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Abstract: The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become
fully-operational and has been provided with the operational name of NavIC (Navigation with
Indian Constellation). It has been developed by the Indian Space Research Organization (ISRO)
with the objective of offering positioning, navigation and timing (PNT) to the users in its service
area. This contribution provides for the first time an assessment of the IRNSS L5-signal capability
to achieve instantaneous attitude determination on the basis of data collected in Perth, Australia.
Our evaluations are conducted for both a linear array of two antennas and a planar array of three
antennas. A pre-requisite for precise and fast IRNSS attitude determination is the successful resolution
of the double-differenced (DD) integer carrier-phase ambiguities. In this contribution, we will
compare the performances of different such methods, amongst which the unconstrained and the
multivariate-constrained LAMBDA method for both linear and planar arrays. It is demonstrated that
the instantaneous ambiguity success rates increase from 15% to 90% for the linear array and from
5% to close to 100% for the planar array, thus showing that standalone IRNSS can realize 24-h almost
instantaneous precise attitude determination with heading and elevation standard deviations of 0.05◦

and 0.10◦, respectively.

Keywords: Indian Regional Navigation Satellite System (IRNSS); Navigation with Indian
Constellation (NavIC); integer carrier-phase ambiguity resolution; attitude determination;
multivariate constrained integer least-squares; MC-LAMBDA

1. Introduction

Developed by the Indian Space Research Organization (ISRO), the Indian Regional Navigation
Satellite System (IRNSS) has recently (May 2016) become fully-operational and provided with the
operational name of NavIC (Navigation with Indian Constellation). This new addition to Global
Navigation Satellite Systems (GNSSs) aims to provide positioning, navigation and timing (PNT) to
the users in its service area. The IRNSS satellites transmit navigation signals, based on Code Division
Multiple Access (CDMA), on L5 (1176.45 MHz) with a Binary Phase-Shift Key (BPSK (1)) modulation
for standard positioning service (SPS) users, and with a Binary Offset Carrier (BOC (5,2)) modulation for
restricted service (RS) users [1]. The fully-operational IRNSS constellation consists of three geostationary
orbit (GEO) satellites and four inclined geosynchronous orbit (IGSO) satellites (see Table 1).
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Table 1. Information on the IRNSS/NavIC satellites [2].

Satellite Type Longitude Inclination Launch Date

IRNSS-1A (I1) IGSO 55◦ E 29.0◦ July 2013
IRNSS-1B (I2) IGSO 55◦ E 31.0◦ April 2014
IRNSS-1C (I3) GEO 83◦ E – October 2014
IRNSS-1D (I4) IGSO 111.75◦ E 30.5◦ March 2015
IRNSS-1E (I5) IGSO 111.75◦ E 28.1◦ January 2016
IRNSS-1F (I6) GEO 32.5◦ E – March 2016
IRNSS-1G (I7) GEO 129.5◦ E – April 2016

IRNSS real data have hitherto formed the basis of several studies. The clock stability of I1 is
assessed in [3], while the accuracy of a precise model for solar radiation pressure is tested using
the I1 and I2 observations in [4]. The data of I1, I2 and I3 are used by [5] for comparison of the
orbit determination methods, and by [6] to validate the orbit accuracy with modernized ephemeris
parameters. The first positioning results based on the data of I1, I2, I3, and I4 over India are presented
in [7], and over Australia in [8]. The observations of I1 and I2 were used by [9] to investigate the
quality of the IRNSS navigation messages.

In this contribution, for the first time, an analysis of the fully-operational IRNSS L5-signal capability
to achieve instantaneous attitude determination is carried out. Such an analysis based on only two IRNSS
satellites, i.e., I1 and I2, was conducted by [10]. Using multiple GNSS antennas rigidly mounted on
a platform in known formation, one can determine the attitude of this platform, see e.g., [11–14], which
can be a vessel, a land vehicle, an aircraft or a space platform [15–19]. Precise and fast GNSS-based
attitude determination would be realized through incorporation of the very precise phase observations,
and successful resolution of the double-differenced (DD) integer carrier-phase ambiguities is the key to
fully exploit the phase observations. Resulting in the highest possible ambiguity resolution success rate,
the Least squares AMBiguity Decorrelation Adjustment (LAMBDA) method developed by [20–22] is
the standard method used for the unconstrained mixed-integer GNSS observational model. As for the
GNSS attitude model, the local antenna geometry is known in the body (platform) frame, which can
be exploited to further improve the ambiguity resolution performance. To realize this, the multivariate
constrained (MC-)LAMBDA method has been developed [18,19,23–28]. This method incorporates
the known local antenna geometry in a rigorous manner, leading to higher success rates w.r.t. the
standard LAMBDA.

