layered scaffolds in which chondrocytes (blue) are confined within the top layers while unlabeled human
MSCs (hMSCs) and b-tricalcium phosphate (TCP) particles (white arrows in the magnified calcified cartilage area) occur at the bottom of the scaffold. (e-III) TCP MP
distributions along the z-axis in the acellular scaffold visualized through micro-computed tomography (l-CT). (f) Gradient stiffness and type II collagen formation after the
cartilage-mimicking zonal hydrogel organization. PMPC: poly(2-methacryloyloxyethyl phosphorylcholine); HA/PA: a synthesized lubricant is formed by covalently grafting
poly(2-acrylamide-2-methylpropanesulfonic acid) sodium salt (PAMPS) to the HA main chain; HA/PM: a synthesized lubricant is produced by covalently linking poly(2-
methacryloyloxyethyl phosphoryl choline) (PMPC) to the HA main chain. (a) Reproduced from Ref. [58] with permission of Elsevier, � 2018; (b) reproduced from Ref. [62]
with permission of Springer Nature,� 2021; (c) reproduced from Ref. [50] with permission of Wiley Periodicals, Inc.,� 2017; (d) reproduced from Ref. [79] with permission of
Springer Nature, � 2019; (e) reproduced from Ref. [83] with permission of IOP Publishing, � 2019; (f) reproduced from Ref. [87] with permission of ACS, � 2018.
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strategy of reduction in friction for cartilage repair is to construct
an inherently slippery surface. Means et al. [57] established
double-network hydrogels that mimic the modulus and strength
of cartilage to trapped liquids to form a slippery surface for lubri-
cation. Furthermore, Milner et al. [58] constructed a low-friction,
biphasic, and boundary lubricating triple-network hydrogel with
no decrease in chondrocyte viability and proliferation (Fig. 5(a)).
Inspired by the natural brush-like lubrication layer of cartilage,
lubrication with polymer hydrogels can also contribute to an
inherent slippery surface [59]. However, natural cartilage exhibits
ultralow friction, even at high squeezing pressures. A novel
cartilage-mimicking bilayer hydrogel system using thick hydrophi-
lic polyelectrolyte brushes entangled into the subsurface of a load-
bearing hydrogel was developed [60]. Low-friction coefficients
(order of 0.010) under heavily loaded conditions (contact pressure
of 10 MPa) were attained even when subjected to 50 000 recipro-
cating cycles, which presented a performance incredibly close to
that of a natural AC. It is significantly meaningful that hydrogels
can retain low friction under harsh conditions.

The use of lubricants can also reduce surface friction during
ACTE. Lin et al. [61] incorporated trace lipid concentrations into
synthetic hydrogels to create a cartilage-inspired lipid-based
boundary layer. The continuously exuded lipids can form a slippery
layer on the hydrogel surface and significantly reduce the friction
and wear of the hydrogels, which was observed even after the
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hydrogels were dried and rehydrated. This strategy is promising
to sustain extreme lubrication of hydrogels for cartilage repair.
Another in vivo study also showed that natural cartilage-
mimicking hyaluronan backbones grafted with lubricin-like
sulfonate-rich polymers or lipid-like phosphocholine-rich poly-
mers enhanced cartilage regeneration in a rat model of early OA
[62] (Fig. 5(b)). The friction coefficient was significantly lowered
to the ultralow levels of native AC. The in vivo results showed that
cartilage regeneration and abrogation of OA could be achieved
within eight weeks. These approaches might provide practical
strategies for clinical translation.

5.3. 3D architecture of functionalized hydrogels

5.3.1. Porous structures
Hydrogels with porous structures provide sufficient space for

cell attachment, ingrowth, proliferation, and differentiation. Many
studies suggested a recommended pore size of 100–500 lm for
chondrocyte and MSC proliferation and chondrogenesis [63-66].
Pores that are too small would prevent cell infiltration [66],
whereas hydrogels with relatively larger pore sizes could be bene-
ficial for cell infiltration, proliferation, and chondrogenesis [67].
The pore size and porosity of hydrogels can be dramatically
affected by the type of biomaterials and crosslinking densities.
Al-Sabah et al. [68] compared alginate (ALG) and nanocellulose
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hydrogels with different crosslinking densities, and the results
revealed that CaCl2 crosslinker concentrations significantly altered
the overall pore size and porosity of hydrogels. Gao et al. [69] lyo-
philized ALG hydrogel and found that the pore size increased dra-
matically to 200–300 lm. Another study [70] showed that the
dECM fiber diameter and pore size of hydrogel decreased with
increasing concentration from (0.094 ± 0.005) lm and (0.128 ±
0.017) lm2 at low concentrations to (0.069 ± 0.005) lm and (0.0
59 ± 0.001) lm2 at high concentrations, respectively. Generally,
pure solubilized hydrogels with high crosslinking densities pre-
serve a compact structure with low porosity. However, Qi et al.
[71] constructed a pure solubilized sericine hydrogel by photo-
crosslinking methods, and the hydrogels obtained a favorable pore
size up to (193.51 ± 7.68) lm with porosity up to 97%. Particles are
widely used to increase the pore sizes of hydrogels. Almeida et al.
[67] successfully prepared hydrogels with pore sizes ranging from
(32 ± 12) lm to (65 ± 20) lm by altering the concentration of the
dECM particle slurry. With the addition of particles, the number of
hydrogel pores significantly increased. Porogens can also achieve
controlled pore size for chondrogenesis [72]. However, considering
the single function of porogens, one should be very careful to seek
a balance between the pore structure and other properties of this
material. Stimuli-responsive pore formation can be achieved with
the initiation of specific stimuli. Moreover, sequential pore forma-
tion through the sequential activation of multiple stimuli-
responsive porogens is practical. Han et al. [73] dynamically con-
trolled the porosity of stimuli-responsive tri-porogen hydrogels
by syngenetic stimulation of chelation, temperature, and enzy-
matic activity.

