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Abstract: This work addresses the problem of vertical wind profile online estimation at a given
location. Specifically, the north and east components of the wind are continuously estimated as
functions of time and altitude at two waypoints used for landing on the Adolfo Suarez Madrid-
Barajas airport. A continuous nowcast of the wind profile is performed in which wind observations
are derived from the aircraft states and assimilated into the model. It is well known that wind is
one of the utmost contributors to uncertainties in the current and future paradigm of Air Traffic
Management. Accurate wind information is key in continuous climb and descent operations, spacing,
four dimensional trajectory-based operations, and aircraft performance studies, among others. In this
work, wind data are obtained indirectly from the aircraft’s states broadcast by the Mode S and ADS-B
aircraft surveillance systems. The Gaussian process regression is adapted to this framework and used
to solve the problem. The presented method allows to construct a complete vector wind profile at any
specific position that is continuous in time and altitude; namely, there is no need for grid points and
time discretisation. The Gaussian process regression is a very flexible estimator which is statistically
consistent under general conditions, meaning that it converges to the underground truth when
more and more data are dispensed. In addition, the Gaussian process regression approach provides
the whole probability distribution of any particular estimation, allowing confidence intervals to
be computed naturally. In the case study presented in this paper, in which the wind is constantly
estimated, the Gaussian process regression model is iteratively updated every 15 min to capture
possible changes in the wind behaviour and give an estimation of the wind profile every half a minute.
The method has been validated using a test dataset, achieving a reduction of 50% of the prediction
uncertainty in comparison to a baseline model. Moreover, two popular wind profile estimators based
on the Kalman filter are also implemented for the sake of comparison. The Kalman filter outperforms
the baseline model, but it does not outperform the Gaussian process regression with errors higher
by around 35%, in comparison. The obtained results show that the Gaussian process regression of
aircraft-derived data reliably nowcast the wind state, which is key in Air Traffic Management.

Keywords: wind estimation; Gaussian process regression; Kalman filter; Air Traffic Management;
ADS-B; Mode S

1. Introduction

Uncertainty is an essential factor in Air Traffic Management (ATM). The ATM system
is a sophisticated socio-technical structure consisting of multiple and heterogeneous com-
ponents that keeps air traffic flowing [1]. The uncertainty is understood as the lack of safe
and clear knowledge of something; in ATM, this can be presented in the data used, aircraft
operation and decisions made by actors, equipment, and meteorology.

In ATM, the uncertainty coming from meteorology is most important [2]. It is neces-
sary to find ways to efficiently track the present and future state of the weather in order
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to be taken into account in the different ATM procedures. Today, air traffic controllers
and pilots mostly rely on Numerical Weather Prediction (NWP) wind reports, such as
National Oceanic and Atmospheric Administration Rapid Refresh [3], which has a coarse
13-kilometre grid and is updated, at the most, once every hour. The interest in having
predictions as accurate as possible leads to the incorporation of aircraft observations into
NWP models, with the aim of improving said forecasts.

The most prominent cause of air traffic delay in Europe is the weather, where al-
most half of all regulated airport traffic delays are due to adverse weather conditions [2].
In contrast, in EEUU, 69% of delays greater than 15 min are caused by weather [4].

There are several ongoing projects with the aim of satisfying the ATM requirements
through the incorporation of new emerging technologies, such as the Single European
Sky ATM Research (SESAR) [5]. Wind profiles are used in continuous climb and descent
operations, for instance, optimal profile descent, time of arrival control, or spacing [6–8].
Moreover, wind information is introduced to the Flight Management System (FMS) to
perform trajectory parameters predictions, such as fuel and time. FMSs are able to store
wind and temperature information at waypoints and have typically five altitude points
that can contain wind information, and linearly interpolates between these altitudes and
extrapolates beyond. The number of altitude levels is expected to increase as it occurs
in the controlled time of arrival function used in SESAR’s initial 4D project, which uses
10 levels [9]. Since the algorithm proposed in this paper continuously estimates the wind,
by supposing it can be modelled as a Gaussian stochastic process, any number of altitude
levels are available.

The NWP models, which are used in ATM, have inherent flaws such as over-smoothness,
absence of local variation, a coarse grid resolution, and a long update time interval, all
of which render the NWP ineffective for ATM [10]. In addition, the majority of the NWP
observations come from ground stations and weather balloons which are launched at
particular times and places no more than four times per day. These constraints are unlikely
to meet the ATM system’s actual requirements.

