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Membrane area gain and loss during cytokinesis
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Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9,
2629 HZ Delft, The Netherlands

(Received 1 April 2022; accepted 19 July 2022; published 2 August 2022)

In cytokinesis of animal cells, the cell is symmetrically divided into two. Since the cell’s volume is conserved,
the projected area has to increase to allow for the change of shape. Here we aim to predict how membrane
gain and loss adapt during cytokinesis. We work with a kinetic model in which membrane turnover depends on
membrane tension and cell shape. We apply this model to a series of calculated vesicle shapes as a proxy for the
shape of dividing cells. We find that the ratio of kinetic turnover parameters changes nonmonotonically with cell
shape, determined by the dependence of exocytosis and endocytosis on membrane curvature. Our results imply
that controlling membrane turnover will be crucial for the successful division of artificial cells.

DOI: 10.1103/PhysRevE.106.024401

I. INTRODUCTION

One of the hallmarks of living systems is their ability to
replicate and spread, achieved through division at the cellular
level [1–3]. In cytokinesis, the last step of cell division, one
cell is split into two daughter cells of equal size [cf. Fig. 1(a)]
[4,5]. The change of shape is best characterized by the cel-
lular volume and the projected area, which is defined by the
minimal area needed to enclose a volume at given shape [6].
Experimentally, it has been found that cells divide at constant
volume [7–9], implying that the projected area increases.

The cellular volume is controlled by mechanical forces,
material fluxes, and water fluxes between the inside of the
cell and its environment [10]. The projected area of the cell
is determined by the volume and shape and regulated by the
total membrane area. In contrast to the projected area, the
total membrane area of the cell includes area that is stored
in fluctuations and membrane reservoirs. Since the size of
membrane reservoirs can be large, the total membrane area
can be more than twice the projected area [11,12]. In general,
membrane trafficking by exocytosis and endocytosis regulates
the total membrane area [6]. Therefore, half of the membrane
area can be recycled in about 1 h [13]. Similar to the projected
area, the total membrane area increases during cytokinesis
[14], maintained through a changed ratio between exocytosis
and endocytosis [14–16]. For example, it has been estimated
that over 600 vesicles have to fuse with the cell membrane
during the division of fission yeast [17]. The exocytotic and
endocytotic rates are expected to be influenced by membrane
tension [18]. Moreover, membrane shape and curvature influ-
ence membrane trafficking [19,20]. However, how membrane
trafficking adapts to the shape changes during cytokinesis is
largely unknown [21].

In general, the shape of animal cells is controlled through
the actomyosin cortex [6,22]. During cytokines, the change of
cell shape is driven through the constriction of the actomyosin
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ring [23]. To ensure robust membrane constriction, the pro-
cess is highly regulated and thus complex [24]. Potentially, a
mechanism for cell division could have been relatively simple
(at least in its original form) [25], as it has to be among the
first functions that protocells have attained during evolution.
This notion is supported by the fact that many of the working
principles underlying cytokinesis are conserved across differ-
ent organisms [17,26].

Similar to protocells, minimal functionality will be the
starting point for building artificial cells [27,28]. When de-
vising artificial cells, usually lipid vesicles are equipped with
the basic functionality of a living cell. Besides the ability to
divide, such vesicles also need to have the ability to grow and
take up particles, with the consequence that the total mem-
brane area can increase or decrease. The resulting biomimetic
systems—here called functionalized vesicles (FUVs)—can be
considered as highly simplified, artificial cells. Although the
division mechanisms and internal mechanics of FUVs are
simplified compared to biological cells [29–33], similar to
cells and dictated by geometry, FUVs must increase their
projected area during division at constant volume. Therefore,
for both cells and FUVs, the question remains how mem-
brane turnover and division can be compatible with each
other [34].

In this paper, we theoretically investigate the interplay
between shape changes and membrane trafficking during cy-
tokinesis, following the assumption that the interior of the
cell can be inferred from modeling membrane deformations
[35]. Our analysis consists of two steps. First, we calculate the
shapes of dividing FUVs as a proxy for cell shapes. Second,
we use these shapes to extrapolate how membrane trafficking
changes during cytokinesis.

We base our assumption to treat the shapes of dividing
FUVs as a proxy for cell shapes on two observations: First,
the timescales of mechanical membrane relaxation [36] [cf.
Fig. 1(b)] and membrane turnover [17] [cf. Fig. 1(c)], are
much faster than the timescale of membrane-shape changes
during cell division [17] [cf. Fig. 1(d)]. Based on these ob-
servations, we assume that the timescales of the processes
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FIG. 1. Membrane shape and membrane dynamics during cy-
tokinesis. (a) During cytokinesis, a rounded-up cell splits into two
daughter cells of equal size. While the projected area A of the cell
increases, the cellular volume V is kept constant. Several processes
influence the shape and the total membrane area. (b) Since membrane
area is laterally redistributed on a short timescale, the membrane
relaxes rapidly toward its equilibrium shape. (c) On an intermedi-
ate timescale, the total membrane area is determined by membrane
turnover. Total membrane area gain is driven through exocytosis,
whereas total membrane area loss is driven through endocytosis.
Both exocytosis and endocytosis act along the projected area. (d) On
a large timescale, the membrane shape changes.

acting on the membrane are well separated. Therefore, we
assume that the shapes of dividing cells can be considered
as quasiequilibrium shapes. Second, although the underly-
ing mechanics are different, the shapes of dividing cells and
vesicles are relatively similar [30,37]. We conclude that it is
possible to treat the shapes of dividing FUVs as a proxy for
dividing cell shapes.

We calculate the shapes of dividing FUVs with rotational
symmetry by minimizing their shape energy. The change in
shape during division is driven by a reduction of the reduced
volume (i.e., the ratio of FUV volume to projected area) and
an increase of the preferred curvature (i.e., the membrane’s
tendency to curve). In addition, the volume of the FUV is kept
constant during division.

Next, we develop a phenomenological model for the total
membrane area that balances area gain and loss, using the
membrane shape as input. We assume that the increase in
total membrane area during cytokinesis is proportional to
the increase in projected membrane area, as measured for
cells in the absence of membrane reservoirs [14]. Moreover,
in the model, we assume that exocytosis is globally con-
trolled by the amount and tension of intracellular membrane
and that endocytosis is globally controlled by the tension
of the cell membrane. In addition, we assume that exocy-
tosis and endocytosis are influenced locally by the shape
of the membrane, mediated by the mean membrane curva-
ture. By using the calculated FUV shapes in the membrane
area balance equation at steady state, we then predict how
the ratio between membrane gain and loss has to evolve
during the division process. We find that this ratio changes
nonmonotonically during cytokinesis, suggesting a complex
interplay between membrane shape change and membrane
trafficking.

II. SHAPES OF DIVIDING VESICLES AS A PROXY FOR
DIVIDING CELL SHAPES

The change of shape during cytokinesis can be charac-
terized by the volume V and the projected area A of the
cell. During division, either the volume or the projected area
could be conserved. While volume conservation implies that
the projected area has to increase, projected area conserva-
tion implies that the volume has to decrease. Volume and
projected area can be combined into the reduced volume
ν = 3V/(4π (A/4π )3/2), with ν = 1 for spheres and ν < 1
for all other shapes. From a geometrical perspective, we can
generate identical values for ν, independent of whether we
change the projected area A or volume V . Obviously, the qual-
itative symmetry when changing A or V occurs because in the
expression of the reduced volume the cell size is scaled out.
For a cell, however, size matters because the cell uses many
resources to produce the material contained within its volume.
Consequently, a volume loss is disadvantageous. Moreover, to
reach the same value of ν, the relative increase in projected
area is smaller than the relative decrease in volume. Hence,
it is theoretically predicted and experimentally confirmed that
cytokinesis occurs at constant volume [7–9]. Therefore, shape
changes during cytokinesis have to be accompanied by an
increase of the projected area A. If we assume a symmet-
ric division of an initially spherical cell into two spherically
shaped daughter cells at constant volume, the fission limit of
the reduced volume is ν = 1/

√
2. For larger values of ν, only

asymmetric division is possible. We conclude that symmetric
division requires large projected area gain that has to be driven
from the interior of the cell.