5.3.2. Networks
In general, networks of a single polymer result in a very limited

adjustment range for the hydrogel structure. An increased
crosslinking density may compromise the viability, filtration, and
bioactivity of the encapsulated cells. Networks formed by a combi-
nation of multiple polymers (e.g., interpenetrating network,
double-network, dual network, and guest–host network) can con-
tribute to improved mechanical properties and different porosities.
Independent networks with partial bonding (not covalent) can
form interpenetrating networks. Dinescu et al. [74] created an
interpenetrating hydrogel with three components (gelatin, ALG,
and polyacrylamide) and achieved a highly ordered porosity pat-
tern and well-defined interconnected pores during long-term cul-
ture, which largely promoted the proliferation and
chondrogenesis of stem cells. However, a double network is com-
posed of two separate networks in the same hydrogel system. In
general, one network is rigid and the other is flexible. For a
double-network hydrogel, its mechanical properties and surface
structure can be potentially approached close to native cartilage
[58,75]. Two materials are covalently crosslinked in the same net-
work within a dual-network hydrogel. Beachley et al. [50] fabri-
cated a dECM particle–GAG dual-network hydrogel with tunable
gelation kinetics and mechanical properties (Fig. 5(c)). Non-
covalent bonds between two polymers give rise to a reversible
guest–host network. One shear-thinning hydrogel with guest–host
interaction between O-carboxymethyl chitosan and a 3D dynamer
was designed for repairing cartilage with desirable results, which
were mainly attributed to the flexibility of its networks [76].

5.3.3. Biomimetic hydrogels with cartilage-specific zonal structures
A key aspect of ACTE is the simulation of the highly hierarchical

structure, ECM composition, and mechanical features of the strat-
ified AC. Generally, hydrogels are devoid of internally oriented
structures. Scanning electron microscopy (SEM) of the two types
of dECM hydrogels showed that the networks of both dECM hydro-
gels obtained no angular alignment with a normalized orientation
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index close to 0% [70]. Aiming to replicate the collagen fiber distri-
bution within the SZ of AC, Owida et al. [77] produced an HA-based
hydrogel that enveloped specifically oriented nanofiber meshes by
electrospinning. With the accessibility to control the orientation of
the printing matrix composition, 3DBP provides great potential to
rebuild the complexity of cartilage. Schwab et al. [78] achieved
shear-induced alignment of collagen fibrils by 3DBP technology.
The collagen fibrillar alignment was highly patterned with hori-
zontal orientation in the SZ, isotropic orientation in the MZ, and
vertical orientation in the DZ. Moncal et al. [79] printed collagen
fibers with low anisotropy using a thermally controlled
extrusion-based (bio)printing platform (Fig. 5(d)). Moreover, the
inclusion of magnetic particles in hydrogels can also align the com-
position of molecules in a magnetic-field-guided manner [80]. The
agarose–collagen I bioink embedded with iron nanoparticles was
exposed to a magnetic field during (bio)printing, and the collagen
fibers were aligned. Alignment was most prevalent in less concen-
trated hydrogels, with a maximum agarose concentration of 0.5%
(w/v).

Apart from the distribution and orientation of collagen fibers,
the cartilage-specific layered structure formed by different cell
types, cell densities, and cell alignments [81–84] should be taken
into consideration when designing biomimetic hydrogels for carti-
lage TE (Figs. 5(e) and (f)). Several zonal-hydrogel-based strategies
have been developed for AC regeneration (Table 1 [77,81–90]).
With this approach, cells loaded into hydrogels are expected to
exhibit zonal-specific properties. A homogenous collagen II hydro-
gel was used to encapsulate chondrocytes by depth-dependent
density. Different biosynthetic activities of loaded cells and gradi-
ent distribution of ECM have been observed [81]. Additionally,
modulating cell alignment and elongation in hydrogels can also
regulate the biosynthesis of GAGs and collagen [82]. Chondrogene-
sis has been significantly enhanced by mixing MSCs with articular
chondrocytes in hydrogel-formed cartilage constructs [83].
Another approach for engineering cartilage grafts is to construct
layers by hydrogels (homogenous or heterogeneous) with different
compositions. Using this approach, different cell-laden hydrogel
materials were applied in different layers, and desirable results
for OCD regeneration were obtained in a rat model [83].

Furthermore, the gradient distribution of oxygen is a critical cue
for chondrocyte bioactivity in different cartilage zones. Increased
oxygen production from the lowermost to the uppermost region
was achieved, which opened a new field for zonal hydrogel-
based ACTE [85]. Designing hydrogels with gradient mechanical
properties is critical for fabricating hydrogel-based constructs
[86,87]. Despite many strategies in terms of using hydrogels to
simulate cartilage-specific zonal structures and properties, so far
none of them can biofabricate implanted cartilage grafts, which
are equivalent to native AC tissue.

5.3.4. Structural variability
Hydrogels can absorb massive amounts of water up to thou-

sands of times of their dry weight [91]. Degradable hydrogels expe-
rience an increase in the swelling ratio along with degradation
[92]. Controllable swelling can be achieved through the modifica-
tion of the crosslinking density. The PEG hydrogel swelling ratio
can be lowered by increasing the concentration of the PEG solu-
tions, decreasing the molecular weight of the PEG macromers, or
using branched PEG structures instead of linear structures [93].

Notably, cell-mediated contraction leads to potential risks for
cell-laden hydrogels [94]. The properties of the hydrogel change
with the macromolecule contraction. Furthermore, the integration
of the surrounding tissues is significantly hindered owing to the
loss of contact between hydrogels and the surrounding tissues
in vivo. Enhanced crosslinking can counteract cell-mediated con-
tractions. However, an increased crosslinking intensity reduces cell



Table 1
Biomimetic hydrogels with the cartilage-specific zonal structure for cartilage defect repair.