The necessity for precise and on-demand weather predictions leads to the usage
of aircraft-derived data, in which meteorological information is derived from aircraft
states [11,12]. A high grid resolution and on-demand refresh rate are two potential ad-
vantages of a prediction methodology based on aircraft-derived data. The data refresh
rate is within tenths of a second [13]. As a result, aircraft-derived data has lately been
used in practical ATM studies [6,8,14]. It is expected that the availability of meteorological
airborne data will improve in the future. Indeed, the ongoing European System-Wide
Information Management (SWIM) project has the objective to achieve a full integration
of flight information to create a synchronised view of flight data by all stakeholders [15].
The SWIM project has the potential to increase the availability and consistency of meteoro-
logical data shared by airborne aircraft. Thus, the presented method may take advantage
of the envisioned future of ATM, in which data are centralised and aircraft may act as a
moving atmospheric sensor.

Automatic Dependent Surveillance-Broadcast (ADS-B) and Mode S aircraft data are
used in this study. ADS-B is a surveillance technology that broadcasts aircraft flight states,
and Mode S is an interrogation protocol. Information such as position, Mach, airspeed,
ground speed, roll, and heading angle is transmitted by aircraft equipped with these
technologies. The vectorial relationship between airspeed, ground speed, and the wind is
used to derive wind data indirectly from the states of the aircraft. Later on in this work,
these technologies as well as the wind inference process are described.

Data assimilation techniques have been proposed in the literature to take advantage
of non-traditional meteorological observations, including data derived from aircraft. Most
assimilation strategies, however, are focused on assimilating non-conventional meteoro-
logical data into NWP models [16,17], and hence, are prone to the drawbacks of the NWP
models previously discussed. The data assimilation techniques employed in this article
do not employ NWP models. The methods are based on statistical approaches and allow
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for the use of a huge amount of live flight data. In fact, according to Flightradar24 [18],
over 10,000 planes are flying around the world at any given moment, averaging 188,901 of
flights each day. This is also an advantage over the NWP models. Indeed, the assimilation
of airborne data into NWP models is possible due to technologies such as the aircraft
meteorological data relay [19] and the meteorological routine air report [20]; however, this
information is limited since most aircraft choose not to equip these technologies and even
then, the information is not always interrogated by air traffic controllers radars. In our
experimental studies, less than 5% of the Mode S data emitted by aircraft were found to be
of this type.

In this work, the wind profile is estimated using aircraft-derived wind observations.
The north and east wind components are estimated as a function of time and altitude at a
particular geographic location. More specifically, two waypoints located close to the Adolfo
Suarez Madrid-Barajas (LEMD) airport, and altitudes that range from 1000 to 20,000 ft with
a vertical separation of 500 ft are chosen. For this estimation, observations within a radius
of 250 km are considered. The Gaussian Process Regression (GPR) methodology is adapted
to our framework. Furthermore, two state-of-the-art Kalman Filters (KF) detailed in [8,21],
which were used for wind-speed estimation, are also implemented and generalised to
estimate both wind components. The KF-based methods and the GPR are compared.
Despite some points at fixed altitude having been chosen for the wind profile, it is worth
mentioning that GPR does not need a grid discretisation and can perform estimation in a
continuum, unlike KF-based methods.

Surveillance-derived wind information has shown a favourable impact on the ATM
framework. Aircraft wind data were utilized to recreate the wind profile using B-splines
in [6], which was then used to optimally update aircraft descent trajectories in real time.
In [22], wind uncertainty was represented using a statistical model that included the
correlation of four different sources of uncertainty and a filter to describe the evolution
of wind uncertainty over time, with the goal of determining the impact of wind forecast
uncertainty on aircraft trajectory prediction. Other works studied the quality of wind field
reconstruction [23] or partial reconstructing [13] using aircraft-derived data. In [8], Kalman
filtering was employed to create a moving-aircraft wind-speed profile for continuous
descent operations and spacing performance. In [24,25], Kalman filtering was used in a
wind-field estimation to reduce measurement noise. In [14], the Kalman filtering technique
was used to estimate wind in aircraft turns with a high-roll angle. Finally, in [21], GPR was
introduced for wind-speed profile estimation by the authors. To the best of the authors’
knowledge, GPR models have not been used in this context.

The contribution of this paper is to provide a method to efficiently assimilate aircraft-
derived wind observations in real time to generate nowcasts of the wind profile. The method
is not only capable to provide an estimation but, under the Gaussian process regression
approach, the whole probability distribution of any particular estimation is available. This
allows, for example, to compute a confidence interval straightforwardly. In addition, a com-
parison with state-of-the-art KF-based methods [8,21] was carried out, showing that GPR
achieves a reduction of around 35% of the estimation accuracy. Unlike previous approaches
such as [6,8,21], in which only wind speed is estimated, in this paper, both north and
east wind components are estimated. With regard to the nowcast of the vertical wind
profile, the GPR adaptation implemented in this paper is iterative and fast, which enables
data assimilation.

