

Delft University of Technology

A Cascaded Structure for Generalized Graph Filters

Coutino, Mario; Leus, Geert

DOI
10.1109/TSP.2021.3099630
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Signal Processing

Citation (APA)
Coutino, M., & Leus, G. (2022). A Cascaded Structure for Generalized Graph Filters. IEEE Transactions on
Signal Processing, 70, 3499-3513. Article 9496112. https://doi.org/10.1109/TSP.2021.3099630

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSP.2021.3099630
https://doi.org/10.1109/TSP.2021.3099630

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022 3499

A Cascaded Structure for Generalized Graph Filters
Mario Coutino , Member, IEEE, and Geert Leus, Fellow, IEEE

Abstract—One of the main challenges of graph filters is the
stability of their design. While classical graph filters allow for
a stable design using optimal polynomial approximation theory,
generalized graph filters tend to suffer from the ill-conditioning of
the involved system matrix. This issue, accentuated for increasing
graph filter orders, naturally leads to very large (small) filter
coefficients or error saturation, casting a shadow on the benefits of
these richer graph filter structures. In addition to this, data-driven
design/learning of graph filters with large filter orders, even in the
case of classical graph filters, suffers from the eigenvalue spread
of the input data covariance matrix and mode coupling, leading to
convergence-related issues as the ones observed when identifying
time-domain filters with large orders. To alleviate these condition-
ing and convergence problems, and to reduce the overall design
complexity, in this work, we propose a cascaded implementation of
generalized graph filters and an efficient algorithm for designing
the graph filter coefficients in both model- and data-driven settings.
Further, we establish the connections of this implementation with
so-called graph convolutional neural networks and demonstrate
the performance of the proposed structure in different network
applications. By the proposed approach, further error reduction
and better design stability are achieved.

Index Terms—Cascaded filters, distributed optimization, graph
filtering, graph signal processing, signal processing on graphs.

I. INTRODUCTION

S IGNAL processing over networks is experiencing an in-
creasing interest as traditional signal processing tasks, such

as statistical inference, are beeing extended to signals with an
irregular support [2]–[4], e.g., social, biological and network
data. To provide a theoretical framework for understanding
such data, the field of graph signal processing (GSP) [5] has
been developed. It naturally incorporates the relations exhibited
by the network structure through an algebraic representation
of the network. This representation provides a notion of shift
in the graph and, at the same time, a way to norm a Euclidean
space [6]–[8].

Manuscript received October 14, 2020; revised May 23, 2021; accepted July
6, 2021. Date of publication July 26, 2021; date of current version July 14, 2022.
The associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Vincent Gripon. This work was supported in part by the
ASPIRE project (project 14926 within the STW OTP programme), and in part
by the Netherlands Organization for Scientific Research. The work of Mario
Coutino was supported by CONACYT. A preliminary work of this paper was
presented in [1]. (Corresponding author: Mario Coutino.)

Mario Coutino is with the Faculty of Electrical Engineering, Mathematics,
and Computer Science, Delft University of Technology, 2826 CD Delft, The
Netherlands, and also with Radar Technology, TNO, 2597 AK Den Haag, The
Netherlands (e-mail: m.a.coutinominguez@tudelft.nl).

Geert Leus is with the Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology, 2826 CD Delft, The Nether-
lands (e-mail: g.t.l.leus@tudelf.nl).

Digital Object Identifier 10.1109/TSP.2021.3099630

Similar to time-domain filters in traditional signal processing,
graph filters (GFs) [9] have become the workhorse of GSP for
solving inference problems such as interpolation/estimation [2],
[10] and classification/detection [4], [11]. Unfortunately, sim-
ilarly to their time-domain counterparts, higher-order graph
filters may present stability issues in both their application and
design, e.g., quantization of filter coefficients, ill-conditioning
of system matrices, etc. To tackle these problems, several works
have aimed at designing robust GFs, see, e.g., [12], [13] or to
leverage polynomial approximation techniques to design graph
filters in a stable fashion [14].

Although research has been carried out to obtain stable GF
designs, most of these efforts have been focused on the so-called
classical GFs, structures that share a one-to-one relation with
time-domain filters and allow for spectrum-shaping designs. For
the case of more complex GFs, capable of better approximating
linear operators due to their increased degrees of freedom,
such as the node-variant [15] and the constrained edge-variant
GFs [16], a node-based design must be performed as they do
not generally accept a spectrum-shaping design. Therefore, the
design of such GFs relies on system matrices constructed with
shifted versions, i.e., matrix powers, of the so-called graph shift
operator (GSO), i.e., the matrix representation of the network.
Due to the (possibly) large spread in the eigenvalues of the
GSO, the resulting system matrices used for the design of these
generalized GFs tend to have a poor numerical conditioning,
especially for large filter orders. This leads to instabilities in
their design and to the slow convergence of iterative methods
employed for finding the respective coefficients [17]. Hence,
there exists a need to develop filter design methods for these
structures that are numerically stable and can cope with the
convergence issues of the iterative methods involved in the
design.

Besides the above issues, although classical GFs benefit
from spectrum-shaping-type designs, their stable design is only
possible when the GF response is known a priori. That is,
this kind of design is only applicable when the shape of the
(discrete) spectrum of the desired linear transform is known
beforehand, i.e., model-driven design. However, in many cases,
a data-driven design is desirable (or is the only option). Such
situations arise when the only information available about the
linear transform is given in terms of input-output data. This calls
for methods that identify the underlying GF by mapping the
available inputs to the respective outputs. Although for classical
GFs, a straightforward deconvolution-type of approach can be
devised for finding the input-output (and hence the spectrum-
shaping function) mapping, see, e.g., [18] for blind graph filter
identification, differently from the time-domain, this method

1053-587X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2228-5388
mailto:m.a.coutinominguez@tudelft.nl
mailto:g.t.l.leus@tudelf.nl

3500 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

requires the full eigendecomposition of the GSO which, in many
instances, can be prohibitive. Further, for generalized GFs, these
deconvolution-type of approaches are simply not possible as
these structures are not guaranteed to be diagonalizable by the
eigenbasis of the GSO. Therefore, a stable and data-efficient
method for identifying generalized GFs from input-output data
is much needed.

To deal with similar issues, time-domain filters have been de-
signed/identified, in the data-driven setting, by means of iterative
methods such as least mean squares (LMS) or recursive least
squares (RLS) [19], [20], which due to their effectiveness, have
already been adapted to the graph setting, see, e.g., [21]. How-
ever, it is well known that, for instance, LMS suffers from two
main problems: the eigenvalue spread of the correlation matrix
of the input data, and the coupling between modes of conver-
gence [22]. Specifically, the former effect leads to a nonuniform
convergence of the different filter coefficients and the latter to
nonmonotonic trajectories toward convergence. Although RLS
provides a way to decouple such convergence routes by means
of a matrix inversion, it is known that RLS exhibits a large
sensitivity to numerical accuracy, plus, the eigenvalue spread
remains a problem [23]. Unfortunately, the latter problem gets
accentuated when modelling auto regressive moving average
(ARMA) processes, which requires higher-order finite impulse
response (FIR) filters, as it has been shown that the eigenvalue
spread is a nondecreasing function of the filter length [24].
In addition to all these, learning long filters requires a small
step size for both LMS or RLS, which in turn slows down the
convergence and increases the number of parameter updates, i.e.,
times that the filter coefficients are updated. Therefore, further
structure has to be imposed on the filters to counteract these
issues.

In this work, our goal is two-fold. First, we aim to improve
the conditioning of the system matrices involved in the design of
generalized GFs [9] where classical time-domain techniques are
not applicable. And second, to develop a stable and efficient up-
dating scheme for the GF identification/learning problem in the
data-driven setting. To tackle these tasks, inspired by construc-
tions used in audio for linear prediction [25], we first introduce
a cascaded implementation of generalized GFs, establishing the
respective connections with so-called graph neural networks
(GNNs) [26], and we then introduce an efficient algorithm for
learning the coefficients of the generalized GFs that is applicable
to both the model- and data-driven setting.

A. Overview and Main Contributions

Though GFs are the workhorse of GSP, the stable de-
sign/identification of GFs, specially for generalized GFs, is still
far from being completely achieved. Therefore, in this work,
we introduce a framework based on the cascaded implementa-
tion of GFs allowing stable and efficient filter coefficient de-
sign/learning. Our contributions broadening the state-of-the-art
are the following.

– We introduce a cascaded structure of distributed GFs to
mitigate the effects of large GF orders on the conditioning
of the GF coefficient design problem, allowing for a better

numerical stability and approximation of general linear
operators.

– We analyze the error surface for the least squares design of
the proposed cascaded structure and show that only saddle
points are introduced in the error surface of the direct imple-
mentation. This explains why stochastic gradient descent
methods are ideal for designing/identifying cascaded GF
coefficients.

– Exploiting the structure of the design matrices, we propose
an iterative design method for cascaded GFs for the model-
driven case, i.e., known data transformation. Further, under
minor modifications, we adapt the proposed method to the
data-driven setting. In addition, the proposed algorithms
are shown to be amenable to a large-scale implementation
leveraging sparsity and deep learning frameworks such as
TensorFlow [27] and Keras [28].

