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Structural mechanics is commonly modeled by (systems of) partial differential

equations (PDEs). Except for very simple cases where analytical solutions exist,

the use of numerical methods is required to find approximate solutions.

However, for many problems of practical interest, the computational cost of

classical numerical solvers running on classical, that is, silicon-based computer

hardware, becomes prohibitive. Quantum computing, though still in its infancy,

holds the promise of enabling a new generation of algorithms that can execute

the most cost-demanding parts of PDE solvers up to exponentially faster than

classical methods, at least theoretically. Also, increasing research and availability

of quantum computing hardware spurs the hope of scientists and engineers to

start using quantum computers for solving PDE problems much faster than

classically possible. This work reviews the contributions that deal with the

application of quantum algorithms to solve PDEs in structural mechanics.

The aim is not only to discuss the theoretical possibility and extent of

advantage for a given PDE, boundary conditions and input/output to the

solver, but also to examine the hardware requirements of the methods

proposed in literature.

KEYWORDS

quantum computing, partial differential equations, quantum algorithms, linear,
nonlinear, advantage, near-term

1 Introduction

Structural mechanics is often modeled by means of partial differential equations

(PDEs). However, it is only for a small set of simple problems, domains and boundary

condition that an analytical solution is known. In all other cases, engineers must rely on

numerical techniques to obtain an approximate solution.

Given the importance of PDEs, research on convergence and accuracy of numerical

solvers has dominated in the past decades. Nevertheless, the computational demand is still
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high whenever the domain is large with respect to the physics’

scale or when nonlinearities require a high level of detail of the

numerical solution.

Potentially, quantum computing can revolutionize the field

of numerical computational mechanics, thanks to its promise of

unprecedented theoretical speed-up. For instance, the Harrow,

Hassidim, Lloyd (HHL) algorithm (Harrow et al., 2009) can solve

sparse linear systems exponentially faster than any classical

method. At a first glance, it may seem that HHL could be

applied to the discretized Poisson equation and exponentially

reduce the runtime to obtain the displacement field of a loaded

structure.

As tantalizing as they sound, almost all promises of quantum

advantage are currently bound to theory and simulations and

likely will be for the next few decades. What has yet to catch up

with the algorithms is the hardware, which is still far from the

technological requirements for practical quantum advantage.

This limitation gave reason to a separate branch of research,

which abandoned the idea of proving quantum speed-up, but

focused on algorithms that take into account the limitations of

current hardware. These are mostly hybrid methods, that use a

classical computer in combination with a quantum one, assigned

to solve classically hard tasks. As with the theoretical speed-up

algorithms, these hybrid methods also found application in the

field of numerical PDE solving.

Given the importance and richness of the field, this review

wants to be the first work to present and compare different

quantum PDE solvers. Specifically, this work is aimed at the

applied mechanics community and thus limits its focus to

equations in structural mechanics. However, it must be

pointed out that the field of quantum algorithms for PDEs

spans many other branches of science, such as fluid

mechanics (Mezzacapo et al., 2015; Steijl and Barakos, 2018;

Todorova and Steijl, 2020; Gaitan, 2020, 2021; Budinski,

2021a,b), finance (An et al., 2020; Chakrabarti et al., 2021;

Fontanela et al., 2021), model discovery (Heim et al., 2021)

and cosmology (Mocz and Szasz, 2021), which may also

benefit from specialized reviews.

This paper is structured as follows. Section 2 presents some

standard concepts of quantum computing and explains the

quantum algorithms at the root of PDE-solving. Section 3

reviews the literature on quantum algorithms for linear PDEs,

while Section 4 is devoted to nonlinear PDEs. Finally, Section 5

provides concluding remarks and discusses possible future

prospects of quantum computation applied to structural

problems.

2 Main concepts of quantum PDE
solving

At the time of writing, almost no quantum algorithm applies

to all possible combinations of partial differential equations,

boundary conditions, discretizations, etc. However, one can

trace out a generic PDE-solving workflow, as in Figure 1.

Here it is important to notice that quantum computation

takes place only in the so-called quantum primitive, i.e. an

algorithm that acts on quantum states by means of quantum

operators. Also, the quantum primitive does not alone solve the

PDE, but rather its discrete form, which generally is the

computational bottleneck in classical logic.

Furthermore, in contrast to a classical algorithm, a quantum

primitive does not operate in the same environment in which the

data is stored and read-out. In other words, there is a state-

preparation step prior to quantum computation, where classical

FIGURE 1
Workflow of the process of solving partial differential
equations with a quantum primitive. The input is given, in the
general case, by the PDE together with its boundary (BCs) and
initial (ICs) conditions. After the differential problem has been
discretized with schemes such as finite elements or finite
differences, the input data is encoded into a quantum state (state
preparation step). The quantum primitive then produces the
solution to the discrete problem as a quantum state. However, the
information in this state cannot be accessed, as this is generally in
quantum superposition. Therefore, quantum PDE solver also
needs to measure the state after the quantum primitives as many
times as required by the user-defined solution precision.
Depending of the application, such measurement are
postprocessed to provide the final output.
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data is encoded as a quantum state, as well as a measurement step

afterwards, that provides output in classical form.

A similar workflow was previously proposed (Pesah, 2020),

where the author points out that a discretized PDE can be

mapped either to a Schrödinger equation or to one or more

linear system(s). In the first case, one may use Hamiltonian

simulation to obtain the solution in quantum state, while linear

systems could be solved by the HHL algorithm or more efficient

quantum linear solvers. However, this classification concerns

only linear PDEs and does not consider algorithms that are not

fully quantum (i.e. all computations from quantum-form data to

quantum-form solution are done on a quantum computer) or

quantum annealing.

This section gives the necessary background on the

‘quantum-block’ of PDE solving, that concerns the last three

steps in Figure 1.

2.1 Quantum state preparation

The problem of quantum state preparation arises every time

classical data needs to be encoded as a quantum state and it is by

no means restricted to quantum PDE solvers. Taking the

homogeneous heat equation as an example, one needs to

encode an initial condition u0(x) in a quantum register. First,

space-discretization transforms u0(x) into the discrete array of

gridpoint values u0 of N entries. Then, this vector is normalized

to turn it into the suitable quantum state

u0| 〉 � u0

u0‖ ‖2. (1)

The vector on the left hand side of Eq. 1 is called ket vector,

according to the so-called braket notation (Nielsen and Chuang,

2010).

Furthermore, |u0〉 can be written as a vector of N complex

amplitudes defined with respect to a chosen basis, i.e.

u0| 〉 � ∑N−1

j�0
u0,j bj
∣∣∣∣ 〉,

where u0,j ∈ C are the amplitudes and |bj〉 are the basis states.

Since many quantum computer models work with binary

physical systems (qubits), the basis |bj〉{ } is defined as the set

of all possible states of n � �log2(N) such systems (log2 will be

subsituted by log in the following, for simplicity of notation). By

labelling the states of a qubit as 0 and 1, the basis states are

written as

00 . . . 00| 〉, 00 . . . 01| 〉, 00 . . . 10| 〉, . . . , 11 . . . 11| 〉,

which constitute the so-called computational basis. It is easy to

see that the computational basis forms an orthonormal basis,

since, given two basis vectors bi and bj

〈bi|bj〉 � δij, i, j ∈ 1, 2, . . .N{ },

where δij is the Dirac delta.

One should keep in mind that the computational basis is just

one of the infinite possible bases in the CN space and that any

other binary orthonormal set of vectors form an equally valid

basis for the same space.

Furthermore, the braket notation implies a unit norm vector,

that is

∑N−1

j�0
u2
0,j � 1. (2)

Equivalently, Eq. 2 states that the squared amplitudes of a ket

vector can be seen as probability amplitudes, modelling the fact

that a n-qubits system will collapse to the basis state |bm〉 with

probability u20,m upon measurement.

Having access to the amplitues, the problem of state

preparation becomes to evolve an initial state up to the state

|u0〉. This can be expressed in formulas,

u0| 〉 � U 0| 〉⊗n,

where U is a unitary operator representing the quantum state

evolution and |0〉⊗n is a conventional initial state where all qubits
are in state |n〉. From now on, the initial state |0〉⊗n will mostly be

represented simply as |0〉, except when the number of qubits is

not immediately evident from the context.

Clearly, the cost of implementing U influences the overall

cost of solving the differential problem. In fact, preparing a

generic quantum state over n qubits requires O(N) quantum

gates (Nielsen and Chuang, 2010), where the “big O” notation

represents the asymptotic upper bound on the number of

computational resources. Therefore, even if the quantum

primitive runs in O(log(N)) time, the task of numerically

evolving the initial condition on a quantum comptuer might

still take O(N) time overall. Fortunately, several probability

distributions can be prepared efficiently (i.e. in logarithmic

time). Interesting instances for numerical analysis are

polynomials defined over a regular grid or locally-supported

functions in the case of the finite element method (FEM)

(Montanaro and Pallister, 2016).

2.2 Hamiltonian simulation

One of the motivations that drove to the study of quantum

computers was to simulate quantum systems, that are hard to

simulate classically. Generally speaking, one aims at describing

the evolution of a quantum state |ψ〉, which is described by the

Schrödinger equation

d
dt

ψ
∣∣∣∣ 〉 � −iH ψ

∣∣∣∣ 〉, (3)

where H is the system’s Hamiltionian, i.e. a Hermitian matrix.

For the sake of explanation, the Hamiltonian is considered here

as time-invariant.
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Hamiltonian simulation consists in evolving an initial

quantum state |ψ0〉 according to Eq. 3 on a quantum

computer. Interestingly for this discussion, some partial

differential equations can be rewritten as Schrödinger

equations after a semi-discretization in space (Costa et al.,

2019; Pesah, 2020; Suau et al., 2021). For this reason,

quantum algorithms for Hamiltonian simulation can be used

as quantum primitives to solve PDEs.

Eq. 3 has the exact solution

ψ
∣∣∣∣ 〉 � e−iHt ψ0

∣∣∣∣ 〉, (4)

where e−iHt is a unitary operator, due to the fact that H is

Hermitian. Therefore, e−iHt is a valid quantum operation that

could be applied to |ψ0〉. However, the exponential of a arbitrary

Hamiltonian does not correspond, in general, to any known

quantum circuit. In other words, the HamiltonianH is difficult to

simulate directly.

However, one can see H as a sum of Hermitian matrices that

are efficient to simulate. In that case

H �∑
i

ciHi (5)

and |ψ〉 � e−i∑i
ciHit|ψ0〉. The number of terms in Eq. 5 is what

determines the complexity of Hamiltonian simulation. In fact,

the generic Hamiltonian decomposes in a number of known

evolution operators that is exponential in the dimension of the

physical systems. Even though one may hope to re-write Eq. 5 as

a product of exponentials, the Hi do not generally commute, i.e.

Hi,Hj[ ] � HiHj −HjHi ≠ 0

for some i and j. Anyway, by dividing the evolution time in r

subsequent time intervals Δt = t/r, the singleHiHamiltonians can

be evolved separately over Δt. This evolution over the sub-

interval is then repeated r times. In the end, the overall

operator is an approximation of the actual evolution of the

total Hamiltonian H over t as stated, for instance, by the

Trotter’s formula (Trotter, 1959):

e−iHt � ∏
i

e−iciHit/r⎛⎝ ⎞⎠r

+ O Δt( )2( ), (6)

The importance of H and Hi being easy to simulate is clear

from the Hamiltonian simulation runtime using product

formulas. This is O(f(n)t/ε) (Nielsen and Chuang, 2010),

where n is the number of qubits and ε is the desired

Hamiltonian simulation error. While f(n) = poly(n) for

simulatable Hamiltonians, f(n) = exp(n) in the general case,

making for an exponential difference in the runtime.

In quantum physics, many natural systems are described by

so-called local Hamiltonians, which are operators that act

nontrivially on a few qubits and are known to be efficiently

simulatable (Nielsen and Chuang, 2010). However and most

importantly for PDEs, it was shown that also sparse

Hamiltonians can be simulated in O(poly(n)) time

(Aharonov and Ta-Shma, 2003).

Finally, we remark that recent work exponentially reduced

the dependency on precision (Berry et al., 2014; 2015a) and also

achieved an optimal dependency on the sparsity (Berry et al.,

2015a). Most recently, an approach based on qubitization

achieved an additive lower bound with respect to t and 1/ε

(Low and Chuang, 2019).

2.3 Quantum linear solvers

Linear systems arise in several numerical methods for PDEs

and their solution often dominates the cost of the overall classical

PDE algorithm. After appropriate discretization, the PDE

assumes the familiar form Ax = b, which is a linear system in

the N-dimensional space, N being the number of unknowns,

which can correspond to the number of gridpoints, particles or

harmonic basis functions, depending on the method of

discretization used.

If the matrix A is positive definite, the fastest general-purpose

classical linear system solver is the conjugate gradient method

(Shewchuk, 1994). This algorithm has asymptotic time

complexity

O Ns
�
κ

√
log 1/ε( )( ), (7)

where s is the matrix sparsity, κ is the conditioning number and ε

is the desired error for a certain precision metric.