The paper is structured as follows: In Section 2.1, the procedure to derive the wind
from ADS-B and Mode S data are described. In Section 2.2, the wind profile scenario
studied in this work is detailed. In Sections 2.3 and 2.4, the mathematical development of
the KF-based methods and the GPR are described, respectively. In Section 3, the parameters
set up are described, and the performance of the wind profile estimators is tested. Finally,
conclusions are drawn in Section 4.
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2. Methods
2.1. Deriving Wind Velocity from ADS-B and Mode S Data

In this Section, the used aircraft-derived data and the procedure through which wind
velocity information is derived from said data are discussed. In this paper, the term wind
velocity denotes the vector quantity that indicates the rate at which air particles in the
atmosphere change their position. The wind vector used in this paper is horizontal, that is,
it measures the rate of change in the north and east direction. The term wind speed denotes
the scalar quantity that corresponds to the module of the wind velocity vector. Within this
paper, the wind velocity vector will often be characterised by its wind speed and direction.
If the context is clear, only wind may be used to refer to the wind velocity (vector) to favour
the reading.

2.1.1. ADS-B and Mode S

ADS-B is a surveillance technology that enables the automatic broadcast of aircraft
flight states. ADS-B relies primarily on the Global Navigation Systems to obtain the flight
states of position and ground speed, which are transmitted periodically at a rate of every
0.5 s, approximately.

The most common implementation of ADS-B is through the Mode S extended squitter.
Mode S is a selective interrogation protocol employed by air traffic controllers to obtain
additional flight states other than the position and altitude. Within Mode S Enhanced
Surveillance (EHS) communication protocol, a set of parameters related to aircraft airspeed
are interrogated by surveillance radar and transmitted by aircraft.

Mode S signals, including ADS-B signals, can be openly received by researchers
around the world. The inference and decoding of these signals can also be achieved using
the open-source tool pyModeS [26], which is employed in this work. Ground speed, track
angle, true airspeed, and heading angle are used to generate the wind observations.

The ground speed of an aircraft is its horizontal velocity relative to the Earth’s surface.
The True Airspeed (TAS) of an aircraft is its velocity relative to the atmosphere. Both are
vector quantities that, in aviation terminology, contain the term speed, which in physics,
denotes a scalar quantity. The indicated airspeed is the airspeed displayed on the flight-deck
instruments and coincides with TAS when there is no wind and a pressure of 1013.2 mb.

The heading angle of an aircraft describes the direction in which the aircraft is pointed.
Note that the heading angle may not necessarily be the direction that the vehicle is actually
following, which is known as its course or track. The difference between the heading and
track is known as the drift. This is due to the motion of the air around the aircraft, i.e.,
the wind, which can be determined by the wind triangle.

2.1.2. Wind Velocity Derivation

In order to infer the wind, the true airspeed needs to be calculated first, based on
the Mach number and indicated airspeed that is transmitted by the aircraft in the Mode S
communication system. This is carried out using aeronautical airspeed conversions based
on the International Standard Atmosphere (ISA) model, which is an atmospheric model
that provides atmosphere changes in pressure, temperature, density, and viscosity over a
wide range of altitudes.

Once the true airspeed, ground speed, heading and track angles are known, the wind
vector can be calculated as the difference between the ground speed vector and the true
airspeed vector. In Figure 1, the relationship among these vectors is illustrated. Here, χg,
χa, and χw represent the track, heading, and wind direction angles, while Vgs, Vtas, and Vw
represent the ground speed, true airspeed, and wind-speed vectors, respectively.
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χw

χa

χg
Vgs

Vw

Vtas

Figure 1. Relationship between true airspeed, ground speed, and wind vectors.

The wind velocity observations obtained from different aircraft are used for wind
profile estimations.

2.2. Vector Wind Profile

The wind profile is a vertical representation of the horizontal mean wind speed.
The log wind profile and the power law wind profile are common models for describing
the wind profile the under genera conditions [27,28]. In this paper, the speed and direction
of the wind are estimated, both of which are crucial in the ATM framework. Thus, a profile
including the direction of the wind is referred to as a Vector Wind Profile (VWP) and
consists of an estimation of the wind velocity vector along with the altitude domain at
specific locations [29,30].

Particularly, in this work, the estimation of the VWP is carried out at two fixed way-
points located at the TMA of the LEMD airport. More specifically, the RILKO IAF and FAF
waypoints are considered, which are located at 3.3 km and 1.2 km of altitude, respectively,
close to the LEMD airport. These vertical profiles range from 2000 ft (0.61 km) to 20,000 ft
(6.1 km), over the sea level. The dataset used is an all-purpose structured EUROCONTROL
surveillance information exchange (ASTERIX) dataset, which was provided by the Spanish
National Air Navigation Service Provider (ENAIRE). The ADS-B and Mode S information
has been extracted from the ASTERIX dataset which, in our case, contains information for
21 September 2019, which is a day with high wind speed. In particular, the mean wind
speed, below 6.1 km of altitude, is 31.5 m/s, one of the windiest days of 2019.

