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Obtaining a more holistic understanding of cell function and morphology requires a more complete 

structural layout of organelles and macromolecular complexes. Currently, this level of spatial 

information can only be provided by nanometre-scale reconstructions of biological material from 

electron microscopy (EM). Deep, convolutional neural networks (CNN) can then be employed to 

segment these datasets for creating three-dimensional layouts of organelle distributions [1]. Training 

such networks, however, requires copious amounts of representative training data, which involves a 

great deal of human effort and time. To accumulate sufficient training data for whole-cell organelle 

segmentation, for instance, took over 6 months of manual labour in total [2]. An additional limitation of 

such approaches is that despite being an invaluable tool for investigating subcellular architecture, high-

resolution EM is limited in the type of information it can provide. Various light microscopy (LM) 

techniques are therefore often used to supplement EM data with specific, biologically-relevant labels to 

aid in interpretation (correlative light and electron microscopy – CLEM). 

 

To ascertain whether correlative LM data might be capable of facilitating organelle segmentation, we 

deployed an instance of ResNet-34 [3] trained on labelled images derived from CLEM datasets of cell 

nuclei. These datasets were obtained using integrated array tomography [4], which allows for the 

collection of registered EM-FM image pairs with sub-micron registration accuracy. As a naïve strategy 

for cheaply and automatically generating labelled images for training (segmentation masks), a threshold 

was applied to the correlative fluorescence images (Fig. 1C). A more sophisticated approach for 

generating segmentation masks was also experimented with. This method, adapted from histology 

applications [5], makes use of partial points annotation, in which only a single pixel is selected from a 

subset of the organelles in each training image. It thus serves as a supremely inexpensive annotation 

method while still providing some degree of human supervision. Segmentation masks are created in a 

two-step process. In phase one, partial points annotation is used to classify pixels as either nucleus or 

background, while pixels sufficiently distant from an annotation remain unlabelled. The CNN is then 

trained to detect nuclei that were missed during the partial points annotation. In phase two, the annotated 

and detected nuclei are used to partition the EM image into Voronoi cells, after which it is segmented 

using k-means clustering (Fig 1D). These processes are complimentary to one another as k-means 

clustering preserves the spatial information in the EM image while the Voronoi partition provides more 

accurate nuclei localization. 

 

ResNet-34 was then trained separately on both types of segmentation masks. EM images were also 

manually segmented and used for training for the sake of comparison. Three regions of interest (ROI) 

were selected from a CLEM dataset of rat pancreas tissue and chosen for testing (Fig 2). Segmentation 
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performance was measured by the intersection over union (IoU). The “automated” segmentation based 

on thresholding the FM scored lowest (avg. IoU 48.7%; Fig. 2D). This was not unexpected as a 

significant amount of the labelled pixels are incorrect due to a non-uniform distribution of fluorescence 

in the target organelle. The “semi-automated” partial-points-based segmentation was found to perform 

much better (avg. IoU 84.0%; Fig 2E). Not surprisingly, however, both of these (semi-)automated mask 

generation methods fall short of the segmentation based on manually segmented nuclei (avg. IoU 94.7%; 

Fig 2D). 

 

Although not able to outperform fully-manual-based segmentations, we have shown that registered 

CLEM datasets may offer a semi-automated framework for weakly supervised organelle segmentation. 

Such an approach may still prove useful for segmenting biological image data for certain large volume 

EM workflows in which a pixel-perfect segmentation may not be strictly necessary. In these cases it 

could serve as a valuable means of time savings at the cost of precision. 

 
Figure 1. Different strategies for generating labelled images (segmentation masks) for training ResNet-

34. (A) EM and (B) FM image pair for which a segmentation mask must be generated. (C) Mask created 

by thresholding the FM image (fully automated). (D) Mask created by a combination of partial points 

annotation and clustering algorithms (semi-automated). White: nucleus, black: background, beige: 

unlabelled. 
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Figure 2. Cell nuclei segmentation results for a CNN trained on different types of segmentation masks.  

(A) EM dataset of rat pancreas tissue from which three ROI were chosen for testing segmentation 

performance. (B) Manual segmentation (ground truth) of cell nuclei for the three ROIs. Segmentation 

results of ResNet-34 trained on (C) manually segmented nuclei, (D) segmentation masks derived from 

thresholding correlative FM images, and (E) from partial points annotation combined with clustering 

algorithms. 
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