What motivated the study of linear solvers beyond classical

computation is the conjecture, due to complexity arguments, that

classical algorithms cannot invert A in time O(log(N)) (Harrow

et al., 2009). On the other hand, Harrow, Hassidim and Lloyd

were the first ones to prove that a quantum algorithm based on

the O(log(N)) sparse Hamiltonian simulation and phase

estimation could solve linear systems exponentially faster in N

(Harrow et al., 2009). In particular the time complexity of the

HHL algorithm is

O s2κ2 log N( )/ε( ). (8)

However, the HHL algorithm and subsequent quantum

linear solvers, do not solve Ax = b, but rather

A x| 〉 � b| 〉, (9)

known as quantum linear system problem (QLSP). It is important

to keep in mind that quantum linear systems algorithms (QLSAs)

output the solution |x〉 � A−1|b〉 without accounting for

preparation of |b〉 or measurement of |x〉, even though the

cost of these operations could (and generally does) trump that

of preparing |x〉.
The complexity of solving the QLSP was improved by later

contributions. In terms of conditioning number, Ambainis et al.

reduced the dependency from O(κ2) to O(κ) using variable time

amplitude amplification (VTAA) for post-selecting the solution
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(Ambainis, 2012). Also concerning the conditioning number,

Clader et al. showed how to include the use of a preconditioner in

quantum linear solvers in order to deal with ill-conditioned

matrices (Clader et al., 2013). Later on, an approach based on

linear combination of unitaries was proposed to replace the phase

estimation step, reducing the dependency on precision to

O(poly log(1/ε)) (Childs et al., 2017). Furthermore, an

approach inspired by the adiabatic principle was also

developed, achieving similar complexity compared to

Ambainis’work on VTAA (An and Lin, 2019; Subaşı et al., 2019).

Finally, several authors recently proposed to solve the QLSP

with variational quantum algorithms (VQAs) (An and Lin, 2019;

Bravo-Prieto et al., 2019; Huang et al., 2021; Xu et al., 2021; Patil

et al., 2022), to be discussed later. These algorithms are appealing

since they are suitable for implementation on near-term devices

and require only shallow quantum circuits. However, VQAs are

heuristics, meaning that the number of iterations needed for

convergence depends on the choice of the optimization strategy.

Thus, no theoretical runtime is known a-priori for VQAs.

However, a recent study showed that VQA-based linear

solvers include a quantum state verification step that requires

at least Ω(κ4)1 number of queries to the unitary preparing the

state |b〉 (Somma and Subaşı, 2021).

2.4 Amplitude amplification and amplitude
estimation

Amplitude amplification is an algorithm that iteratively

promotes the probability of one or more amplitudes of a

quantum state. This technique derives directly from Grover’s

algorithm for database search (Grover, 1996, 1997). In this

problem, a database and a function f are given. The database

contains N = 2n entries, each of which is a n-bits string, such as

x � x0x1 . . .xn, xi ∈ 0, 1{ }.

The function f marks the target bitstring m as follows

f x( ) � 1 if x � m
0 otherwise

{ .

Classical search methods require to check the bitstring

individually and therefore scale as O(N) and require N − 1

queries in the worst case. On the other hand, Grover’s

algorithm works with all database entries in superposition and

progressively promotes the amplitude of the target state |m〉. For
instance, a good starting state is the unbiased uniform

superposition

ψ0

∣∣∣∣ 〉 � 1��
N

√ ∑N−1

j�0
j
∣∣∣∣ 〉,

where each j represents one of the N bitstrings.

The quantum search algorithm consists in applying the

Grover’s operator

G � − 1 − 2 ψ0

∣∣∣∣ 〉〈ψ0

∣∣∣∣( ) 1 − 2 m| 〉〈m|( ) (10)

k times, where the outer product notation is used for |ψ0〉〈ψ0|
and |m〉〈m|, that are the projectors onto the initial and target

states respectively 2. It is easy to show that k � O( ��
N

√ ) iterations
are needed to prepare |m〉 with high probability. Therefore, the

quantum search algorithm is quadratically faster than any

classical one. This quadratic speed-up can be understood

intuitively by thinking that each time Grover’s operator

changes the amplitudes of the superposition, the probabilities

change quadratically as much.

Even though G contains the target state |m〉 in its expression,

it is not necessary to know it explicitly. In fact, the circuit of G

uses an oracle for f, which is an operator such that

Of x| 〉 0| 〉 � x| 〉 1| 〉 if x � m
x| 〉 0| 〉 otherwise

{ ,

where the tensor product is implied between neighbouring ket

vectors.

Therefore, the knowledge of |m〉 is included in the oracle Of,

which flips an ancilla qubit when the state register is in the target

state. The specifics of the oracles depend on the different

problems and go beyond the scope of this discussion, but

suffices to say that they generally entail a unitary contolled by

a n = � log N� register, such that the unitary gets applied only

when such register is in state |m〉 (or is in a superposition with

nonzero probability of measuring |m〉).
The concept of quantum search was extended to multiple

target states with quantum amplitude amplification (QAA)
(Brassard, et al. 2000). In this case, the Hilbert space spanned
by the database is divided into a “good” subspace, containing the
target states and a complementary “bad” subspace. Therefore, the
Grover’s operator becomes

G � − 1 − 2 ψ0

∣∣∣∣ 〉〈ψ0

∣∣∣∣( ) 1 − 2Pg( ), (11)

where Pg is the projector onto the “good” subspace. Also in this

case a target state can be prepared quadratically faster than by

using a classical search.

QAA is used as a subroutine in many quantum algorithms
that require post-selection. This is usually a procedure used as the
last step of a quantum computation, when a quantum register of
interest contains the solution state with finite probability and it is
entangled to an ancilla qubit in such a way that measuring the
latter in one of its two states will collapse the register to the
solution state. Therefore post-selecting requires to repeat the
entire quantum routine until the correct measurement of the
ancilla is obtained. For instance, in the case of many quantum
linear solvers, the state before post-selection is

trash| 〉 0| 〉 + x| 〉 1| 〉,
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where |x〉 is the solution of the QLSP and |trash〉 represents the

rest of the Hilbert space. In this case QAA amplifies the

probabilities of the states that have the ancilla register equal to 1.

Quantum amplitude estimation (QAE) allows to compute

the probability of one component of a quantum state. The main

idea is to perform quantum phase estimation on Grover’s

operator. In fact, the action of G on a state |ψ〉 is a rotation

of an angle 2θ in the plane defined by the components of |ψ〉
in the “good” and “bad” subspaces (see Figure 2). In this

2-dimensional space,

G � cos 2 θ −sin 2 θ
sin 2 θ cos 2 θ
[ ] � eiY2θ , (12)

where Y is the Pauli-Y operator, i.e.

Y � 0 −i
i 0

[ ].
Therefore, quantum phase estimation on G returns an

approximation of 2θ. In turn, this allows to compute the

probability of the ‘good’ component of |ψ〉, since
ψg

∣∣∣∣∣ ∣∣∣∣∣2 � 〈good|ψ〉 � sin2 θ,

where 〈good|ψ〉 is a notation used for inner products between

vectors, but it is here extended to represent the projection of |ψ〉
onto the ‘good’ subspace.

Quantum amplitude estimation is useful, for instance, to

estimate the integral of a PDE solution over a certain region S, i.e.∫
S
u(x)dx (Linden et al., 2020). As it will be clear from the

following section, scalar quantitites of this type are generally the

output of quantum routines for PDEs.

2.5 Variational quantum algorithms

Variational quantum algorithms (VQAs) are the main class

of methods conceived to run on current or near-future devices,

better known as Noisy Intermediate Scale Quantum (NISQ)

(Preskill, 2018). These early-stage quantum computers use up

to a few hundreds of the so-called physical qubits, which are

affected by noise of different nature, as opposed to logical qubits,

that instead are made of many physical qubits that act as a fully

error-corrected qubit.

Besides being suitable for near-term applications, VQAs are

thought to be candidates for quantum advantage, in areas such as

quantum chemistry, nuclear physics, but also optimization and

machine learning (Cerezo et al., 2021a).

The small circuit depth is achieved via a hybrid strategy

internal to an optimization process. At every iteration, a cost

function is evaluated by the quantum computer and fed to the

classical one, which updates the design parameters according to

an optimization algorithm. Figure 3 schematically shows the

working principle of VQAs.

A comprehensive review of VQAs, their main concepts,

applications and future prospects is given in (Cerezo et al.,

2021a). In what follows, only a succint explanation is given

about the main elements of these algorithms.

2.5.1 Ansatz
The ansatz is a parametrized unitary U(θ) that encodes the

tentative solution to the problem, depending on the parameters θ.

At the end of the optimization, the optimal parameters will define

the solution’s approximation as U(θopt).

There exist many different families of ansatze, but a first

important distinction is between the so-called problem-inspired

ones, that incorporate information about the problem, and the

problem-agnostic ones. For instance, a good example of the

problem agnostic class is the so-called hardware-efficient

ansatz (Kandala et al., 2017), which optimizes the use and

distribution of gates according to hardware specification. On

the other hand, examples of problem-inspired ansatze are the

Unitary Coupled Clustered ansatz (Taube and Bartlett, 2006) and

the Quantum Alternating Operator Ansatz (Farhi et al., 2014;

Hadfield et al., 2019).

2.5.2 Cost function
The cost function C(θ) is a metric of how far the tentative

solution at the current iteration is from the actual solution of the

problem. In VQAs, the cost function is computed by measuring

one or more observables of the ansatz state U(θ)|0〉. The type

and number of observables are determined by the specific

problem.

FIGURE 2
Effect of one Grover iteration used in quantum amplitude
amplification. The axes represent the components of |ψ0〉 in the
“good” subspace and in the complementary “bad” subspace.
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Some of the requirements for a good cost function apply to

quantum as well as classical methods. For instance, the minimum

of C(θ) must coincide with the solution of the problem and

decreasing values of the cost function should correspond to better

approximations of the solution. However, a good cost function

for VQAs also needs to be hard to evaluate classically, since it

would otherwise negate the possibility of quantum advantage

(Cerezo et al., 2021a).

2.5.3 Gradient
Many optimization routines use the cost function gradient to

identify the direction of maximum descent to speed-up

convergence. Often however, the cost function does not have

an analytical expression and the gradient needs to be computed

using finite differences. Nevertheless, a quantum-evaluated cost

function is noisy in its nature, due to finite sampling and

hardware noise, so the finite difference approximation can be

highly imprecise.

Luckily, the so-called parameter-shit rule (PSR) allows to

compute gradients analytically using two cost function

evaluations, similar to what happens in finite differences. The

derivative of the cost C with respect to the lth parameter is then

zC

zθl
� 1
2 sin α

C θ+( ) − C θ−( )( ), (13)

where θ± = θ ± αel, el is the vector with 1 in the lth entry and 0 in

all others and α is the magnitude of the shift.

Even though Eq. 13 looks similar to the finite

difference formula, the two differ by the term 1
2 sin α. When the

shift is α = π/2, the difference in statistical error between finite

differences and PSR is maximum (Mari et al., 2021).

2.5.4 Optimizer
Optimizers for VQAs need to account for different

complications that arise from a quantum-evaluated cost

landscape. In fact, this is usually affected by stochastic and

hardware noise or it can be flat with minima in narrow

gorges, due to the phenomenon of barren plateaus (McClean

et al., 2018; Cerezo et al., 2021b).

A main classification of VQA optimizers is between gradient-

based and gradient-free algorithms. In principle, any classical

optimizer can be used in VQAs, but the noisy character of the

cost function makes some choices better suited than others to

avoid stability and convergence issues. For instance, gradient-

based techniques generally implement some form of stochastic

gradient descent (SGD)methods, such as Adam (Kingma and Ba,

2015) or use natural gradients (Stokes et al., 2020). On the other

hand, the simultaneous perturbation stochastic approximation

(SPSA) method is probably the most popular gradient-free

technique (Spall, 1992).

2.6 Quantum annealing

Quantum annealing (QA) is an algorithm that can solve

combinatorial optimization (CO) problems. These require to

search among a finite set of variables or choices with the aim is to

find the “best” one according to a certain metric of merit.

Importantly, many combinatorial optimization problems are

NP-hard, meaning that finding their solution is difficult. More

precisely, NP-hard problems are at least as difficult to solve as the

most difficult problem in the NP complexity class, which includes

all problems that can be verified in polynomial time by a

FIGURE 3
Working principle of variational quantum algorithms. The input are the hyperparameters, such as ansatz, optimizer and type of cost function and
the initial value of the ansatz parameter. The cost is shown here as a linear combination of expectation values of unitaries, although other expressions
are possible. In the quantum-classical optimization loop, the classical computer is in charge of updating the parameters θ according to the
optimization logic, while the quantum computer evaluates the cost function terms. At the end of the optimization, the optimal parameter set
θopt can be used to reconstruct the approximate solution as a wavefunction (|u(θ)〉 � U(θ)|0〉⊗n) or in a larger circuit to obtain a scalar function of the
solution g(u).
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nondeterministic algorithm. The NP class should be seen in

contrast to the P class, which instead includes all problems that

can be solved “efficiently”, i.e. in polynomial time using a

deterministic algorithm. Given their hardness, CO problems

are practially solved approximately, and the challenge is to

produce accurate approximate solutions in short

(polynomial) time.