A landing flight trajectory, the two waypoints, and the position of the VWPs are
illustrated in Figure 2. Due to operational constraints, all the flights heading to the LEMD
airport must pass through the FAF waypoint before landing.

IAF RILKO

FAF

Adolfo Suárez 
Madrid-Barajas Airport

Figure 2. VWP estimation framework. The cyan trajectory represents the final approach path of an
aircraft landing. Blue vertical lines represent the locations where wind profiles are estimated.
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2.3. The Kalman Filter-Based Models

The Kalman Filter (KF) is a popular technique for sequential interpolation [31] and is
widely used in the data assimilation discipline. A continuous-time version of the filter was
given by Bucy [32]. The Kalman filter can be introduced in several ways, for example, from a
Bayesian filtering perspective view. See [33] for a comprehensive review of the literature.

A variant of the Kalman filter was used in [8] for constructing a wind-speed profile
estimation and more recently in [21] for a waypoint wind-speed profile estimation by the
current authors. In this paper, we propose an adaptation of the Kalman filter methodol-
ogy to construct a wind profile estimator, not just for the wind speed, but for the wind
vector itself.

Typically, the KF has two stochastic equations:

xk = Mkxk−1 + wk (state equation), (1a)

yk = Hkxk + vk (measurement equation), (1b)

where the model errors wk and vk are assumed to be unbiased and uncorrelated. The errors
covariance matrices are denoted as

Qk = E[wkwt
k], (2)

Rk = E[vkvt
k]. (3)

The state Equation (1a) models the dynamics of the system, which is considered an
unobserved or hidden state. It describes the time evolution of the system. On the other
hand, the measurement Equation (1b) describes the relationship between the observation
and the true states of the variables.

This ansatz, although it may look simple, is very general and allows for modelling
any system in which the variables of interest can be embedded in a vector. For example,
xk could represent the position and velocity of an object over time or be the parameters
of an autoregressive process AR(p). In our case, xk will contain the wind vectors at each
discretised altitude. A more complex system, where the linear operators Mk and Hk are
substituted by general operators, can also be considered with specific adaptations of the
Kalman filter, such as the extended Kalman filter or the Ensemble Kalman Filter (EnKF). For
example, this is often the case for satellite, Lidar, and radar observations where the radiance
measurements and the state variable are related in a strongly non-linear way. For other
problems, such as assimilation of meteorological data in NWP models, the classical Kalman
filter may be expensive and hard to afford. For a high dimensional system, one has to
manipulate (covariance) matrices which require at least n(n + 1)/2 scalars to be stored,
being n the size of the vector xk. This issue may be overtaken using the EnKF filter which
uses the sample covariance instead and can make the computations in the ensemble space,
usually of a smaller dimension. For more information about this topic, see [34–36]. In our
case, there is no need to use these adaptations since Mk and Hk are linear and the wind
profile is one dimensional, as described in Sections 2.3.1 and 2.3.2.

The KF is an iterative algorithm, at each time step tk, the algorithm is as follows:

1. If k = 0, the algorithm is initialized. An initial state vector is given as xf
0, where the

superscript f indicates forecast. An error covariance matrix of this estimation, Pf
0, is

also given as an input.
2. If k ≥ 1:

(a) Analysis

• The Kalman gain matrix is computed with the formula:
Kk = Pf

k Ht
k(HkPf

k Ht
k + Rk)

−1. This matrix is based in the uncertainties on
the current state and the new measurements.

• The state vector is updated using the new observations and Kk:
xa

k = xf
k + Kk(yk − Hkxf

k), where the superscript a stands for analysis.
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• The covariance matrix of the analysis estimation is computed as:
Pa

k = (I − Kk Hk)Pf
k.

(b) Forecast

• The forecast of states for the next time step is calculated as:
xf

k = Mk+1xa
k .

• The error covariance matrix of this estimation is calculated as:
Pf

k = Mk+1Pa
k Mt

k+1 + Qk+1.

In order to estimate the wind velocity, two variants are considered which we name
Adapted Kalman Filter (AKF) and Smooth Adapted Kalman Filter (SAKF).