In this study, our evaluations are conducted for both a linear array of two antennas and a planar
array of three antennas collecting L5 signals of IRNSS at Curtin University, Perth, Australia. We first
explain our GNSS-based single-frequency attitude determination method. The performance of the
IRNSS L5 observables for the instantaneous attitude determination is presented for both the linear and
planar array. It is also shown what improvements are achieved when using MC-LAMBDA instead of
standard LAMBDA method. Finally, a summary and conclusions are given.

2. GNSS Observational Model

In this section, the single-frequency GNSS model of observations is described for both the
unconstrained and multivariate-constrained scenarios. For the latter, the known body-geometry
of the antenna array is taken into account.

2.1. Unconstrained Model

Assume that n antennas, firmly mounted on a platform, are simultaneously tracking m IRNSS
satellites on L5 frequency. We further assume that the array is of a small scale such that the differential
atmospheric delays (troposphere and ionosphere) and orbital errors between the antennas can be
neglected. The multivariate linearized single-epoch DD GNSS array model of observations then reads
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(1)

where E[.], D[.], ⊗ and vec(.) denote the expectation and dispersion operator, Kronecker product
and vec-operator [29,30], respectively. The undifferenced observed-minus-computed phase and code
observations are, respectively, collected in the mn-vectors φ and p with the following structure:
y = {φ, p}, y = [y1T

, y2T
, . . . , ymT

]T , with ys = [ys
1, ys

2, . . . , ys
n]

T and with ys
r being the phase/code

observation between antenna r and satellite s. The (m− 1)× m matrix DT
m = [−em−1, Im−1] is the

differencing matrix forming the between-satellite single-differencing, while the (n− 1)× n matrix
DT

n = [−en−1, In−1] forms the between-receiver single-differencing. e and I are, respectively, the vector
of ones and the identity matrix of which the dimension is specified by their subscripts. The unknown
baseline components in NED (North–East–Down) frame are included in 3× (n− 1) matrix X, and
the unknown integer DD ambiguities, in cycle, in (m − 1)(n − 1)-vector a. Their corresponding
design matrices are of the form of M = DT

mG ⊗ In−1 and A = λ Im−1 ⊗ In−1, where G contains the
receiver–satellite unit direction vectors as its rows and λ is the wavelength of frequency L5.

The stochastic model is formed by the (m−1)× (m−1)matrix Q = DT
mW−1Dm and (n−1)× (n−1)

matrix P = DT
n Dn. W = diag(w1, w2, . . . , wm) is an m×m diagonal matrix of which the diagonal

entries ws (s = 1, . . . , m) capture the elevation-dependency of the IRNSS observations and are given
as [31]

ws = [1 + 10 exp(− θs

10
)]−2, (2)

where θs is the elevation of the satellite s in degrees. The zenith-referenced standard deviation of the
undifferenced phase and code observables are denoted as σφ and σp, respectively.

2.2. Multivariate-Constrained Model

Taking into account the known antennas’ geometry in the body frame, the model of observations
in Equation (1) can be strengthened. The baseline coordinates in the body frame B can be transferred
to their counterparts in NED frame X through [32]

X = R B; X, B ∈ R3×(n−1), R ∈ O3×3, (3)

where R is a rotation matrix satisfying RTR = I3 and det(R) = +1 [33]. Combining
Equations (1) and (3), the following replacements are required

vec(XT)→ vec(RT); DT
mG⊗ In−1 → DT

mG⊗ BT. (4)