However, QA cannot encode and solve a combinatorial

optimization problem in generic form. Instead, the physical

problem solved by QA is the one of finding the ground state

of the Ising Hamiltonian (McGeoch, 2020).

HIsing �∑n
i

Hiqi + ∑
ij( )
Jijqiqj, (14)

where qi, qj represent the binary values associated to the qubits,

e.g. 0, 1{ }. These can indicate, for instance, the two different spins

of a qubit. Also, hi ∈ R is the local field at site i and Jij ∈ R is the

interaction strength between qubits i and j.

In order to reach to the ground state of HIsing, the quantum

annealing process starts from an initial Hamiltonian H0, whose

ground state is known and easy to prepare. A common choice for

H0 is the transverse magnetic field

∑n
i

−Xi, (15)

Xi being the Pauli-X operator acting on the ith qubit, where

X � 0 1
1 0
[ ]

From here, the system’s Hamiltonian is slowly changed

according to an evolution law, such that

H t( ) � 1 − f t( )( )H0 + f t( )HIsing for t ∈ 0, T[ ]. (16)

Here, T is the total evolution time, f(t) ∈ [0, 1] and f(0) = 0,

f(T) = 1. If H(t), known as the total Hamiltonian, is changed

slowly enough, then the adiabatic principle ensures that the

system’s configuration is at the ground state of H(t) at all times

(Kato, 1950). At the end of adiabatic evolution, the system will

therefore be in the ground state of the Ising Hamiltonian, which

corresponds to the approximate solution of the CO problem.

However, quantum annealers operate with spin systems, where
each spin si is a binary variable equal to ±1. Thus, QA programmers
need to recast the CO problem to a binary optimization one. In
D-Wave machines, which are the state-of-the-art quantum
annealers, the problem is given as input in the Quadratic
Unconstrained Binary Optimization (QUBO) form, that is

minimize q⊤Qq
with q ∈ 0, 1{ }n, (17)

where Q ∈ Rn×n. The QUBO problem in Eq. 17 can be turned

into the Ising Hamiltonian ground state problem by using the

mapping si = 2qi − 1.

2.7 Measurement

At the end of the quantum primitive the problem’s solution is

encoded as a quantum state. This is a unit vector |u〉 ∈ CN, but its

information cannot be accessed without measurement. However,

it is easy to realize that measuring the entire state vector would

require O(N) measurements, breaking any speed-up obtainable

with a quantum primitive.

Therefore, quantum computing becomes appealing for PDEs

when the aim is to compute a certain scalar function g(u) of the

solution. This function is often taken as the expectation value of

an observable M, i.e.

g u( )∝ 〈M〉: � 〈u|M|u〉.

In principle, estimating 〈M〉would require to measure |u〉 in
the basis constituted by the eigenvalues of the operator M.

However, this basis is not known in general and one needs to

resort to methods other than direct measurement. One popular

technique is the Hadamard Test (Aharonov et al., 2009), which

assumes thatM is a unitary operator. As showed in Figure 4,M is

controlled on an ancilla qubit set in uniform superposition and

later measured in the Pauli-X basis. It is easy to show that

Re 〈M〉{ } � 1
2

Pr 0( ) − Pr 1( )( ), (18)

where Pr(0) and Pr(1) are the probabilities of the ancilla qubit

collapsing to |0〉 and |1〉 respectively.

A recurrent case in applications is to estimate how “close” a

state |u〉 is to reference state |uref〉. This can be accomplished

using the SWAP Test (Buhrman et al., 2001), which is a

Hadamard test where M is equal to the SWAP gate. If |ψ1〉
and |ψ2〉 are the states of two qubits, the SWAP gate acts between

them as

SWAP ψ1

∣∣∣∣ 〉 ψ2

∣∣∣∣ 〉 � ψ2

∣∣∣∣ 〉 ψ1

∣∣∣∣ 〉

In the SWAP Test, the SWAP operator is actually generalized

between the quantum registers containing |u〉 and |uref〉. Finally,
the overlap between these two states is given by the probabilities

of the ancilla qubit as

Re 〈u|uref〉{ } � 1
2

Pr 0( ) − Pr 1( )( ). (19)

FIGURE 4
Hadamard Test circuit for computing 〈u|M|u〉. Oppositely to
standard observable measurements, M needs to be unitary.
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In practice, all expectation values are determined statistically

as averages. The number of samples Nm required to approximate

〈M〉 up to ε precision is given by the Chernoff-Hoeffding

inequality, for which

Pr M̂ − 〈M〉
∣∣∣∣ ∣∣∣∣≥ ε( )≤ 2e−2Nmε2 , (20)

where M̂ � 1/Nm∑Nm
i�1Mi is the average of the measurements and

Mi ∈ 0, 1{ }. Thus, Eq. 20 states that O(1/ε2) measurements are

necessary to esimtate 〈M〉 up to precision ε.

3Quantum algorithms for linear PDEs

3.1 Poisson equation

The Poisson equation describes different phenomena in solid

mechanics, such as the displacements of a solid undergoing loads,

the elongation of a truss, etc. Let u(x) ∈ R be the unknown

solution function, where x ∈ Ω ⊆ Rd, d is the number of spatial

dimensions and f(x) ∈ R is a known source term. Then the

Poisson equation reads

− z2u

zx2
1

+/ + z2u

zx2
d

( ) � −∇2u � f x( ), x � x1, . . . , xd[ ]⊤ ∈ Ω.

(21)
Furthermore, Eq. 21 must be complemented with Dirichlet,

Neumann or Robin conditions on the boundary δΩ in order

to find a specific solution.

Assuming an hypercubic domain, the standard technique to

solve Eq. 21 numerically is to discretize the domain in N grid

points in each of the d spatial dimensions and either approximate

the Laplacian with a central finite difference (FD) scheme or

employ a finite element (FE) approximation. In both cases, one

obtains a discrete equation, or Discrete Poisson Equation, that is

a linear systems of (N − 2)d × (N − 2)d equations of the form

Au � f , (22)

where ui = u(x(i)) is the solution at grid point x(i) and fi = f(x(i)) for

finite differences or f = ∫Ωf(x)φi(x) for finite elements with basis

functions φi(x). Eq. 22 can be solved classically using direct or

iterative solvers. However, all classical linear solvers have a cost

upper bound by a polynomial in N (O(poly(N)) complexity).

Even the fastest iterative solvers such as conjugate gradient

(Shewchuk, 1994) or multigrid techniques (Golub and van

Loan, 2013) require O(N) iterations.

3.1.1 HHL and preconditioning
It comes natural to think that QLSAs such as HHL (cfr

Section 2) could solve the discrete Poisson problem exponentially

faster than in classical logic. Indeed, several authors worked on

this concept. Clader et al. (2013) were among the first ones to

apply an improved version of HHL to a finite difference

discretization of the stationary Maxwell equations. These form

a system of PDEs that are not of the Poisson type, but still

elliptical and that can be reduced to a linear system such as Eq. 22

upon discretization.

As mentioned, Clader et al. did not use the standard HHL,

but a modified version of it. Most importantly, they noticed that

theO(κ2) in the cost of HHL nullifies the exponential speed-up in

N, if κ = O(N). This is indeed the case for matrices induced by a

finite element discretization of second order elliptical boundary

value problems, for which κ = O(N2/d) (Brenner and Scott, 2010).

Therefore, Clader et al. proposed a quantum algorithm to

reproduce the Sparse Preconditioner Approximate Inverse

(SPAI) (Benzi and Tûma, 1999) operator. This technique uses

a matrix P to achieve nearly optimal preconditioning, i.e. PA ≈ I,

where I is the identity matrix. At the same time, P is such that PA

preserves the sparsity of the A. If s is the sparsity of A in Eq. 22

and the preconditioner P has similar sparsity, then applying the P

such that

PAu � Pf , (23)

can be done in O(s2) queries to an oracle accessing PA and O(s3)

runtime (Clader et al., 2013). Then, if the SPAI procedure is

applied succesfully, the conditioning will be independent of N or

O(log(N)), eliminating the polynomial scaling, that would still

be present even in improved QLSAs such as that of Ambainis

(2012). If s and 1/ε are also constant or logarithmic in N, the

complexity of Clader’s method would be O(poly log(N)), making

for a true exponential speed-up. Unfortunately, in most if not all

discretization schemes, 1/ε = O(N), as will be discussed later in

this section.

Further than conditioning, Clader et al. discussed two other

caveats of HHL (Aaronson, 2015), namely the state preparation

and the measurement problems. Concerning the first, general

state preparation is hard and could itself kill any polynomial

speed-up. Therefore, Clader et al. proposed to use an oracle able

to return fj ∈ R and ϕj ∈ R as superposition states, such that

f
∣∣∣∣ 〉 � ∑N−1

j�0
fje

iϕj j
∣∣∣∣ 〉. (24)

However, even though one would query this oracle a constant

number of times to produce |f〉, it could be that the same oracle

would compile to an exponential number of native gates,

effectively only rephrasing the state preparation problem.

About measurements, Clader et al. (2013) provide examples

of classical quantities that can be extracted once |x〉 has been

prepared with the HHL algorithm. In particular they show how

to compute 〈r|x〉, for an arbitrary state |r〉 and 〈j|x〉, i.e. the jth
component of |x〉.

As mentioned, Clader et al. (2013) also describe how the

preconditioned HHL can be applied to Maxwell’s equations and,

if a scalar solution 〈r|x〉, such as the scattering cross section, is

required, then the speed-up is exponential in N. However,
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Clader’s method is very much problem-agnostic and the Maxwell

discrete problem is seen more as a linear system for

benchmarking their solver, rather than a discretized PDE.

Moreover, all speed-up results are based on the existence and

the efficiency of oracles, which are quantum black-boxes,

instead of actual circuits. In the particular case of

Maxwell’s equations, the authors only mention that an

oracle implementing A and f would be ‘efficient’, but do

not elaborate further on number of submodules, gates, etc

(Clader et al., 2013). Even so however, the complexity analysis

in Clader et al. (2013) is incomplete, as later noticed by

Montanaro and Pallister (Montanaro and Pallister, 2016).

In fact the preconditioned HHL still retains a O(poly(1/ε))
factor and since for local FE schemes N � O((1/ε)α), with α ∈
(0, 1), this solver still does not achieve an exponential speed-

up for elliptical problems.

3.1.2 Diagonalization with quantum fourier
transform

While still using a QLSA, Cao et al. focused on the problem

rather than the solver (Cao et al., 2013). In their work, they

treated the d-dimensional Poisson equation (Eq. 22) and noticed

that every classical linear solver requires at least

O
�
κ

√ 1
ε
( )αd log 1

ε
( )( ) (25)

time, therefore suffering from the curse of dimensionality. Using

the HHL algorithm, Cao et al. resolved the exponential

dependency on d, by preparing the solution |x〉 (as a

quantum state) with

max d, log
1
ε
( ){ } log

1
ε
( )( )3 (26)

quantum operations. It should be noticed how both Eqss 25, 26

are completely expressed in terms of 1/ε and d, thus not hiding

any dependencies between complexity terms. Furthermore, the

authors described the quantum circuits used down to

submodules and gates.

Comparing Eq. 26 with the complexity of the HHL algorithm

(Eq. 8), one notices that the O(1/ε) term in the cost of Cao’s

algorithm is replaced by a logarithmic dependency. The

exponential reduction does not derive from modifications to

the linear solver, but from the specific structure of the Poisson

matrix. This can be understood starting from the 1-dimensional

case, defining A1
P as the 1D Poisson matrix. This is an instance of

the class of Topelitz matrices, all of which can be diagonalized by

the sine transform S (Benedetto, 1997) as

A1
P � SΛS†, (27)

where Λ � diag(λi), λi � 4 sin2( iπ
2N) and Sij �

��
2
N

√
sin(ijπN ) are the

components of the discrete sine transform. Cao et al. proved that

estimating the eigenvalues of Eq. 27 up to precision ε requires

O(log(1/ε))3 quantum operations. Moving to multiple

dimensions, the d-dimensional Poisson matrix Ad
P can be

written as

Ad
P � A1

P ⊗ I ⊗/⊗ I + I ⊗ A1
P ⊗ I ⊗/⊗ I +/ + I ⊗/⊗ I ⊗ A1

P

(28)
and its Hamiltonian simulation is

eiA
d
Pt � eiA

1
Pt ⊗/⊗ eiA

1
Pt. (29)

Therefore, simulating Ad
P requires time O(d log3(1/ε)), that is

exponentially less than vanilla HHL.

Also, Eq. 26 should not mislead the reader in thinking that

the cost of Cao’s method is independent of the conditioning

number. Indeed Eq. 26 refers to a single run of the quantum

circuit. However,O(κ2) runs need to be performed, as required by

the HHL algorithm to encode the solution state |x〉 with high

probability. Even in this case, if κ = O(Nd/2), the exponential

advantage is lost, but Clader’s preconditioning technique (Clader

et al., 2013) may be used to achieve constant or logarithmic

dependency of the conditioning with respect to N.