– Through common network applications, it is shown that the
proposed cascaded implementation exhibits better numeri-
cal properties than the direct GF implementation achieving
lower approximation errors while saving communication
rounds in the distributed setting.

B. Outline and Notation

This paper is organized as follows. Section II discusses the
required background in GSP, presents common applications of
GFs and provides the context of this work. Section III introduces
the proposed cascaded implementation for generalized GFs and
analyzes the error surface of the corresponding least squares de-
sign problem. In addition, it illustrates the relation between cas-
caded GFs and graph convolutional neural networks (GCNNs).
To deal with the nonconvex design of the cascaded structure,
an iterative algorithm, referred to as RELAX, is proposed in
Section IV for the model-driven setting. Section V leverages
the proposed RELAX algorithm to introduce its data-driven
variant. Further, it discusses theoretical results with respect to
the learning of cascaded GFs from input-output data. Section VI
showcases the benefits of the proposed implementation by nu-
merical experiments related to common network applications.
Finally, Section VII concludes the paper.

Throughout this paper, we adopt the following notation.
Scalars, vectors, matrices and compound linear operators are
denoted by lowercase letters (x), lowercase boldface letters (x),
uppercase boldface letters (X), and calligraphic letters (X),
respectively. X� and X−1 are the transpose and the inverse
of X , respectively. The Moore-Penrose pseudoinverse of X is
denoted by X†. ‖X‖ denotes an arbitrary norm defined in the
space where X is defined. κ stands for the number of degrees of
freedom, i.e., the number of free parameters to identify or learn.
[K] denotes the set {1, 2, . . . ,K}.

II. PRELIMINARIES

A. Graph Signal Processing

Consider a graph (possibly directed) G = (V, E), where V
and E are the set of N nodes and M edges, respectively.
Further, let W and L be the weighted graph adjacency matrix

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

COUTINO AND LEUS: CASCADED STRUCTURE FOR GENERALIZED GRAPH FILTERS 3501

and an appropriate Laplacian matrix,1 respectively. Both matrix
representations of the graph are valid candidates for the so-called
graph shift operator S (GSO), a linear operator that induces a
frequency notion in the graph setting [5]. Analogous to tradi-
tional signal processing, given the decomposition S = UλU−1

(assuming it exists), the graph Fourier transform (GFT) of the
signal x ∈ RN , supported on G, is defined as x̂ = U−1x. The
inverse GFT is then given by x = Ux̂. As a result, following
the GSP interpretation, the eigenvalues λ = diag(λ1, . . . , λN)
of the GSO are referred to as the graph frequencies.

Similarly as in time domain, the notion of shift can be
employed to define so-called classical GFs (C-GFs). These
structures are matrix functions [29] of the GSO, whose finite
dimensionality leads to matrix polynomials in S, i.e.,

FK
c (S; {φk}) :=

K∑
k=1

φkS
k−1 = U

[
K∑

k=1

φkλ
k−1

]
U−1, (1)

where K ≤ N denotes the order of the matrix polynomial.
Therefore, for a given input x ∈ RN , the output of the GF
in (1), i.e., y = Fc(S)x, can be seen as the linear combination
of shifted versions of the input, i.e., xk = Skx. Due to the
locality of S, i.e., its support is defined by the connections
in the graph, for physically meaningful systems, e.g., sensor
networks, a shift can be implemented in a single communication
round. Hence, the filtering operation can be implemented in a
distributed fashion in K communication rounds.2

Recently, several efforts [9], [14] have been taken to increase
the flexibility of the graph operation (1). Such efforts have
focused on increasing the degrees of freedom of the filtering
operation, while maintaining its distributed nature. In [30], the
so-called constrained edge-variant graph filter (CEV-GF) has
been introduced. The structure of the CEV-GF is given by

FK
cev(S; {Φk}) :=

K∑
k=1

ΦkS
k−1, (2)

where Φk is a local matrix with the same support as S + I .
From (2), it can be observed that the so-called node-variant
graph filter (NV-GF), proposed in [15], is a particular case of
the CEV-GF where the matrices {Φk}Kk=1 are restricted to be
diagonal matrices, i.e.,

FK
nv(S; {φk}) :=

K∑
k=1

diag(φk)S
k−1. (3)

Due to the increased degrees of freedom of these more com-
plex structures, with respect to classical GFs [cf. (1)], they have
been shown to obtain a better performance while reducing the
number of communication rounds in typical network applica-
tions, see., e.g., [9]. In addition, despite that for arbitrary local
matrices {Φk}Kk=1 the filter in (2) does not directly carry the

1Here, we do not further select a particular type of Laplacian matrix due
to the different possible options, e.g., combinatorial Laplacian, in/out degree
Laplacian, normalized Laplacian, etc.

2For these GFs, the order is in fact K − 1 and the number of communication
rounds is K − 1, however, in view of the later generalizations, we prefer to
employ K instead of K − 1.

same graph frequency interpretation as (1), in [9] a restricted
subfamily of (2) has been shown to have a graph frequency
interpretation.

B. Graph Filter Applications

Graph filters are useful to describe processes running on the
network structure, in which the observable variable x ∈ RN

may be represented using few modes of the graph. Such processes
are often referred to as band-limited processes [31] and have
found applications in analyzing network data such as health-
related data, e.g., brain [32], heart [33], or weather data and
point clouds, e.g., [34]. Furthermore, the generalization of graph
filters [cf. (2)] has been successfully employed for obtaining
distributed approximations to arbitrary linear operators such as
beamformers (for array processing) and consensus.

As graph filters provide a natural regularization mechanism,
by including the structural information of the graph into the
problem, they have found further applications in graph convo-
lutional deep neural networks [26]. In such cases, by using a
proper parametrization of the graph filters, it is possible to obtain
an increased prediction performance [35] by leveraging the
structure present in the data inherited by the graph topology. In
addition, GFs are the building block of both the graph scattering
transform [36] and personalized recommendation systems, see,
e.g., [37].

C. Context

Conventional graph filter design either focuses on one-shot
designs [14], [15] or on iterative designs for autoregressive
moving average (ARMA) structures [38], [39]. Despite that
these methods are able to cope with common filtering tasks,
the resulting filter might require a large number of communi-
cation rounds to achieve a desired performance. Furthermore,
if traditional time-domain designs are extended to the graph
setting, the obtained filters will be restricted to be shift invariant,
i.e., polynomials of the GSO, leading to inappropriate filters
for approximating arbitrary linear operators by means of graph
filters. Moreover, the works on robust design for GFs mostly
focus on classical GFs and model-driven settings or on the
theoretical understanding of effects such as quantization in the
GF processing chain, see, e.g., [12], [13], [40]. Hence they either
do not address the data-driven setting for (classical) generalized
GFs case and do not deal with the numerically problems in the
design stage due to the conditioning of the matrices.

Therefore, in this work, we focus on the problem of stable
design of generalized graph filters for arbitrary linear operators.
That is, we aim to provide design algorithms that ameliorate
the conditioning of the system matrices involved in the de-
sign/learning of generalized graph filters.

III. CASCADED IMPLEMENTATION OF GRAPH FILTERS

One of the main problems of graph filter design is the nu-
merical stability of the least squares problems involved. Despite
that for classical GFs (C-GFs) [cf. (1)] polynomial fitting in
the spectral domain, by means of the Chebyshev polynomial

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

3502 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Fig. 1. Schematic of the cascaded GF implementation. Each GF can be considered as a layer of a GCN with a linear activation function. Here, we consider
the most general form of GF [cf. (2)], however, the local matrices {Φk}Kk=1 can be specialized to {φkI}Kk=1 and {diag(φk)}Kk=1 for C-GFs and NV-GFs,
respectively.

expansion [41], can be employed for large polynomial orders,
other types of graph filters rely on a node-domain design, i.e.,
entry-wise fitting with respect to the target linear operator, H∗;
that is,

min
θ

‖FK
∗ (S;θ)−H∗‖F, (4)

where FK
∗ (S;θ) is a GF of orderK with parameters θ ∈ RKκ;

in this notation, the asterisk is a space holder for the particular
kind of GF employed, e.g., FK

c , FK
nv or FK

cev; and κ denotes the
number of degrees of freedom of the particular kind of GF, e.g.
κ = 1 for the C-GF, κ = N for the NV-GF and κ =M for the
CEV-GF.

Unfortunately, the LS problem in (4) quickly becomes ill-
conditioned when the order increases. This issue leads to slow
convergence of iterative methods for solving the least squares
problem, memory issues due to low sparsity levels of the system
matrices, or/and unstable solutions with very large (very small)
filter coefficients. To deal with the conditioning issues of the
system matrices in the node-domain design, and borrowing ideas
from traditional cascaded implementations of finite- and infinite-
impulse response filters [23], [42], we put forth a cascaded
implementation of graph filters. That is, we propose to limit
the maximum order of a given GF and employ this GF module
as a building block of a larger system.