Since the rotation matrix R is of full rank, we have rank(X) = rank(B) = q. The baselines achieve
their full span if q = min(3, n− 1) [34]. In case q < min(3, n− 1), the transpose of the baseline matrix BT

forming the design matrix DT
mG⊗ BT would be rank deficient. In order to rule this case out, we assume

that the body frame axes are formed by the first three baselines that are represented in the body frame
as [32,34]

[b1, b2, b3] =




b11 b21 b31

0 b22 b32

0 0 b33


 . (5)



Sensors 2017, 17, 274 4 of 14

Therefore, Equation (3) would be replaced by

X = Rq B; , X ∈ R3×(n−1), B ∈ Rq×(n−1), Rq ∈ O3×q (6)

In the sequel, we will work with Equation (6) instead of Equation (3). Our analyses are based on a
linear array of one baseline and a planar array of two baselines, for both of which q = n− 1.

2.3. Attitude Determination

The aim of the attitude determination is to determine matrix Rq in Equation (6) from which
(some of) the attitude parameters, i.e., heading (α), elevation (ε) and bank (β), can be extracted. As an
example, when q = 3, R3 can be parametrized as

R3 =




cαcε −sαcβ + cαsεsβ sαsβ + cαsεcβ

sαcε cαcβ + sαsεsβ −cαsβ + sαsεcβ

−sε cεsβ cεcβ


 , (7)

in which c{.} = cos{.} and s{.} = sin{.}.
The least-squares solutions for the orthonormal matrix Řq and the integer vector ǎ based on

Equations (1) and (4), are obtained through solving the following minimization problems [32]

Řq(a) = argmin
Rq∈O3×q

||vec(R̂q(a)− Rq)||2Qvec(R̂q(a))
,

ǎ = argmin
a∈Z(m−1)×(n−1)

(
||â− a||2Qââ

+ ||vec(R̂q(a)− Řq(a))||2Qvec(R̂q(a))

)
,

Řq = Řq(ǎ),

(8)

where vec(R̂q(a)) = vec(R̂q)−Qvec(R̂q)âQ−1
ââ (â− a). R̂q and â are the least-squares solutions disregarding

the orthonormality of the rotation matrix and integerness of the DD ambiguities, and Qvec(R̂q)
,

Qââ and Qvec(R̂q)â are their corresponding variance and covariance matrices. The expression to be
minimized in the second minimization problem of Equation (8) is the ambiguity objective function,
which is nonstandard due to the presence of the second term. To solve this minimization problem,
the MC-LAMBDA method has been developed [18,19,23–28,35], incorporating the orthonormality of
the rotation matrix in a rigorous manner. This method therefore leads to higher success rates w.r.t.
the standard LAMBDA which only takes into account the integerness of the DD ambiguities. In this
contribution, the performance of both LAMBDA and MC-LAMBDA is investigated.

As was mentioned, our analyses are based on a linear array of one baseline and a planar array
of two baselines satisfying q = n− 1. For such a situation, matrix B would become invertible, and
Equation (8) can alternatively be written as [34]

X̌(a) = argmin
XTX=BTB

||vec(X̂(a)−X)||2Qvec(X̂(a))
,

ǎ = argmin
a∈Z(m−1)×(n−1)

(
||â− a||2Qââ

+ ||vec(X̂(a)− X̌(a))||2Qvec(X̂(a))

)
,

X̌ = X̌(ǎ).

(9)

Therefore, in a single-baseline scenario, the constraint in the first expression of Equation (9) is a
constraint on the baseline length, i.e., ||x|| = l. For such a situation, x̌(a) is a vector on the sphere of
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radius l that has the smallest distance to x̂(a), where distance is measured with respect to the metric as
defined by the variance matrix Qx̂(a)x̂(a) [35].

3. Numerical Analysis

In this section, we present our numerical analysis of IRNSS L5 attitude determination performance.

3.1. Measurement Set-Up

Our evaluations in this study are on the basis of data taken from three stations, namely CUCC,
CUBB and CUT3 of short baselines at Curtin University, Perth, Australia (Figure 1a). Each station
is equipped with a JAVAD TRE_G3TH_8 receiver and connected to a TRM59800.00 SCIS antenna.
The data-set contains the 1-second IRNSS L5 observations collected with a cut-off elevation angle of
10◦ on DOY (Day Of Year) 166 of 2016. Our analyses are conducted on an epoch-by-epoch basis, using
the broadcast ephemeris. Figure 1b illustrates the 24-h skyplot of IRNSS at Perth. Prior to our analyses,
we need to consider representative values for the zenith-referenced standard deviations in Equation (1),
i.e., {σφ, σp}. Applying the least-squares variance component estimation (LS-VCE) [36] to the 1-s data
of DOYs 155 and 157 of 2016, the mentioned standard deviations were estimated as σφ = 2 mm and
σp = 26 cm.