Strategy Hydrogel Approach Aim Key outcomes Reference

Zonal cells Collagen II 3DBP Cell density gradient � Gradient distribution of ECM
� Affected the biosynthetic ability of chondrocytes
through the cell distribution pattern and total
cell density

[81]

CS-g-PNIPAAm Micro-molding Cell alignment and elongation � Aligned cells in the SZ and unpatterned cells in
the MZ

� Increased secretion of GAGs and total collagen

[82]

ALG Cell culture
insert in the
designed
magnetic field

Zonal cell arrangement � Vertical cell arrangement
� Upregulated expression of Col2a1 and aggrecan
� Zonal ECM organization

[84]

Fiber orientation HA Nanofiber
mesh

Zonal nanofiber orientation � Low production of collagen II and GAGs,
elongated cell morphology, high production of
collagen I, and high cell proliferation activity in
the SZ

� Clustered cells and high expression of collagen II
in the MZ

� Highest GAG production, lowest collagen I
expression and cell proliferation in the DZ

[77]

Zonal polymers ALG + GelMA + CS-
AEMA + HAMA

3DBP Hyaline + calcified cartilage, zonal
cell types

� High cell viability
� Upregulated expression of hypertrophic
biomarkers in the homogenous equivalent of
calcified cartilage but not in the gradient
heterogeneous construct

� The bioprinted scaffolds were beneficial for OCD
regeneration in rats

� The mineralized matrix consisted of
hypertrophic proteins, GAG, osteocalcin, and
collagen type X was formed

[83]

Gradient components Agarose + gelatin Circular silicon
mold

CS/BG gradient � Chondrocytes secreted hyaline-like matrix with
higher sulfated GAG, aggrecan, and collagen II on
CS fibers

� Enhanced mineralization on BG fibers
� Continuous opposing gradients of GAG enriched
and mineralized ECM in response to the physical
gradients of raw materials CS and BG

[88]

Gradient oxygen
supply

Pectin + fibroin Mixing
chamber

The depth-dependent gradient of
oxygen releasing

� The increased amount of produced oxygen from
the lowermost to the uppermost section

[85]

Gradient
osteochondral unit

PEGDMA 3DBP Osteochondral gradient � Precise cell distribution
� Increased cell viability
� Firm attachment with adjacent tissue and more
proteoglycan deposition at the interface
between implanted construct and native
cartilage

� Elevated GAG contents

[86]

Hybrid approaches Chitosan–gelatin
hydrogel/PLGA

Glass tube
orifice

The graded transition from the
hydrogel to PLGA scaffold and
graded variation in the amount of
BMP-2 and TGF-b1

� Promote bone marrow MSCs toward
chondrogenesis and osteogenesis, respectively

� Better integration of the regenerated hyaline-
like cartilage and SB with the surrounding
tissues by utilizing the BMP-2 and TGF-b1
double-loaded hydrogel/PLGA graded scaffold
in vivo

[89]

PEG + CS Interconnected
chamber

CS gradient + mechanical gradient � Depth-dependent stiffness and gradient
biochemical properties

� Increased expression of hyaline cartilage
markers, and upregulated collagen deposition
and chondrocyte proliferation in a zonal-
dependent manner

� Enhanced zonal organization by chondrocytes

[87]

GelMA Custom-made
Teflon injection
mold

Zonal growth factors + superficial/
deep cartilage + SB + depth-
dependent fiber organization

� Downregulated osteogenesis and
chondrogenesis of MSCs, and cellular phenotype
and matrix accumulation profiles resembling
those of the native tissue

� The defects have been repaired by the formation
of neocartilage with a more lubricating and
wear-resistant surface and the denser SB

[90]

CS-g-PNIPAAm: chitosan-g-poly(N-isopropylacrylamide); CS-AEMA: chondroitin sulfate chains through the N-ethyl-N0-(3-(dimethylamino)propyl)carbodiimide/
N-hydroxysuccinimide (EDC/NHS) coupling reaction with 2-aminoethyl methacrylate; HAMA: methacrylated hyaluronic acid; BG: bioactive glass; PEGDMA: poly(ethylene
glycol) dimethacrylate; BMP-2: bone morphogenetic protein-2; Col2a1: a1 subunit of collagen II.
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infiltration and bioactivity. The balance between crosslinking
intensity and cell-mediated contraction is of significance. Cheng
et al. [95] prepared matrix-derived contraction-free hydrogels by
various genipin (natural biological crosslinker) concentrations
and found that with 0.05% genipin, the moderately crosslinked
hydrogels were chondroinductive without significant cell-
mediated contraction during the culture period. Also, particles
were usually used in hydrogels to avoid unfavorable contraction.
The methacrylated solubilized DVC hydrogel containing DVC parti-
cles did not show a significant volume change, whereas the
methacrylated solubilized DVC hydrogel alone contracted by 18%
at six weeks [55].

Self-healing properties allow hydrogels to dynamically change
and restore the framework, which endows the hydrogels with
injectability for clinical applications. Hydrogels with dynamic
covalent reactions (chemical crosslinking) and/or non-covalent
reactions (physical crosslinking) can achieve self-healing proper-
ties [32,96]. Yu et al. [76] synthesized a novel dynamic hydrogel
based on O-carboxymethyl chitosan and a soluble compound syn-
thesized by the reaction of benzene-1,3,5-tricarbaldehyde with jef-
famine for ACTE scaffolds, indicating excellent pH-sensitive
swelling and self-healing properties. Zhang et al. [97] further pro-
posed an aldehyde-functionalized cellulose nanocrystal/collagen
hydrogel crosslinked under physiological conditions and obtained
superior shear-thinning and self-healing characteristics. The pro-
posed self-healing hydrogel could protect cells from high shearing
stress during injection into irregular cartilage defects.

5.4. Tailored shape and size for irregular cartilage defects

In situ polymerization of hydrogels has been widely applied in
TE owing to their flexibility and plasticity in matching irregular tis-
sue defects [98]. The shape and size of in situ polymerized hydro-
gels, for example, some injectable hydrogels, can precisely match
the anatomy of cartilage defects and appropriately fill irregularly
shaped defects, providing satisfactory contact with the surround-
ing tissue. However, some traditional strategies cannot produce
ideal-shaped AC grafts with a high resolution in damaged areas.
3DBP technology enables the fabrication of hydrogels-based carti-
lage constructs with heterogeneous composition and complex
architectures with high shape fidelity [83,99]. 3D shapes and
custom-made complex structures can be designed and applied
through precise spatial control [100]. This is important for mimick-
ing the shape of the defect and the heterogeneous and anisotropic
cartilage architecture during hydrogel construction.