Symmetric division also requires a mechanism by which
the membrane shape can change in a manner compatible with
the gain of the projected area. In the cell, the membrane is
deformed by the constriction of the actomyosin contractile
ring. For simplicity, we use the shapes of dividing FUVs
as a proxy for dividing cell shapes. In FUVs, the division
process can be driven by increasing the preferred or spon-
taneous curvature and decreasing the reduced volume, as
demonstrated experimentally [30,32]. In FUVs, the shape of
the membrane is the one that minimizes the total energy
[38–40]. To describe the membrane shape energy, different
models can be used, for example, the spontaneous curvature
model or the area-difference elasticity model [41–45]. Impor-
tantly, the area-difference elasticity model can be connected
to the spontaneous curvature model, which allows us to switch
between the two descriptions [40,46]. In the following, we use
the spontaneous curvature model. In this case, the membrane
shape energy reads

H = 2κ

∫
(H − H0)2 dA + � A − �P V, (1)

where the first term is the bending energy of the mem-
brane, with κ the bending rigidity, H = (C1 + C2)/2 the mean
membrane curvature, where C1 and C2 are the principal cur-
vatures, and H0 the preferred or spontaneous curvature of the
membrane. The second and third terms include constraints on
the projected area A and the enclosed volume V by means
of the two Lagrange multipliers, which are the vesicle mem-
brane tension � and the pressure difference �P = Pin − Pout
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between the inside and outside of the vesicle. In general,
Eq. (1) could contain an additional integral running over
the Gaussian curvature [47]. However, by the Gauss-Bonnet
theorem, this contribution only adds up to a constant if it
is calculated for a closed vesicle that does not change its
topology. Thus, the term has no effect on the vesicle shape
[47]. Since we are only interested in the shapes of vesicles
without topological changes, we can neglect this contribution
in the following.

Following Refs. [39,40], we can calculate the shape
equations that determine the vesicle shapes from Eq. (1). To
control the shape of membrane vesicles, we use the common
parameters of reduced volume ν and reduced preferred cur-
vature H̄0 = H0Rve, with the vesicle radius Rve = √

A/(4π )
[39–41]. Alternatively, the vesicle shapes could be described
by the reduced area A/As = A/(4π (3V/(4π ))2/3), which nor-
malizes the projected area A of the vesicle shape by the area
As = 4π (3V/(4π ))2/3 of a sphere with the same volume, and
the spherical reduced preferred curvature H̄ s

0 = H0Rs, which
normalizes the preferred curvature H0 by the radius of the
sphere with the same volume Rs = (3V/(4π ))1/3. Since we
assume that internal membrane redistribution is faster than
membrane trafficking, we expect that the vesicle relaxes to-
ward an axisymmetric configuration, and thus we deal with
the shape equations of axisymmetric vesicles. To solve the
shape equations numerically, we closely follow the procedure
outlined in detail in Ref. [40] and summarized in Appendix A.
Importantly, after setting ν and H̄0, we find the minimal en-
ergy membrane shapes by adapting the Lagrange multipliers
� and �P such that the shape equations are fulfilled.

To investigate how membrane trafficking has to adapt dur-
ing cytokinesis, we calculate FUV shapes that resemble a
dividing cell. Although ν and H̄0 are both functions of the
projected area A, they can change independently. To generate
dividing vesicle shapes, changing the reduced volume ν alone
would not be sufficient, as we would only obtain prolate- or
oblate-shaped vesicles [39]. Therefore, to obtain the shape
of dividing vesicles, we also increase the preferred curvature
H̄0, according to the state diagram for lipid vesicles [39,40].
In general, there are many possible ways of combining the
changes in ν and H̄0. Here, we calculate two sequences of
vesicle shapes to investigate the effect of variations in mem-
brane shape on membrane trafficking during cytokinesis. We
note that the exact choice of ν and H̄0 is of no particular
importance, except for the fact that these FUV shapes are
taken as a proxy for a dividing cell.

In Fig. 2(a), we calculate FUV shapes by first decreasing ν

from 1 to 0.7 at H̄0 = 0. Subsequently, we increase H̄0 from
0 to 1.41 at constant ν = 0.7. Since ν and H̄0 are changed
one after the other, we refer to this as the sequential change
sequence. In contrast, in Fig. 2(b), we calculate FUV shapes
where we decrease ν from 1 to 0.7 while simultaneously in-
creasing H̄0 from 0 to 1. Subsequently, H̄0 is further increased
from 1 to 1.41 at constant ν = 0.7. Since ν and H̄0 are changed
in parallel, we refer to this as the parallel change sequence.
At ν = 1/

√
2 ≈ 0.71 and H̄0 = √

2 ≈ 1.41, we expect to find
the fission limit, which is the minimal reduced volume and re-
duced preferred curvature that is needed to form a two-sphere
configuration with a closed membrane neck [40]. The two
shape sequences in Fig. 2 thus represent membrane shapes

FIG. 2. Calculated FUV shapes, mimicking the shapes of divid-
ing cells. (a) Sequential change sequence, where first the reduced
volume ν is decreased from 1 to 0.7 and then the reduced preferred
curvature H̄0 is increased from 0 to 1.41. (b) Parallel change se-
quence, where the reduced volume ν and the preferred curvature
H̄0 are changed simultaneously. While ν is decreased from 1 to 0.7,
H̄0 is increased from 0 to 1. Subsequently, and similar to (a), H̄0 is
increased from 1 to 1.41, while ν = 0.7 is kept constant.

of splitting FUVs, calculated from membrane mechanics. In
Tables I and II in Appendix B, we summarize the reduced
volume ν, the reduced preferred curvature H̄0, the spherical
vesicle radius R, the volume V , the projected area A, the
reduced area A/As, and the spherical reduced preferred cur-
vature H̄ s

0 for the sequential and parallel change sequence in
Figs. 2(a) and 2(b). We note that for all shapes presented in
Fig. 2, the mean curvature is positive on the whole shape.

III. MODELING MEMBRANE TRAFFICKING AND
AREA BALANCE

During cytokinesis at constant volume, the projected area
increases, which is coupled to the total membrane area. In
the following, we formulate a kinetic model for the dynamics
of the total membrane area A. Importantly, the model does
not describe how the change of cell shape occurs. Instead,
the model takes the shape as input to determine membrane
trafficking. In the model, we assume that the volume is con-
trolled independently of the total membrane area and kept
constant. Moreover, we assume that the membrane turnover
and redistribution of the membrane area density ξ (r, t ) (the
local membrane area per projected unit area) is regulated by
exocytosis and endocytosis that bring material to and take
material away from the cell membrane [48].

In the cell, exocytosis and endocytosis are complex pro-
cesses that within the scope of our model are greatly
simplified. Membrane area gain through exocytosis is medi-
ated by the fusion of lipid vesicles with the cell membrane. We
assume that exocytosis is globally controlled by the amount
and tension of internal membrane area in the way that area
addition gets easier with a bigger internal membrane area
reservoir ai and anticorrelates with the internal tension �i [49]
[cf. Fig. 3(a)].

Moreover, membrane fusion requires close contact be-
tween the two fusing bilayer membranes, before hemifusion,
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FIG. 3. Membrane gain through exocytosis and membrane loss
through endocytosis. (a) In our model, membrane gain depends on
the amount of internal membrane area ai and is inversely proportional
to the internal membrane tension �i. Moreover, the tendency for
exocytosis is low for a nearly flat membrane since the contact area
between the vesicle (red sphere) and the membrane (red line) is small
(top). The tendency for exocytosis increases when the membrane
is more curved since the contact area between the vesicle and the
membrane increases (bottom). (b) In our model, membrane loss
is inversely proportional to the tension of the cell membrane �cm.
Moreover, the tendency for endocytosis is low for a curved mem-
brane since the contact area between the particle (blue sphere) and
the membrane (red line) is small (top). The tendency for endocytosis
increases for a nearly flat membrane since the contact area between
the particle and the membrane increases (bottom).

followed by full fusion, can occur. The rate-limiting step for
membrane fusion is the docking between the two membranes
[50]. The efficiency of generating the contact area increases
with the surface density of linker proteins [51]. Given a ho-
mogenous distribution of linkers on the membrane surface,
we assume that the number of linkers that can make actual
contact with the vesicle is proportional to the contact area
between the vesicle and the cell membrane. This contact area
increases with membrane curvature [cf. Fig. 3(a)]. Therefore,
we assume that exocytosis is proportional to the (local) mean
curvature H = (C1 + C2)/2 along the FUV’s projected area,
where C1 and C2 are the principal curvatures. The assumption
is in agreement with the work of Nomura et al., who found that
large unilamellar vesicles (with large curvature) can fuse with
each other, while large and giant unilamellar vesicles (with
smaller curvature) cannot fuse [52].