CUT3CUBB

CUCC

4.27 m

6
.1

5
 m

(a)
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90
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(b)

Figure 1. (a) Stations CUCC, CUBB and CUT3 at Curtin University equipped with JAVAD TRE_G3TH_8
receivers, connected to TRM59800.00 SCIS antennas; (b) 24-h IRNSS/NavIC skyplot at Perth on DOY
166 of 2016 with the cut-off elevation of 10◦.

3.2. Baseline Solution: From Unconstrained to Constrained

In order to assess the IRNSS L5 attitude determination performance, we first consider a linear
array formed by the antenna pair CUCC–CUBB (see Figure 1). Figure 2 for this baseline demonstrates
how the constraint on the baseline length affects the baseline solutions. Shown in Figure 2a is a zoom-in
of the single-epoch IRNSS L5 solutions (blue dots) for the unconstrained ambiguity–float scenario,
as well as the baseline ground truth (black vector). The dispersion in the baseline solutions is governed
by the code precision and satellites geometry. The excursions in this three-dimensional scatter plot
are due to the significant change that the receiver-satellite geometry undergoes during a 24-h period.
Upon constraining the baseline length with e.g., ||x|| = l, the corresponding solutions can only vary
on a sphere with the radius of l.
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Figure 2b illustrates the single-epoch IRNSS L5 solutions for the constrained (||x|| = l)
ambiguity–float scenario (gray dots), the baseline ground truth (gray vector) and the sphere with
the radius of l. As it can be seen, the baseline solutions all lie on the shown sphere. Resolving the
integer DD ambiguities, Figure 2c shows the single-epoch IRNSS L5 solutions for the constrained
(||x|| = l) ambiguity–fixed scenario (green dots: correctly-fixed; red dots: wrongly-fixed), the baseline
ground truth (gray vector) and the sphere with the radius of l. In order to have a better view of the
correctly-fixed solutions, this panel has been rotated with respect to the first two panels. For this
scenario, there are different clusters of the baseline solutions that correspond to different estimated
integer values for the DD ambiguities. The green cluster associates with the correct integer value
comprising 89.2% of the fixed solutions, while the red clusters correspond to the wrong integer
values. To judge whether a DD ambiguity is correctly fixed, its corresponding integer solution is
compared with the reference integer DD ambiguity computed based on the multi-epoch solution of
the baseline-known model.

(a) (b) (c)

Figure 2. Single-epoch IRNSS L5 solutions of the CUCC–CUBB baseline at Curtin University on
DOY 166 of 2016 with the cut-off elevation of 10◦. (a) unconstrained ambiguity–float scenario;
(b) constrained (||x|| = l) ambiguity–float scenario using MC-LAMBDA (multivariate-constrained
LAMBDA); (c) constrained (||x|| = l) ambiguity–fixed scenario using MC-LAMBDA. The vector
shown in all the three panels denotes the baseline ground truth. The sphere in panels (b) and (c) is
zero-centered with a radius of the CUCC–CUBB baseline length. In panel (c), green and red dots show
the correctly-fixed and wrongly-fixed solutions, respectively.