5.5. Mechanical properties

Functionalized hydrogels have been extensively used for carti-
lage repair. Among these applications, the mechanical behavior
of hydrogels plays a crucial role because AC is a load-bearing tissue
with a fracture strength of tens of MPa, a modulus of 1 MPa, and an
elongation at a break of 100% [13]. Many studies have focused on
identifying hydrogels that mechanically mimic cartilage ECM. In
general, a higher concentration of gel components or a higher level
of crosslinking will make the gels stiffer and/or more brittle. The
network structures and inclusion of additional biomaterials and
cells can also help alter the mechanical performance of hydrogels.
Poly(vinyl alcohol) (PVA) hydrogels have been extensively charac-
terized and demonstrated to be closer to cartilage than other
hydrogels in terms of their compressive modulus, shear modulus,
tensile modulus, and permeability [92]. DeVolder et al. [54]
showed that collagen hydrogels incorporated with poly(lactide-
co-glycolide) (PLGA) MPs could modulate their stiffness and elas-
ticity. The mechanical properties of hydrogels can also be
enhanced by continuous fibrous reinforcement [101]. Qiao et al.
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[90] reinforced an inherently weak gelatin methacryloyl (GelMA)
hydrogel with high-modulus fiber polymers and acquired a com-
pressive modulus comparable to that of native cartilage. Further-
more, double-network hydrogels have attracted wide attention
because they are excellent structural platforms to integrate differ-
ent mechanical properties into a single biomaterial. Yan et al. [102]
synthesized gelatin/polyacrylamide double-network hydrogels and
achieved superior mechanical properties (high elastic modulus,
failure of tensile stress, strain, and fracture energy) compared to
traditional single network hydrogels. Besides, attempts have been
made to alter the mechanical properties of gels dynamically, for
example, by constructing hydrogels that stiffen over time [103].
Apart from optimizing toughness, strain, stiffness, and dynamic
mechanical response, the mechanical homogeneity of hydrogels
has been widely overlooked. Xue et al. [104] engineered malei-
mide–thiol crosslinked PEG hydrogels with well-defined and con-
trollable homogeneity and showed that nanoscale variation in
matrix stiffness could considerably regulate cell fate.

5.6. Tunable degradability and biocompatibility

Degradation-associated neotissue remodeling is critical for
functionalized hydrogels during cartilage regeneration. The major
challenge is designing hydrogel scaffolds with appropriate time-
dependent degradation properties and mass-loss profiles. Such
degradation not only disaggregates the networks of hydrogels
but also decreases their mechanical properties. Therefore, via
adjusting the degradability of the hydrogels, the time-dependent
ultrastructure and mechanical properties can be modulated to
some degree. The degradation process of hydrogels can be regu-
lated by several approaches (such as hydrolysis, protease-
mediated degradation, and external stimuli-triggered degrada-
tion). Ideally, in vivo degradation of implanted hydrogels is propor-
tional to matrix deposition and neocartilage formation.
Degradability that is too fast or too slow would result in undesir-
able mechanical support and hamper the ingrowth of cartilaginous
tissue, respectively. Up to now, many strategies have been applied
to manipulate hydrogel degradation both in vivo and in vitro.
Kloxin et al. [105] reported controlled hydrogel degradation
through the light duration, intensity, and area by incorporating a
photodegradable composition into PEG-based hydrogels. Temporal
variation in the composition of the photodegradable gel was uti-
lized to promote chondrogenesis of the encapsulated stem cells.
However, this approach is not applicable in vivo. A PEG-based
bioresponsive hydrogel modified by matrix metalloproteinase
groups can balance cell-mediated degradation and cartilage forma-
tion [106]. Wang et al. [107] developed a novel double-network
hydrogel with fish-derived self-assembled collagen and self-
crosslinked PVA. A controllable degradation rate of such hydrogels
was achieved by adjusting the ratio of PVA to collagen.

Additionally, for ACTE, ideal functionalized hydrogel-based car-
tilage grafts require excellent biocompatibility, which is usually
defined as the capability of an implanted biomaterial to cause a
proper host response. Recently, various hydrogels have been
chemically modified and prepared to improve their biocompatibil-
ity for AC repair and regeneration [108].

5.7. Controlled delivery and release of biochemical factors

Hydrogels are materials of choice for drug delivery. Given their
high water content, tunable mesh size, and viscoelastic properties,
hydrogels can be loaded with small and biological drugs, or with
cells. The 3D environment provided by hydrogels can protect their
payload, whereas spatiotemporal control over their release can be
modulated by physicochemical interactions, mesh size, viscoelastic
properties, or by active mechanisms in ‘‘smart” hydrogels.
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Research on hydrogels for drug delivery is well established and has
been successfully translated into clinical use, with the most nota-
ble example being Infuse�, a collagen fleece perioperatively recon-
stituted to form hydrogels for bone morphogenetic protein-2
(BMP-2) delivery [109]. Other clinically approved hydrogel-based
drug delivery systems include those for delivering anti-cancer
drugs, antibiotics, and wound dressings. The range of applications
explored in R&D is much wider, and there is abundant literature
describing the physicochemical principles governing drug release
from hydrogels [110].

The targeted delivery achieved with hydrogels prevents off-
target systemic effects and increases the local concentration with-
out exposing the rest of the organisms to massive doses. The bio-
materials used for drug delivery act as a physical barrier and
protect their payload, or slow down the penetration of degrading
enzymes, thus increasing half-lives, especially for biological drugs.
These hydrated polymeric networks can entrap, present, and
release biochemical factors similar to the physiological cartilage
ECM.