Wrapping a particle into the membrane during endocytosis
has the side effect that the total membrane area decreases [53].
Thus, endocytosis leads to membrane area loss. In general,
the rate of endocytosis anti-correlates with membrane tension
[54]. Therefore, we assume that endocytosis or particle uptake
is globally reduced with increasing cell membrane tension
�cm [49] [cf. Fig. 3(b)].

In the cell, one of the main uptake routes is clathrin-
mediated endocytosis [55]. In clathrin-mediated endocytosis,
a clathrin coat is assembled at the cell membrane, which
drives vesicle formation and particle uptake. The process is
facilitated when the membrane is curved in the direction of
the nascent membrane bud [56]. In our model, we consider a
spherical cell shape initially, which implies that the membrane
is curved outward. When increasing the curvature with respect
to the initial spherical state, the membrane will curve away

from the particle that is taken up. In contrast, when decreasing
the curvature of the cell, the membrane will curve toward the
particle that is taken up. Since the contact area between the
membrane and the particle that is supposed to be taken up de-
creases with curvature [cf. Fig. 3(b)], we assume that material
uptake decreases with local membrane curvature. Therefore,
and to include the mean curvature into the area gain and loss
term symmetrically, we assume that endocytosis is antipro-
portional to the (local) mean curvature H along the FUV’s
projected area. Importantly, the assumptions on the curvature
dependence of endocytosis are in agreement with theoretical
modeling for spherical vesicles, which suggests that the pa-
rameter space for complete uptake increases with increasing
vesicle size [57].

Combined, the balance or continuity equation for the
change in membrane area density reads

ξ̇ + ∇ · (ξv) = J

(
ai

�i
H − 1

�cm

1

H

)
. (2)

The first term on the left-hand side of Eq. (2) describes
how the membrane area density changes in time. The second
term describes how the membrane area density is spatially
redistributed, representing how lipids rearrange after mem-
brane gain or loss. In this context v, is the membrane transport
velocity field. The first term on the right-hand side de-
scribes the area gain and the second term the area loss. In
order to match the dimensions of the equation, the right-
hand side has to be multiplied with a material transport
coefficient J , which carries the units of energy per volume
and time.

There are three processes involved in membrane trafficking
during cytokinesis, with clearly separated timescales. On the
fastest timescale (<1 s), the membrane mechanically relaxes
because lipids within the membrane rearrange to reach a
homogenous distribution [36] [cf. Fig. 1(b)]. On the inter-
mediate timescale (∼30 s), membrane turnover is maintained
due to total membrane area gain and loss [17] [cf. Fig. 1(c)].
On the slowest timescale (∼30 min), the membrane shape
changes, since the actomyosin ring constricts the cell mem-
brane [17,23] [cf. Fig. 1(d)]. In principle, �i and �cm can
change on the same timescale as the membrane deforms. Con-
sidering that mechanical membrane relaxation is much faster
than membrane trafficking and the mechanisms that drive
membrane deformations, we can rewrite Eq. (2). Effectively,
the separation of timescales implies that the membrane area
density will not be advected anymore, hence v = 0. There-
fore, the second term on the left-hand side of Eq. (2) equates
to zero. We can integrate the equation along the projected
area of the membrane and find the time evolution for the total
membrane area,

Ȧ = kon

∫
H dA − koff

∫
1

H
dA, (3)

with kon = Jai/�i and koff = J/�cm. We note that the kinetic
turnover parameters kon and koff carry different units. While
kon scales as length per time, koff scales as one over length and
time. The reason for this is that the membrane shape affects
membrane gain and loss differently in Eqs. (2) and (3). The
prediction of how the ratio of kinetic turnover parameters
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changes during cytokinesis will be the main result of this
paper.

Importantly, the left-hand side of the Eq. (3) describes
the total membrane area, including membrane area stored
in fluctuations and membrane reservoirs such as caveo-
lae or membrane wrinkles. The integrals on the right-hand
side of the equation describe the change of the total mem-
brane area related to exocytosis and endocytosis. Both
processes are determined by the local shape. Therefore,
the integrals on the right-hand side of the equation are
taken along the projected area of the cell, along which the
mean curvature is determined. The separation of timescales
for membrane relaxation, membrane turnover, and mem-
brane deformation implies that the local membrane area
density is homogenous. Therefore, the local membrane
area density does not influence exocytosis and endocytosis
locally.

In the limiting case where the area gain and loss terms are
independent of the mean curvature H , and assuming a homo-
geneous area density β so the total membrane area and the
projected area are proportional to each other, we recover the
simple growth law for the projected area Ȧ = (kon − koff )A/β,
similar to a recent model for prebiotic vesicles [34]. However,
in this case, kon and koff carry the physical unit of rates,
namely, s−1, and kon − koff becomes an effective growth rate.
Before we turn toward the main results of our paper, we briefly
discuss the stability behavior of Eq. (3).

First, we consider the stability behavior with respect to
size deformations (cf. Appendix C). For simplicity, we fix
the initial spherical shape and neglect the difference between
projected area and total membrane area. However, for the
sake of the argument, we allow for changes in the size (and
volume). In this case, we find that the area balance equa-
tion leads to a stable size with radius Rs = √

kon/koff and
projected area As = 4πkon/koff (cf. Appendix C). The result
suggests an interpretation of kon/koff : For any shape, there is
a value of this ratio, corresponding to an area, for which the
area balance equation is at steady state. We can also show that
this particular stability behavior is a more general property of
the area balance equation. It also holds true for other choices
of how the total membrane area gain and loss depend on
membrane curvature (cf. Appendixes C and E). However, a
modified area balance equation with curvature independent
area gain and loss terms would not lead to a stable cell size
(cf. Appendix C).

Second, we consider the stability behavior with respect
to shape deformations (cf. Appendix D). For simplicity, we
again neglect the difference between projected area and total
membrane area. Moreover, we fix the volume and allow for
the shape to change. For this purpose, we expand Eq. (3)
in spherical harmonics around the initial spherical state with
the usual parameters l and m. We choose to analyze the
prolate mode (l = 2, m = 0). For these particular shapes,
we find that the membrane deformations are stable, mean-
ing that they will not trigger any additional total membrane
area gain.

To conclude, Eq. (3) defines an area balance equation that
is both phenomenologically and geometrically reasonable,
connecting finite total membrane areas with stable membrane
shapes.

IV. MEMBRANE TURNOVER ADAPTS DURING
CYTOKINESIS

During cell division, the projected area of the cell in-
creases at constant volume and with continuous membrane
trafficking. In principle, the increase in projected area can be
regulated by the addition of lipids through membrane traffick-
ing, through membrane reservoirs or through a combination of
both sources. While in the first and third case the total mem-
brane area increases, in the second case the total membrane
area stays constant. In the model, we assume that the total
membrane area increases due to membrane trafficking at a
homogeneous membrane area density. The assumption is con-
firmed by experimental measurements that show that during
cytokinesis the increase in total membrane area is approxi-
mately similar to the increase in projected area, in the absence
of membrane reservoirs [14]. Moreover, the timescales for
membrane relaxation, membrane turnover, and membrane de-
formation separate during cytokinesis. Thus, we can consider
the cell as if going through a sequence of quasiequilibrium
shapes during cytokinesis. Then, we can treat Eq. (3) at the
steady state for each shape, where the membrane gain and loss
have to balance exactly,

0 = kon

∫
H dA − koff

∫
1

H
dA, (4)

and hence

koff

kon
=

∫
H dA∫
1
H dA

. (5)

To determine how the ratio of membrane gain and loss has
to adapt during cytokinesis, we introduce the dimensionless
gain/loss factor γ . The gain/loss factor γ determines the ratio
of kon and koff with respect to the kinetic turnover parameters
of the initial spherical state ks

on and ks
off , for which the area

balance equation is at steady state. We get

γ = ks
on

ks
off

koff

kon
= ν

2
3 R2

ve

∫
H dA∫
1
H dA

, (6)

where we used Eq. (5), ks
on/ks

off = R2
s and the identity R2

s =
ν2/3R2

ve. Importantly, γ can also be expressed as the ratio
between �cm and �i (cf. Appendix D). From Eq. (6), we
see that γ is influenced both by the projected area A and
the mean curvature H , which together define the membrane
shape. Hence, γ can only be computed after computing the
shape from Eq. (1).