Shown in Figure 3a is the horizontal scatter plot of the single-epoch IRNSS L5 solutions for all
the scenarios depicted in Figure 2, corrected for the baseline ground truth. Note that the blue scatter
plot is elongated in an almost North–Westerly direction, which can be explained by means of the
receiver-satellite geometry. Since confidence ellipse is the formal representative of the empirical scatter
plot, we concentrate on the confidence ellipse. Denoting the unconstrained ambiguity–float baseline
solution as x̂ with mean and covariance matrix of, respectively, x and Qx̂x̂, its confidence ellipse reads

(x̂− x)TQ−1
x̂x̂ (x̂− x) = k2, (10)

in which the constant k2 is chosen such that a certain confidence level is reached. As the direction of
elongation is given by the direction of the eigenvector of Q−1

x̂x̂ corresponding to its smallest eigenvalue,
it follows with the aid of Equation (1) that this direction is given by

f = argmin
f̃

f̃ TQ−1
b̂b̂

f̃

= argmin
f̃

m
∑

s=1
ws[ f̃ T(us − ū)]2,

(11)
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with us being the unit direction vector from receiver to satellite s, and ū being the weighted average
of the vectors us (s = 1, . . . , m). Figure 3b depicts the day-averaged skyplot position of the IRNSS
satellites as well as that of the weighted-average at Perth on DOY 166 of 2016 with the cut-off elevation
of 10◦. As the differences are mainly oriented along the North–East direction, the direction f that
minimizes their contribution to Equation (11) will mainly lie in a North–Westerly direction.
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(b)

Figure 3. (a) Single-epoch IRNSS L5 solutions of the CUCC–CUBB baseline at Curtin University
corrected for the ground truth, on DOY 166 of 2016 with the cut-off elevation of 10◦. blue: unconstrained
ambiguity–float solutions; gray: constrained (||x|| = l) ambiguity–float solutions; red: constrained
(||x|| = l) wrongly-fixed solutions using MC-LAMBDA; green: constrained (||x|| = l) correctly-fixed
solutions using MC-LAMBDA. A zoom-in is also depicted in the upper-right of the figure;
(b) Day-averaged IRNSS skyplot at Perth for DOY 166 of 2016 with the cut-off elevation of 10◦.
The red square indicates the skyplot position of vector ū (cf. Equation (11)).

Now, we turn our focus onto the constrained scenario. The gray dots in Figure 3a show the
horizontal scatter plot of the constrained ambiguity–float baseline solutions, while the red and green
dots show that of the constrained correctly- and wrongly-fixed baseline solutions. A zoom-in is also
provided in the upper-right of the figure to show the correctly-fixed results more clearly. As it can be
seen, while the ambiguity–float results are biased, the correctly-fixed results are unbiased. This can be
attributed to the precision of the contributing observations and the nonlinearity of the baseline length
constraint. For the single-epoch ambiguity–float scenario, the precision of the baseline solution is only
dependent on the less precise code observables, whereas, for the ambiguity–fixed scenario, it are the
very precise phase observations that play the leading role in the baseline estimation. In the following,
we give a two-dimensional example to elaborate how the poor precision of the observations may lead
to a bias in the constrained baseline solution.

Suppose that we have a two-dimensional baseline with the length of l = 3 m and azimuth of
α = 0◦. The corresponding baseline North–East coordinates then read b = [3 0]T m. By the use of
normal distribution, we simulate 105 samples of baseline north and east components with the mean of
b = [3 0]T m and the variance matrix of Q = I2 (identity matrix). These samples are shown as blue
dots in Figure 4a. In this figure, the true position of the baseline is shown as the black vector. Now, if
we impose a constraint on the baseline length, the blue dots are mapped onto a circle with the radius
equal to the baseline length l = 3 m. This circle is also shown in black in Figure 4a. Due to the poor
precision of the baseline samples, they are mapped onto a large part of the circle circumference.
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(a) (b)

Figure 4. Visualization of the baseline-length constraint nonlinearity as function of data precision. Blue
dots are samples of a two-dimensional baseline simulated from a normal distribution with the mean
of b = [3 0]T m and variance matrix of Q = σ2 I2. Gray dots show the baseline-length-constrained
counterparts (||b|| = 3 m) of blue dots. The black vector indicates the baseline ground truth position
and the black circle is centred at b = [0 0]T with the radius of 3 m. The white cross shows the mean
value of the gray scatter plot. In each panel, a zoom-in is also provided in the upper-right of the panel.
(a) σ = 1 m; (b) σ = 0.01 m.