Considering the physicochemical aspects of drug delivery from
hydrogels, the main parameters to consider are mesh size and
specific functional group-based chemical interactions. Mesh size
is fundamental for determining the diffusion rate throughout the
hydrogel. For most hydrogels, the typical mesh size is 5–100 nm
[111]. Bovine serum has a hydrodynamic radius of approximately
5 nm and a molecular weight of 66 kDa [112]. For globular pro-
teins, the hydrodynamic radius scales with the molecular weight.
The active forms of TGF-b and BMP-2 have molecular weights of
about 25 and 26 kDa, respectively, implying that for proteins of
this size, a hydrogel mesh is typically significantly larger than
the molecular size and the diffusion is mainly unhindered. Larger
proteins, such as antibodies, in combination with relatively small
mesh-sized hydrogels, can exploit the mesh size to limit the diffu-
sion of the drug payload. For example, Hiemstra et al. [113] com-
pared the release of lysozyme (hydrodynamic radius 4.1 nm) and
immunoglobulin G (IgG) (hydrodynamic radius 10.7 nm) from
PEG/PLA hydrogels formed via stereo-complexation. The release
followed first-order kinetics for the smaller lysozyme, whereas
IgG displayed a nearly zero-order release, in agreement with the
release modulated by matrix degradation rather than diffusion
throughout the mesh.

Although in most instances, the mesh size alone is insufficient
to modulate the release of small or biological drugs, hydrogels
can be used as carriers of particles or cells. The molecules released
from hydrogels can be controlled by specific functional group-
mediated chemical interactions, such as ionic or hydrophobic
interactions. A typical example is an injectable heparin-
conjugated hyaluronan hydrogel for the local delivery of TGF-b1,
which promotes successful chondrogenesis [114]. Applying wall-
to-wall macroscopic hydrogels with a minimally invasive approach
can be implemented using three different approaches: shear-
thinning, in situ forming, and shape-memory. Shear-thinning
materials display relatively low viscosity when subjected to high
shear, for example, during injection through a cannula, but they
recover this high viscosity once the mechanical stimulus is
removed. This behavior confers the capability of being injected
similarly to liquid substances while simultaneously remaining
localized at the injection site and cohesive after injection. Water-
soluble polymers above a certain molecular weight and concentra-
tion or lightly crosslinked molecular networks intrinsically display
shear thinning, making them viable candidates for drug delivery
systems. Shear-thinning hydrogels can also originate from guest–
host interactions or dynamic covalent chemistry [115].

In situ-formed hydrogels are injected as liquid precursors and
undergo transition to a gel once implanted, which is usually driven
by a crosslinking reaction. Typical systems for in situ gelation are
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based on two components that are initially separate and are mixed
during or after injection, for example, with static mixer cannulas or
co-axial needles where the components are in contact only at the
end. Alternatively, if the kinetics of the reaction can be modulated
to be sufficiently slow to permit clog-free injection and sufficiently
quick to obtain a cohesive material at the implantation site, the
two components can be mixed before injection. This approach is
illustrated in a previous study [116], where a thiol derivative of
HA was combined with PEG vinyl sulfone. Upon mixing, these
macromers underwent a Michael addition reaction with gelation
times varying between less than one minute and 14 min. Chondro-
cytes were loaded into the composite gel, illustrating the potential
of this approach for ACTE.

Shape-memory hydrogels can undergo significant deformation,
for example, during extrusion through a cannula but fully recover
their shape [117,118]. Macroporous hydrogels are examples of this
category, in which the water phase occupying the macropores can
be reversibly expelled implementing a reversible mechanical col-
lapse [119]. Cryogels have been investigated in ACTE for building
ECM-derived microporous cartilage scaffolds [120], hydroxyethyl
methacrylate–lactate–dextran cryogels [121], PEG-based scaffolds
with interconnected porosity [122], and hyaluronan–gelatin scaf-
folds [123]. Micro- or nano-sized gels are useful systems for drug
and cell delivery in the cartilage. Microbeads can function as a tem-
plate for ACTE [124,125]. They are usually produced in size consid-
erably smaller than the needle dimension, are easily injectable, and
have been used to deliver small molecules and proteins for carti-
lage repair [126]. PLGA microspheres were laden with BMP-2 and
TGF-b1 into a bilayered system for OCD repair [127]. In another
study, MSCs and polylactic acid microcarriers were 3D bioprinted
for osteochondral repair [128]. Another interesting approach is
the use of nanocrystal-polymer particles, where the crystalline
character allows the extension of the drug release window to
months. This concept was illustrated by delivering the p38a/b
mitogen-activated protein kinase (MAPK) inhibitor PH-797804 in
a murine model of inflammatory antigen-induced arthritis
[129,130]. Nanostructures for intra-articular drug delivery were
also produced via self-assembly of hyaluronan derivatized with
thermoresponsive moieties, undergoing spontaneous self-
arrangement into nanoparticles upon exposure to body tempera-
ture [131]. Other systems for intra-articular drug delivery for OA
treatment are summarized in Ref. [132].
6. (Bio)fabrication of functionalized hydrogels for cartilage
regeneration

6.1. In situ polymerization

Apart from perfectly matching irregular AC defects, the other
advantage of in situ polymerization of hydrogels is the improved
integration with surrounding tissues. Functional modification of
hydrogel polymers with peptides is a traditional method for
improving the adhesion of hydrogels to living tissues. Tamesue
et al. [133] reported an adhesive hydrogel system, which could
be used and applied easily, using in situ polymerization of linear
polymers interpenetrated into hydrogel networks. Lee et al. [134]
demonstrated that light-triggered in vivo activation of cell-
adhesive Arg–Gly–Asp (RGD) peptides on implanted hydrogels
could promote in vivo cell adhesion and tissue integration.
Recently, a novel photoinduced-imine-crosslinking hydrogel was
fabricated in which HA modified by o-nitrobenzyl alcohol moieties
generated light-initiated aldehyde groups. These aldehyde groups
subsequently bind to the amino groups of the tissue surfaces.
Through this method, the adhesion performance of the hydrogel
and in situ seamless tissue integration were markedly improved