2.3.1. Adapted Kalman Filter

The AKF is a generalization of the Airborne Wind Estimation Algorithm (AWEA) [8,21].
AWEA aimed to estimate the wind speed at each discretised altitude (wind profile). Now,
what is modelled, are the wind components, (ui, vi) i = 1, . . . , n, at each discretised alti-
tude. Since there are two components, two-state equations are considered, one for each
wind component:

xu
k =


u1
u2
...

un


n×1

and xv
k =


v1
v2
...

vn


n×1

. (4)

We propose to embed both vectors in a unique state vector xk and adapt the matrices
Mk and Hk to be consistent with the new state vector. Concretely,

xk =



u1
u2
...

un
v1
v2
...

vn


2n×1

. (5)

As in AWEA, the AKF method does not consider wind dynamics; therefore, Mk is
reduced to the identity matrix I2n,2n where n is the number of altitude levels. The H matrix
is computed such that the observations are linearly interpolated in the altitude grid. Let
m be the number of observations available at time step tk. Now, let the i-th observation
be—for example, at 1700 ft—and consider a discretisation at every 500 ft, starting from
1000 ft. The closest altitude levels are 1500 ft and 2000 ft. Then,

Hi×(1:2n) =
(

0 0.6 0.4︸ ︷︷ ︸
u

0 · · · 0 | 0︸︷︷︸
n 0’s

)
1×2n

, (6)

Hi+m×(1:2n) =
(

0︸︷︷︸
n 0’s

| 0 0.6 0.4︸ ︷︷ ︸
v

0 · · · 0
)

1×2n
. (7)

The i-th row in the matrix H corresponds to the i-th observation for the u component
and the (i + m)-th to the v component. The matrix H is diagonal by boxes:

H =

(
A 0
0 A

)
2m×2n

, A ∈ Rm×n. (8)
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With this construction, observations are only related to those elements of the state
vector that are at a similar altitude.

The Rk matrix models the variances of the measurement error, and in AKF, it is
cleverly modified to also take into account the uncertainty of observations coming from a
distance. The further away an observation is, with respect to the position of the waypoint,
the less trustworthy it becomes; this will be considered for the estimation of the wind. If m
observations are available at time interval [tk, tk+1), the Rk matrix becomes

Rk =



σ2
1 0 · · · 0 0 0

0 σ2
2 · · · 0 0 0

...
...

. . .
...

...
...

...
0 0 · · · σ2

m 0 0
0 0 · · · 0 σ2

1 0

· · · . . .
...

0 0 · · · 0 0 · · · σ2
m


2m×2m

, (9)

σ2
i =

[
1 + α

d(i)
215

]
· σ2, (10)

where σ is the instrumental measurement error, d(i) is the great circle distance from the
observation to the waypoint in NM, and α is a scaling parameter. In this way, the uncertainty
of the observation is modelled as a function of the distance. For example, if the observation
is at 215 NM away and α is chosen to be one, the error becomes (1 + 1)σ2 = 2σ2, which is
twice the typical instrumental error σ2.

2.3.2. The Smooth Adapted Kalman Filter

The SAKF method is related to the AKF. Since wind is a continuous variable, the ob-
jective is to construct a smoother wind estimator. As is shown in Section 3.2, the VWP
resulting from AKF are usually saw-shaped, generating peaks at the discretised altitude
levels. To achieve a smooth estimation, the matrix Mk is modified and is no longer a
simple identity matrix. With this aim, weights are assigned to the values of the state vector
xk, making each wind component depend on the neighbourhood points values. Thus,
the following matrix is proposed:

Mk =

(
U 0
0 V

)
2n×2n

, with U = V =


α1 α2 0 0 · · · 0 0

α2/2 α1 α2/2 0 · · · 0 0
0 α2/2 α1 α2/2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · α2 α1


n×n

. (11)

The weights satisfy α1, α2 ∈ [0, 1], α1 + α2 = 1. In this way, an updated estimation
at altitude j is built as the combination of α1, the estimation at that point, and α2, the
estimation at the neighbourhood points. Notice that both KF filters, AKF and SAKF, take
into account the distance of the observations to the waypoints when estimating the wind
profile. For instance, an observation located 100 km away from a waypoint is less trusted
than an observation located 50 km away.

2.4. Gaussian Process Regression

GPR is a mathematical model that relies on the idea of a Gaussian Process (GP). A GP
is a stochastic process {Sa}a∈I (I is the index set), such that any sample of the process
Sa1 , Sa2 , . . . , Sak is jointly Gaussian-distributed for all k, and all choices of a1, . . . , ak. GP
index set can be discrete or continuous. A GP sample can have a wide variety of shapes,
leading to properties such as linearity, symmetry, periodicity, continuity, or smoothness.
A very useful property of normal variables that GP inherits is that the process is completely
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determined by the mean and covariance functions. The mean function may be used to
model the deterministic behaviour of the process (such as linear trends), whereas the
covariance function models the correlation structure of the process and is decisive in the
modelling step. In Figure 3, different GP samples are depicted as wind profiles. They are
generated using distinct covariance functions, illustrating the different properties described
above. GPR uses the idea of GP to fit the observed data, using probability distributions in
their formulation. For this reason, GPR is an interesting tool that has applications in a wide
variety of disciplines such as geostatistics or machine learning [37], where it has become
increasingly popular.