The non-negligible curvature of the area onto which the samples are mapped makes the
constrained solutions biased. The mean value of the constrained solutions is depicted as the white
cross. This bias is called the nonlinearity bias [37]. Now, we switch to a second scenario where the
precision of the samples are 100 times better, i.e., Q = 10−4 I2. Figure 4b illustrates the counterparts
of Figure 4a for Q = 10−4 I2. For this scenario, due to the very small variability of the simulated
samples, they are mapped, upon constraining the baseline length, onto a very small part of the circle
circumference, which, as the figure shows, can be considered a straight line. Therefore, the nonlinearity
bias for this scenario becomes negligible.

3.3. Attitude Determination Performance

In this section, we analyse the IRNSS L5 single-epoch attitude determination performance for the
linear array of CUCC–CUBB and the planar array formed by CUCC, CUBB and CUT3 (see Figure 1).
The body frame coordinate matrix B for the planar array is given by

B =

[
6.15 6.78

0 4.22

]
.

Table 2, for the mentioned linear and planar arrays, presents the IRNSS L5 single-epoch empirical
and formal standard deviations of the attitude angles for both the ambiguity–float and ambiguity–fixed
scenarios. The ambiguity–fixed solutions are obtained through applying MC-LAMBDA. Formal values
are obtained from taking the average of all the single-epoch linearized formal least-squares standard
deviations, whereas the empirical values are obtained from the single-epoch least-squares estimations
of the attitude angles. In the case of the planar array, in addition to heading and elevation, bank is also
estimable. Upon fixing the DD ambiguities, the attitude angles improve in precision by almost a factor
of 120.
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Table 2. IRNSS L5 single-epoch empirical and linearized formal standard deviations of the attitude
angles for the linear array of CUBB–CUCC and the planar array of CUBB–CUCC–CUT3 (see Figure 1),
for both the ambiguity–float and ambiguity–fixed scenarios based on the data collected on DOY 166 of
2016 with the cut-off elevation angle of 10◦. The ambiguity–fixed solutions are obtained through
applying MC-LAMBDA (multivariate-constrained LAMBDA). emp: empirical; form: formal; STD:
standard deviation.

Scenario
Ambiguity-Float Ambiguity-Fixed

Linear Array Planar Array Linear Array Planar Array
Emp Form Emp Form Emp Form Emp Form

heading STD [deg] 13.36 7.27 12.66 6.33 0.04 0.05 0.04 0.05
elevation STD [deg] 19.73 17.91 20.41 16.46 0.09 0.14 0.09 0.13
bank STD [deg] – – 25.99 21.21 – – 0.11 0.16

According to this table, in contrast to the ambiguity–fixed results, ambiguity–float outcomes
show inconsistency between (linearized) formal and empirical values. This can be attributed to the
nonlinearity of the model of observations. The formal standard deviations in Table 2 are obtained
through the linear approximation of the model of observations w.r.t. the attitude angles and then
applying the error propagation law. Now, by means of Figure 4, we explain how well this linear
approximation can describe the uncertainty of the constrained solutions of the baseline and the attitude
angles. Applying a linear approximation around b = [3 0]T m in Figure 4 would map all the blue
dots onto a line, which touches the shown circle at b = [3 0]T m. In that case, the constrained baseline
uncertainty in the North direction would be zero. This indeed can well describe the uncertainty of
the constrained baseline in Figure 4b, where the precision of the simulated samples is very high.
However, for Figure 4a with samples of poor precision, the constrained baseline uncertainty in the
North direction is far larger than zero due to the non-negligible curvature of the area onto which the
samples are mapped. This can also explain the inconsistency between the empirical and the (linearized)
formal results of the ambiguity–float scenario, where the solutions are achieved on the basis of less
precise code observations.

Denoting the standard deviations of heading, elevation and bank by, respectively, σα̂, σε̂, and σβ̂,
Table 2 shows that σα̂ ≤ σε̂ ≤ σβ̂. This can be explained through the baselines orientation along with
the IRNSS satellites geometry. As an example, here we consider the linear array of the single-baseline
CUCC–CUBB. By the aid of linear approximation, the heading–elevation covariance matrix is given as

Qγ̂γ̂ =
σ2

p

l2

(
m

∑
s=1

ws[JT(us − ū)][JT(us − ū)]T
)−1

(12)

with γ = [α ε]T and J being the Jacobian matrix of the following form

J = [Jα Jε] =



−sαcε −cαsε

cαcε −sαsε

0 −cε


 . (13)