Wang et al. built upon Cao’s work and simplified and

improved the HHL-based quantum Poisson solver (Wang

et al., 2020c). In particular, they presented a fully modular

circuit of this algorithm, defining every module in its

components, down to known quantum operations (such as

addition and subtraction) and gates. In doing this, they

noticed that several steps in Cao’s algorithm could be reduced

to the evaluation of trascendental function. For this sake, they

developed the so-called quantum function-value binary

expansion (qFBE) algorithm (Wang et al., 2020a), which

allows to replace more expensive power operations with

arithmetic ones.

Moreover, the authors of Wang et al. (2020c) reduced the

complexity of the controlled rotation operation in Cao’s

method. In the latter, after the quantum phase estimation

step is performed, the eigenvalue register |λj〉 is used to

compute the reciprocal state |1/λj〉 using a quantum version

of Newton’s method. Then, the controlled rotation C − Ry(θj)

step is used to encode amplitude 1/λj, if the rotation angle is

taken as θj = arcsin(1/λj). Cao et al. used a quantum

implementation of the bisection method, to iteratively

evaluate the arc sine function, requiring O(log4(1/ε))

operations for a small-dimension, high-precision (d < log(1/

ε)) problem. However, Wang et al. bypassed the computation of

the reciprocal state completely and noticed that the angles for

the controlled rotation could be estimated with minimum error

through the following relation

θj � ωjπ; ωj ≈
arccot λj( )

π
. (30)

Also, the arc-cotangent function could be estimated through the

qFBE algorithm in O(log3(1/ε)) operations.
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Overall, Wang’s Poisson solver produces the solution state

|x〉 in O(κd log3(1/ε)) operations, where the usual consideration

about the conditioning number applies. Comparing this scaling

with one of Cao’s algorithm (cfr Eq. 26), Wang’s method is

polynomially more efficient for low dimensional and high

precision problems, which are usually the most interesting

ones in structural analysis.

3.1.3 Adaptive order scheme and spectral
method

The methods of Cao (Cao et al., 2013) and Wang (Wang

et al., 2020c) consider the case when the Laplacian in Eq. 21 is

approximated with three points centered FD for all grid sizes.

However, Childs et al. recently remarked that fixed finite

difference, finite element and finite volume schemes require

O(poly(1/ε)) time to bring the approximate solution |~u〉, ε-
close to the actual solution on the grid (Childs et al., 2021).

In fact, fixed schemes produce matrices with κ =O(poly(1/ε)) and

all quantum linear solvers have polynomial time in the

conditioning number.

Childs et al. accounted for this issue, by solving Poisson and

general second order elliptical boundary value problems with two

different numerical approximations, namely an adaptive order

FD approximation and a spectral method (Childs et al., 2021).

The adaptive FD approach is used to solve the d-dimensional

Poisson problem. With periodic boundary conditions.

First, Childs shows that the conditioning number κ of the

order-k Laplacian with periodic boundary conditions is O(N2) if

k≤ (6/π2)1/3N2/3. Then, by assuming that the error due to the

finite difference discretization and due to the quantum linear

system algorithm are of the same order of magnitude, a

relationship can be established between N, k, d and 1/ε.

Choosing k � (6/π2)1/3N2/3 is found to be optimal in terms of

runtime (Childs et al., 2021) and N is then automatically

determined to ensure the total error is upper bound as O(ε):

N � Θ d3/2 log3/2
z2k+1 u
zx2k+1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣/ε( )( ). (31)

By substituting Eq. 31 into the runtime of the complexity-

optimal QLSA solver of Childs et al. (2017), the solution of the

second order elliptical problem with periodic BCs is found in

O d3/2poly log d( ), log 1/ε( )( )( ) (32)

runtime, meant as number of gate operations, which is

polynomial in d (i.e. no curse of dimensionality) and has

optimal dependency in 1/ε.

Furthermore, the authors show that the same runtime holds

for Dirichlet or Neumann homogeneous boundary conditions.

To achieve this, they use the method of images to extend the

domain and symmetrize the solution u according to the BCs

(Childs et al., 2021).

The second algorithm proposed by Childs et al. uses the

spectral method (Childs et al., 2021). In this case, the solution is

approximated globally and the discretized Laplacian is non-

sparse. To obviate to this problem, two variations of the

quantum Fourier transform, namely the quantum shifted

Fourier transform (QSFT) and the quantum cosine transform

(QCT) are used to induce sparsity. The algorithmmakes use of an

oracle that is queried

d2poly log 1/ε( )( ) (33)
times for second-order elliptic problems with non-homogeneous

Dirichlet boundary conditions and

dpoly log d( ), log 1/ε( )( ) (34)

times for the Poisson problem with homogeneous Dirichlet BCs.

3.1.4 Full complexity analysis
All previous techniques are based on quantum linear system

algorithms and demonstrate times that are exponentially better

than classical solvers. Yet it is important to understand what

output is prepared in such time and what input provides the

starting point. To begin with, all algorithms for solving linear

systems Ax = b requires the right hand side vector is given as an

input in normalized form, i.e. |b〉. In classical computation,

keeping the input in the computer’s main memory is common

practice, since random access memories (RAMs) can store arrays

of double-precision values over a long time and enable repeated

readout. In terms of output, classical linear solvers produce the

entire solution vector x and therefore the full discrete solution.

In quantum computation, matters are not as trivial. The main
point is that information is processed by quantum computers as
quantum states, but it is only accessible and readable in classical
form. For instance, the HHL algorithm requires the input vector
b to be provided as a quantum state |b〉. There are two ways to
make this happen. On the one hand, b might have been
previously stored as a quantum state |b〉 in a quantum RAM
(QRAM). Despite the fact that QRAM models exist and can
theoretically create quantum superpositions in O(log(N)) time
(Giovannetti et al., 2008b,a), it is uncertain whether they can be
physically built and if they actually offer an advantage if a parallel
computer with the same amount of resources is available
(Ciliberto et al., 2018). On the other hand, the state |b〉 may
be prepared through a sequence of unitary operations. However,
preparation of a generic quantum state from its amplitudes is a
hard problem (Nielsen and Chuang, 2010) that would kill any
potential exponential saving.

Also, a quantum algorithm does not compute the solution x,

but rather prepares the state |x〉. This is still a quantum state,

whose information cannot be accessed without measurements.

However, if the aim is to recover the full solution vector of

dimension N, this will require O(N) measurements of |x〉 and

will undo any previous speed-up.
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The full complexity of a QLE algorithm for differential

problems, from input encoding to output readout was

discussed by Montanaro and Pallister (Montanaro and

Pallister, 2016). Specifically, they considered elliptical PDEs

discretized with the finite element method, using piece-wise

polynomial basis functions. Since the full quantum solution

|u〉 of the discrete problem cannot be accessed, classical and

quantum algorithms were compared not on their time-to-

solution, but on the time to produce a scalar functional of it.

SpecificallyMontanaro and Pallister assumed the final output

to be the inner product 〈r|u〉. The state |r〉 is the quantum state

representation of a known function r(x) defined over the

domain Ω

r| 〉 � 1����������∑N
i�1〈φi|r〉2

√ ∑N
i�1
〈φi|r〉 i| 〉, (35)

where φi are the finite element basis functions and the vectors |i〉
form a basis for CN.

The main findings of Montanaro and Pallister (2016) are

summarized in Table 1. Here, the classical linear solver used is the

conjugate gradient method, while the quantum one is that of

Childs et al. (2017), which has logarithmic dependency on 1/ε.

Furthermore, the basis functions used for the results in Table 1

are the linear ‘hat’ functions

φi x( ) �

1
h

x − xi−1( ) if x ∈ xi−1, xi[ ]
1
h

xi+1 − x( ) if x ∈ xi, xi+1[ ]
0 elsewhere

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
, (36)

defined over a uniform grid xi ∈ [x0, x1, . . ., xN−1] with equidistant
spacing h. Montanaro and Pallister (2016) present scalings also

for polynomial shape function of generic order p.

The complexity analysis was done both without

preconditioning and with optimal preconditioning (i.e. PA = I),

where a realistic preconditoning case lies in between these two

extremes. The most important result in Table 1 is that, for fixed

dimension d, no exponential quantum speed-up can be achieved,

regardless of conditioning. The reason is that to compute 〈r|x〉 up
to precision ε requires O(1/ �ε√ ) repetitions of the QLSA while

performing quantum amplitude amplification (Montanaro and

Pallister, 2016). Still, if d was allowed to vary, it may look as if the

quantum solver is exponentially faster than classical (no curse of

dimensionality). However, the authors warn that the ~O notation

hides terms that are independent of 1/ε but can varywith d, making

it hard to say what kind of speed-up is achievable for variable

dimensions. Furthermore, a classical random walk procedure can

solve the Poisson equation in polynomial time, if the solution is

required only at a particular point (Linden et al., 2020).

The runtimes in Table 1 scale with 1/ε, |u|l ‖u‖l, where the
last two quantities are respectively the Sobolev l-seminorm and l-

norm of the analytical solution u and are indicative of the

magnitudes up to the lth derivative of u. Therefore, for d

relatively high, yet fixed, there can be a consistent

polynomial speed-up for high precision problems and high

second derivatives of the solution u(x). These considerations

extend to higher-order finite elements, with the difference that

higher-order Sobolev seminorms appear in the runtime.

However, from a structural mechanics standpoint, elliptical

problems reach at most d = 3, limiting the achievable

polynomial speed-up.

It is important to carefully understand why, even considering

a log(1/ε)-scaling algorithm, Montanaro and Pallister found out

that quantum linear solvers cannot provide exponential speed-

up. To do this, one should answer the questions identified by

Aaronson in his ‘fine print’ for quantum linear algebra

(Aaronson, 2015).

1. Can |b〉 be prepared in time O(log(1/ε)), starting from b? In

general, this is a hard problem, but if f(x) in Eq. 21 is a

polynomial or a function supported only on a few elements,

the state |b〉 can indeed be prepared in time O(log(1/ε))

(Montanaro and Pallister, 2016).

2. Is there an algorithm for accessing the elements of A in time

O(log(1/ε))? Yes. In fact, quantum linear solvers require a

sparse matrix and a sparse access to the matrix. The second

point means that there should be an algorithm that, given a

row index r and another index i, it returns the column index

and value of the ith non-zero element in A. Finite element

matrices satisfy both these requirements, since they are sparse

and, if the mesh is regular, sparse access can be obtained by the

knowledge of the element’s degrees of freedom and by the

connectivity matrix.

3. Is possible to apply efficient pre-conditioning to A? Yes, for

instance through the quantum-SPAI technique proposed by

Clader et al. (Clader et al., 2013).

TABLE 1 Complexity results in Montanaro and Pallister (2016). The problem is a second order elliptical PDE, discretized with the finite element
method, using piece-wise linear shape functions.

Algorithm No preconditioning Optimal preconditioning

classical (conjugate gradient) ~O((|u|2/ε)(d+1)/2) ~O((|u|2/ε)d/2)
quantum (Childs et al., 2017) ~O(‖u‖|u|22/ε3 + ‖u‖1|u|2/ε2) ~O(‖u‖1/ε)
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4. Is it possible to measure the output in time O(log(1/ε))? Not in

general. Especially, it is not the case for estimating properties

such as 〈r|u〉, where distinguishing between two quantum

states that are ε-close to each other require O(1/ �ε√ ) queries
to the QLE algorithm (Montanaro and Pallister, 2016).

Thus, the mere fact of having to sample a solution almost

always kills any quantum exponential speed-up. Still,

Montanaro and Pallister specify that there are cases in which

some properties of the solution may be tested with logarithmic

sampling. One such property is periodicity, which suggests the

possibility of an exponential speed-up when using quantum

linear solvers for the sake of finding the vibration frequencies of

a structure.

Also, an even more interesting point in Montanaro’s analysis

is the fact that a possible exponential speed-up will not arise from

a QLE algorithm, but from a clever choice of state preparation or

measurement. In fact, replacing a QLE routine with a classical

linear solver implies at worst a polynomial slowdown

(Montanaro and Pallister, 2016).

3.1.5 NISQ solvers
So far, none of the work discussed concerns the

implementation of algorithms on hardware. In the most

abstract cases, parts of the algorithm are performed by

oracles, which perform a certain function in given time

complexity, but whose circuit structure is unknown. Other

times the circuit is sketched at different levels of detail. Most

notably for the Poisson case, Wang et al. showed the circuit of

their algorithm and all its modules up to qubit operations (gates)

(Wang et al., 2020c).