Mathematically, we introduce the graph operation as

H(S;Θ) :=

Q∏
i=1

FK
∗ (S;θi) = FK

∗ (S;θQ) · · · FK
∗ (S;θ1),

(5)
where Θ = [θT

1 , . . . ,θ
T
Q]

T ∈ RQKκ. Notice that when the GF
is a C-GF, (5) is another C-GF of order max{KQ,N}. This is
however not the case for both the NV-GF and CEV-GF unless
the coefficient matrices have a particular structure, i.e., they
enforce shift-invariance. The implementation of the proposed
construction is shown in Fig. 1.

The adopted cascaded implementation is similar to the
cascading of biquad filters [43] in time-domain processing
for attenuating the effect of quantizing the filter coefficients.

They are also similar to the structures employed for adaptive
linear predictors [23] which are robust against conditioning of
the input covariance matrix and accept larger step sizes in their
updating steps as the coefficient sensitivities of a cascaded filter
are much lower than that of the direct form [44]. Thus, similar
to the motivations present in the time domain, by introducing
such a filter implementation, we aim to: (i) improve the con-
ditioning of the design problem, (ii) reduce the complexity of
the optimization problems involved and (iii) achieve a better
performance with a reduced order. However, all these advantages
do not come for free: we need to give up the convexity of the
overall filter design problem, i.e.,

argmin
{θi}Qi=1

‖H(S;Θ)−H∗‖F. (6)

As the design of the direct implementation, i.e., a single GF
with large order, is a convex problem [cf. (4)], it is theoretically
guaranteed that an optimal configuration of coefficients can be
efficiently found. However, due to the nonconvexity of the design
problem for the cascaded problem [cf. (6)], this property cannot
be guaranteed without understanding the error surface for this
kind of problem. In the following, we present an analysis of the
error surface for a particular family of problems of the form (6).

A. Theoretical Study of Cascaded GF Error Surface

Surprisingly, similar to the results in system identification
and adaptive filtering [44], it is possible to show that the error
surface of the cascaded implementation of a particular family
of GFs exhibits critical points that are either global minimizers
or saddle points. To show this, we first introduce some basic
notions that characterize what happens to an error surface when
a new parametrization is introduced. And then, we use these
results to show the type of critical points that the error surface of
the cascaded implementation of a particular family of GFs has.

Critical points after reparametrization: Let us consider two
equivalent implementations of a GF of order K, one in direct
form with parameters θd = [θ1, . . . , θKd

]� and the other in
cascaded form with parameters Θc = [θ�

d1
, . . . ,θ�

dQ
], where

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

COUTINO AND LEUS: CASCADED STRUCTURE FOR GENERALIZED GRAPH FILTERS 3503

θdi
∈ RKc ∀ i are the parameters of the ith cascaded module;

that is,

FK
∗ (S;θd) = H(S;Θc), (7)

where the LHS denotes the direct implementation and the RHS
the cascaded implementation. Further, let us denote with Dd

andDc the sets of feasible direct and cascaded GF coefficients of
given order and kind, e.g., C-GF, NV-GF, etc., respectively. That
is, if C-GFs of order K are selected, Dd contains all the C-GFs
of order at most K. Similarly, the equivalent set Dc contains all
the cascaded C-GFs with order at most K formed by modules
of order Kc. Hence, θd ∈ Dd and Θc ∈ Dc.

The above implies that the LS error with respect to a desired
responseH∗ is the same for both implementations (realizations).
However, while for the case of the direct form the LS error
function is convex with respect to the GF coefficients [cf. (4)], for
the cascaded implementation, the LS error is clearly nonconvex
[cf. (6)]. So, despite that the error surface for the direct imple-
mentation, due to its convexity, has only a global minimum,
the cascaded implementation could have several local minima,
changing the modality of the LS error surface.

To characterize the change in the modality of the cost function,
we introduce the following adapted Lemma from [44].

Lemma 1: Let a mapping ϕ(·) : Dd → Dc exist and be con-
tinuous and surjective (onto), then all the newly formed station-
ary points (critical points) are saddle points.

Proof: See Appendix A.3 �
The previous Lemma guarantees that the original critical

points are maintained and that all new critical points introduced
are saddle points if a proper reparametrization is used. Here,
proper refers to the properties that the mapping ϕ must exhibit.
Unfortunately, as shown next, these properties cannot be guar-
anteed for all types of GFs. This fact is made formal in the next
result.

Theorem 1: The continuous and surjective map ϕ exists for
cascaded GFs whose modules are first-order C-GFs.

Proof: See Appendix B. �
Corollary 1: The map ϕ also exists if instead of C-GF

modules, ARMA C-GF modules, see, e.g., [38], are used to
implement the cascaded GF.

Saddle points of Cascaded C-GFs: Due to Theorem 1, we
know that only C-GFs allow for continuous and surjective
mappings, thus due to Lemma 1 we can ensure that all the
newly created critical points are saddle points, hence no lo-
cal/global minima. The following result identifies where these
saddle points, due to the cascaded reparametrization, appear in
the parameter space.

Theorem 2: Consider a direct implementation of a C-GF

H =

K∑
k=0

φkS
K , with φ0 = 1,

and a cascaded GF, H(S;Θ), of the form (5) with Q = K
modules. Further, let the modules be given by

F1
c (S;θq) = I + φ

(q)
1 S, ∀ q ∈ [Q].

3The appendix is found in the supplemental material (extended version).

Then, the newly introduced saddle points in (6), with respect to
a desired response H∗, are found in a manifold where any two
or more graph filter coefficients are the same.

Proof: See Appendix C. �
Corollary 2: The above result also holds in the case that the

modules are ARMA1 C-GFs, i.e.,

F1
c (S;θq) = (I + ψ

(q)
1 S)−1(I + φ

(q)
1 S), ∀ q ∈ [Q]

where θq = [ψ
(q)
1 , φ

(q)
1]� are the ARMA1 C-GFs parameters.

The result of Theorem 2 shows that saddle points only appear
when two modules (stages) of C-GFs have the same coefficients.
This is in line with the results of system identification stating
that the modality of the error surface for cascaded IIR filters are
affected by multiple poles or zeros [45]. In addition, although the
result of Theorem 2 seems restrictive, i.e., it is stated for C-GFs of
order one, the theorem can be extended to second- (or higher-)
order modules. However, for the sake of exposition, we here
consider first-order modules as they are the simplest GF units
and they are the basis for graph neural networks (GNNs) and
residual GNNs (RGNNs), see, e.g., [46]. Further, the restriction
to φ0 = 1 is w.l.o.g. as for any other value different from unity,
the same result can be obtained by proper scaling.

To conclude this section, we bring to attention the following.
First, the fact that only saddle points are introduced when a C-GF
is reparametrized as a cascade of C-GFs [cf. Theorem 2] indi-
cates that stochastic descent methods, e.g., stochastic gradient
descent (SGD) or LMS, are good candidates for minimizing the
cost in (6). The stochastic nature of such algorithms provides
a natural protection against saddle points. This is because the
jitter present in these methods allows them to escape from
saddle points. This key observation is the working assumption
for the optimization methods used in state-of-the-art machine
learning methods for optimizing nonconvex costs, see, e.g., [47].
Second, the negative result obtained for other kinds of GFs [cf.
Theorem 1] suggests that although traditional descent methods
might work “sufficiently well,” we should put efforts on devising
methods that are not only globally convergent but that are
efficient. This last aspect motivates the algorithm development
presented in Section IV. There we propose an iterative method,
amenable for sparse iterative solvers and deep learning opti-
mization algorithms, to fit/learn the filter coefficients of (5).

Before introducing the proposed coefficient learning algo-
rithm, in the following part, we present the relation between the
proposed cascaded GF implementation and graph convolutional
networks.

B. Relation to Graph Convolutional Networks

In recent years, machine learning over graphs has drawn an
increasing amount of attention [48]–[50]. However, despite that
the graph structure provides a highly informative prior, the task
of learning over graphs still remains highly complex due to this
same structure. As a result, graph convolutional neural networks
(GCNNs), which leverage the structural information of the
graph, have been put forth [26]. GSP and more specifically graph
filtering provide a formal understanding of the basic operations
involved in GCNNs [35].

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

3504 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Formally, a GCNN is a neural network that operates on graph
data and whose hidden layers can be represented as

X(i) = ρ(S;X(i−1)), (8)

whereX(0) is the originalN × F (0) input data (data matrixX),
S the GSO and ρ a propagation rule [51]. Thus, the hidden layer
X(i) can be interpreted as anN × F (i) feature matrix whose ith
row represents the features of the ith node. Under this setting,
by stacking Q different layers, i.e.,

Hgcnn(S;X
(0)) := ρ(S; ρ(S; ρ(S; . . . ρ(S;X(0)) . . .))),

(9)
we obtain a so-called GCNN. Note that different flavors of
GCNNs can be obtained by choosing different alternatives for
the propagation rule. Typically, the propagation rule is selected
as

ρ(S;X(i)) := σ(SX(i)W (i)), (10)

whereσ(·) is an element-wise non-linearity, e.g., a linear rectifier
unit (ReLU), and W (i) a weight matrix to combine the features
of the nodes. From (10), we observe that the number of features
at the (i+ 1)th layer is defined by the number of columns of
W (i) and hence W (i) is an F (i) × F (i+1) matrix.