From Equations (12) and (13), if JT
α (us − ū) is larger than JT

ε (us − ū), then the heading estimation
would be more precise than the elevation and vice versa. For the CUCC–CUBB baseline with almost
the South–North orientation, we have Jα ≈ [0, 1, 0]T (East direction) and Jε ≈ [0, 0, − 1]T (Up
direction). Figure 5 depicts the projection of the day-averaged us (s = 1, . . . , m) and ū onto the plane
spanned by Jα and Jε. As the differences (us − ū) have larger projections onto Jα w.r.t. Jε, heading is
expected to have better precision than elevation. Equation (12) in addition reveals that the longer the
baseline, the more precise the attitude angles estimations.
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Our ambiguity–fixed results are in good consistency with the GPS L1-based ones presented in [38].
There, an almost South–North oriented 8-meter baseline is used and the phase standard deviation is
considered to be 1 mm. Given that the CUCC–CUBB baseline has almost the South–North orientation
and the length of almost 6 m, and also that the IRNSS L5 phase precision is 2 mm, it is expected that the
attitude precision in [38] be better by a factor of 8

3 compared to those listed in Table 2. Such superiority
is indeed confirmed by the presented results.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Jα

J
ǫ

Figure 5. The projection of the day-averaged IRNSS satellites unit direction vectors at Perth onto the
plane spanned by Jα ≈ [0, 1, 0]T and Jε ≈ [0, 0, − 1]T (cf. Equation (13)) for DOY 166 of 2016 with
the cut-off elevation of 10◦. The red square indicates the position of vector ū projected on Jα and Jε (cf.
Equations (11) and (12)).

3.4. Ambiguity Resolution Performance

Having investigated the IRNSS L5 attitude determination performance, we now concentrate on
the ambiguity resolution performance. To do so, we consider both the aforementioned linear and planar
arrays and make use of both the standard LAMBDA and MC-LAMBDA method. As was explained
in Introduction, MC-LAMBDA was developed for attitude determination and is advantageous over
LAMBDA due to the inclusion of the rotation matrix orthonormality. Figure 6 shows the 24-h time
series of the IRNSS L5 single-epoch solutions for the attitude angles for linear array of CUCC–CUBB
(a and b) and planar array of CUCC–CUBB–CUT3 (c and d). The fixed solutions on the left are
estimated through LAMBDA, while those on the right are estimated through MC-LAMBDA.

From Figure 6, switching from LAMBDA to MC-LAMBDA, the number of wrongly-fixed solutions
decreases dramatically. The percentage of correctly fixed solutions, known as the ambiguity resolution
success rate, increases from 14.6% to 89.2% for the linear array, and from 4.8% to 99.8% for the planar
array. Higher success rates would be achievable if we include the data of more than one epoch.
Since the MC-LAMBDA success rate is already large, only a few number of epochs are needed to
achieve higher success rates. This indicates that, upon using MC-LAMBDA, standalone IRNSS can
realize 24-h almost instantaneous precise attitude determination.
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defined as the square root of the determinant of the ambiguity variance matrix raised to the power
of one over the ambiguity dimension. Considering the model of observations in (1), it can be shown
that the ADOP corresponding with n = 2 is only 1.07 times larger than the ADOP corresponding with
n = 3. Therefore, the ADOP of n = 2 is almost the same as the ADOP of n = 3. For a given value
of ADOP, the success rate in (14) decreases as n increases. Thus the LAMBDA-based success rate is
indeed expected to decrease as one switches from the linear array (n = 2) to the planar array (n = 3).
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Figure 6. Time series of the IRNSS L5 single-epoch solutions for the attitude angles based on the data
collected on DOY 166 of 2016 at Perth with the cut-off elevation of 10◦. Each panel shows three types of
solution: gray: ambiguity-float solutions; red: wrongly-fixed solutions; green: correctly-fixed solutions.
The fixed solutions on the left are estimated through LAMBDA, while those on the right are estimated
through MC-LAMBDA. (a) and (b) corresponds to the linear array formed by CUCC-CUBB. (c) and (d)
correspond to the planar array formed by CUCC-CUBB-CUT3.