However, it is easy to realize that none of these algorithms
can possibly run on quantum hardware either today or in the
next few decades (Preskill, 2018). For instance, Wang
demonstrates his algorithm to solve a minimal problem of a
4 × 4 Poisson matrix (Wang et al., 2020c) on the Sunway
TaihuLight supercomputer, which acts as a quantum
simulator (Chen et al., 2018). Interestingly, the authors also
provide qubit and gate counts for this implementation,
declaring 38 qubits and 800 gates. One should consider that
the actual gate count is higher, since gates such as TOFFOLI and
SWAP used in Wang et al. (2020c) must be expanded to native
operations and all operations have to be mapped to actual
hardware connectivity. Therefore, circuits of this size require
quantum volumes that are beyond near-term capabilities by
orders of magnitude. Consequently, other authors recently
looked at the possibility to solve the Poisson equation with
near-term techniques.

Wang et al. also proposed a way to solve the one-dimensional

Poisson problem in NISQ, using circuits of O(poly log(1/ε))

operations (Wang et al., 2020b). Their main idea was that the

gate-expensive Hamiltonian simulation can be bypassed if one is

able to directly encode the inverse eigenvalues in the quantum

state amplitudes. This is easily understood by recalling the

expression of the solution of the A|x〉 � |b〉 linear system

x| 〉 � A−1 b| 〉 �∑
j

βj
λj

uj

∣∣∣∣ 〉,

where λj and |uj〉 are the jth eigenvalue and eigenvector of A

respectively and |b〉 � ∑N
j�1βj|uj〉.

Importantly, the Poisson problem with homogeneous

Dirichlet boundary conditions results in a matrix whose

eigenvalues have an analytical expression, i.e.

λj � 4N2 sin2 jπ

2N
( ), (37)

where j ranges from 1 N to 2.

Wang et al. noticed that this Poisson matrix is also a Cartan

matrix. The eigenvalues of Cartan matrices are also sines and

they are related by the following product relation (Damianou,

2014)

22
n+1−2 ∏2n−1

j�1
sin2 jπ

2n+1
( ) � 2n, (38)

where n = log(N).

It is easy to see that the sine terms in the product are equal to

the eigenvalues in Eq. 37 up to a constant term. Consequently, 1/

λj can be written as a product of all other eigenvalues λk, for k ≠ j.

Still, implementing Eq. 38 would requireO(N) qubits, since every

inverse eigenvalue depends on 2n − 1 others. The authors

however used the periodicity of the discrete sines and some

trigonometric relations to prove that 1/λj can be computed from

Eq. 38 as product of only n − 2 sine terms. This allows the

algorithm to be implemented in 3n qubits. Moreover, the sine

expressions in Eq. 38 can be peformed straightforwardly as

controlled Ry rotations.

Wang et al. also present the circuit for their algorithm, stating

that the total cost expressed in one and two qubits gates is 5
3n

3.

Also, they mention that parallelization of the controlled Ry

operations could further reduce the gate count to 10n2, by

adding n − 2 ancillary qubits. For a few (n < 10) qubit

problems the required number of gates may fit the

specifications of with NISQ devices. Nevertheless, one should

keep in mind that both gate count and the declared time

complexity of O(poly log(1/ε)) do not take into account the

preparation of |b〉 and measurement of a scalar quantity of

|x〉. Ultimately however, the real shortcoming of Wang’s

algorithm to be of practical interest is that it is limited to the

one-dimensional Poisson matrix with homogeneous Dirichlet

boundary conditions. As shown in Huang andMcColl (1997) the

associated tridiagonal matrix can be inverted analytically

removing the need of such a specialized numerical technique.

Unfortunately, Wang et al. do not mention the possibility of

extending their method to higher dimensions or different

boundary conditions.

Frontiers in Mechanical Engineering frontiersin.org13

Tosti Balducci et al. 10.3389/fmech.2022.914241

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2022.914241


A different NISQ approach to the discrete Poisson problem is

to use variational quantum algorithms to solve the underlying

linear system (Liu H.-L. et al., 2021). In case of linear systems, the

variational state is |x〉 � U(θ)|0〉, where U(θ) is the ansatz (see
Section 2.5) and the loss functions needs to be zero when

|x〉 � A−1|b〉. A possible choice for such a loss function is then

L θ( ) � 〈x θ( )|A† A|x θ( )〉 − |〈b|A|x θ( )〉|2. (39)

In the Poisson case the matrixA is symmetric, therefore A†A = A2

and Eq. 39 becomes

L θ( ) � 〈x θ( )|A2|x θ( )〉 − |〈b|A|x(θ)〉|2. (40)

A necessary condition for advantage with VQAs is that the

terms in Eq. 40 must be efficiently evaluated on a quantum

computer and ideally must be hard to evaluate in classically.

Bravo-Prieto et al. (2019) proved that the latter requirement is

satisfied for loss functions such as that in Eq. 39. On the other

hand, efficient quantum evaluation is possible only if the

following two necessary conditions are met.

1. A and A2 can be decomposed in O(poly log(N)) operators Ok

2. These operators are observables and have a simple tensor-

product form.

Notice that we will talk here about observables as Hermitian

operators, whose eigenvectors form an orthonormal basis for

measurement.

Liu et al. show that A and A2 for the 1-dimensional Poisson

matrix fulfill both requirements. For the number of

decomposition terms, one can recursively decompose Am, with

m being the number of qubits as

Am � Am−1 Dm−1
DT

m−1 Am−1
[ ], (41)

where

Dm−1 �
0 . . . 0
..
.

1 ..
.

0
−1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (42)

For example, the 1 and 2 qubit cases are

A1 � 2 −1
−1 2
[ ] � 2I − σ+ − σ+;

A2 �
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� I ⊗ A1 − σ+ ⊗ σ− − σ− ⊗ σ+,

where σ+ � |0〉〈1| and σ− � |1〉〈0|. By applying repeated tensor

products of Am−1 with the identity and adding the center off-

diagonal terms for the mth case, Am can be written as a sum of

2m + 1 terms.

The matrix A2 can instead be split into the following two

submatrices

A2
m �

5 −4 1 0
−4 6 −4 1
1 1 1 1 1

1 1 1 1 1
1 −4 6 −4

0 1 −4 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

6 −4 1 0
−4 6 −4 1
1 1 1 1 1

1 1 1 1 1
1 −4 6 −4

0 1 −4 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

1
0

1
0

0
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Bm − Cm.

(43)

The matrix Bm in Eq. 43 is decomposed in the same fashion as

Am, while Cm is the sum of just two terms

Cm � σ+σ− ⊗/⊗ σ+σ−︸+++++++︷︷+++++++︸
m

+ σ−σ+ ⊗/⊗ σ−σ+︸+++++++︷︷+++++++︸
m

(44)

Overall, A2
m can be decomposed in 4m + 1 terms. Since both

A and A2 are decomposed in O(log(N)) operators, the first

requirement for advantage is satisfied. Furthermore, Eq. 28

states that the d-dimensional Poisson equation is the sum of

tensor products of the identity tensor with the one-dimensional

matrix. Therefore, the d-dimensional Poisson problem with

Dirichlet boundary conditions can be handled with the same

operators as in the d = 1 case and specifically with d(2m + 1) of

them for A and (d(2m + 1))2 for A2. However, while Liu et al. also

give a decomposition for the Neumann, Robin and mixed

boundary conditions in the d = 1 case, the authors claim that

the {σ+, σ−} decomposition cannot be extended trivially to the

multidimensional case with boundary conditions different than

Dirichlet ones.

Still, the operators in Am and Bm are not Hermitian and

cannot be used as observables. Liu et al. notice however that they

can be made symmetric by mapping them in the higher

dimensional space of Bell states. For instance, one can

consider the 2 × 2, 1 qubit case and build two new operators

O11 and O12, such that

O11 � 0 σ+
σ†+ 0
[ ] � φ+

11

∣∣∣∣ 〉〈φ+
11

∣∣∣∣ − φ−
11

∣∣∣∣ 〉〈φ−
11

∣∣∣∣,
O12 � 0 σ−

σ†− 0
[ ] � φ+

12

∣∣∣∣ 〉〈φ+
12

∣∣∣∣ − φ−
12

∣∣∣∣ 〉〈φ−
12

∣∣∣∣, (45)

where |φ±
11〉 � 1�

2
√ (|00〉 ± |11〉), |φ±

12〉 � 1�
2

√ (|01〉 ± |10〉) are

Bell states. By also defining |0, 1〉 and |0, i1〉 as the following

1-qubit states

0, 1| 〉 � 1�
2

√ 0| 〉 + 1| 〉( ),
0, i1| 〉 � 1�

2
√ 0| 〉 + i 1| 〉( ),

(46)

it is possible to evaluate the terms appearing in Eq. 40, such as
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〈x θ( )|σ+|x θ( )〉 � 〈0, 1|〈x θ( )|O11 0, 1| 〉 x θ( )| 〉 − i〈0, i1|〈x θ( )|O11 0, i1| 〉 x θ( )| 〉,
〈x θ( )|σ−|x θ( )〉 � 〈0, 1|〈x θ( )|O12 0, 1| 〉 x θ( )| 〉 − i〈0, i1|〈x θ( )|O12 0, i1| 〉 x θ( )| 〉.

(47)

For higher matrix dimensions, measuring the expectation

values of Am and Bm requires to use similar operators as those in

Eq. 45, but whose eigenvalues are entangled states in more than

two qubits.

By measuring in the Bell basis, the second requirement is also

satisfied. Indeed, Figure 5 shows that the measurement circuit in

Liu H.-L. et al. (2021) is shallow and made by only one and two

qubits gates. However, this circuit assumes full qubits

connectivity, which is generally not available in current

hardware. Therefore, the actual implementation on hardware

will likely require SWAP gates to meet the design connectivity.

A final interesting remark regards the ansatz U(θ) chosen by

Liu et al. for their simulations. This is the quantum alternating

operator ansatz (QAOA) (Farhi et al., 2014; Hadfield et al., 2019),

which consists of a layered circuit, each layer having only two

parameters, corresponding to the evolution times of mixer and

driver Hamiltonians. Liu H.-L. et al. (2021) chose the two

Hamiltonians, such that their gate depth grows only linearly

with the number of qubits. Furthermore, the results obtained on a

quantum simulator show that the number of QAOA layers only

needs to increase linearly with the number of qubits for fixed

solution fidelity, resulting in a circuit that is overall suitable for

NISQ hardware.

3.1.6 Quantum annealing
Srivastava and Sundararaghavan provided the first example

of solving differential equations on a quantum annealer

(Srivastava and Sundararaghavan, 2018). The motivation

behind their work was that the functional minimization form

of the differential problem can be written in terms of the discrete

solution and solved as a combinatorial optimization problem.

More precisely, the problem becomes a binary graph-coloring

one, which is NP-hard.

As seen in Section 2.5.5, a quantum annealer finds the ground

state of the Ising Hamiltonian, hereby reported for clarity

H q( ) �∑n
i�1

Hiqi + ∑
i,j( )

Jijqiqj

The qi binary variables encode the values of the discrete problem

variables, while Hi and Jij depend on problem data and boundary

conditions.

For instance, consider the 1D Laplace problem with Dirichlet

boundary conditions

d2u

dx2 � 0,

u 0( ) � u0,

u L( ) � uL

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(48)

where L is the length of the domain. The associated energy

potential is

Π u( ) � ∫L

0

1
2

du
dx
( )2

dx. (49)

One can replace u(x) with the discrete solution

u x( ) ≈ ∑N
i�1

φi x( )ai, (50)

where φi(x) can be taken as the linear finite element shape

functions in Eq. 36. In particular, finite element

approximations are local, which fits well the fact that

quantum annealers are only locally connected.

Considering only two elements (3 nodes) on the unit domain

and substituting Eq. 50 in Eq. 49 leads to the discrete functional

Π a0, a1, a2( ) � aT1 s1 + aT2 s2, (51)
where\

a1 � a20, a
2
1, a0a1, a0, a1[ ]T

a2 � a21, a
2
2, a1a2, a1, a2[ ]T

s1 � s2 � 1, 1,−2, 0, 0[ ]T
.

Srivastava and Sundararaghavan propose to associate every

element to a local graph, to repeat this unit throughout the

annealer’s graph and to form the global connections according to

the finite element connectivity (Srivastava and Sundararaghavan,

2018). Every node i is associated with 3 qubits qij, which in turn

are mapped to 3 different values vij that the nodal solution can

assume. Since qij � ± 1,

ai �∑3
j�1

vij
qji + 1
2

. (52)

In this way, ai can in principle assume 9 possible values.

However, some of these values lead to invalid solutions and

need to be penalized when writing the discrete potential.

FIGURE 5
Circuit for measuring the state |0, 1〉|x(θ)〉 in the Bell basis Liu
H.-L. et al. (2021).
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Figure 6A shows the node graph used in Srivastava and

Sundararaghavan (2018). This has associated Hl and Ĵlk weights,

which contibute to the Ising Hamiltonian. The aim of the nodal

weights is to promote the boundary conditions as well as feasible

values of the solution of the nodes. In case the PDE was not

homogeneous,Hl and Ĵlk would also account for the right hand side.