0 1 2 3 4 5 6
S

a

0

0.2

0.4

0.6

0.8

1

a

Linear
Brownian motion
Squared exponential
Exponential
Periodic
Symmetrical

Sample type

Figure 3. Realisations of different 1D Gaussian processes generated by diverse covariance functions
or kernel and represented as wind profiles.

A GPR models predicts the value of a scalar variable y given some predictor vari-
ables x. The GPR model can be introduced as a generalisation of the classical linear
regression model,

y = xtβ + ε, ε ∼ N(0, σ2), (12)

where β and usually σ2 are parameters. The GPR model introduces a GP in the equation
and rewrites the linear term xtβ, resulting in,

y = h(x)t
1×pβp×1 + f (x) + ε, (13)

where,

• f (x) is a Gaussian process. Any sample, f (x1), f (x2), f (x3), . . . , f (xn), is jointly Gaussian-
distributed with zero-mean and some covariance function k(x, x′).

• h is a basis function that projects the input x into a p-dimensional space and allows
the trend to be, in general, non-linear.

Under these assumptions it can be seen that the predictive distribution for the variable
y at a point x given a training dataset (X, Y) is also Gaussian-distributed [37]. This property
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makes GPR a potent tool, since, in addition to the estimated value, the probability distribu-
tion of the possible values is also given. This allows, for example, to provide a confidence
interval for the estimations. A VWP confidence interval, based on this predictive distri-
bution, is going to be illustrated in Section 3.2. Interesting work connecting the GPR and
related methods of machine learning—specifically the connection between GPR, Kalman
filtering, and smoothing—can be found in [38].

Adaptation of GPR to Wind Velocity Output

In our case study, the objective is to predict the u, v-components, making our problem
to be multi-output. To extend the single output GPR model to multiple outputs, the adapta-
tion that has been considered in this paper is to use an output (y1, y2, y3) = (r, cos α, sin α),
and then restore the wind components by computing (u, v) = (r cos α, r sin α). This adap-
tation has two main motivations: (1) estimating wind speed with GPR has been proven
to be effective in our previous study [21], (2) separating the estimation of two physically
different magnitudes (wind speed and direction) may help GPR to identify the relation
between input and output and benefit the training of the GPR model. A detailed discussion
on multiple-output GPR, which is an active field of research, can be found in [39,40].

3. Results
3.1. Model Set Up

In this Section, the model layouts for the KF-based methods and GPR model are
presented. The initial parameters are selected and, for the GPR, a smooth parametric
covariance function is chosen. In addition, a baseline model, which will act as a lower
performance threshold, is introduced.

3.1.1. Kalman Filters

The chosen instrumental error is σ = 3 m/s according to the typical wind measurement
error of this type of data described in [8]. In the KF-based methods, the initial wind-speed
profile has been estimated based on a standard logarithmic wind profile according to the
power law described in [28]. The initial direction of the wind is chosen by computing
the mean for each wind component and then computing the angle of the resultant vector.
The initial covariance matrices are:

Q0 = I,

R0 = σ2 · I,

P0 = 2σ2 · I,

(14)

where I stands for the identity matrix. The chosen elements of the diagonal matrix P0,
corresponding to the forecast errors, are large enough to give uncertainty to the initial esti-
mation. In this way, the filter will quickly adapt to new incoming data. In the observation
uncertainty matrix R, the scaling parameter α is set to 2. For the SAKF model, α1 and α2
have been set to 0.8 and 0.2, respectively.

3.1.2. GPR

For the GPR, the instrumental noise σ is also assumed to be 3 m/s. A parametric kernel
function k(x, x′) is chosen to define the covariance structure. The classical kernels used in
the literature are parametric, and most of them stationary. A parametric kernel is a specific
covariance function, which is defined in terms of one or several parameters. Typically,
the kernel function models the covariance structure, while the parameters are chosen so
that they can be adapted to the problem, such as modelling, for instance, the length scales
of the input or the output standard deviation. Samples of GP realisations generated by the
most common kernels are depicted in Figure 3. The squared exponential kernel, which is
one of the most frequently used covariance functions [37], is chosen and adapted to this
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study. More specifically, the following parametric kernel function is chosen to define the
covariance structure: k(x, x′)

k(xi, xj/θ) = σ2
f e−r2

, (15)

where

r =

√√√√ d=4

∑
m=1

(xim − xjm)2

σ2
m

, (16)

with
θ = (σf , σ1, σ2, σ3, σ4) (17)

being the hyperparameter vector. This kernel has some nice properties; it is universal [41,42],
produces smooth samples with infinite derivatives, and the number of hyperparameters
defining the kernel is interpretable and short. The kernel is defined such that the correlation
between two spatio-temporal points decreases fast as a function of the Euclidean distance,
where each input xim is scaled by a factor σ2

m. This allows variables to have different length
scales (anisotropic) as is the case in this work, where the inputs are time and space variables.
The scaling factors can be interpreted as how far two input points should be in order to be
considered practically uncorrelated. Finally, σf , also known as signal standard deviation, is
a factor that allows adapting the auto-covariance function to the output scale.