Figure 6. Time series of the IRNSS L5 single-epoch solutions for the attitude angles based on the data
collected on DOY 166 of 2016 at Perth with the cut-off elevation of 10◦. Each panel shows three types
of solutions: gray—ambiguity–float solutions; red—wrongly-fixed solutions; green—correctly-fixed
solutions. The fixed solutions on the left are estimated through LAMBDA, while those on the right
are estimated through MC-LAMBDA. (a,b) correspond to the linear array formed by CUCC–CUBB;
(c,d) correspond to the planar array formed by CUCC–CUBB–CUT3.

From linear array to planar array, while the ambiguity success rate of LAMBDA decreases, that
of MC-LAMBDA increases. In the case of MC-LAMBDA, which takes into account the constraint
XTX = BT B, the model gets stronger from linear array to planar array due to the inclusion of a
larger number of constraints, which, in turn, leads to ambiguity resolution improvements. The
LAMBDA-based success rate Ps for single-frequency DD ambiguities, corresponding with n antennas
and m satellites, can be well approximated by [39,40]

Ps ≈
[

2Φ
(

1
ADOP

)
− 1
](m−1)(n−1)

, (14)
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where Φ(x) =
∫ x
−∞

1√
2π

exp{− 1
2 v2}dv. ADOP (Ambiguity Dilution Of Precision) was introduced in [21],

defined as the square root of the determinant of the ambiguity variance matrix raised to the power of
one over the ambiguity dimension. Considering the model of observations in Equation (1), it can be
shown that the ADOP corresponding with n = 2 is only 1.07 times larger than the ADOP corresponding
with n = 3. Therefore, the ADOP of n = 2 is almost the same as the ADOP of n = 3. For a given value
of ADOP, the success rate in Equation (14) decreases as n increases. Thus, the LAMBDA-based success
rate is indeed expected to decrease as one switches from the linear array (n = 2) to the planar array
(n = 3).

4. Conclusions

In this contribution, we provided an initial assessment of the fully-operational IRNSS L5-signal
capability to achieve the instantaneous attitude determination. We first studied the noise characteristics of
the IRNSS L5-signal through the LS-VCE method, and estimated the code and phase zenith-referenced
standard deviations as 26 cm and 2 mm, respectively. Our evaluations of IRNSS attitude determination
performance were conducted for both a linear array of two antennas and a planar array of three
antennas located at Curtin University, Perth, Australia. For a linear array, we showed schematically in
a stepwise manner how the inclusion of the baseline length constraint and then the integerness of the
DD ambiguities affect the baseline least-squares solutions.

It was shown that, for the single-epoch constrained ambiguity–float scenario, where only the
less precise code observations contribute to the baseline estimation, due to the nonlinearity of the
baseline length constraint and poor precision of the observations, a large bias, called nonlinearity bias,
affects the solution of the attitude angles and hence the constrained baseline solutions. However, if
one takes into account the integerness of the DD ambiguities, the very precise phase observations will
play the leading role in estimation of attitude angles, thus making the corresponding bias negligible.

A pre-requisite for precise attitude determination is the successful resolution of the DD integer
ambiguities. The performance of LAMBDA and MC-LAMBDA was compared for both the linear and
planar array. The ambiguity success rate was shown to increase from 14.6% to 89.2% for the linear
array, and from 4.8% to 99.8% for the planar array. Higher success rates would be achievable if we
include the data of more than one epoch. Since the MC-LAMBDA success rate is already large, only a
small number of epochs are needed to achieve higher success rates. This indicates that, upon using
MC-LAMBDA, standalone IRNSS can realize 24-h almost instantaneous precise attitude determination.
Upon fixing the integer ambiguities, it was shown for the linear array oriented in the South–North
direction, with the length of around l = 6 m, that heading and elevation are estimable with the
standard deviations of 0.05◦ and 0.10◦. The higher precision of heading compared to the elevation was
explained through the baseline orientation and IRNSS satellites geometry. Since IRNSS satellites are
mainly located in the North–West quadrant of the Perth skyplot, the mentioned precisions are also
obtained if the baseline is oriented in the East–West direction. This is also confirmed by the results we
obtained using real data.
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