Observing the expression involved in a GCNN, we can easily
draw connections between the model (5) and a GCNN. For the
filtering task, we are mostly concerned with one-dimensional
signals at each node, hence the number of features at all layers
can remain constant and equal to one. Thus, the weight matrices
{W (i)} are reduced to simple scalars. Further, despite that a
single shift with respect to the GSO captures certain structural
properties, a GF is able to highlight different (and possibly more
complex) properties of the graph structure in a parsimonious
manner, i.e., through a parametrized representation. Further,
considering that we want to build a linear model-driven system,
i.e., in most GF applications a desired linear operator is given
to be approximated, the element-wise non-linearity σ(·) is not
required and an identity function suffices, i.e., σ(x) = x. As a
result, by using these considerations, we can see that (9) reduces
to (5), where each layer is a first-order C-GF and the input is the
graph signal x. Finally, we note that other architecture that can
be seen as particular instance of the cascaded implementation (if
a non linearity is applied to its output) is the simple graph convo-
lution (SGC) network [52]. In this light, a SGC of order K can
be seen a single GF module, Q = 1 where θi = 0 ∀ 1 ≤ i < K
and θK = 1.

IV. RELIEF ALGORITHM

Let us consider again the model for the cascaded GF
implementation

H(S;Θ) =

Q∏
i=1

FK
∗ (S;θi), (11)

where the parameter dependency has been stated explicitly,
and Θ := [θT

1 , . . . ,θ
T
Q]

T ∈ RQκ is the parameter vector of the
cascaded GF implementation.

The general filter design task consists of the following opti-
mization problem: given a linear operator H∗ ∈ RN×N find

Θ∗ = argmin
{θi∈C}Qi=1

‖H(S;Θ)−H∗‖
, (12)

where C is a desired feasible set, e.g., interval, normed ball, etc.,
and ‖ · ‖ a desired norm, i.e., spectral normal, Frobenius norm.
Notice that because the operator to approximate is linear, and that
there are no data-dependent non-linearities in H, input/output
data is not required for solving (12). This type of design is what
we refer to as model-based design.

As discussed before, one of the main challenges for finding
the parameter vector Θ∗, even for a simple (or convex) feasible
set C, is that its components interact in the cost function of (12) in
a non-convex manner. Therefore, the cost function is generally
a multi-modal function with several local minima and off-the-
shelf convex solvers can not be employed directly.

An alternative to deal with the non-convexity of the cost
function in (12) but still being able to use readily available
efficient convex solvers, is to perform sequential fitting for each
of the GF modules. That is, given a certain tolerance, i.e., error
between the fitted GF and desired linear operator, we start by
solving

θ∗
1 = argmin

θ1∈C
‖FK

∗ (S;θ1)−H∗‖ , (13)

and proceed with the remaining filters by sequentially solving

θ∗
q = argmin

θq∈C
‖FK

∗ (S;θq)

[
q−1∏
i=1

FK
∗ (S;θ∗

i)

]
−H∗‖ , (14)

This way, a solution Θ̂ within the desired tolerance can be
obtained.

Although this is a straightforward approach, it has several
drawbacks. For instance, in this approach each filter is fitted
once, hence if early stages result in a bad fit this cannot be
corrected for in later stages, thus the required (desired) tolerance
might not be achievable.

To alleviate this issue, we propose to fit the filters using
ideas similar to the ones employed in the RELAX method for
mixed-spectrum estimation [53], where in every stage, after a set
of parameters has been estimated, the old set of parameters are
refitted to improve the cost function value. However, instead of
refitting all GFs every time a new GF is added, as in the case of
RELAX, we restrict ourselves to the left and right most filters.
Hence, the name of the method: right (REchts) -left (LInks)
itErative Fitting (RELIEF). In addition, to avoid the explicit
computation of the inverse filters, we use a sparse construction
(which allows a matrix free implementation) for solving the LS
design.

In the following, we first introduce the sparse construction for
fitting individual GFs (linSparseSolve routine) and then
the refitting routine to improve the cost function value after each
stage of the algorithm (refitPair routine). A summary of the
proposed method is shown in Algorithm 1.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

COUTINO AND LEUS: CASCADED STRUCTURE FOR GENERALIZED GRAPH FILTERS 3505

A. linSparseSolve Routine

Without loss of generality, let us focus on the cascaded GF
implementation of order q given by

H(S;Θ) = H lMHr, (15)

where Hr := FK
∗ (S;θ1), H l := FK

∗ (S;θq) and

M :=

q−1∏
i=2

FK
∗ (S;θi). (16)

The minimizer of problem (14) forH l withM andHr fixed,
assuming C = RN , can be shown to be given by the solution of
the least squares problem

argmin
θq

‖Ωlθq − vec(H∗)‖2, (17)

where Ωl := (HT
r M

T ⊗ I)Ψ with ⊗ the Kronecker product,
vec(·) is the vectorization operation and

Ψ := [(I ⊗ I)J , (ST ⊗ I)J , . . . , ((ST)K ⊗ I)J]

∈ RN2×Kκ, (18)

is the GF system matrix, with J an N2 × κ selection matrix
that only preserves the nonzero entries of vec(Φk). Notice that
by construction, the Kronecker matrix is a sparse matrix and
for low filter orders, i.e., below the diameter of the graph, the
Ψ matrix is also sparse. Hence, it can be stored efficiently in
memory if it is desired to construct Ωl explicitly. Least squares
problems as (17) can be easily solved by methods such as
LSMR [54]. In addition, if Ωl is explicitly computed, we can
build a preconditioner to accelerate the convergence of LSMR
by scaling the columns of Ωl such that every column has unit
2-norm. For very large systems, we may prefer to keep Ωl as an
operator. That is, we avoid its construction explicitly and only
provide a routine which computes the actions Ωlx and ΩT

l x for
an arbitrary vectorx. Algorithms as LSMR can still be employed
in this setup, however, the preconditioning of the system is not
simple unless the norm of the columns of Ωl can be estimated
accurately. Note that, as we assume that (17) is not necessarily
consistent, i.e., large relative tolerance, LSMR is preferred over
the popular LSQR method [55] due to its faster convergence.
In Algorithm 1, the routine linSparseSolve(A, b) makes
reference to the procedure of solving a least squares problem
Ax ≈ b such as (17) by means of LSMR. For completeness,
the LSMR algorithm, specialized for solving problems of the
form (17), is provided in Appendix D.

A similar system can be obtained for fitting Hr for a fixed
H l and M by making minor changes. Hence, for sake of space,
we omit this derivation.

B. Refitpair Routine

Similar to RELAX, we would like to correct for a possibly
wrong fitting, without going to the extreme of doing a multi-
block block-coordinate-descent (BCD) [56], where only a set
of GFs are fitted at a time, while keeping the rest constant and
then iterating until convergence (if achieved). Although such an
approach is possible, it has some drawbacks. First, to the best

of our knowledge, for multi-block BCD there are no guarantees
on the behaviour of limit points of the generated sequences in
the general case. Hence, to guarantee convergence, i.e., each
subproblem is convex [56], each block has to be updated indi-
vidually. Second, even if individual GF updates are considered,
the fitting of that many GFs and the possibly slow convergence
renders the approach unattractive. And third, if a direct solver
with an explicit system matrix is used, the sparsity of the system
matrix is lost.

Therefore, instead of iterating over all filters, at every step, we
propose to refit the left- and right-most filters [cf. (15)]. This not
only allows to have convergence guarantees, i.e., two-block BCD
convergence is proved in [57], but also to have a reduced number
of subproblems, which (i) effectively reduces the complexity of
the overall approach and (ii) makes use of the sparsity of the
involved system matrices. A summary of this routine is shown
in Algorithm 2.

V. DATA-DRIVEN RELIEF

Though model-driven designs are appealing because they do
not require input/output data, in many cases, the only infor-
mation available of the underlying transform is given through
input-output pairs, {xi,yi}Pi=1. Examples of such scenarios
appear in system network identification, e.g., [58], [59], or graph
identification tasks, see, e.g., [18], [60], [61]. Therefore, there

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

3506 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

is a need to put forth a data-driven method for cascaded GF
coefficient learning.

Formally, a data-driven design for the cascaded GF in (5)
and in the unconstrained case, solves the following optimization
problem

Θ∗ = argmin
{θi}Qi=1

P∑
i=1

‖yi −H(S;Θ)xi‖22 (19)

Despite that (19) can be solved by deterministic variants of
descent methods, or by substituting the cascaded GF by a higher-
order GF, there are several issues that make these approaches
not so attractive. First, it is well-known from the time-domain
literature, see, e.g., [23], [44], that the sensitivities of coefficients
of cascaded structures are much lower than those of direct forms;
that is, the deviation of the magnitude response due to a small
change in the coefficients of cascaded forms is much smaller than
for direct forms. Second, deterministic approaches to solve (19)
might lead to problems of high memory and computational cost
as for large P , i.e., a large number of data pairs, computing
the full gradient might be prohibitive. Plus, batch-processing
benefits, e.g., parallelization, are not leveraged.