To determine how γ changes during cytokinesis, we use
the quasiequilibrium FUV shapes as a proxy for dividing cell
shapes. We thus apply Eq. (6) on the FUV shapes of Fig. 2.
Figure 4 shows γ as a function of the reduced area A/As =
(1/ν)2/3 [Fig. 4(a)] and as a function of the reduced preferred
curvature H̄0 [Fig. 4(b)]. Along the curves, several data points
are marked corresponding to the numbered shapes in Fig. 2.
The initial sphere has both ν = 1 and γ = 1. As we deform
the sphere, we find that γ first decreases before it increases
again, both for the sequential change sequence (dashed blue
line) and for the parallel change sequence (dashed red line).
At A/As = (1/0.71)2/3 ≈ 1.26, the fission limit occurs (gray
solid line), which is the relative projected area increase that is
needed to split one sphere into two spheres at equal volume.
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FIG. 4. Membrane trafficking predicted for the shapes as displayed in Fig. 2. (a) The gain/loss factor γ as a function of the reduced area
A/As. For the sequential change sequence (dashed blue line), γ first decreases with increasing A/As before it increases. Then, γ increases at a
constant reduced area of around A/As = 1.27 toward the end of the sequence since here only the reduced preferred curvature increases. For the
parallel change sequence (dashed red line), we find qualitatively similar behavior. At A/As ≈ 1.26, the fission limit is marked as a gray line.
(b) The gain/loss factor γ as a function of the reduced preferred curvature H̄0. For the sequential change sequence (blue), γ first decreases and
then increases at constant H̄0 before it increases monotonically with increasing H̄0. For the parallel change sequence (red), γ first decreases
before it increases again with increasing H̄0. At H̄0 ≈ 1.41, the fission limit is marked as a gray line.

At the value A/As = (1/0.7)2/3 ≈ 1.27, the data points lie on a
vertical line because the change of shape is due to the increase
in H̄0. Close to the fission limit the blue and red curves differ,
since different values of H̄0 result in different FUV shapes.
Figure 4(b) shows γ as a function of H̄0. Of course, we again
find that γ changes non-monotonically, although it is less
obvious for the sequential change sequence since the change
occurs at H̄0 = 0. At H̄0 = √

2 ≈ 1.41, the fission limit occurs
(gray solid line), which is the minimal reduced preferred cur-
vature that is needed to form a two-sphere configuration with
a closed membrane neck.

In Fig. 5, we show γ as a function of ν for the sequential
change sequence (dashed blue line) and the parallel change
sequence (dashed red line). Along the curves, we also plot
the shapes of Fig. 2. Starting from the initial spherical shape
at ν = 1, we observe that γ first decreases until it reaches
its minimal value for ν ≈ 0.9. Only then, γ increases until
division is complete. Both the sequential change sequence and
the parallel change sequence are quite similar at the beginning
because the shapes of Fig. 2 are comparable. Only when
ν ≈ 0.75, the shapes become considerably different and the
curves diverge.

To get analytical insight into the nonmonotonic behavior
of γ as a function of ν, it is rewarding to consider a sphe-
rocylinder. We choose the spherocylinder to have the same
volume as the shapes considered in Fig. 2. For a spherocylin-
der, the volume and projected area can be expressed by means
of the radius Rsphero and the aspect ratio AR = L/Rsphero. In
the expression for AR, L is the length of the cylindrical
part. L = 0 corresponds to the limiting case of a sphere and
implies AR = 0. The volume and projected area of the sphe-
rocylinder read Vsphero = πR3

sphero(4/3 + AR) and Asphero =
2πR2

sphero(2 + AR), so the reduced volume is given by

ν(AR) = 1 + 3
4 AR(

1 + AR
2

) 3
2

. (7)

By using the mean curvature of the spherical and cylindrical
part, 1/Rsphero and 1/(2Rsphero), respectively, and the
expression for the projected area on Eq. (6), we find

γ (AR) = (1 + 3
4 AR)

2
3

1 + AR
2

(2 + AR)(4 + AR)

8(1 + AR)
. (8)

By numerically inverting Eq. (7) and using the result in
Eq. (8), we get γ (ν) for the spherocylinder, which is plotted in

FIG. 5. Predicted membrane turnover for various shapes. We plot
the ratio of the gain/loss factor γ as a function of the reduced
volume ν for various cases. The sequential change and parallel
change sequences from Fig. 2 are shown in dashed blue and red,
respectively. For both sequences, γ first decreases with decreas-
ing ν before it increases again with decreasing or constant ν. The
corresponding membrane shapes are plotted along the curves in
the corresponding colors. As a limiting case, γ is also shown for
a spherocylinder of increasing length (solid orange). The solution
from the expansion in spherical harmonics around the sphere (solid
green) agrees with the numerical solutions when ν ≈ 1. In purple, the
analytic values are shown for two connected spheres, a small sphere
and a large sphere to show how γ is predicted to change during the
whole sequence of shapes during FUV division.
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solid orange in Fig 5. Importantly, we see that the spherocylin-
der shows the same non-monotonic behavior as the sequential
and the parallel change sequence.

To understand the nonmonotonic change of γ for the dif-
ferent shapes, it is informative to revisit Eq. (4). Increasing
the mean curvature increases the term associated with area
gain. In contrast, increasing the mean curvature decreases the
term associated with area loss. For shapes deviating from the
spherical shape, the mean curvature will increase in general.
Therefore, to balance area gain and loss, Eq. (4) implies that γ

has to increase to compensate. However, for some shapes the
mean curvature is reduced locally and therefore the area gain
term decreases and the area loss term increases. In this case,
γ has to decrease to balance area gain and loss.

We can also compare our results with our analytical ex-
pansion of Eq. (3) in spherical harmonics in Appendix D.
In the expansion, for simplicity, we consider only shapes of
the prolate mode (l = 2, m = 0). For this particular shape,
we can relate ν to γ . The result (green solid line) and the
corresponding shape for ν = 0.95 (green) are both shown in
Fig. 5. As expected, we only see agreement between the nu-
merically calculated shapes and our analytical approximation
close to the sphere (ν ≈ 1). When deviating from the sphere,
the green line monotonically decreases, which indicates that
our expansion of Eq. (3) does not hold true anymore.

To predict how membrane trafficking adapts during cell
division, we calculate three more values of γ (ν). First, for
two spheres with closed membrane neck of initial spherical
volume Vs; second, for a single sphere of half the initial
volume Vs; and third, for a single sphere of volume Vs (solid
purple line). The blue or red line together with the purple
line then form a closed trajectory that can represent a full cell
cycle. From this closed curve, we can read off our main result:
the non-monotonic change of the gain/loss factor γ necessary
for cytokinesis.

To test the robustness of our results and to study the un-
derlying physical mechanisms, we investigate two variants of
Eq. (3). First, we neglect the curvature dependence of the
membrane loss term so that we get Ȧ = kon

∫
H dA − koffA

(simple loss model). In this case, kon carries the units of a
velocity and koff of a rate. Second, we neglect the curva-
ture dependence of the membrane gain term, so we get Ȧ =
konA − koff

∫
1/H dA (simple gain model). Now kon carries

the unit of a rate and koff carries the units of one over length
and time. In both cases, the area balance equation has a stable
fixed point for spherical shapes with radius Rs = ks

on/ks
off (cf.

Appendix E). Similar to before, we evaluate the simple loss
equation and the simple gain equation at steady state. We
calculate γ for both the sequential change sequence and the
parallel change sequence from Fig. 2 and for the spherocylin-
der (cf. Appendix E).

In Fig. 6(a), we plot γ as function of ν for the sequen-
tial change sequence (dashed blue line), the parallel change
sequence (dashed red line), and the spherocylinder (solid or-
ange line) for the simple loss model. In addition, we show
the values for γ (ν) for two spheres with a closed membrane
neck of initial spherical volume Vs for a single sphere of
half the initial volume Vs and for a single sphere of volume
Vs (solid purple line). In contrast to the full model (Fig. 5),
we find that in the simple loss model, the gain/loss factor γ

FIG. 6. Membrane turnover during division for the simple loss
model (a) and the simple gain model (b). We plot γ (ν ) for the
sequential change sequence (dashed blue line) and parallel change
(dashed red line). The corresponding membrane shapes from Fig. 2
are plotted along the curves in the corresponding colors. In orange,
we plot γ (ν ) for a spherocylinder of increasing length. In purple,
the analytical values are shown for two connected spheres, a small
sphere and a large sphere.

monotonically increases during splitting. Thus, for a constant
exocytotic activity, the endocytotic activity is at minimum just
before division starts and increases until division is complete.