Figure 6B shows instead the element graph for a single

element, that is characterized by the matrix ~Jn. In the case of

a 1D domain, the connection is between two adjacent nodes, each

characterized by 3 qubits, therefore the element weight matrix ~J
n

is characterized by 9 linear equations

∑3
k�1
∑3
l�1

~J
n( )

kl
qikq

j
l � an ai, aj( )Tsn, (53)

where i and j are the nodes connected by element n.

Once Hl, Ĵlk and (~Jn)kl are defined for every node and

element, the weights in the transverse Ising Hamiltonian are

defined and the quantum annealer can search for its ground state.

However, if a higher precision is required while spanning the

same range of possible values, then more than 3 qubits would be

required per node. In a realistic FE model with thousands of

nodes this would require a high number of qubits and a high

degree of connectivity, which may be beyond hardware capacity.

Therefore Srivastava and Sundararaghavan proposed the so-

called “box algorithm”. The main idea is to have the values vij
centered around a value uci with distance r, thus

vij � uc
i + r j − 2( ) (54)

In this way, the nodal values are spaced around uci with radius

r and for N nodes, all possible admissible values will be

distributed on the surface of a N-dimensional box. The

procedure consists in doing subsequent annealings until the

desired precision r is met. After every annealing, uci and r are

allowed to vary according to the following logic.

1. If uci ± r for a certain i has lower potential than uci , then the

center is moved to that point

2. If uci is the point of minimum in the box, then r is reduced.

The procedure continues until r is below a threshold defined

by the required solution precision. Also, Srivastava and

Sundararaghavan (2018) show that this is a convergent process.

The graph-coloring and box algorithm is benchmarked

against two truss problems, described by the equation

d
dx

EA
du
dx

( ) + f x( ) � 0, (55)

where E(x) andA(x) are respectively the distributed axial stiffness

and area, while f(x) is the distributed load over the truss. The first

example is a truss with a discontinues cross-section at half length,

while the second one is a tapered truss with distributed load. Both

examples converge to the numerical FE solution using up to

6 elements. The authors also mention that a finer discretization

would likely require a two-point version of the box technique, in

order to better exploit the connectivity of the annealer.

3.2 Heat equation

The heat equation is another widely applicable mathematical
model in solid mechanics, which can be used to predict
temprerature profiles and heat concentrations in structural
components.

FIGURE 6
Generic node graph (A) and element graph (B) for the one dimensional Laplace equation in Srivastava and Sundararaghavan (2018) with the
corresponding weigths of the Ising Hamiltonian.
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Let the spatial domain be Ω ⊆ Rd, and the temporal domain

be I ⊆ R. The solution u(x, t) satisfies the equation

zu

zt
� z2u

zx2
1

+/ + z2u

zx2
d

� ∇2u, x � x1, . . . , xd[ ]⊤ ∈ Ω, t ∈ 0, T[ ]
(56)

and the differential problem is completed once the boundary and

initial conditions are also specified.

For problems relevant in structural mechanics, the

problems are at most three-dimensional. Also, one needs

to account for the material’s thermal diffusivity, which is in

general a tensor A(x) ∈ Rd×d, with entries depending on x.

From here onwards however, the material is assumed

isotropic and homogeneous, therefore the thermal

diffusivity becomes a constant scalar α and

zu

zt
� α∑

i≤3

z2u

zx2
i

. (57)

3.2.1 Comparison of classical and gate-based
quantum methods

A comprehensive study on quantum solvers for the heat

equation was conducted by Linden et al. (Linden et al., 2020).

Specifically, the authors compared 5 classical and 5 quantum

methods in terms of their theoretical runtimes to approximate

the temperature integrated over a region S ⊆Ω, up to precision ε

with 99% success probability of the algorithm, i.e.

~H − ∫
S

u x, t( )dx
∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣≤ ε (58)

where ~H is the approximated temperature integral.

The discretization in time consists in first-order forward

finite differences, while second-order centered finite

differences are used for the space grid. This scheme is

also called forward time centered space or FTCS, for

short. Therefore Eq. 57 becomes the finite difference

equation

~u x, t + Δt( ) − ~u x, t( )
Δt � α

Δx( )2 ∑
d

i�1
~u x1, . . . , xi + Δxi, . . . , xd, t( )

− 2~u x1, . . . , xi, . . . , xd, t( )
+ ~u x1, . . . , xi − Δxi, . . . , xd, t( ),

(59)
where Δt = T/M,M being the number of time intervals, while

Δx = L/N, assuming equal length L for each dimension and

division in N intervals. Furthermore, ~u is the approximation

of u due to the finite difference discretization.

By grouping the values of ~u at the same time step, Eq. 59 can

be rewritten as

~u x, t + Δt( ) � 1 − 2dαΔt
Δx( )2( )~u x, t( )

+ αΔt
Δx( )2 ∑

d

i�1
~u x1, . . . , xi + Δxi, . . . , xd, t( )

+ ~u x1, . . . , xi − Δxi, . . . , xd, t( ). (60)

Also, by defining ~ui as the solution at time step tk, k =

{1, . . .M}, Eq. 60 can be written in vector form as

~uk+1 � L~uk, (61)
where L is the linear operator on the right-hand side of Eq. 60.

The classical solvers studied by Linden for this problem are

the following.

1. Single linear system approach with conjugate gradient. Eq. 61

can be seen as a unique linear system, for the solution at

subsequent times. In fact, if u � [u1, . . . uM]T, f �
[Lu0, 0, . . . , 0]T and u0 is the initial condition in discrete

space, then

Au � f , (62)
where

A �

I 0 0 . . . 0
−L I 0 0

0 1 1 1 ..
.

..

.
1 −L I 0

0 . . . 0 −L I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(63)

Linden et al. (2020) suggest to use the conjugate gradient method

to solve the sparse linear system in Eq. 62 in linear time. More

accurately however, one should resort to a variation of this

method such as the biconjugate gradient stabilized method

(BiCGSTAB) (van der Vorst, 1992), which still runs in linear

time, in order to account for the asymmetry of A.

2. Time-stepping from initial condition. This is a matrix-vector

multiplication problem. In fact, Eq. 61 can be expanded up to

u0 as

~uk � Lku0. (64)

Then, the approximate solution at time tk = kΔt is obtained by k

successive multiplications of L to u0.

3. Time-stepping using the Fast Fourier Transform (FFT). For the

FTCS scheme, the matrix L in d dimensions has the

expression (Linden et al., 2020)

L � I⊗dN + αΔt
Δx( )2 ∑

d

j�1
I
⊗ j−1( )
N ⊗ H ⊗ I

⊗ d−j( )
N , (65)

where IN is the identity matrix of dimension N. Also,
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H �

−2 1 1
1 −2 1

1 1 1
1 1

1 1 −2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (66)

which is a circulant matrix and can therefore be diagonalized by

the Discrete Fourier Transform F. Since the circulant matrices

operate on different dimensions, the matrix L is diagonalized by

the tensor product of F, i.e. F⊗d. Furthermore, H has eigenvalues

λj � −4 sin2(jπN), which can be used in combination with Eq. 65 to

compute the eigenvalues of L. Therefore,

L � F⊗d( )−1ΔF⊗d, (67)

where Λ is the diagonal matrix with the eigenvalues of L on the

diagonal. Therefore the time stepping equation Eq. 64 becomes

~uk � F⊗d( )−1ΔkF⊗du0. (68)

Numerically, this consists in doing the Fast Fourier Transform

(FFT) of u0, multiplying the resulting vector by the kth powers of

the eigenvalues of L and finally performing an inverse FFT.

4. Random walk. Eq. 60 can be seen in terms of stochastic

quantities. In fact, introducing s � αΔt
(Δx)2, this equation can

be rewritten as

~u x, t + Δt( ) � 1 − 2ds( )~u x, t( )

+∑d
i�1

s~u x1, . . . , xi + Δxi, . . . , xd, t( )

+ s~u x1, . . . , xi − Δxi, . . . , xd, t( ). (69)

It is easy to see that if s ≤ 1/(2d), Eq. 69 can be thought of as a

stochastic process. In fact, the temperature ~u at each time is

determined by those at the preceding time step on the

surrounding d-dimensional lattice with probabilities

determined by s. In this sense the FTCS equation is a random

walk, where the position is the approximate temperature ~u.

5. Fast random walk. The standard random walk samples for all

m time steps, each sample requiring O(d log(N)) time, for a

total time of O(Md log(N)). A speed-up can be achieved with

respect to this standard technique. First, sample from the

intial distribution in O(d log(N)) time and then compute the

number of steps in each dimension d and the number of

positive/negative increments in every dimension, by sampling

two binomial distributions in time O(log(M)) (Linden et al.,

2020). The improved runtime is O(d(log(M) + log(N))).

For their comparison, Linden et al. discussed how quantum

subroutines could speed-up the classical numerical algorithms

for the heat equation. In the case of quantum algorithms, the final

solution state | ~̃u〉 approximates |~u〉, that is the quantum state

representation of u of the FTCS equation. Starting from | ~̃u〉, the

approximate integrated temperature ~H in region S ⊆ Ω can be

calculated up to precision ε using numerical quadrature, i.e.

∫
S

u x, t( )dx − Δx( )d ∑
x∈G∩S

~̃u‖ ‖2w x( )〈x, t| ~̃u〉
∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣≤ ε, (70)

where G is the d-dimensional grid in the domain Ω, ‖̃~u‖2 is the
numerically estimated norm of ~u and w(x) are weights that

depend on the specific numerical quadrature scheme.

The 5 quantum algorithms considered in (Linden et al., 2020)

are listed below. The reader may notice that this list does not

include the time-optimal quantum algorithm for ordinary

differential equations proposed by Berry et al. (2017). However

Linden et al. state that such method may have a cost higher than

using a QLSA, even though the dependency with d is better for the

quantum ODE solver (Linden et al. (2020); Appendix A).

1. Quantum linear solver. A quantum algorithm for linear

systems can be used to solve Au = r, with matrix A

defined in Eq. 63. Linden et al. utilized the algorithm in

(Chakraborty et al., 2019), that is logarithmically dependent

on precision. Even though this method requires the matrix to

be Hermitian, it can still be applied to the FTCS-discretized

heat equation by solving for

0 A
A† 0
[ ] 0

u
[ ] � f

0
[ ]

2. Fast forwarded quantum walk method. Quantum walks are a

form of random walks that can be performed with unitary

operations on quantum states (Ambainis, 2004). The first

results in quantum walks showed how these could simulate

random walks quadratically faster in the limit behavior (for a

number of time-steps going to infinity). However, one is

generally interested in the dynamics of the heat equation,

other than its steady state. Using the quantum walk fast-

forwarding algorithm of Apers and Sarlette (Apers and

Sarlette, 2018), allows to have quadratic speed-up even

when simulating a random walk at intermediate times,

making it applicable to the heat equation.

3. Coherent diagonalisation. The operator Lk in Eq. 64 can be

diagonalized exponentially faster using QFT instead of FFT.

Ahead of measuring, one wants to reproduce the state

uk| 〉 � Lk u0| 〉, (71)

where it is assumed that |u0〉 can be prepared (Linden et al.,

2020). If Φ is the Quantum Fourier Transform (QFT)

operator, then

uk| 〉 � Φ†ΛkΦ u0| 〉, (72)

where Λ is the same matrix appearing in Eq. 67. Therefore

|uk〉 can be prepared following these steps.
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a. Prepare |u0〉.
b. Apply QFT.

c. Apply the Λk operator. This is not unitary in general, but it

can be implemented by using an ancilla qubit, applying a rotation

controlled on the Φ|u0〉 state, measuring and post-selecting

(Linden et al., 2020).

d. Apply the inverse QFT.

4. Random walk with amplitude estimation. The random walk

technique can be ranO(1/ε) faster using amplitude estimation.

In fact, approximating ∫Su(x)dx requires O(1/ε2) repetitions

of the classical random walk due to the Chernoff bound.

However, assume there is a Boolean function f(s) such that

f s( ) � 0 if x ∉ S
1 if x ∈ S
{ (73)

at the end of the randomwalk. If f can be encoded as an oracle,

then quantum amplitude estimation can estimate Pr(f(s) = 1)

inO(1/ε) time. This can be directly used to compute ∫Su(x)dx.
5. Fast random walk with amplitude estimation. In the same way

as in standard random walks, amplitude estimation can be

applied to the fast random walk technique (see classical

methods).

Table 2 shows the time complexities of all classical and

quantum methods analyzed in Linden et al. (2020). In general,

the classical FFT diagonalization technique scores the best

complexity for the one-dimensional heat equation, while fast

random walks with quantum amplitude estimation have the

lowest runtime for d ≤ 2. However, both of these techniques

work only for hyper-rectangular domains, for which the heat

equation has an analytical solution in terms of Fourier

components (Haberman, 2014). Still, the amplitudes of

these modes are integrals, often computed numerically.

Depending on the initial condition u0 and its Fourier

decomposition, one may need to estimate a high number of

integrals, in which case the methods for rectangular regions

may still be meaningful.

On the other hand, quantum algorithms can still be faster

even on generic domains. In fact, except for d = 1 where the

classical time-stepping technique has lowest runtime, standard

random walks with quantum amplitude estimation are as fast

(d = 2) or slightly faster (d = 3).