In addition to above issues, even a direct solution, i.e.,

Θ∗ = argmin
{θi}Qi=1

‖Y X† − H(S;Θ)‖2F (20)

where Y = [y1, . . . ,yP] and X = [x1, . . . ,xP], is not desir-
able due to the initial effort of finding the pseudoinverse of the
input data, i.e., X†.

In addition, due to the result of Theorem 2, when the cascaded
implementation and a stochastic (batch) variant of gradient
descent is employed, such as LMS or SGD, there is no risk to
be stuck in a saddle point due to the jitter present in the method.
Hence, in the following, we introduce a batch version of RELIEF
for the data-driven setting.

A. Staggered RELIEF

To adapt RELIEF to the data-driven setting, let us consider
the original three-way factorization of the cascaded GF used by
RELIEF in the matrix version of the cost in (19), i.e.,

‖Y −H lMHrX‖2F. (21)

From (21), we observe that now there is a matrix to the right
of Hr which means that the sparsity present in the system
matrix exploited in RELIEF is lost. Hence, some computational
benefits of the approach are lost. In addition, as discussed in (20),
although directly taking the pseudoinverse of the input data
matrix would allow for a direct application of RELIEF, it requires
a costly inversion. Therefore, we put forth a small variant of
RELIEF to cope with these details and allow for batch updates.

To tackle the problems with a vanilla implementation of RE-
LIEF in the data-driven setting, we propose the following updat-
ing scheme for the left and right GF coefficients. First, we replace
the routine linSparseSolve in Algorithm 1 by the routine
descentMethod. Here, the routine descentMethod is

any stochastic variant of a descent method, e.g., SGD, RM-
Sprop [62], Adam [63], etc., working under mini-batch assump-
tions and allowing a scheduler for step-size and batch-size. The
latter requirement is to leverage the benefits of parallelization
and a reduction of coefficient updates due to proper batch size
scheduling, see, e.g., [64]. Second, the routine refitPair is
substituted by a process summarized in Fig. 2. In this process,
we refit and update, in two stages, the left and right coefficients,
similar to the model-driven RELIEF. As seen in Fig. 2, both
the left and right updates have a feedback loop of the error.
Hence, they are also implemented as descent methods. However,
due to the linearity of the operations, i.e., the transform is data
independent, we can collapse, at every iteration, the right chain
into a single transformation; that is, we define

H̃r = MHr, (22)

and process (possibly in parallel) the input to obtain the “filtered”
version X̃ := H̃rX . Though this step might be seen as trivial,
it avoids multiplication-induced overheads that might appear if
each GF is defined as a layer in a deep learning framework e.g.,
as in Tensorflow. This filtered version can then be used as input
to the descentMethod routine to adjust the coefficients of
the left-most GF for several epochs, i.e., complete passes over
the data. Similarly, the left chain can be collapsed to form

H̃ l = H lM , (23)

again, due to the linear nature of the model, and use the
descentMethod routine to adjust now the coefficients of
the right-most GF for several epochs. This refitting procedure,
consisting of the left and right updates depicted in Fig. 2, is
performed for several rounds or until a convergence criterium is
met. Due to the collapsing and alternating updates, we refer to
this method as staggered RELIEF.

Remark 1: Although, in theory, the linear operators (22)
and (23) should be no different than a “layered” implemen-
tation, i.e., an implementation where every batch sequentially
undergoes the linear operators, we make the reader aware that,
at implementation time, there might be differences due to round-
ing errors and the selected floating-point representation of the
involved matrices. Hence, results might slightly vary but not
considerable.

B. Some Words About (Full) Backpropagation

A straightforward way to solve (19), including the previously
discussed aspects, is backpropagation (BP) [65] equipped with a
stochastic descent method. Within signal processing and neural
networks (NNs), BP is a celebrated method for updating the
coefficients of the different layers composing a NN. However,
although BP can find the global optimum of (19) for cascaded
structures employing C-GFs as modules, based on the result
from Theorem 2, for other GF structures, it might incur a high
computational cost due to the (possibly) large number of pa-
rameters per stage and the full backpropagation of the gradient.
Moreover, due to the increased sensitivity of the coefficients,
the learning has to be done with a small step size which directly
affects the convergence of the method. In NNs, this last issue is

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

COUTINO AND LEUS: CASCADED STRUCTURE FOR GENERALIZED GRAPH FILTERS 3507

Fig. 2. Schematic of proposed refitting update procedure for the proposed staggered RELIEF. (left) Update cycle for the left coefficients. (right) Update cycle
for the right coefficients. Here, X(i) and Y (i) are the ith input- and output-data batches, respectively; and el and er the error signals required for gradient
computations.

Fig. 3. Comparison of the error surface profiles of the (a) direct, and (b) cascaded implementation for a C-GF with roots [0.3, 1.23] for a sensor network graph
with N = 32 nodes.

usually tackled by the nonlinearities and the batch normalization
layers present in the architectures, see, e.g., [66], which are
not present in the cascaded structure. In addition, differently
from the staggered RELIEF, the need to know beforehand the
number of modules to use, i.e., Q is a hyper-parameter that
needs to be set, and the large number of parameter updates, i.e.,
matrix-vector products, that have to be made when learning rates
(descent steps) are small make this approach not as appealing
as the proposed staggered RELIEF. However, despite that we
advocate the use of a variant of RELIEF instead of full BP for
finding the coefficients of the involved GFs, we do encourage
to use full BP steps for fine-tuning after an initial coefficient
configuration has been found using the proposed data-driven
staggered RELIEF. That is, after an appropriate number of mod-
ules, Q̂, and their respective coefficients have been fitted using
the the proposed data-driven staggered RELIEF, several steps of
full BP can be employed to improve the fitting quality locally,
i.e., further reduction of the fitting cost by local optimization on
the neighbourhood of the RELIEF-based solution.

VI. NUMERICAL RESULTS

To illustrate the performance of the introduced cascaded
structure, in the following, we present a series of numerical

experiments covering the theoretical aspects discussed in the
manuscript as well as the model- and data-driven application of
the RELIEF.

A. Error Surfaces and Root Analysis

First, we present an example that illustrates the results of
Theorems 1 and 2. Here, we consider a simple example for
a sensor network with N = 32 nodes constructed using the
GSPToolbox [67]. The GSO considered in this example is the
combinatorial Laplacian of the network. Here, we consider
a 2nd-order C-GF with coefficients θ = [0.369, −1.53, 1]�.
The roots of the corresponding polynomial are [0.3, 1.23]. In
Fig. 3 , we show the corresponding error surfaces for the dif-
ferent implementations, i.e., (left) direct and (right) cascaded.
In this experiment, we generated 1000 Gaussian-distributed
graph signals, i.e., X ∈ RN×1000, and filtered them using the
above mentioned C-GF. The filtered graph signals are then
perturbed with additive white Guassian noise whose standard
deviation is σ = 10−3, thus the observations follow the model
Y = HX +N, where N denotes the additive noise and H the
applied C-GF. The error surface shown in Fig. 3 is then the norm
of the fitting error, e..g, ‖H(Θ)X −Y‖F. While for the direct
implementation, the cost is known to be convex [cf. Fig. 3(a)],

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

3508 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Fig. 4. Comparison of the fitting performance for the direct and cascaded implementation of a C-GF with roots [0.336 + 0.543i 0.336− 0.543i, −0.358 +
0.421i, −0.358− 0.421i]. (a) Evolution of fitting error per epoch. (b) Trajectory of the estimated filter polynomial roots.

Fig. 5. Comparison of the fitting performance for the direct and cascaded implementation of a C-GF with roots [−2.5, 2.5, −1, 1]. (a) Evolution of fitting error
per epoch. (b) Trajectory of the estimated filter polynomial roots.

the minimizer has not changed for the cascaded implementation
as discussed in Theorems 1 and 2. Further, the profile of the
cost function is also different. That is, although no saddle points
were introduced, the gradient towards the minimum in Fig. 3(b)
can be seen larger than that of Fig. 3(a). In particular, in one
of the dimensions (coefficients) of the direct implementation
the cost function exhibits an elongated behavior, i.e., different
sensitivity for each coefficient. This simple example, illustrates
the theoretical results derived in this work with respect to
the cascaded implementation of C-GFs, which are consistent
with well-known results within signal processing and adaptive
filtering.

Now, we briefly discuss one of the problems of the cascaded
implementation, namely, close and mirrored roots. As discussed
before, the error surface of the cascaded implementation exhibits
amenable properties when there are no repeated roots. However,
when the roots are close to each other and mirrored, i.e., pair of
complex conjugate roots, the chances that the roots move to the
area where a singularity appears, i.e., repeated roots, increases.
Thus, the cascaded implementation might exhibit problems
finding the appropriate roots in these cases or a slower conver-
gence. To show an example of this behaviour, let us consider a
C-GF whose coefficients are θ = [5.2, 0.23, 1.21, 0.45, 0.65].