The corresponding hyperparameters θ and the coefficients β of the basis function,
which in this work has been considered to be linear, have to be estimated through data.
For a fast and accurate estimation, the subset of data points (SD) method [37] (Section 8.2)
and the block coordinate descent (BCD) approximation are used [43]. The SD and BCD
methods allow GPR to be calibrated in less than 5 min, allowing for data assimilation,
reducing time complexity, and avoiding memory problems.

3.1.3. Baseline Vector Wind Profile

In addition to the KF-based filters and GPR, a baseline estimator is also included,
which acts as a lower performance threshold. The method is intuitive; it estimates the
wind by computing the mean of the wind observation per each altitude level. The filter
is initiated with the same estimation as for KF methods, and if there are no data at the
corresponding altitude level at a given time step, the filter remains unchanged. Notice that
the baseline model has no parameters.

3.2. Performance Evaluation

The data assimilation techniques are tested using a 2 h and 5 min dataset from
21 September 2019, with an average wind of 60.6 m/s for the whole dataset, and 31.5 m/s
for observations below 6.1 km (20,000 ft). The VWP estimation and validation are carried
out as follows:

1. The AKF, SAKF, and baseline estimators initiate at 13:45 UTC, 15 min before validation.
This time interval acts as a burn-in period.

2. The GPR model is initially trained using a previous 1 h dataset selected from 12:55 to
13:55 UTC. All landing data passing through the considered waypoints are excluded
from the train dataset, and are only used for validation.

3. The validation phase starts at 14:00 UTC. The vector wind profiles are compared
with the testing data coming from the landing aircraft when passing through the
waypoints, namely RILKO IAF and FAF. Every 15 min, a new GPR model is trained
to detect potential trend changes in the wind behaviour. Validation finishes at 15:00.

4. Different performance measures are considered in order to assess the VWP estimations.
The root mean square error (RMSE) and the mean absolute error (MAE) of the wind
components and the wind speed are computed. In addition, boxplots of wind speed
and direction errors are also obtained.
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Figure 4 shows the vector wind profiles at RILKO IAF and FAF waypoints obtained
using the different techniques, together with the training and testing data available at the
time instant of 14:10 UTC. For an easier interpretation of the wind state, the wind speed
and direction are represented instead of u, v-components. It can be seen in Figure 4 that the
estimation provided by the AKF shows a saw-shaped profile, whereas the SAKF achieves a
smoother estimation while keeping the trend. GPR estimation is also smooth and shows
significant differences with respect to the KF-based methods. Furthermore, the differences
between the two wind profiles estimated by the GPR at RILKO IAF and FAF waypoints
are noticeable, whereas these differences are not that apparent when the wind profiles are
estimated using the KF-based approaches. Finally, it can be observed that the GPR and KF
estimations at RILKO IAF waypoint differ at around 1.2 km of altitude, whereas they are
more similar at the FAF waypoint. Actually, this is because the KF-based methods are more
dependent on the availability of data close to waypoints, since for FAF, several aircraft are
flying close on a nearby track which do not fly close to the RILKO IAF waypoint.

(a) (b)
Figure 4. Estimated vector wind profiles obtained using different assimilation techniques along with
the training and testing data available at 14:10 UTC. (a) Vector wind profile at RILKO IAF. (b) Vector
wind profile at FAF waypoint.

The obtained performance errors are shown in Table 1. It can be seen that all the
assimilation techniques achieve a better VWP estimation in comparison to the baseline
model, in which the estimations are computed by simply averaging. For the GPR method,
the improvement is clear. In general, the estimation errors of the GPR halve the baseline
model estimation errors, and always improve the estimation errors of the KF-based methods.
Moreover, Figure 5 shows the boxplots of the wind speed and direction errors obtained for
each method. It can be observed that the estimation errors of the GPR are less biased, more
symmetric, and show a lower spread for both magnitudes.

Table 1. Performance measures for the u, v-components.