Fig. 6. The representative (bio)fabrication approaches of functionalized hydrogels for cartilage repair. (a) Schematic illustration of in situ photo-gelation hydrogel to enhance
tissue integration. (b, c) SEM images show the integration of GelMA hydrogel with cartilage after in situ polymerization. (d) Four classic 3D-(bio)fabrication methods involving
hydrogel bioinks. (e-I) Design and (e-II) appearance of the handheld 3D printer, (e-III) the schematic diagram of the distribution of core and shell, and (e-IV) the multiple
layers of 3D-printed block in a criss-cross pattern. (f) Schematic process of robotic-assisted in situ 3DBP for AC regeneration. (g) A 6-DOF robotic-assisted in situ 3DBP platform
for AC repair in a rabbit model. UV: ultraviolet; SLA: stereolithography; DOF: degree of freedom. (a) Reproduced from Ref. [135] with permission of WILEY-VCH, � 2016;
(b, c) reproduced from Ref. [136] with permission of Elsevier, � 2018; (d) reproduced from Ref. [139] with permission of WILEY-VCH, � 2018; (e) reproduced from Ref. [150]
with permission of John Wiley & Sons, � 2018; (f, g) reproduced from Ref. [160] with permission of Elsevier, � 2020.
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[135] (Fig. 6(a)). Furthermore, Zhou et al. [136] prepared a double-
network hydrogel with light-initiated aldehyde groups composed
of gelatin methacrylate, oxidized dextran, and gelatin. Superior
integration between the neotissue and native cartilage and
improved mechanical properties were achieved simultaneously
(Figs. 6(b) and (c)).
6.2. Molding

Gel molding is a remarkably flexible and simple (bio)fabrication
technique for functional hydrogels in ACTE. Plastics, polymers, and
metals can be employed to fabricate hydrogel-based constructs, of
which polymers and elastomers are the most widely used [137]. At
present, various custom-designed molds can be used to manufac-
ture hydrogels for cartilage repair. The molding process helps con-
struct cartilage-biomimetic hydrogels with zonal structure and
specified cell and fiber orientations at high resolution. A pho-
tomask with parallel strips has been utilized to guide cell arrange-
ment, which could potentially mimic the zonal cell phenotype in
the native cartilage [82]. The microengineered 3D MSC-laden
hydrogel mimicked the cell shape and organization in the SZ of car-
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tilage, with the significantly upregulated secretion of GAGs and
total collagen after four weeks. Micropatterning is an effective
method for mimicking the zonal arrangement of cells and provides
a convenient and precise strategy for the (bio)fabrication of hydro-
gels. Owida et al. [77] fabricated zonal-specific 3D hybrid scaffolds
(HA hydrogel with aligned polylactic acid nanofiber meshes) to
simulate collagen orientation in the cartilage matrix, inducing
the formation of zonal-specific morphology of chondrocytes and
ECM synthesis. Owing to the rapid development of electroconduc-
tive [138] and magnetic conductive [80] composite biomaterials,
functionalized hydrogels can combine several inherent advanta-
geous properties of conductive materials with their own highly
tunable physical and biochemical features. The (bio)fabrication
resolution by hydrogel molding can reach the microscale or even
nanoscale.
6.3. 3DBP

3DBP, a form of additive manufacturing that involves building a
tissue or organ layer-by-layer using the bottom-up approach,
has drawn increasing attention for ACTE. Unlike 3D-printing,
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3D-bioprinting includes additional complexities (e.g., choice of
biomaterial types, cell sources, bioactive factors, and technical con-
cerns relevant to the sensitivities of living cells and the formation
of neo-tissues). To regenerate hyaline AC, many novel functional-
ized hydrogels acting as (bio)inks have been widely explored in
3DBP technologies, such as inkjet, laser-assisted, and extrusion-
based (bio)printing [1,139] (Fig. 6(d)).

(1) Inkjet (bio)printing can print functional hydrogel-based
constructs at high speed through the precise control of droplets
and simultaneously obtain high cell viability and low cost at the
same time [140]. The drawbacks of inkjet (bio)printing include a
limited variety of bioinks, clogging of the nozzle, restriction of
structural integrity, acoustic and thermal stresses on cells, and
low cell density [141]. Gao et al. [142] fabricated a human MSCs
laden poly(ethylene glycol) dimethacrylate (PEGDMA)–GelMA
hybrid hydrogel for ACTE with good mechanical properties by 3D
inkjet (bio)printing. Recently, a microreactive inkjet (bio)printing
system enabled freestanding 3D ALG hydrogel microstructures
based on the in-air collision of the precursor and crosslinker micro-
droplets, which addressed the deficiency of conventional inkjet
(bio)printing methods to some degree [143].

(2) Laser-assisted (bio)printing is a modified version of the
laser-induced forward-transfer technique. In general, this tech-
nique allows high cell viability, density, and printing resolution,
and a wide range of viscosities. But it is relatively expensive and
restricted by fabricating thin structures, and has limited availabil-
ity of materials with viscosities of up to 300 MPa�s�1 [140,141].
Gruene et al. [144] produced an MSC-laden ALG hydrogel construct
by laser-assisted (bio)printing, and laser-printed MSCs grafts could
be differentiated into cartilage in vitro with high expression of
chondrogenic markers.

(3) Extrusion-based (bio)printing (robotic dispensing) is the
most widely used method with distinct advantages over cost, vis-
cosity range (from 30 to 6 � 107 MPa�s�1), cell density, and multi-
material printing [140]. Pati et al. [39] fabricated cartilage grafts by
dECM hydrogels through extrusion-based (bio)printing, and the
printed dECM structures achieved high cell viability and desirable
functionality. However, there are several disadvantages, including
nozzle mechanical or shear stress on cells, low printing speed,
and relatively low resolution [141]. In other words, the major con-
cern of 3DBP is the balance between the optimization of print
parameters and the control of material properties to yield biomi-
metic constructs with high biological activities [145]. For
extrusion-based (bio)printing, it is challenging to provide high-
resolution and structurally reliable printed constructs while pro-
tecting cells from shear forces during (bio)printing. Zandi et al.
[146] developed three types of nanocomposite hydrogels based
on silicate nanomaterials, laponite, and GAGs nanoparticles,
respectively, and found the shear-thinning behavior of nanocom-
posite hydrogels could prevent encapsulated cells from aggressive
shear stress during (bio)printing. A novel strategy named freeform
reversible embedding of suspended hydrogels (FRESH) has been
established through extrusion-based (bio)printing in a support
bath [147]. FRESH extrudes bioinks within a yield-stress support
bath, holding the bioinks in a targeted place until cured [148].
The support bath can be a solution with crosslinkers or soft pregels
with self-healing abilities. The concern of cell viability can be com-
pletely relieved if the cells are suspended in the support bath. Fur-
ther release or enhancement of the support bath can obtain the
final 3D hydrogels.