In this case, the roots of the corresponding 4th-order polyno-
mial (up to 3 digits of precision) are [0.336 + 0.543i 0.336−
0.543i, −0.358 + 0.421i, −0.358− 0.421i]. A comparison of
the fitting error between the direct and cascaded implementation,
for this case, is shown in Fig. 4. In Fig. 4(a) two things can
be observed. First, the direct implementation obtains a better
fit (loss) and with a much faster rate. Second, the cascaded
implementation enters a plateau early on but escapes, i.e., it
keeps descending. The plateau is reached when the root esti-
mates collapse on the real axis and have similar values (see
Fig. 4(b)). After the roots meet, they move away from the
real axis and move towards the respective conjugate pairs. As
discussed before, when a stochastic method is used to perform
the optimization, the cascaded implementation is able to escape
from saddle points without much trouble. Notice here that while
at the 500th iteration, the direct implementation is really close
to the original roots, the cascaded implementation still requires
more iterations to reach them. In contrast with this result, we
have the experiment shown in Fig. 5. In this case, another
C-GF with roots [−2.5, 2.5, −1, 1] is identified through data.
Differently from the previous case, the cascaded implementation
avoids the collapse of the roots as seen in Fig. 5(b) leading to
a better fitting than the direct implementation and at a faster

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

COUTINO AND LEUS: CASCADED STRUCTURE FOR GENERALIZED GRAPH FILTERS 3509

Fig. 6. (Left) Model error comparison, i.e., ‖H(S;Θ)−H∗‖2F , of direct and cascaded GF implementations for (a) direct solver forN = 100, (c) operator-based
(no-explicit system matrix) solver for N = 400 and (e) LSMR solver with explicit system matrix and diagonal preconditioning (Jacobi) for N = 500. (Right)
Action error comparison, i.e., E{‖H(S;Θ)x−H∗x‖22}, for different GFs and PDMM for (b) N = 100 and (d) N = 500. (f) Error comparison for single and
cascaded GF implementation optimized with GCNN framework.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

3510 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

rate, see Fig. 5(a). Thus, this illustrates that when areas near
singularities are not reached by the root estimates, the cas-
caded implementation can outperform the fitting of the direct
implementation even for relatively low GF orders. For a fair
comparison, in these examples, we have employed a common
rule for the step size of the stochastic gradient descent in both
cases, particularly δk = 2/(k + 3), where k denotes the epoch.
A more careful selection of the step size rule could have reduced
the jitter observed in Fig. 4, however, the trend is clear from the
plot. Here, we have used a batchsize= 2000 and a sensor
network with N = 64 nodes. The GSO for constructing these
C-GFs was the normalized Laplacian of the network, and the
number of samples used for fitting the models was 132 000.

B. RELIEF Application: Distributed Consensus

To demonstrate the performance of the model-driven RELIEF
method, we study the problem of consensus over networks [68].
That is, given a network (graph), we desire to compute the
average of the signal over the network, i.e.,

y =
1

N
11Tx = H∗x, (24)

where 1 is the N -dimensional all-one vector. To do so, we
explore the proposed implementations on different network sizes
and base GFs, i.e., C-GF, NV-GF, and CEV-GF. In these experi-
ments, for small problem sizes, i.e.,N < 300, we employ direct
solvers while for larger problem sizes LSMR based solvers.
In particular, for N = 400 a solver with a non-explicit system
matrix has been implemented. For N = 500 a standard LSMR
solver, with explicit system matrix and diagonal precondition-
ing, has been used.

In Fig. 6(a), Fig. 6(c) and Fig. 6(e) a comparison for respec-
tivelyN = 100,N = 400 andN = 500 in terms of model error,
i.e., ‖H(S;Θ)−H∗‖2F , is shown for different types of GFs and
communication exchanges, i.e., data exchanges between neigh-
bors. Here, the name direct refers to a direct implementation, i.e.,
the order of the filter is equal to the number of communication
rounds, while the name cascaded to the proposed cascaded im-
plementation. In all these figures, we observe that the cascaded
implementation outperforms the direct implementation, and the
best performance in terms of error is achieved by the CEV-GF.

To further test the proposed implementation, we compare the
trained cascaded GFs with the primal-dual method of multipliers
(PDMM)4 [69] for network consensus. In Fig. 6(b) and Fig. 6(d),
we observe that the convergence speed of PDMM (in terms of
communication rounds) is not comparable with the one obtained
by the cascaded CEV-GF, despite that PDMM eventually guar-
antees consensus. This implies that by an adequate selection of
the weight matrices, consensus can be achieved (up-to machine
precision) in a low number of steps. Here, the reported error is
the action error, i.e., ‖H(S;Θ)x−H∗x‖22.

Finally, we perform a test illustrating the performance of the
data-driven staggered RELIEF using the GCNN framework for

4PDMM is an alternative distributed optimization tool to the classical alter-
nating direction method of multipliers (ADMM), which is often characterized
by a faster convergence.

coefficient learning. In this example, we fit the same consen-
sus operator on a community network with N = 200 nodes.
For the GCNN-based solver, the number of filters (layers) has
been set to Q = 15, and a set of M = 103 randomly generated
data pairs have been generated. The batch size has been set to
3200 and the learning rate to 0.001. In Fig. 6(f), the results for
this experiment are shown. Similar as in the other experiments,
we observe that the cascaded implementation outperforms the
direct implementation, and that among all the types of GFs, the
CEV-GF obtains the best performance over a randomly gener-
ated test set. Here, as the GCNN framework is data dependent,
the error measure reported is again the action error.

VII. CONCLUDING REMARKS

In this work, we have introduced a cascaded implementation
of generalized graph filters and we have drawn connections
with neural network architectures for graph-supported data.
Furthermore, we proposed an efficient stable algorithm for de-
signing/learning the GF coefficients, which can be implemented
leveraging state-of-the-art sparse solvers and preconditioning
techniques in the model-driven case. In addition, by minor mod-
ifications, we showed that the proposed method can be applied in
the data-driven setting as well and that the deep learning frame-
work can be combined with the proposed algorithm to fit the
involved GFs when data is available or easy to generate. Finally,
we illustrated the applicability of the proposed implementations
and design algorithms in a network consensus application, where
we have shown that CEV-GF filters achieve machine-precision
accuracy at a significantly lower communication cost than
existing methods.

APPENDIX

A. Proof Lemma 1

To prove the result, we first recall that

∂f(θ)

∂θ
=
∂h(Θ)

∂θ
(25)

=
∂h(Θ)

∂Θ

∂Θ

∂θ
, (26)

where ∂f(θ)/∂θ, ∂h(Θ)/∂θ and ∂Θ/∂θ are the function
gradients and the parameter Jacobian matrix, respectively, with
respect to θ. Now, assume that Θ∗ is a critical point of h(Θ),
i.e.,

∂h(Θ)

∂Θ

∣∣∣∣
Θ∗

= 0. (27)

By assumption, there exists a θ∗ such that ϕ(θ∗) = Θ∗ (due
to the existence and surjectiveness of ϕ). Hence, by (25), θ∗ is a
critical point of f(θ) and has the same nature as that of Θ∗ due
to

∇2
θf(θ)

∣∣
θ∗ =

(
∂Θ

∂θ

)H∣∣∣∣
Θ∗

∇2
Θh(Θ)

∣∣
Θ∗

(
∂Θ

∂θ

)∣∣∣∣
Θ∗
. (28)

In the case that there exists a critical point of h(Θ),
ϕ(θ+) = Θ+, such that θ+ is not a critical point itself, i.e.,

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

COUTINO AND LEUS: CASCADED STRUCTURE FOR GENERALIZED GRAPH FILTERS 3511

∂f(θ+)/∂θ|θ+ �= 0, then ϕ is not differentiable at θ+ as the
equivalency property (25) does not hold.

As the nature of a critical point as Θ∗ does not change
with respect to that of θ∗, we now are left to show the nature
of Θ+. First, let us consider an open ball centered at θ+

with radio r > 0, i.e., Bθ+,r. Since θ+ is not a critical point,
there exists a direction Δθ where f(θ+ +Δθ) < f(θ+) and
θ+ +Δθ ∈ Bθ+,r. Further, by hypothesis,ϕ is continuous, then
ϕ(θ +Δθ) ∈ B′

Θ+,r, where B′
Θ+,r is the image Bθ+,r under ϕ.

Hence, h(ϕ(θ+ + δθ)) < ϕ(Θ+), which implies the result of
the Lemma.

B. Proof of Theorem 1

To show this, we build intuition forQ = 2 using modules with
structure

Hq = I +Φ
(q)
1 S. (29)

They can be seen as the simplest modules to implement, i.e.,
root expansion.