Type Variable Baseline AKF SAKF GPR

RMSE (m/s)
u 6.2 4.8 5.0 3.1
v 6.0 5.1 5.1 2.9
Wind speed 6.5 5.0 5.2 3.0

MAE (m/s)
u 4.8 3.7 3.9 2.4
v 4.4 3.6 3.5 2.4
Wind speed 5.0 3.8 3.9 2.2



Aerospace 2022, 9, 377 13 of 17

Despite showing smoother VWP estimations, the SAKF does not outperform the AKF.
Although smoothness is a desirable property, the ability to produce unbiased estimations
and track the wind behaviour at each altitude are also important. Notice that the GPR
shows the ability to combine both properties.
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Figure 5. Wind speed and direction error boxplots for the different assimilation techniques.

Figure 6 shows the rose diagrams of the wind direction estimation errors for the
different methods. A rose diagram can be interpreted as an extension of the notion of a
histogram to circular data. The quantities in the inner circumferences represent the amount
of data, while the quantities in the outer circumference denote angles measured in degrees.
In addition, the wind intensity is also represented with a colour legend. It can be observed
that the angle estimation errors are close to 0 for all methods. Moreover, the GPR shows a
lower spread in comparison to the rest of the approaches, and a minor wind intensity error.

Figure 6. Rose diagrams of the wind direction estimation errors for the different methods.
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In order to test if the performance of the GPR can be improved, some aircraft trajecto-
ries passing through the waypoints were added to the training dataset. Notice that this is a
realistic assumption since all the added trajectories provide observations from an earlier
instant of time. However, no significant improvement is observed in the performance of
the GPR estimations by dispensing landing aircraft data. Thus, the covariance function is
able to model the wind behaviour at the waypoints without the need to rely on the data
located. Similarly, no significant improvement is observed when more non-landing aircraft
data are added to the training dataset. Indeed, the numerical experiments indicate that
between 1500 and 3000 observations are enough to achieve the best performance of the
VWP estimation.

Figure 7 shows the VWP estimation obtained using the GPR assimilation technique
together with the observed wind vector derived from aircraft 3442CC, which flies through
the waypoints during a landing approach manoeuvre. It can be seen that the estimation
and the observed measures agree.

Figure 7. Comparison of estimated and observed wind vector when aircraft 3442CC flies through the
waypoints RILKO IAF and FAF. The east-west and south-north directions are represented in the x
and y axes, respectively.

As mentioned in Section 2.4, one of the advantages of the GPR approach is that it
allows a confidence interval for the estimations to be computed. Figure 8 shows a 95%
confidence interval for the estimation of the wind components. Most of the test data fell in
the confidence interval, meaning that the model suits the observed wind. It can be seen
that this confidence interval is not constant. Indeed, it depends on the time and position
where it is computed, which can be considered an advantage of the GPR technique, since
the intervals adapt themselves depending on the degree of uncertainty of the estimation at
each position. This feature confirms that the GPR is a very flexible model. One of the factors
that most determine the interval length is the availability or not of close spatio-temporal
data, although other factors are taken into account, such as the spread and variance of the
available data.
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Figure 8. Confidence intervals for the VWP estimated using the GPR technique along with the
training and testing data available at time 14:10 UTC. (a) Confidence interval for the VWP estimated
at RILKO IAF waypoint. (b) Confidence interval for the VWP estimated at FAF waypoint.

4. Discussion and Conclusions

In this work, the capacity of GPR to construct vector wind profiles was assessed.
The estimations can be carried out in real time, taking advantage of the large amount of
constantly streamed airborne-transmitted data, sourcing a good choice for the assessment
of data assimilation techniques.

The ability of the GPR method has been tested by estimating both the direction and
intensity of the wind. The GPR method is able to adequately model the spatio-temporal
wind correlations, including local variations. Moreover, the iterative version of the GPR
method proposed in this paper is fast, allowing for data assimilation. For the sake of
comparison, various vector wind profile estimations have also been conducted using state-
of-the-art KF-based assimilation techniques. It has been proven that the best performance
is achieved by the GPR method. Furthermore, the GPR method can accurately estimate the
vector wind profiles, even when all the wind information coming from the landing aircraft
is reserved for the testing phase, achieving a smooth estimation. Local variations between
the two wind profiles located at the waypoints were also better represented by GPR.
Additionally, the GPR method allows non-constant confidence intervals for the estimates
to be computed, which reflect the uncertainty of the vector wind profile estimations at each
spatio-temporal location.

The results may open new research lines, for example, enhancing the GPR for the
data assimilation framework, using alternative multiple-output modelling, enabling it to
perform short term predictions or online 3D wind field estimations. Furthermore, KF-based
methods are not easily generalised for 3D grid formulations and require to be operated
with huge matrices that may be hard to be computationally affordable, whereas GPR may
be straightforwardly generalised with a low extra computation cost.

The method may be used in different aircraft performance studies, for climb and
descent operations, and for general operational purposes. In conclusion, the research
may contribute to the present and future of ATM, where accurate and on-demand wind
information is essential.
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