Co-axial extrusion (bio)printing can be handled using a new
bioink with gentle, freestanding bioassembling tissue strands.
O’Connell et al. [149] designed a co-axial extrusion (bio)printing
system that allowed two different bioinks in a core/shell distribu-
tion. Multiple ink formulations with a collinear geometry were
obtained using custom-made titanium nozzles. This system pro-
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vides a handheld device for surgical printing of cartilage repair
[150,151]. They further improved the ‘‘Biopen” and rebuilt it to
add a 405 nm light-emitting diode near the tip of the nozzle
[152]. This advancement allowed a soft or liquid bioink to be
retained by the rapidly photocrosslinked shell hydrogels. More-
over, Yu et al. [153] successfully fabricated cartilage tissue patches
by ALG bioinks through robotic-assisted co-axial extrusion
(bio)printing. The in vivo results showed enhanced chondrogenesis
and integration with the surrounding cartilage tissues. In addition,
to improve the printing resolution of extrusion-based (bio)print-
ing, Castilho et al. [154] developed novel hydrogel-based bioinks
(based on gelatin and silk fibroin) for cell electrowriting, and the
diameters of printed well-organized cell-laden fiber structures ran-
ged from 5 to 40 lm, providing fascinating opportunities for the
reproduction of intrinsic functions and morphologies of living
tissues.

(4) Stereolithography (SLA) is a 3DBP process with the light
crosslink (e.g., ultraviolet (UV) light) of a photosensitive bioink
on the polymerization plane [155]. Only photocrosslinkable poly-
mers with a small viscosity range can be (bio)printed through
SLA, which hampers its application. Recently, Hong et al. [156]
used a silk fibroin hydrogel for digital light processing technology
3DBP and promoted chondrogenesis both in vitro and in vivo.
Aisenbrey et al. [157] printed a hybrid scaffold that combined an
SLA-based 3D-printed support structure with an injectable and
photopolymerizable hydrogel for delivering chondrocytes to repair
focal chondral defects.
6.4. In situ 3DBP

In vitro 3DBP technologies exist several weaknesses that impede
their clinical translation, including mismatches with patient-
specific defects, multistep procedures, risk of contamination, and
post-processing manipulation requirements. However, in situ
3DBP, the next frontier for 3DBP, attempts to manufacture new tis-
sues in vivo directly in patients undergoing surgical treatments
[158].

Recently, a novel in situ 3D printer ‘‘Biopen” was applied to
reconstruct a standardized critical-sized full-thickness chondral
defect of a sheep in vivo [150] (Fig. 6(e)). The flexibility of in situ
(bio)fabrication through ‘‘Biopen” allowed surgeons to fill irregular
cartilage defects with different hydrogel bioinks in a freeform style.
As a portable medical device for manual manipulation, it can print
a functionalized hydrogel-based 3D construct in a layer-by-layer
fashion at a higher resolution than in situ polymerized hydrogels,
providing high plasticity in geometry and morphology of cartilage
defect areas and high fidelity. Through a handheld 3D scanner, Li
et al. [159] used in situ 3DBP to repair cartilage defects and demon-
strated the feasibility and high efficacy of dynamic imaging evalu-
ation for real-time amendments. Ma et al. [160] further established
a six-degree-of-freedom robot-assisted in situ 3DBP platform for
in vivo cartilage regeneration by utilizing HA methacrylate bioink
(Figs. 6(f) and (g)). A fast center-point calibration tool on a resin
model was successfully developed to improve the robot’s move-
ment and in situ 3DBP accuracy. After calibration, the surface error
was <30 lm.Meanwhile, micro-computed tomography (l-CT) was
applied to monitor the robot-assisted 3DBP process. An in vivo rab-
bit experiment indicated that the well-established in situ 3DBP sys-
tem could repair ICRS grade IV cartilage defects after 12 weeks.
Cartilage injury was repaired after 12 weeks. This study revealed
the potential of this technology for clinical applications.

To facilitate in situ 3DBP towards clinical applications, the for-
mulation and characterization of functionalized hydrogel-based
inks need to be improved. Moreover, some concerns should be
addressed to achieve high shape fidelity, fast gelation, excellent
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mechanical and biocompatible properties, and fewer post-
processing processes for in situ 3DBP [158].

6.5. 4D-(bio)fabrication

As mentioned before, 3D-(bio)fabrication, especially 3DBP, per-
mits the biomimetic construction of objects by layer-by-layer
deposition of biomaterials, leading to precisely controlled dimen-
sions and characteristics of printed tissues with complicated struc-
tures. However, 4D-(bio)fabricated objects are 3D-(bio)fabricated
structures whose shapes, properties, and/or functions can self-
transform over time when exposed to predetermined external
stimuli (e.g., temperature, electric field, magnetic field, light, pH,
and ions) after fabrication [161-163] (Figs. 7(a) and (b)). The
emerging field of 4D printing has grown in interest from both aca-
demia and industry since its introduction in 2013. Stimuli-
responsive hydrogels have become a competitive and versatile
group of biomaterials for 4D printed devices because of their excel-
lent deformability, favorable biocompatibility, low cost, and simple
manufacturing processes. Hua et al. [164] presented a biomaterial
design that combined thermoresponsive and tough components in
a single hydrogel network by 4D printing, which enabled the syn-
ergistic realization of high toughness (100 times higher toughness
�10 MJ�m�3) and actuation performance (20 times higher actua-
tion stress �10 kPa) compared to conventional poly(N-
isopropylacrylamide) (PNIPAm) hydrogels (Fig. 7(c)). Gladman
et al. [163] created a series of functional folding flower architec-
tures (petals in floral form) to demonstrate the capabilities of 4D
printing by combining patterns that generated simple curved sur-
faces (Fig. 7(d)).