The overall linear operator implemented using this construc-
tion is

H2H1 = (I +Φ
(2)
1 S)(I +Φ

(1)
1 S)

= I + [Φ
(2)
1 +Φ

(1)
1]S +Φ

(2)
1 SΦ

(1)
1 S, (30)

which is not a CEV-GF. Hence, no surjective map is available.
Now, let us equip with the assumption that the GF coefficient

matrices commute with the GSO, i.e., Φ(q)
i S = SΦ

(q)
i ∀ i ∈

[K], q ∈ [Q]. Then, the expression in (30) can be rewritten as

H2H1 = I + [Φ
(2)
1 +Φ

(1)
1]S + Φ̃S2. (31)

Unfortunately, Φ̃, in general, does not share the support with
S, hence (31) is, again, not a CEV-GF. As these observations
carry on for the NV-GFs and CEV-GFs with different module
orders, we can ensure that theϕmapping does not exist for these
structures.

However, when Φ
(q)
i = φ

(q)
i I ∀, i ∈ [K], q ∈ [Q], it is pos-

sible to show that the mapping ϕ exists as in this case Φ̃ in (31)
is another scaled identity matrix, implying that the resulting
operator is a C-GF, and thus that the map is onto (surjective).
Finally, the map is continuous as the roots of a polynomial
(cascaded form) depend continuously on the coefficients (direct
form).

C. Proof of Theorem 2

To show this result, we first recall

∂h(Θ)

∂Θ
=
∂f(θ)

∂θ

∂θ

∂Θ
. (32)

Using this relation, a saddle point in (6) implies that the
Jacobian ∂θ/∂Θ is singular. So, to provide the result of the
proposition, in the following, we show the conditions in which
the Jacobian has a zero determinant.

Due to the particular cascaded implementation, we introduce
the notation αq = φ

(q)
1 for simplicity. Therefore, the Jacobian

J := ∂θ/∂Θ has entries

[J]i,j = ∂φi/∂αj . (33)

Taking the partial derivative w.r.t αj of H, we obtain

∂H
∂αj

= S
K∏

q=1, q �=j

(I + αqS). (34)

Doing the same for H , we obtain

H

∂αj
=

K∑
k=1

∂φk
∂αj

Sk. (35)

As by hypothesis, H and H implements the same C-GF, we
can equate the terms with the same order, i.e., power of S, and
obtain the following relations for the entries of the Jacobian, i.e.,

J1,j := [J]1,j =
∂φ1
∂αj

= 1, ∀ j (36)

J2,j := [J]2,j =
∂φ2
∂αj

=

K∑
q1 �=j

αq1 (37)

... (38)

Ji,j := [J]i,j =
∂φi
∂αj

=

K∑
q1<...<qi−1

q1,...,qi−1 �=j

i−1∏
l=1

αql . (39)

Now, the only thing left is to find the determinant of J . First,
let us consider the Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

J2,1 J2,2 · · · JK,2

...
...

...
...

JK,1 JK,2 · · · JK,2.

⎤
⎥⎥⎥⎥⎦ (40)

As row substraction does not change the determinant of J , we
now reduce J by a series of row operations to obtain a closed
form for its determinant, similar to the one obtain for matrices
derived for time-domain IIR filters in [44].

Let us subtract the first column from every other column in
J , i.e.,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

J2,1 (α1 − α2) · · · (α1 − αK)
...

...
...

Jk,1 (α1 − α2)J
(1)
k−1,1 · · · (α1 − αK)J

(1)
k−1,K−1

...
...

...

JK,1 (α1 − α2)J
(1)
K−1,1 · · · (α1 − αK)J

(1)
K−1,K−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(41)

where

[J (1)]i,j = J
(1)
i,j :=

K∑
q1<...<qi−1

q1,...,qi−1 �=1 �=j+1

i−1∏
l=1

αql (42)

and [J (1)]1,j = 1 ∀ j.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

3512 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Using the property of the determinant for block matrices, and
the equivalence det(J) = det(J1), we factorize the determi-
nant of J as

det(J) =

K∏
k=2

(α1 − αk) det(J
(1)). (43)

Applying this process recursively, i.e., row subtraction and
determinant factorization, we can keep reducing the determinant
expression until we get

det(J) =

K∏
i,j=1
i<j

(αi − αj). (44)

Thus, the above expression implies the result of the theorem.

D. LSMR Algorithm

REFERENCES

[1] M. Coutino and G. Leus, “On distributed consensus by a cascade of
generalized graph filters,” in Proc. 53rd Asilomar Conf. Signals, Syst.,
Comput., 2019, pp. 46–50.

[2] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques for
interpolation in graph structured data,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2013, pp. 5445–5449.

[3] A. Sandryhaila and J. M. Moura, “Big data analysis with signal process-
ing on graphs: Representation and processing of massive data sets with
irregular structure,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 80–90,
Sep. 2014.

[4] C. Hu, J. Sepulcre, K. A. Johnson, G. E. Fakhri, Y. M. Lu, and Q. Li,
“Matched signal detection on graphs: Theory and application to brain
imaging data classification,” NeuroImage, vol. 125, pp. 587–600, 2016.

[5] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[6] G. Taubin, “Geometric signal processing on polygonal meshes,” in Proc.
Eurographics, 2000.

[7] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
J. Mach. Learn. Res., vol. 7, no. 11, pp. 2399–2434, 2006.

[8] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 18–42, Jul. 2017.

[9] M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph filtering,”
IEEE Trans. Signal Process., vol. 67, no. 9, pp. 2320–2333, May 2019,
doi: 10.1109/TSP.2019.2904925.

[10] P. Di Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, “Adaptive
least mean squares estimation of graph signals,” IEEE Trans. Signal Inf.
Process. Over Netw., vol. 2, no. 4, pp. 555–568, Dec. 2016.

[11] A. Loukas, M. Zuniga, I. Protonotarios, and J. Gao, “How to identify global
trends from local decisions? Event region detection on mobile networks,”
in Proc. IEEE Conf. Comput. Commun., 2014, pp. 1177–1185.

[12] L. F. Chamon and A. Ribeiro, “Finite-precision effects on graph filters,”
in Proc. 5th IEEE Glob. Conf. Signal Inf. Process., 2017, pp. 603–607.

[13] T. Aittomäki and G. Leus, “Graph filter design using sum-of-squares
representation,” in Proc. 27th Eur. Signal Process. Conf., 2019, pp. 1–5.

[14] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Distributed sig-
nal processing via Chebyshev polynomial approximation,” IEEE Trans.
Signal Inf. Process. Netw., vol. 4, no. 4, pp. 736–751, Dec. 2018,
doi: 10.1109/TSIPN.2018.2824239.

[15] S. Segarra, A. Marques, and A. Ribeiro, “Optimal graph-filter design and
applications to distributed linear network operators,” IEEE Trans. Signal
Process, vol. 65, no. 15, pp. 4117–4131, Aug. 2017.

[16] M. Coutino, E. Isufi, and G. Leus, “Distributed edge-variant graph filters,”
in Proc. IEEE 7th Int. Workshop Comp. Adv. Multi-Sensor Adap. Process.,
2017, pp. 1–5.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, Philadelphia, PA,
USA: SIAM, 2003, vol. 82.

[18] S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, “Blind identi-
fication of graph filters,” IEEE Trans. Signal Process., vol. 65, no. 5,
pp. 1146–1159, Mar. 2016.

[19] M. H. Hayes, Statistical Digital Signal Processing and Modeling. Hobo-
ken, NJ, USA: Wiley, 2009.

[20] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ, USA:
Wiley, 2003.

[21] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, “Adaptive
graph signal processing: Algorithms and optimal sampling strategies,”
IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3584–3598, Jul. 2018.

[22] C. Cowan, “Performance comparisons of finite linear adaptive filters,” in
IEE Proc. F (Commun., Radar Signal Process.), vol. 134, no. 3, 1987,
pp. 211–216.

[23] J. Cioffi and T. Kailath, “Fast, recursive-least-squares transversal filters for
adaptive filtering,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32,
no. 2, pp. 304–337, Apr. 1984.

[24] A. Uncini, Fundamentals of Adaptive Signal Processing. Berlin, Germany:
Springer, 2015.

[25] P. Prandoni and M. Vetterli, “An FIR cascade structure for adaptive linear
prediction,” IEEE Trans. Signal Process., vol. 46, no. 9, pp. 2566–2571,
Sep. 1998.

[26] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in Proc. Int. Conf. Learn.
Representations, CBLS, Apr. 2014. [Online]. Available: http://openreview.
net/document/d332e77d- 459a-4af8-b3ed-55ba9662182c

[27] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” 2015. [Online]. Available: http://tensorflow.org/

[28] F. Chollet et al., “Keras,” 2015. [Online]. Available: https://keras.io

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TSP.2019.2904925
https://dx.doi.org/10.1109/TSIPN.2018.2824239
http://openreview.net/document/d332e77d- ignorespaces 459a-4af8-b3ed-55ba9662182c
http://tensorflow.org/
https://keras.io

COUTINO AND LEUS: CASCADED STRUCTURE FOR GENERALIZED GRAPH FILTERS 3513

[29] N. J. Higham, Functions of Matrices: Theory and Computation. Philadel-
phia, PA, USA: SIAM, 2008, vol. 104.