However, Table 2 also shows that no quantum exponential

speed-up is possible. This happens even when some of the

underlying quantum subroutines are ‘exponentially faster’

than their classical counterparts, as in the case of linear

solvers. However, as showed by Montanaro for elliptical

problems discretized by FEM, obtaining a scalar quantity

requires O(poly(1/ε)) samples of the final quantum state

(Montanaro and Pallister, 2016).

Finally, Table 2 shows that methods using a quantum

algorithms for linear system are never faster than the best

classical algorithm for d < 5, be it for rectangular or generic

domains. Thus, one should be aware of this limitation, if aiming

for a speed-up to solve the heat equation in a 3- or lower-

dimensional space.

3.2.2 Quantum annealing
Another way to use quantum computing for solving the heat

equation was proposed by Pollachini et al. (Pollachini et al.,

2021). Their approach involved the use of quantum annealing in

a quantum-classical loop, allowing the method to be

implemented on DWave quantum annealers and solving the

heat equation on a 9 × 9 grid.

The equation considered is

TABLE 2 Runtime comparison of classical and quantummethods for solving the FTCS heat equation (Linden et al., 2020). All runtimes are expressed
in terms of terms of spatial dimensions d and error ε on the estimated temperature integral. The ~O notation hides polylogarithmic factors in the
complexity. Adapted from Linden et al. (2020).

Method Domain d = 1 d = 2 d = 3 d ≥ 4

Classical Single linear system General ~O(ε−2) ~O(ε−2.5) ~O(ε−3) ~O(ε−d/2−1.5)
Time stepping General ~O(ε−1.5) ~O(ε−2) ~O(ε−2.5) ~O(ε−d/2−1)
Time stepping + FFT Hypercube ~O(ε−0.5) ~O(ε−1) ~O(ε−1.5) ~O(ε−d/2)
Random walk General ~O(ε−3) ~O(ε−3) ~O(ε−3) ~O(ε−3)
Fast random walk Hypercube ~O(ε−2) ~O(ε−2) ~O(ε−2) ~O(ε−2)

Quantum Single linear system General ~O(ε−2.5) ~O(ε−2.5) ~O(ε−2.75) ~O(ε−d/4−2)
FFWD Quantum walk General ~O(ε−1.75) ~O(ε−2) ~O(ε−2.25) ~O(ε−d/4−1.5)
Coherent diagonalisation Hypercube ~O(ε−1.25) ~O(ε−1.5) ~O(ε−1.75) ~O(ε−d/4−1)
Random walk + AE General ~O(ε−2) ~O(ε−2) ~O(ε−2) ~O(ε−2)
Fast random walk + AE Hypercube ~O(ε−1) ~O(ε−1) ~O(ε−1) ~O(ε−1)
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k
z2 u

zx2
1

+ z2u

zx2
2

( ) + f x1, x2( ) � 0, (74)

which describes the steady state of the temperature distribution

on a 2D domain with source term f(x1, x2). Eq. 74 is actually a

diffusion-reaction equation instead of a heat equation, where

u(x1, x2) is the equilibrium temperature and f(x1, x2) is a

distributed heat flux. Dirichlet conditions were used at the

boundary.

Eq. 74 is discretized using centered finite differences in the

usual way and the problem reduces to solving a linear system

Au = f, where fi � f(x(i)
1 , x(i)

2 ) ∀i ∈ G, where G is the space grid.

Quantum annealers can solve problems that can be expressed

as QUBO problems. In the case of linear systems, the quadratic

Hamiltonian

H u( ) � Au − f( )⊤ Au − f( ) (75)

has a ground state corresponding to the solution u = A−1f

(O’Malley and Vesselinov, 2016; Rogers and Singleton, 2020).

Also, ui can be restricted to the range [ − di, 2ci − di) using the

following mapping

ui � −di + ci∑R−1
r�0

qir
2r
, (76)

where di and ci are user-defined real numbers and qir are binary

digits. In this way, ui is associated to the binary string qir and the

precision can be tuned by choosing di and ci.

Eq. 76 can be substituted in Eq. 75, providing the Ising

Hamiltonian

H q( ) � ∑R−1
r�0
∑N−1

i�0
Hi

rq
i
r + ∑R−1

r, s�0
∑N−1

i, j�0
Jijrsq

i
rq

j
s , (77)

where N is the number of nodes in the grid. Once the ground

state of this Hamiltonian is obtained after annealing, the inverse

of the mapping in Eq. 76 allows to reconstruct the solution.

Furthermore, Pollachini et al. provided a strategy to keep

their algorithm hardware-feasible even for large problem

dimensions. In fact, they proposed to use the iterative block

Gauss-Seidel method, which consists in iteratively solving D

blocks of dimension N/D instead of one N-dimensional linear

system. For instance, taking D = 2

A11 A12

A21 A22
[ ] u1

u2
[ ] � f1

f2
[ ]. (78)

Eq. 78 can be solved iteratively, by making an initial guess for u2
as u(0)2 . Then, at time step k + 1,

A11u
k+1( )
1 � f1 − A12u

k( )
2

A22u
k+1( )
2 � f2 − A21u

k( )
1

{ . (79)

The quantum annealer takes care of solving each lower-

dimensional linear systems in Eq. 79 and Gauss-Seidel

iterations are repeated until convergence.

As mentioned, Pollachini et al. ran their algorithm on both

DWave 2000Q and DWave Advantage quantum annealers

(D-Wave, 2022). The source term f(x1, x2) was taken

randomly and Eq. 74 was discretized on a 11 × 11 grid,

corresponding to 9 internal points and a linear system with

81 unknowns. This is to date one of the largest linear systems

solved (at least partially) on quantum hardware.

One of the issues that arised in the computations is a

flattening of the error curve for increasing iterations of the

block Gauss Seidel solver. This was attributed to saturating

the floating-point precision achievable by a fixed number of

qubits R. Indeed the authors fixed this issue by progressively

shrinking the di range in Eq. 76, matching the same convergence

curve as the classical Gauss-Seidel algorithm. However,

increasing the number of qubits R per interval did not benefit

the solution’s precision, likely due to an increase in hardware

noise.

Despite the approach of Pollachini et al. being hardware-

ready and verified, it is unclear whether it may provide an

advantage. Furthermore, their method can only be applied to

the steady-state problem. However, an alternative to solve the

time-dependent within quantum annealing would be to perform

a semi-discretization in space and then use the algorithm for

systems of linear ODEs proposed in Zanger et al. (2021).

3.3 Wave equation

A third classical PDE is the wave equation, which describes

the propagation of a perturbation through a medium. In solid

mechaics, the wave equation can be used to model vibrations in

structures or seismic wave propagation in soil.

The wave equation is written as

z2u

zt2
� c2∑d

i�1

z2u

zx2
i

, x � x1, . . . , xd[ ]⊤ ∈ Ω, t ∈ 0, T[ ], (80)

where c is the wave propagation speed in the medium. As usual,

the problem is fully determined once the solution at the

boundary and two initial conditions are given.

Except for a few instances, where an analytical solution

can be found through separation of variables or using the

method of characteristics, the FDM and FEM are generally

used to find an approximate solution of the wave equation.

For instance, in the case of FDM, the Laplacian on the right

hand side of Eq. 80 is discretized with centered finite

differences and then a Runge-Kutta scheme allows to find

the solution at subsequent time steps, starting from the initial

conditions

u x, 0( ) � u0 x( )
zu

zt

∣∣∣∣∣∣∣ t�0 � _u0 x( )
⎧⎪⎪⎨⎪⎪⎩ . (81)
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The exact runtimes of these classical methods depend on the

order of discretization r of the Laplacian, the choice of the time-

stepping technique, etc. However, their asymptotic behavior is

bounded from below as Ω[Tpoly(1/ε)d], showing the curse of

dimensionality already seen for the Poisson and heat equations.

Nevertheless, replacing classical linear algebra subroutines

with quantum algorithms can remove the exponential

dependency on d also when solving the wave equation. This

was proved by Costa et al. (Costa et al., 2019), who showed how

to turn Eq. 80 into a Schrödinger equation and solve it using

Hamiltonian simulation.

For the sake of explanation, let the wave equation be one

dimensional and take c = 1. As usual, the domain can be reduced

to a grid of spacing Δx on which the Laplacian on the right hand

side of Eq. 80 can be approximated. The number of gridpoints

used for the finite difference approximation determines the order

r of the discrete Laplacian L(r) and the discretization error

‖ 1
(Δx)2L

(r)
i − ∇2(x(i))‖, which scales as O((Δx)r). For instance,

the standard centered difference scheme uses r = 2, such that

1

Δx( )2L
2( )u x i( )( ) � u x i+1( ), t( ) − 2u x i( ), t( ) + u x i−1( ), t( )

Δx( )2 . (82)

Furthermore, if one sees the grid that discretizesΩ as a graph

GΔx of |V| vertices x(i) and |E| edges x(i+1) − x(i), the discrete

Laplacian can be thought of as a matrix L(r)(GΔx) defined on this

graph.

Keeping r = 2, Eq. 80 becomes

z2u
zt2

� 1

Δx( )2L
2( )u, (83)

where u = [u1, u2, . . ., uN] and N is the number of vertices.

Now, assume that a matrix B exists, such that BB† = L. One

can then write

d
dt

uV

uE
[ ] � − i

Δx
0 B
B† 0
[ ] uV

uE
[ ], (84)

where uV = u and uE are additional variables associated to the

edges of the graph G.

Deriving Eq. 84 with respect to time, one obtains

d2

dt2
uV

uE
[ ] � − 1

Δx( )2
BB† 0
0 B†B

[ ] uV

uE
[ ], (85)

which shows that, if BB† = L, then uV both evolves according to

the Schrödinger equation (Eq. 84) and it is the solution of the

original wave equation.

For an order 2 Laplacian, the B matrix is the graph signed

incidence matrix. If one assigns random orientations to the edges

of graph GΔx, then

Bij �

���
Wij

√
if edge j self − loops in vertex i���

Wij

√
if vertex i is a source of edge j

− ���
Wij

√
if vertex i is a sink of edge j

0 otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (86)

where Wij are weights assigned to the edges of the graph. For

instance, in case of the second order Laplacian, the graph is

unweigthed (Wij = 1 ∀i, j).
If the Laplacian has order r > 2, the graph theoretical

interpretation of B is not as straightforward. Yet, Costa et al.

(2019) discusses a general algebraic procedure to determine the

incidence matrices for these higher order Laplacians and

provides the entries for B and L(r) up to order 10.

In order to solve 84, one can perform Hamiltonian

simulation to an initial state and determine uV at time t. In

particular, Costa et al. employ the algorithm of Berry et al.

(2015b) for sparse Hamiltonian simulation, that is optimal

with respect sparsity, error and simulation time.

It is shown that Hamiltonian simulation for time t = T

requires a number of gates g that is ~O(Td2(T/ε)1/r) and that the
initial state can be prepared in time ~O((r/2 + 1)d5/2l(T/ε)1/r),
where l is a characteristic domain dimension. Most

importantly, these runtimes show no exponential

dependency on the dimension d, even though they do not

include the time required to sample the output. Still, unless the

full Hilbert space needs to be sampled, the measurement step

would not reintroduce the curse of dimensionality, but just a

O(1/ε) factor.

Thus, as seen for the Poisson and heat equations, the speed-

up with respect to classical numerical solvers is exponential for

variable dimensions, but at most polynomial if the dimension is

fixed. What is interesting to notice though is that the

homogeneous wave equation has the “quantum-appealing”

characteristics of being interpreted as a Schrödinger equation

and solved via Hamiltonian simulation. The same authors of

Costa et al. (2019) notice that if Eq. 80 was treated as a second-

order ODE, rather than a Schrödinger equation on an extended

Hilbert space, it could be solved using the algorithm of Berry et al.

(2017), but that would result in a quadratic slowdown with

respect to using Hamiltonian Simulation.

The work of Costa had an important follow-up in Suau et al.

(2021), where the authors studied the implementation, number

of gates and actual runtime of Costa’s wave equation solver. As a

benchmark problem, they took the simplest case of a 1-

dimensional wave equation with homogeneous Dirichlet

boundary conditions on the end points. However, Suau’s

implementation slightly deviates from the original wave

equation solver, since the authors replaced the optimal-

complexity Hamiltonian simulation algorithm of Berry et al.

(2015b) with the more common Lie-Trotter-Suzuki (LTS)

product formula (Lloyd, 1996; Berry et al., 2006).

Suau et al. compute the number of gates and runtimes

required for implementing their wave equation algorithm,

choosing the following gate set

U1 λ( ), U2 λ, ϕ( ), U3 λ,ϕ, θ( ), CNOT{ }, (87)
where.
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U3 λ, ϕ, θ( ) �
cos

θ

2
( ) −eiλ sin θ

2
( )

eiϕ sin
θ

2
( ) eiλ+ϕ cos

θ

2
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (88)

U2 λ,ϕ( ) � U3 λ,ϕ,
π

2
( ) (89)

U1 λ( ) � U3 λ, 0, 0( ) (90)

CNOT �
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (91)

The runtime is obtained by converting the Hamiltonian

simulation circuit to the gates in Eq. 87 and using the gate

execution times provided by the manufacturer (IBM, 2019). A

first interesting point is that the circuit in Suau et al. (2021)

represents one of the few instances of a quantum PDE algorithm

specified in terms ‘common’ gates (i.e. directly translatable to

hardware).