In ACTE, 4D-(bio)fabricated hydrogels are able to change their
previous shapes, structures, functions, and properties over time
as designed, which are beneficial for the cartilage tissue healing
process. For example, structure- and degradability-responsive
hydrogels can lead to internal structural changes and controlled
degradation rates, which are crucial for coordinating the dynamic
structural support and tissue ingrowth space. The fast degradabil-
ity or non-degradability of hydrogels can result in unfavorable con-
sequences, such as insufficient mechanical support or undermining
the growth of neocartilage. Thus, the degradation and structural
changes of functionalized hydrogels should be carefully balanced
against the speed of cartilage formation. However, it is difficult
to control the properties of hydrogels accurately. In cases, when
the hydrogels can sense dynamic changes and adjust their proper-
ties in real-time with the regenerated neotissue, it is possible to
sustain the desired properties throughout the regeneration process
over time, not only in a specific period. Shape-memory materials
have the potential to achieve this goal [165]. Almeida et al. [166]
proposed a shape-morphing ALG hydrogel to support the develop-
ment of complex cartilaginous tissues in vitro. This biomaterial can
sense newly synthesized collagen and GAGs in hydrogels and
dynamically change their structure to sustain the architecture
and mechanical properties for ACTE. As yet, there have been very
few cases of 4D printing for cartilage repair, although many 3D-
printed functional hydrogels have been widely reported to
enhance AC repair and regeneration both in vitro and in vivo. Thus,
more preclinical studies on 4D-(bio)fabricated hydrogels, espe-
cially 4D-printed functionalized hydrogels, are anticipated soon.
Fig. 7. Schematic representation of 4D-(bio)fabrication of functionalized hydrogels and th
(a) The evolutionary concept of 1D transformation to 4D transformation in hydrogels. 4D
favorable temporary shape-memory effects (reversible or irreversible). (b) 4D printing of h
morphologies generated by biomimetic 4D printing (scale bars, 5 mm, inset = 2.5 mm
(a) Reproduced from Ref. [161] with permission of MDPI,� 2021; (b) reproduced from Ref
with permission of American Chemical Society, � 2021; (d) reproduced from Ref. [163] w
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7. Conclusions and future directions

During the past two decades, tremendous progress has been
achieved in ACTE by utilizing functionalized hydrogels, which
can provide unlimited possibilities for the future; however, much
more remains to be done to develop truly biomimetic cartilage
regenerative therapies. The translation of functionalized hydrogels
into the market depends on various parameters. Currently, there
still exist several major challenges to overcome. Apart from the
material sources of hydrogels, the distribution of cells and/or
bioactive factors within the functional hydrogels, the response of
cells (e.g., endogenous and exogenous cells) to biophysical and bio-
chemical cues, mechanical properties (e.g., elasticity, stiffness, and
confinement) of hydrogels, and insufficient integration with adja-
cent cartilage/bone tissues should be considered. In other words,
functionalized hydrogels should be biocompatible and non-
immunogenic to prevent detrimental inflammatory responses at
implantation sites. Innovative strategies should increase the capac-
ity of implanted hydrogel-based constructs to survive, adapt, and
withstand the biomechanically arduous joint environment, sug-
gesting that increased use of ex vivo multiaxial bioreactors may
be needed before progressing to in vivo studies. In addition, hydro-
gels should be suitable for forming neocartilages with customized
shapes. From the angle of translation, a streamlined international
standardization of the approval procedures, development of more
appropriate animal models with AC defects for in vivo evaluation,
standardized biomechanical and biochemical assessment to con-
firm the quality of the generated neocartilage compared with adja-
cent tissues, as well as well-designed clinical studies play vital
roles. An integrated quantification system for AC repair and its
specified parameters should be identified. If possible, we would
better employ non-invasive, quantitative measurements through-
out the entire process to acquire information on long-term results.
Such information will be of great significance to verify which
hydrogel-based strategies truly regenerate neocartilage compara-
ble to healthy and native AC. These grand challenges require
unprecedented close cooperation from scientists and researchers
with backgrounds in biomedical sciences, materials, chemistry,
and engineering, along with surgeons, companies, and regulatory
bodies.

To date, an optimal functionalized hydrogel-based solution has
not yet been proposed for the formation of hyaline neocartilage
with long-term maintenance of joint functionalities. So, future
studies should focus on the following goals: ① exploring novel
(bio)fabrication technologies (e.g., in situ polymerization, 3DBP,
and 4D-(bio)fabrication) to synthesize functional hydrogels with
desirable 3D architecture, degradability, biomechanics, plasticity,
adhesiveness, cytocompatibility, and chondroinductive properties;
② encapsulating cells, presenting and delivering biochemical fac-
tors within hydrogels in a spatiotemporally controlled manner to
restore cartilage defects with specific zonal structure and mechan-
ical function, and elucidating the underlying molecular mecha-
nisms of cell migration and differentiation, phenotype
maintenance, cell-hydrogel interactions, as well as the anti-
inflammatory, immunomodulatory, and reparative effects of cells
and bioactive factors; ③ devoting to clinical translation and devel-
oping functionalized hydrogel-based bioproducts for healing AC
lesions.
eir stimuli-responsive properties, such as high toughness and complexmorphologies.
design of functionalized hydrogels under several shape-switching stimuli to achieve
ydrogels. (c) 4D printable tough and thermoresponsive hydrogels. (d) Complex flower
). PVA–MA: poly(vinyl alcohol)–methyl acrylate; NIPAm: N-isopropylacrylamide.
. [162] with permission of JohnWiley & Sons,� 2020; (c) reproduced from Ref. [164]
ith permission of Springer Nature, � 2016.
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