In Fig. 6(b), we plot the same as in Fig. 6(a) but now for the
simple gain model. In this case, we find that the gain/loss fac-
tor γ nonmonotonically changes during splitting, qualitatively
similar to Fig. 5. We therefore conclude that the nonmono-
tonic change of γ results from the curvature contribution in
the loss term in Eq. (3).

V. DISCUSSION

The ability to reproduce is one of the basic requirements
that every living being must fulfill. Replication is achieved
through division at the cellular level. During cell division
at constant volume, the cell shape changes drastically. The
change of shape requires a gain of projected area, which
is regulated by the total membrane area and driven through
membrane trafficking. However, it is still unclear how mem-
brane gain and loss must adapt to membrane deformations
during cytokinesis [34]. In this paper, we have developed a
kinetic model for membrane trafficking that is based on the
membrane shape. To represent the cell shape in our model,
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we use FUV shapes as a proxy for cell shapes. This is
possible because the shapes of dividing FUVs and cells are
relatively similar, although the vesicle shape is determined
by membrane energy and the cell shape is determined by the
actomyosin cortex [22]. In this way, we can predict how mem-
brane trafficking must adapt to be compatible with membrane
deformations during cytokinesis.

To obtain the quasiequilibrium shapes of a dividing FUV,
we solved the shape equations of axisymmetric membrane
vesicles. In this case, division is driven through decreasing
the reduced volume and increasing the preferred curvature.
We then formulated a kinetic model for the total membrane
area that balances membrane gain and loss, controlled through
internal and cell membrane tension and the mean curvature of
the projected area of the FUV. By using the sequence of equi-
librium FUV shapes on the membrane balance equation at the
steady state, we determined how the gain/loss factor (the ratio
of kinetic turnover parameters) changes during cell division.
We found that the change of the gain/loss factor is deter-
mined by the dependence of exocytosis and endocytosis on
membrane curvature. The predicted change of the gain/loss
factor characterizes the activity of the cell as a result of exo-
and endocytosis and demonstrates how membrane trafficking
might be regulated and fine-tuned during shape changes. The
prediction is in qualitative agreement with the experimental
results that suggest that the ratio of exocytosis and endocytosis
changes during cell division [14–16].

It has been suggested theoretically that the shape of lipid
bilayer vesicles is given by their minimal energy configuration
[35,39,58]. Moreover, it has been shown that by increasing
the preferred curvature and decreasing the reduced volume,
vesicles can get divided [30,32]. Our work starts from similar
shapes but goes conceptually one step further. We use vesicle
shapes as a proxy for dividing cell shapes and then predict how
increasing the projected area of these vesicles is compatible
with ongoing membrane trafficking during cell division. For
FUVs, it might even be possible to turn around the interpreta-
tion of the results of Fig. 5, since for FUVs the shape of the
membrane is given by shape energy minimization. Therefore,
it seems possible to induce shape deformations through the
total membrane area gain that is maintained by a changed ratio
of kinetic turnover parameters and by an increased preferred
curvature. This interpretation connects back to the old hypoth-
esis that total membrane area gain could drive cytokinesis
[59]. However, we emphasize that such a mechanism might
only work for artificial cells or protocells, for which the shape
is not determined by the actomyosin cortex [22].

Our results extend previous theoretical work, in which the
decrease in reduced volume is a consequence of membrane
deformations due to energy minimization [40,60,61] or mem-
brane constriction [37,62]. Our results also qualitatively agree
with the theoretical results on the growth of membraneless
active droplets [63] and prebiotic vesicles [34], where, similar
to our work, membrane growth can trigger shape instabilities.

One of the limitations of our work is that we assume
that the total membrane area grows proportionally to the
projected area. It remains a theoretical challenge for future
work to develop a theory for the interplay between membrane
fluctuations and membrane reservoirs beyond quasispherical
membrane shapes [64–67]. Such a theory should also account

for membrane trafficking and the associated dissipative fric-
tional forces within the membrane and with the surrounding
medium [68].

In general, our model can be interpreted in the way that
membrane deformations during cytokinesis change membrane
gain and loss processes. Therefore, it would be interesting to
see if and how one could manipulate cell division by affecting
biochemically or physically the gain and loss processes and
membrane tensions. Experimentally, for artificial cells, mem-
brane growth was shown to work in vitro via vesicle fusion
[69,70] or within liposomes via lipid synthesis [71]. In com-
bination with volume conservation and increased preferred
curvature, we suggest that these techniques could be tested
in the future for their potential to drive vesicle fission.
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APPENDIX A: SHAPE EQUATIONS FOR LIPID VESICLES

To calculate vesicle shapes from Eq. (1), we closely fol-
low the procedure as outlined in Ref. [40], which we briefly
summarize in the following.

1. Vesicle parametrization

We consider a vesicle of axisymmetric shape around the z axis
and parametrize the shape as a function of the arc length s
from the south pole (s = 0) to the north pole (s = smax). At
every arc length s, the shape is then completely described by
the distance ρ(s) to the z axis and the tilt angle ψ (s), which
is the angle between the horizontal ρ axis and a tangent to the
contour at arc length s. Given this parametrization, the two
principle curvatures of the vesicle shape read C1 = dψ/ds =
ψ ′(s) = u(s) and C2 = sin ψ/ρ. The mean curvature reads
H = (ψ ′(s) + sin(ψ )/ρ)/2.

2. Nondimensionalized shape equations

Minimizing the membrane energy, as defined in Eq. (1), is
equivalent to solving the Euler-Lagrange equations, for which
the corresponding Lagrange function in the parametrization of
an axisymmetric vesicle reads

L(ψ,ψ ′, ρ, ρ ′, ζ ) = ρ

2

(
ψ ′ + sin ψ

ρ
− 2H0

)2

− �P

2κ
ρ2 sin ψ

+ �

κ
ρ + ζ (ρ ′ − cos ψ ), (A1)

where the last term includes the geometric constraint ρ ′ =
cos ψ by means of the Lagrange multiplier ζ . The shape
energy reads in this parametrization

H = 2πκ

∫ smax

0
dsL(ψ,ψ ′, ρ, ρ ′, ζ ). (A2)

From Eq. (A2), we obtain the shape equations as
Euler-Lagrange equations. We directly write them in
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nondimensionalized form together with the differential equa-
tions for the partial area and volume,

d ρ̄

ds̄
= � cos ψ̄, (A3)

dψ̄

ds̄
= �ū, (A4)

dū

ds̄
= �

(
sin ψ̄ cos ψ̄

ρ̄2
− cos ψ̄

ρ̄
ū − 1

2
�P̄ρ̄ cos ψ̄+ sin ψ̄

ρ̄
ζ̄

)
,

(A5)

d ζ̄

ds̄
= �

×
(

1

2
(ū − 2H̄0)2 − sin2 ψ̄

2ρ̄2
− �P̄ρ̄ sin ψ̄ + �̄

)
, (A6)

d�Ā

ds̄
= �

2
ρ̄, (A7)

d�V̄

ds̄
= 3�

4
ρ̄2 sin ψ̄, (A8)

with the following nondimensionalized quantities that are ex-
pressed by the vesicle radius Rve = √

A/(4π ):

s̄ = s

smax
, (A9)

ρ̄(s̄) = ρ(s)

Rve
, (A10)

ū(s̄) = Rveu(s), (A11)

ζ̄ (s̄) = Rveζ (s), (A12)

ψ̄ (s̄) = ψ (s), (A13)

� = smax

Rve
, (A14)

�P̄ = �P
R3

ve

κ
, (A15)

�̄ = �
R2

ve

κ
, (A16)

�Ā(s̄) = �A(s)

4πR2
ve

= 2π
∫ s

0 ds′ρ(s′)
4πR2

ve

= �

2

∫ s̄

0
ds̄′ρ̄(s̄′), (A17)

�V̄ (s̄) = �V (s)
4π
3 R3

ve

= π
∫ s

0 ds′ρ2(s′) sin ψ (s′)
4π
3 R3

ve

(A18)

= 3�

4

∫ s̄

0
ds̄′ρ̄2(s̄′) sin ψ̄ (s̄′). (A19)