The gate counts of Suau’s algorithm match the asymptotic

(big-O) behavior of the wave equation solver for variable error,

simulation time and number of gridpoints. What is most

interesting however, is that the constants hidden in the big-O

scaling are huge (105–108). This results in extremely high gate

counts even just for solving the simplest possible instance of the

wave equation. For instance, given a moderately interesting grid

size of 106 nodes, the quantum wave equation solver requires 1017

gates. Furthermore, the total runtime required for such a problem

size is almost 1,000 calendar years (Suau et al., 2021). In terms of

number of qubits, the solver requires roughly 70 logical qubits,

where ‘logical’ means fully error corrected. As mentioned by

Suau et al. (2021) however, full error correction for a logical qubit

requires between 1,000 and 10,000 physical qubits, therefore

vastly overshooting the NISQ hardware characteristics.

4 Nonlinear PDEs

Possibly the most computationally demanding tasks in

computational mechanics are those related to solving

nonlinear problems. The non linearities may be characteristics

of the material, such as hysteresis, plasticity or damage, but also

arise in case of large displacements or in the presence of contact.

Whatever the cause, the classical numerical solution is generally

iterative and consists in solving large linear system of equations

in possibly many iterations.

Quantum algorithms for nonlinear PDEs are scarce up to

present date, and no work focuses specifically on structural

mechanics. However, Lubasch et al. (2020) and Kyriienko

et al. (2021) both proposed techniques to solve generic (or

quasi-generic) nonlinear PDEs. Both approaches consist in

variationally training a parametrized circuit and on using a

hybrid stratregy, whereby the quantum computer estimates

the cost function terms and the classical one implements the

optimization update. However, the two methods have substantial

differences in how to encode the nonlinearities and on how to

compute the cost function.

The algorithm of Lubasch is schematically represented in

Figure 7. The encoding of nonlinear term in the cost function is

performed via the quantum nonlinear processing unit (QNPU),

which is a circuit meant to compute nonlinear functions of

polynomial form that appear in the cost function. These can

be written as

u 1( )* ∏r
j�1

Oj u
j( ), (92)

Where the terms u(i) are copies of the solution function and

u(1)* represents the complex conjugate of u(1). Furthermore, the

Oj terms are different linear operators that are applied on

different copies.

One can consider |u(j)〉 as the properly normalized

amplitude vector representation of u(j). As usual, |u(j)〉 can be

a vector parametrized by means of an ansatz, i.e.

|u(j)〉 � U(θ)|0〉. The main idea of Lubasch’s approach is that

the ansatz at a given optimization step can be used as many times

as the number of solution copies required by Eq. 92 and the

QNPU circuit applies the operators Oj and performs point-by-

point multiplication depending on the specific nonlinear terms in

the PDE.

The introduction of repeated input and the QNPU

complicates the quantum circuit with respect to VQAs for

linear problems. However, Lubasch et al. face the problem of

circuit depth by encoding the quantum ansatz and the Oj

operators as matrix product states (MPS) of bond dimension

χ. This ensures that the circuits have O(poly(χ, n)), where n �
log2(N) is the number of qubits. Furthermore, the number of

FIGURE 7
Scheme of the variational circuit in (Lubasch et al., 2020). The
quantum nonlinear processing unit (QNPU) takes as input r copies
of the solution vector, generated by the ansatz U(θ). Then, the
QNPU applies the operators Oj in Eq. 92 as quantum
operators. The circuit’s output comes from the measurements of
the ancilla qubit and corresponds to the required cost function
term.
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parameters of an MPS ansatz is also polynomial in n and χ

(Lubasch et al., 2020), preventing any curse of dimensionality.

The combination of multiple inputs and QNPU allows for an

efficient way to reproduce nonlinearities. However, the QNPU

block is strictly problem-dependent and it may not be trivial to

implement, depending on the nonlinear expression.

A more versatile technique in this sense was proposed by

Kyriienko et al, who considered the generic nonlinear problem

F
dmun

dxm
{ }

m,n

, un x( ){ }n, x[ ] � 0, (93)

here written for the 1D case.

Similarly to other near–term methods, this algorithm uses

the variational principle to find the parametrized solution.

However, a key difference in Kyriienko et al. (2021) is the fact

that the solution is not represented as a discrete set of values on a

grid, but as a function of x, thanks to the so–called quantum

feature map. The concept of feature map originates from the

machine learning literature and it consists in embedding the data

into the model as parameters. Translating to quantum circuits,

this means that x can be mapped to a 2n-dimensional space with

a unitary operator Uξ(x) parametrized through a nonlinear

function ξ(x). Possibly the easiest instance of quantum feature

map is

Uξ x( ) �⊗n
i�1

RY,i ξ x( )( ), (94)

where RY,i � e−i
ξ(x)
2 Yi and Yi is the Pauli Y gate applied to qubit i. A

common choice is ξ(x) = arcsin(x), which means that x will be

encoded in quantum amplitudes that are polynomials up to order

2n in 1, x,
�����
1 − x2

√{ } (Kyriienko et al., 2021).

As mentioned, the best approximation of u(x) is found

variationally using the quantum circuit model. Therefore,

Kyriienko’s technique also makes use of a circuit Uθ, whose

parameters θ are varied to minimized an appropriate loss

function. Overall, the parametrized quantum state whose

amplitudes embed the tentative solution is

uξ,θ x( )∣∣∣∣ 〉 � Uξ x( )Uθ 0| 〉. (95)

In order to map between |uξ,θ(x)〉 and u(x), one needs also to
specify an observable Ĉ, such that

u x( ) � 〈uξ,θ x( )|Ĉ|uξ,θ x( )〉. (96)

Once, the parameters θ have been optimized, one can then

reconstruct the approximate solution at a specific point x, by

simply measuring the expectation value of Ĉ under the state

|uξ,θ(x)〉. This has the obvious advantage of not having to sample

the entire 2n-dimensional Hilbert space, as it is necessary with the

quantum algorithm based on amplitude encoding. Also, most of

structural mechanics highly nonlinear problems are interesting

with respect to the value of the solution or functions of it in just a

small subset of points. For instance, this could be the case of

probing the stress field at the crack tip of a fractured solid, by

constructing Ĉ such that it maps |uξ(x)〉 to the stress values.

In general, the training of Uθ requires the minimization of a

loss function Lθ � Lθ(dmudxm, u, x) with respect to the parameters θ.

Since the feature map is parametrized on x, the derivative dmu
dxm in

the loss function expression can be calculated by applying the

parameter shift rulem times (Crooks, 2019; Mari et al., 2021). For

m = 1

du
dx

� 1
2
∑
j

〈u+
ξ,j,θ|Ĉ|u+

ξ,j,θ〉 − 〈u−
ξ,j,θ|Ĉ|u−

ξ,j,θ〉( ), (97)

where “+” and “−” symbolically represent the positive/negative x-

shift and the sum is among all the parametrized gates composing

the feature map. Suitable choices for Lθ can be the residual in Eq.

93 or the mean squared difference with respect to the exact

solution, if this is available.

One clearly sees a parallel between Kyriienko’s method and

training of neural networks. In the PDE case, during training, the

function u is evaluated on a grid, which can be considered as the

training dataset of a machine learning routine. Afterwards, the

solution u(x) � 〈uθ(x)|Ĉ|uθ(x)〉 can be evaluated in other

points in the domain, corresponding to the test dataset, in

order to assess the validity of the model.

5 Discussion

The previous sections reviewed the literature of partial
differential equations pertinent to structural mechanics. This
analysis was divided into linear and nonlinear PDEs, which is
a standard classification for differential problems. The first group
includes the works about Poisson, heat and wave equations, while
the second one deals with the methods to solve general nonlinear
problems.

Linear problems can be solved using all different quantum

paradigms, i.e. full gate-based, hybrid quantum computing and

quantum annealing. In terms of the full-quantum gate-based

primitives, such as quantum linear solvers, quantum

Hamiltonian simulation etc, the Poisson, heat and wave

equations can be solved with these quantum algorithms and

inherit their complexities. However, the different character of the

equations and the specific discretization determine which

quantum routines are applicable and the extent of the

advantage. For instance, quantum linear solvers are applicable

to every linear PDE, both stationary and time-dependent, if the

latter are written as a single linear system spanning multiple time

steps. Nevertheless, the Poisson equation (on rectangular

domains) with periodic boundary conditions is a favourite

candidate for QLSAs, since the finite difference approximation

of the Laplacian results in a circulant matrix that is diagonalized

by the QFT (Cao et al., 2013; Wang et al., 2020c,b; Childs et al.,

2021). This allows to do Hamiltonian simulation in the QLSA
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solving the Poisson equation exponentially faster than with non-

circulant matrices.

On the other hand, heat and wave equations benefit more

from different quantum subroutines. One hint to this is the

evolutionary character of both equations, which means that

linear system dimensions scale multiplicatively with respect to

time grid size. Also, the time dependency seems to suggest the

approach of semi-discretizing in space and then solving systems

of ODEs with some Hamiltonian simulation algorithm. Indeed,

this approach is ideal for the wave equation where Hamiltonian

simulation solves the related graph problem in the higher

dimensional space (Costa et al., 2019). On the other hand,

the heat equation does not to benefit as much from quantum

ODE solvers and the useful analysis of Linden et al. (2020)

proves that minimum runtimes are achieved when accelerating

a classical method (classical random walks) with amplitude

acceleration.

Of course, all previous considerations hold for quantum

subroutines that require error-corrected hardware. Still, near-

term quantum techniques for linear PDEs exist under the

umbrella of quantum annealing and variational quantum

computing, even though the efforts in this sense are in their

infancy. For PDEs in structural mechanics, only two quantum

anneling algoritms have been proposed, namely for elliptical FE

problems (Srivastava and Sundararaghavan, 2018) and for the

stationary heat equation (Pollachini et al., 2021). Clearly, a first

gap in this branch of literature are quantum annealing

algorithms for evolutionary problems, such as heat and wave

equations.

Also VQAs have just recently been applied to linear PDEs.

Of course, the general literature on variational quantum

computing is vast, but their use for PDEs have been limited

to generic nonlinear problems (Lubasch et al., 2020; Kyriienko

et al., 2021). However, there is still a lack of works for specific

PDEs, even though such specialization is critical. For instance,

Liu H.-L. et al. (2021) showed the relevance of the Poisson

matrix in the context of VQAs. In fact, the discrete Poisson

matrix can be decomposed in a poly-logarithmic number of

observables, which is a necessary condition for advantage of

variational PDE solvers.

For nonlinear problems, the matter of choosing a

quantum primitive is not as straightforward, because all

quantum operations are ultimately linear. The ways

forward seem ultimately two, i.e linearization and

application of existing quantum techniques or variational

algorithms. Even though there exist research on linearization

of nonlinear ODEs and use of QLSAs at each step (Liu J.-P.

et al., 2021), all works on nonlinear PDEs relied so-far only on

variational quantum computing. As it seems likely, this

paradigm together with quantum annealing will likely be

the only quantum alternative viable in the near term to

solve PDEs, linear and nonlinear alike. However, there is

currently a gap in literature about what can be expected from

quantum computation for nonlinear PDEs in the error-

corrected era. Having more insight in this direction would

be extremely valuable, since nonlinear problems represent the

most expensive and thus most interesting problems from a

computational standpoint.

A final remark concerns extent of the overlap between

quantum PDE and structural mechanics literature. In

essence, this is currently limited to a single work on

quantum annealing for truss problems (Srivastava and

Sundararaghavan, 2018). In fact, the vast majority of

literature focuses on ‘academic’ PDEs (Poisson, heat and

wave) on hypercubic domains and for favorable boundary

conditions. The exceptions are the methods for nonlinear

equations, which essentially provide a framework from data

encoding to solution, but ultimately leave the choice of critical

hyperparameters to the user (Lubasch et al., 2020; Kyriienko

et al., 2021). Of course, both sides of the spectrum project onto

structural mechanics, but quantum computation still has to be

tested against the specific and interesting problems in this field.

What is even more surprising is that other disciplines away

from quantum physics, yet heavily relying on numerical

calculus (fluid mechanics, finance, etc) already applied

quantum algorithms to their own cost-intensive problems.

For instance, several works in fluid mechanics field used

quantum subroutines to solve both the lattice Boltzmann

(Mezzacapo et al., 2015; Todorova and Steijl, 2020; Budinski,

2021a) and the Navier-Stokes (Steijl and Barakos, 2018; Gaitan,

2020; Budinski, 2021b; Gaitan, 2021) equations. The hope is

that structual mechanics will also explore the use of quantum

algorithms to support expensive simulations, such as those

involving material nonlinearities and large structural

deformations.
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