[30] M. Coutino, E. Isufi, and G. Leus, “Distributed edge-variant graph filters,”
in Proc. Int. Workshop Comp. Adv. Multi-Sensor Adaptive Process., 2017,
pp. 1–5.

[31] E. Isufi, P. Banelli, P. Di Lorenzo, and G. Leus, “Observing and tracking
bandlimited graph processes from sampled measurements,” Signal Pro-
cess., vol. 177, 2020, Art. no. 107749, doi: 10.1016/j.sigpro.2020.107749.

[32] W. Huang, L. Goldsberry, N. F. Wymbs, S. T. Grafton, D. S. Bassett, and A.
Ribeiro, “Graph frequency analysis of brain signals,” IEEE J. Sel. Topics
Signal Process., vol. 10, no. 7, pp. 1189–1203, Oct. 2016.

[33] M. Sun, E. Isufi, N. M. de Groot, and R. C. Hendriks, “Graph-time spectral
analysis for atrial fibrillation,” Biomed. Signal Process. Control, vol. 59,
2020, Art. no. 101915.

[34] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[35] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional
neural networks architectures for signals supported on graphs,” IEEE
Trans. Signal Process., vol. 67, no. 4, pp. 1034–1049, Feb. 2019,
doi: 10.1109/TSP.2018.2887403.

[36] F. Gama, A. Ribeiro, and J. Bruna, “Stability of graph scattering trans-
forms,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 8036–8046.

[37] A. N. Nikolakopoulos, D. Berberidis, G. Karypis, and G. B. Giannakis,
“Personalized diffusions for top-n recommendation,” in Proc. 13th ACM
Conf. Recommender Syst., 2019, pp. 260–268.

[38] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” IEEE Trans. Signal Process, vol. 65, no. 2,
pp. 274–288, Jan. 2017.

[39] J. Liu, E. Isufi, and G. Leus, “Filter design for autoregressive moving
average graph filters,” IEEE Trans. Signal Inf. Process. Netw., vol. 5, no. 1,
pp. 47–60, Mar. 2019, doi: 10.1109/TSIPN.2018.2854627.

[40] L. B. Saad, B. Beferull-Lozano, and E. Isufi, “Quantization analysis and
robust design for distributed graph filters,” IEEE Trans. Signal Process.,
vol. 70, pp. 643–658, 2022, doi: 10.1109/TSP.2021.3139208.

[41] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. Boca Raton,
FL, USA: CRC Press, 2002.

[42] B. D. Rao, “Adaptive iir filtering using cascade structures,” in Proc. 27th
Asilomar Conf. Signals, Syst. Comput., 1993, pp. 194–198.

[43] J. O. Smith, Introduction to Digital Filters with Audio Applications, W3K
Publishing, 2007. [Online]. Available: http://books.w3k.org/

[44] M. Nayeri and W. K. Jenkins, “Alternate realizations to adaptive IIR filters
and properties of their performance surfaces,” IEEE Trans. Circuits Syst.,
vol. 36, no. 4, pp. 485–496, Apr. 1989.

[45] T. Söderström and P. Stoica, “Some properties of the output error method,”
Automatica, vol. 18, no. 1, pp. 93–99, 1982.

[46] J. Zhou et al., “Graph neural networks: A review of meth-
ods and applications,” AI Open, vol. 1, pp. 57–81, 2020,
doi: 10.1016/j.aiopen.2021.01.001.

[47] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proc. COMPSTAT, 2010, pp. 177–186.

[48] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[49] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Netw., vol. 61, pp. 85–117, 2015.

[50] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[51] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. 5th Int. Conf. Learn. Representa-
tions, Toulon, France: OpenReview.net, 2017. [Online]. Available: https:
//openreview.net/forum?id=SJU4ayYgl

[52] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying
graph convolutional networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6861–6871.

[53] J. Li and P. Stoica, “Efficient mixed-spectrum estimation with applications
to target feature extraction,” IEEE Trans. Signal Process., vol. 44, no. 2,
pp. 281–295, Feb. 1996.

[54] D.C.-L. Fong and M. Saunders, “LSMR: An iterative algorithm for
sparse least-squares problems,” SIAM J. Sci. Comput., vol. 33, no. 5,
pp. 2950–2971, 2011.

[55] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear
equations and sparse least squares,” ACM Trans. Math. Softw., vol. 8, no. 1,
pp. 43–71, 1982.

[56] Y. Xu and W. Yin, “A block coordinate descent method for regularized
Multiconvex optimization with applications to nonnegative tensor factor-
ization and completion,” SIAM J. Imag. Sci., vol. 6, no. 3, pp. 1758–1789,
2013.

[57] L. Grippo and M. Sciandrone, “On the convergence of the block nonlinear
gauss-seidel method under convex constraints,” Operations Res. Lett.,
vol. 26, no. 3, pp. 127–136, 2000.

[58] G. B. Giannakis, Y. Shen, and G. V. Karanikolas, “Topology identification
and learning over graphs: Accounting for nonlinearities and dynamics,”
Proc. IEEE, vol. 106, no. 5, pp. 787–807, May 2018.

[59] M. Coutino, E. Isufi, T. Maehara, and G. Leus, “State-space network
topology identification from partial observations,” IEEE Trans. Signal Inf.
Process. Netw., vol. 6, pp. 211–225, Feb. 2020.

[60] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the
dots: Identifying network structure via graph signal processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 16–43, May 2019.

[61] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from filtered
signals: Graph system and diffusion Kernel identification,” IEEE Trans.
Signal Inf. Process. Netw., vol. 5, no. 2, pp. 360–374, Jun. 2019.

[62] T. Tieleman and G. Hinton, “Lecture 6.5-RMSPROP: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural Netw.
Mach. Learn., vol. 4, no. 2, pp. 26–31, 2012.

[63] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. 3rd Int. Conf. Learn. Representations, San Diego, CA, USA, 2015.
[Online]. Available: https://dblp.org/rec/journals/corr/KingmaB14.bib

[64] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t decay the
learning rate, increase the batch size,” 2018. [Online]. Available: https:
//openreview.net/forum?id=B1Yy1BxCZ

[65] Y. LeCun et al., “Backpropagation applied to handwritten zip code recog-
nition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[66] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[67] N. Perraudin et al., “GSPBOX: A toolbox for signal processing on graphs,”
Aug. 2014, arXiv:1408.5781.

[68] T. Li and J.-F. Zhang, “Consensus conditions of multi-agent systems
with time-varying topologies and stochastic communication noises,” IEEE
Trans. Autom. Control, vol. 55, no. 9, pp. 2043–2057, Sep. 2010.

[69] G. Zhang and R. Heusdens, “Distributed optimization using the primal-
dual method of multipliers,” IEEE Trans. Signal Inf. Process. Netw., vol. 4,
no. 1, pp. 173–187, Mar. 2018.

Mario Coutino (Member, IEEE) received the M.Sc.
and Ph.D degrees (cum laude) in electrical engineer-
ing from the Delft University of Technology, Delft,
The Netherlands, in July 2016 and April 2021, re-
spectively. Since October 2020, he has been with
TNO, The Netherlands, in the Radar Technology
Department, as a Signal Processing Researcher. He
has held positions with Thales Netherlands, in 2015,
and Bang & Olufsen, during 2015–2016. He was a
Visiting Researcher with RIKEN AIP and the Digital
Technological Center, University of Minnesota, in

2018 and 2019, respectively. His research interests include array signal pro-
cessing, signal processing on networks, submodular and convex optimization,
and numerical linear algebra. He was the recipient of the Best Student Paper
Award for his publication at the CAMSAP 2017 conference in Curacao.

Geert Leus (Fellow, IEEE) received the M.Sc. and
Ph.D. degrees in electrical engineering from KU
Leuven, Belgium, in June 1996 and May 2000, re-
spectively. He is currently a Full Professor with the
Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology,
Delft, The Netherlands. He is a Fellow of EURASIP.
He was a Member-at-Large of the Board of Governors
of the IEEE Signal Processing Society, the Chair of
the IEEE Signal Processing for Communications and
Networking Technical Committee, and the Editor-

in-Chief of the EURASIP Journal on Advances in Signal Processing. He is
currently the Chair of the EURASIP Technical Area Committee on Signal
Processing for Multisensor Systems and the Editor-in-Chief of the EURASIP
Signal Processing. He was the recipient of the 2021 EURASIP Individual
Technical Achievement Award, the 2005 IEEE Signal Processing Society Best
Paper Award, and the 2002 IEEE Signal Processing Society Young Author Best
Paper Award.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2022 at 12:57:19 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1016/j.sigpro.2020.107749
https://dx.doi.org/10.1109/TSP.2018.2887403
https://dx.doi.org/10.1109/TSIPN.2018.2854627
https://dx.doi.org/10.1109/TSP.2021.3139208
http://books.w3k.org/
https://dx.doi.org/10.1016/j.aiopen.2021.01.001
https://openreview.net/forum{?}id$=$SJU4ayYgl
https://dblp.org/rec/journals/corr/KingmaB14.bib
https://openreview.net/forum{?}id$=$B1Yy1BxCZ

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