3. Boundary conditions and regularization close to the south
and north pole:

Equations (A3)–(A8) are subject to the following boundary
conditions in nondimensionalized form:

ρ̄(s̄ = 0) = 0 and ρ̄(s̄ = 1) = 0, (A20)

ψ̄ (s̄ = 0) = 0 and ψ̄ (s̄ = 1) = π, (A21)

ū(s̄ = 0) = Ū0 and ū(s̄ = 1) = Ū1, (A22)

ζ̄ (s̄ = 0) = 0 and ζ̄ (s̄ = 1) = 0, (A23)

�Ā(s̄ = 0) = 0 and �Ā(s̄ = 1) = 1, (A24)

�V̄ (s̄ = 0) = 0 and �V̄ (s̄ = 1) = ν, (A25)

with Ū0 = U0Rve = u(s = 0)Rve and Ū1 = U1Rve = u(s =
smax)Rve. To solve Eqs. (A3)–(A8), subject to the boundary
conditions as defined in Eqs. (A20)–(A25), we use the shoot-
ing algorithm. However, during the numerical integration of
the shape Eqs. (A3)–(A8), one faces instabilities around ρ̄ =
0. Therefore, to avoid numerical instabilities, one can Taylor
expand Eqs. (A3)–(A8) around the south pole (s̄ = 0) and the
north pole (s̄ = 1) and match the expansion with the numeri-
cal integration.

4. Expansion around the south pole

Close to the south pole (s̄ = 0), the expansion reads in nondi-
mensionalized form

ρ̄ = ρ̄1s̄ + 1

6
ρ̄3s̄3 + ..., (A26)

ψ̄ = ψ̄1s̄ + 1

6
ψ̄3s̄3 + ..., (A27)

ū = Ū0 + 1

2

ψ̄3

�
s̄2 + ..., (A28)

ζ̄ = ζ̄1s̄ + 1

6
ζ̄3s̄3 + ..., (A29)

�Ā = �
2

4
s̄2 − �

4

48
s̄4 + ..., (A30)

�V̄ = 3�
4

16
s̄4 + ..., (A31)

with the coefficients

ρ̄1 = � and ρ̄3 = −�
3Ū 2

0 , (A32)

ψ̄1 = �Ū0 and

ψ̄3 = 3�
3

8
(4H̄0Ū0(H̄0 − Ū0) − �P̄ + 2Ū0�̄), (A33)

ζ̄1 = �(2H̄0(H̄0 − Ū0) + �̄) and

ζ̄3 = �
3
(

H̄0Ū0(H̄0 − Ū0)(Ū0 − 3H̄0) − 3
4 (3Ū0 − H̄0)�P̄

)
+ �

3
(

1
2Ū0(Ū0 − 3H̄0)�̄

)
. (A34)

5. Expansion around the north pole

Close to the north pole (s̄ = 1), the expansion, in nondimen-
sionalized form with ε̄ = 1 − s̄, reads

ρ̄no = ρ̄no
1 ε̄ + 1

6
ρ̄no

3 ε̄3 + ..., (A35)

ψ̄no = ψ̄no
1 ε̄ + 1

6
ψ̄no

3 ε̄3 + ..., (A36)
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ūno = Ū1 + 1

2

ψ̄no
3

�
ε̄2 + ..., (A37)

ζ̄ no = ζ̄ no
1 ε̄ + 1

6
ζ̄ no

3 ε̄3 + ..., (A38)

Āno = 1 − �
2

4
ε̄2 + �

4

48
Ū 2

1 ε̄4 + ..., (A39)

V̄ no = ν − �
4

16
Ū1ε̄

4 + ..., (A40)

with the coefficients

ρ̄no
1 = � and ρ̄no

3 = −�
3Ū 2

1 , (A41)

ψ̄no
1 = �Ū1 and

ψ̄no
3 = 3�

3

8
(4H̄0Ū1(H̄0 − Ū1) − �P̄ + 2Ū1�̄), (A42)

ζ̄ no
1 = �(2H̄0(Ū1 − H̄0) − �̄) and

ζ̄ no
3 = �

3

(
H̄0Ū1(H̄0 − Ū1)(3H̄0 − Ū1) + 3

4
(3Ū1 − H̄0)�P̄

)

+ �
3

(
1

2
Ū1(3H̄0 − Ū1)�̄

)
. (A43)

6. Numerical implementation

To calculate the membrane shapes for axisymmetric vesicles,
we now solve the shape Eqs. (A3)–(A8).

(1) We fix values for the reduced volume ν and the reduced
preferred curvature H̄0. For every combination of (ν, H̄0), we
choose initial values for the five parameters �, Ū0, Ū1,�P̄,
and �̄. Next, using Eq. (A26), we calculate a value for s̄n∗ so
ρ̄(s̄n∗) is the smallest value that is larger than the threshold.
For this purpose, we choose �s̄ = 10−4 and iterate positive
integers n with s̄n = n · �s̄ until ρ̄(s̄n∗) > 3.5 × 10−2. The
value s̄n∗ is then chosen as initial arc length s̄ini = s̄n∗.

(2) We calculate initial values for ρ̄, ψ̄, ū, ζ̄ ,�Ā, and �V̄
by using s̄ini on Eqs. (A26)–(A31).

(3) Given the chosen initial values for �, Ū0, Ū1,�P̄, and
�̄, we integrate the shape Eqs. (A3)–(A8) from the initial
values until we reach the final value s̄fin = 1 − s̄ini along 1000
data points. For the integration, we use the solve_ivp function
from scipy.integrate [72] with the Radau method, which is
an implicit Runge-Kutta procedure. From the integration, we
obtain six final values for ρ̄, ψ̄, ū, ζ̄ ,�Ā, and �V̄ .

(4) We calculate final values for ρ̄, ψ̄, ū, ζ̄ ,�Ā, and �V̄
by using ε̄fin = 1 − s̄fin on Eqs. (A35)–(A40).

(5) By comparing the final values from the integration
of Eqs. (A3)–(A8) to the final values obtained from
the expansion through Eqs. (A35)–(A40), we get
six residual values (ρ̄(s̄fin) − ρ̄no(ε̄fin), ψ̄ (s̄fin) − (π −
ψ̄no(ε̄fin)), ū(s̄fin) − ūno(ε̄fin), ζ̄ (s̄fin) − ζ̄ no(ε̄fin),�Ā(s̄fin) −
�Āno(ε̄fin),�V̄ (s̄fin) − �V̄ no(ε̄fin)) that depend on the five
(variable) parameters �, Ū0, Ū1, �P̄, and �̄ and on ν and
H̄0. To determine the five parameter values of �, Ū0, Ū1, �P̄,
and �̄, we minimize the six residuals with the least_squares
function from scipy.optimize [72] by using the lm method,
which is a Levenberg-Marquardt algorithm. In this way, we
determine the parameter values for fixed values of ν and H̄0.

TABLE I. Parameter values for the sequential change sequence
in Fig. 2(a). Reduced volume ν, reduced preferred curvature H̄0,
spherical vesicle radius R, volume V , projected area A, preferred
curvature H0, reduced area A/As, and spherical reduced preferred
curvature H̄ s

0 . To get explicit values, we assume a volume of V =
4189 μm3, corresponding to a sphere radius of R = 10 μm.

ν H̄0 R (μm) V (μm3) A (μm2) H0 (μm−1) A/As H̄ s
0

1.0 0 10 4189 1257 0 1.00 0
0.95 0 4189 1300 0 1.03 0
0.90 0 4189 1348 0 1.07 0
0.85 0 4189 1400 0 1.11 0
0.80 0 4189 1458 0 1.16 0
0.75 0 4189 1522 0 1.21 0
0.70 0 4189 1594 0 1.27 0
0.70 0.5 4189 1594 0.044 1.27 0.44
0.70 1.0 4189 1594 0.089 1.27 0.89
0.70 1.41 4189 1594 0.125 1.27 1.25

APPENDIX B: SUMMARY OF PARAMETER VALUES FOR
THE CALCULATED VESICLE SHAPES

In Tables I and II, we calculate the reduced volume ν, the
reduced preferred curvature H̄0, the spherical vesicle radius
R, the volume V , the projected area A, the preferred curvature
H0, the reduced area A/As, and the spherical reduced preferred
curvature H̄ s

0 for the sequential and parallel change sequence
in Figs. 2(a) and 2(b).

APPENDIX C: STABILITY OF THE AREA BALANCE
EQUATION WITH RESPECT TO SIZE DEFORMATIONS

In this Appendix, we investigate the stability of the area
balance equation, as formulated in Eq. (3), with respect to size
deformations. We show that besides the clear phenomeno-
logical motivation of Eq. (2), the deduced Eq. (3) is also
meaningful from a geometrical perspective. Since both total
membrane area gain and loss depend on membrane curvature,
giving rise to geometrical feedback and a dynamic balance

TABLE II. Parameter values for the parallel change sequence in
Fig. 2(b). Reduced volume ν, reduced preferred curvature H̄0, spher-
ical vesicle radius R, volume V , projected area A, preferred curvature
H0, reduced area A/As, and spherical reduced preferred curvature
H̄ s

0 . To get explicit values, we assume a volume of V = 4189 μm3,
corresponding to a sphere radius of R = 10 μm.

ν H̄0 R (μm) V (μm3) A (μm2) H0 (μm−1) A/As H̄ s
0

1.0 0 10 4189 1257 0 1.00 0
0.95 0.17 4189 1300 0.017 1.03 0.17
0.90 0.33 4189 1348 0.032 1.07 0.32
0.85 0.50 4189 1400 0.047 1.11 0.47
0.80 0.67 4189 1458 0.062 1.16 0.62
0.75 0.83 4189 1522 0.075 1.21 0.75
0.70 1.0 4189 1594 0.089 1.27 0.89
0.70 1.1 4189 1594 0.098 1.27 0.98
0.70 1.3 4189 1594 0.115 1.27 1.15
0.70 1.41 4189 1594 0.125 1.27 1.25
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FIG. 7. Effect of the area balance equation on the projected area.
The change of the non-dimensionalized sphere radius dr/dτ is plot-
ted as a function of the sphere radius r. With curvature dependent
kinetic turnover parameters, dr/dτ is positive for r < 1 (blue line)
and negative for r > 1 (red line), predicting a single stable steady
state at r = 1 (gray circle). Inset: The stable solutions of r(τ ) for
different initial radii r0 (blue and red line). Top: For initial radii
r > 1, the sphere shrinks (red). For initial radii r < 1, the sphere
grows (blue), leading to one stable sphere size (gray) at r = 1.

mechanism [73], we expect to find a steady state of the
total membrane area. To illustrate this idea, we assume a
homogenous area density β, so the total membrane area and
the projected area are proportional to each other. For simplic-
ity, we then set β = 1, effectively neglecting the difference
between total membrane area and projected area. Moreover,
we consider a spherical cell with radius R, and projected
area A = 4πR2. Simplifying and nondimensionalizing Eq. (3)
yields dr/dτ = 1 − r2, with the steady-state radius Rs =√

kon/koff and the nondimensionalized radius r = R/Rs and
time τ = t

√
konkoff/2. Alternatively, the steady-state radius

can be converted into the spherical area As = 4πkon/koff . This
result also suggests an interpretation of the ratio kon/koff :
For any shape, there is a value for this ratio, corresponding
to an area, for which the area balance equation is at steady
state. Fig. 7 shows the change of the sphere radius dr/dτ

as a function of r (blue line). dr/dτ switches from positive
to negative values with increasing values of r and vanishes
for r = 1, corresponding to a stable steady state. The equa-
tion is solved by r(τ ) = (r0(1 + e2τ ) − (1 − e2τ ))/( − r0(1 −
e2τ ) + (1 + e2τ )), as plotted in the inset of Fig. 7 for two
values of the initial size r0 (red and blue line). Independent of
the initial value of r0, the steady-state area is fully determined
by kon and koff .

The stability behavior of the steady states for a spheri-
cal shape can be generalized to the case that both kinetic
turnover parameters scale with the same power of H , which
is konHα and koff/Hα . In general, we find a steady state at
Rs = (kon/koff )1/(2α) that is stable for α > 0 and unstable for
α < 0. For |α| < 1, another steady state appears at Rs = 0,
which is unstable if α > 0 and stable if α < 0. For α = 0,
no steady state exists (except Rs = 0) since we only find

exponential growth or decay depending on kon and koff . Thus,
a modified area balance equation with curvature independent
area gain and loss terms (α = 0) would not lead to a stable
cell size. We note that our choice of α = 1 is not special, but
only convenient.

To conclude, Eq. (3) defines an area balance equation that
is both phenomenologically and geometrically reasonable and
leads to finite and stable membrane areas for spherical shapes.

APPENDIX D: STABILITY OF THE AREA BALANCE
EQUATION WITH RESPECT TO SHAPE DEFORMATIONS

In this Appendix, we investigate the stability of the area
balance equation, as formulated in Eq. (3), with respect to
shape deformations. We assume that the volume is constant
and independently controlled from the projected membrane
area. Under this assumption, we investigate whether shapes
that are deviating from the spherical shape can be stable
and whether the spherical shape can get destabilized by
changing kon and koff . Because we are only interested in
the stability behavior of Eq. (3), we neglect the distinc-
tion between total membrane area and projected area within
this section. We investigate the stability of shapes that can
be expressed by small deformations of the spherical shape.
Therefore, we perturb a spherical shape by expanding the
radius R around the radius of a sphere Rs as a function
of the azimuthal angle θ and polar angle φ, with a small
generic deformation u(θ, φ). We obtain, with the notation of
Ref. [74], R(θ, φ, t ) = Rs + u(θ, φ, t ) = Rs(1 + f (θ, φ, t )),
where f (θ, φ, t ) = u(θ, φ, t )/Rs determines the relative de-
formation and R = R(θ, φ, t )er points in the direction of er .

To calculate the integrals in Eq. (3) we follow [66,74–76]
and expand the mean curvature H , the inverse mean curvature
1/H , the area element dA, the area change Ȧ, and volume
element dV up to second order in f , assuming small deforma-
tions. We then express f in terms of the spherical harmonics,
f (θ, φ, t ) = ∑

l,m flm(t )Ylm(θ, φ), and calculate all terms
of Eq. (3).

In detail, we first define the normal vector:

n̂ =
∂R
∂θ

× ∂R
∂φ∣∣ ∂R

∂θ
× ∂R

∂φ

∣∣ . (D1)

The mean curvature, expanded up to second order in f , is
given by [74]

H = 1

2
∇ · n̂ ≈ 1

Rs

(
1 − f − 1

2
�2 f + f 2 + f �2 f

)
, (D2)

with

�2 = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2
. (D3)

The infinitesimal area element is also expanded up to second
order in f [74],

dA =
√

det gdθdφ ≈ R2
s

(
1 + 2 f + f 2 + 1

2 (∇2 f )2
)
d�,

(D4)

where det g is the determinant of the metric tensor gi j = R,i ·
R, j , {i, j} = {θ, φ}, d� = sin θdθdφ is the infinitesimal solid
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angle element, and

∇2 =
(

∂

∂θ
,

1

sin θ

∂

∂φ

)
. (D5)

The infinitesimal volume element can be expressed by means
of the divergence theorem and expanded up to second order in
f [75,76]:

dV = 1

3
n̂ · R dA = 1

3
R3 d� ≈ R3

s

3
(1 + 3 f + 3 f 2) d�.

(D6)
Next, we expand f (θ, φ, t ) in spherical harmonics,

f (θ, φ, t ) =
lmax∑
l=0

l∑
m=−l

flm(t )Ylm(θ, φ), (D7)

where Ylm are the spherical harmonic functions and flm

are the corresponding amplitudes for which we have f ∗
lm =

(−1)m fl−m [66]. We introduce a cutoff lmax ∝ Rs/d [66], with
Rs the cell size of around 500 nm–50 μm and d the membrane
thickness of several nanometers.

We recapitulate several relations that are used in the
following to calculate the different integrals that occur in
Eq. (3) [74]:

�2Ylm = −l (l + 1)Ylm,∫
f d� =

√
4π f00,∫

f 2 d� =
∑
l=0

∑
m

| flm|2,
∫

(∇2 f )2 d� = −
∫

f �2 f d�. (D8)

First, we calculate the volume:

V = 4π

3
R3

s

((
1 + f00√

4π

)3

+ 3

4π

∑
l>0

∑
m

| flm|2
)

. (D9)

Assuming volume conservation, V = 4π
3 R3

s , we can relate the
first amplitude to the sum of all other amplitudes:

f00 = − 1√
4π

∑
l>0

∑
m

| flm|2. (D10)

Using Eq. (D10), the total area reads

A = R2
s

[
4π + 2

√
4π f00 +

∑
l=0

∑
m

(
1 + 1

2
l (l + 1)

)
| flm|2

]

= 4πR2
s

[
1 + 1

4π

∑
l>1

∑
m

1

2
(l + 2)(l − 1)| flm|2

]

= 4πR2
s

[
1 + 1

4π

∑
l>1

∑
m

λ| flm|2
]
, (D11)

where λ = (l + 2)(l − 1)/2. The change in area is thus

Ȧ = R2
s

∑
l>1

∑
m

λ( ḟlm f ∗
lm + flm ḟ ∗

lm)

= 2R2
s

∑
l>1

∑
m

λ flm ḟ ∗
lm = 2R2

s

∑
l>1

∑
m

λ ḟlm f ∗
lm, (D12)

where we used that f ∗
lm = (−1)m fl−m and an index shift from

m to −m. Next, we calculate the first term on the right-hand
side of Eq. (3),

H dA ≈ Rs
(
1 + f − 1

2�2 f + 1
2 (∇2 f )2

)
d�, (D13)

and therefore∫
H dA = 4πRs

(
1 + 1

4π

∑
l>1

∑
m

λ| flm|2
)

. (D14)

Furthermore, we have

1

H
dA ≈ R3

s d�

(
1 + 3 f + 3 f 2 + 1

2
�2 f + f �2 f

+ 1

2
(∇2 f )2 + 1

4
(�2 f )2

)
, (D15)

and thus∫
1

H
dA = 4πR3

s

(
1 + 1

8π

∑
l>1

∑
m

l (l + 1)λ| flm|2
)

.

(D16)
Using these relations on Eq. (3), we obtain∑

l>1

∑
m

λ flm ḟ ∗
lm =

∑
l>1

∑
m

λ ḟlm f ∗
lm

= kon

2Rs

[
4π (1 − γ ) +

∑
l>1

∑
m

λ| flm|2
]

− kon

2Rs

[
γ

2

∑
l>1

∑
m

l (l + 1)λ| flm|2
]
,

(D17)

with λ = (l + 2)(l − 1)/2. Moreover, we assume that the
spherical steady-state kinetic turnover parameters ks

on and ks
off

determine the initial sphere radius Rs = √
ks

on/ks
off . Then, we

can introduce the gain/loss factor (the ratio of kinetic turnover
parameters between the initial and the current membrane gain
and loss) γ = R2

s koff/kon = (ks
onkoff )/(konks

off ). We note that
when plugging in the definition of kon and koff , we find an
alternative meaning of γ = (�s

cm�i )/(�s
i �cm ) that is the ratio

of membrane tensions.
Equation (D17) determines the time evolution of the

deformation amplitudes flm as a function of γ . In gen-
eral, Eq. (D17) is expected to only hold true close to the
spherical shape and does not yet specify any particular shape.
To analyze the stability behavior of Eq. (D17), we thus have
to choose particular shapes. First, we observe that division
defines an axis around which the system has rotational sym-
metry. Identifying this axis with the z axis of the spherical
harmonics, the only modes that obey this rotational symmetry
are the ones with m = 0. Since m = 0, the spherical har-
monics and the amplitudes fl0 are real valued. We note that
when assuming rotational symmetry, it is possible to expand
Eq. (3) directly in Legendre polynomials [38,77]. Moreover,
for simplicity, we choose to analyze the stability behavior of
shapes that are fully described by the first mode (l = 2). We
note that other choices are possible as well. Then, we can
replace the sums in Eq. (D17) by the contribution from the
prolate mode (l = 2, m = 0) and rewrite the equation.

024401-12



MEMBRANE AREA GAIN AND LOSS DURING … PHYSICAL REVIEW E 106, 024401 (2022)

FIG. 8. The steady-state amplitude f s
20 as a function of γ ac-

cording to Eq. (D19). For γ = 1, the amplitude vanishes and the
spherical shape is restored. For γ = 1/3, the amplitude diverges.
For 1/3 < γ < 1, the amplitude is finite, so the spherical shape
is destabilized and stable shapes develop. Inset: Time evolution of
f20(τ ) for different values of γ .

From Eq. (D17), we then find a nondimensionalized equa-
tion for the amplitude f20,

df20

dτ
= 2π (1 − γ )

3γ − 1

1

f20
− f20, (D18)

with the nondimensionalized time τ = t
√

konkoff (3γ −
1)/(2

√
γ ). We solve Eq. (D18) with the initial condition

f20(τ = 0) = 0 and get

f20 = f s
20

√
1 − e−2τ . (D19)

For τ → ∞, the steady-state amplitude is given by f s
20 =√

2π (1 − γ )/(3γ − 1). Figure 8 shows the steady-state am-
plitude of Eq. (D19) as a function of γ . While for γ = 1
the amplitude vanishes, indicating that the shape stays spher-
ical, for γ = 1/3 the amplitude diverges, indicating that the
model assumption of small deformations breaks down. In
between, for 1/3 < γ < 1, the amplitude is finite, imply-
ing that the spherical shape is destabilized. We note that
for γ � 1 the amplitude decays to zero and the spherical
shape is stable, whereas for γ � 1/3 the amplitude explodes
and the shape is completely destabilized. Thus, we consider
Eq. (D17) in the case where 1/3 < γ � 1, that is, for a
moderate change of the membrane gain or loss processes,
respectively.

The inset of Fig. 8 shows the time evolution of the ampli-
tude according to Eq. (D19). We note that both the timescale
for approaching the steady state and the steady-state ampli-
tude depend on γ . To conclude, we find, as expected, that the
shape changes for which Eq. (3) is at the steady state because
of the gain in total membrane area.

Finally, we relate the steady-state amplitude for the prolate
mode (l = 2, m = 0), defined through Eq. (D19), to the re-
duced volume. In this way, we obtain a relationship between
the kinetic turnover parameter for membrane gain and loss and
the membrane shape. We express the projected area in spheri-
cal harmonics and use the steady state amplitude, determined

by Eq. (D19). The reduced volume ν as a function of γ then
reads

ν(γ ) = 1(
1 + 1

3

(
1−γ

γ− 1
3

))3/2 . (D20)

In Fig. 5, we plot γ as function of ν for the the numerically
inverted Eq. (D20) (green solid line). It is also straightforward
to calculate membrane shapes from the expansion in spherical
harmonics close to the sphere by R(θ, φ, γ )/Rs = 1 + f s

20Y20.
The resulting shape for ν = 0.95 is shown along the green line
in Fig. 5.

APPENDIX E: ALTERNATIVE AREA
BALANCE EQUATIONS

In this Appendix, we study two variants of the area balance
equation, defined through Eq. (3). First, we neglect the curva-
ture dependence of the membrane loss term in Eq. (3) and get
the simple loss model:

Ȧ = kon

∫
H dA − koff A. (E1)

In this case, kon carries the units of a velocity and koff of a rate.
Similar to Appendix C, we calculate the steady-state radius for
a sphere Rs = ks

on/ks
off . At steady state, Eq. (E1) reads

koff

kon
=

∫
H dA

A
. (E2)

Finally, with the definition of γ , we find

γ = ks
on

ks
off

koff

kon
= ν

1
3 Rve

∫
H dA

A
. (E3)

For the spherocylinder, we can calculate γ (AR) by using the
area and mean curvature. We find

γ (AR) = (1 + 3
4 AR)

1
3

1 + AR
2

(
1 + AR

4

)
. (E4)

Second, we neglect the curvature dependence of the mem-
brane gain term in Eq. (3) and get the simple gain model:

Ȧ = konA − koff

∫
1

H
dA. (E5)

Now kon carries the unit of a rate and koff carries the units of
one over length and time. We find the steady-state radius for
the sphere to be Rs = ks

on/ks
off . At the steady state, the simple

gain model, defined through Eq. (E5), reads

koff

kon
= A∫

1
H dA

. (E6)

Using the definition of γ , we find

γ = ks
on

ks
off

koff

kon
= ν

1
3 Rve

A∫
1
H dA

. (E7)

For the spherocylinder, we can calculate γ (AR) by using the
area and mean curvature. We find

γ (AR) = (1 + 3
4 AR)

1
3

1 + AR

(
1 + AR

2

)
. (E8)
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