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Abstract: In the next decade, further digitalisation of the entire wind energy project lifecycle is expected to
be a major driver for reducing project costs and risks. In this paper, a literature review on the challenges
related to implementation of digitalisation in the wind energy industry is first carried out, showing that
there is a strong need for new solutions that enable co-innovation within and between organisations.
Therefore, a new collaboration method based on a digital ecosystem is developed and demonstrated.
The method is centred around specific “challenges”, which are defined by “challenge providers” within
a topical “space” and made available to participants via a digital platform. The data required in order
to solve a particular “challenge” are provided by the “challenge providers” under the confidentiality
conditions they specify. The method is demonstrated via a case study, the EDP Wind Turbine Fault
Detection Challenge. Six submitted solutions using diverse approaches are evaluated. Two of the solutions
perform significantly better than EDP’s existing solution in terms of Total Prediction Costs (saving up to
€120,000). The digital ecosystem is found to be a promising solution for enabling co-innovation in wind
energy in general, providing a number of tangible benefits for both challenge and solution providers.

Keywords: wind energy; digitalisation; collaboration; co-innovation; machine learning; fault detection

1. Introduction

The successful exploitation of the potential benefits of digitalisation is one of the key
topics in the wind energy community today. Recently-formed international collaborations
such as IEA Wind Task 43 (https://www.ieawindtask43.org/; accessed on 25 July 2022) and
the WindEurope Digitalisation Taskforce aim to bring together members of the entire wind
energy space in order to accelerate this process. Within WindEurope, the recent publication
“Wind energy digitalisation towards 2030” concludes that the continued digitalisation of
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wind farm construction, operation and maintenance (O&M) will be a major driver for reduc-
ing wind energy costs and risks in the next decade (https://windeurope.org/intelligence-
platform/product/wind-energy-digitalisation-towards-2030/; accessed on 25 July 2022).
Some results of the work within IEA Wind Task 43 include the collaborative paper “Grand
Challenges in the Digitalisation of Wind Energy” [1], the Wind Resource Assessment (WRA)
Data Model (https://github.com/IEA-Task-43/digital_wra_data_standard; accessed on
25 July 2022) and the definition of actions required to improve data commonality in wind
energy [2]. The “Grand Challenges in the Digitalisation of Wind Energy” identified the
following three Grand Challenges of wind energy digitalisation: (1) Creating FAIR data
frameworks (FAIR: findable, accessible, interoperable and reusable [3]; (2) Connecting
people and data to foster innovation; (3) Enabling collaboration and competition between
organisations. Solutions to these Grand Challenges have already been investigated to some
extent, as described below.

1.1. Creating FAIR Data Frameworks

FAIR data frameworks are findable, accessible, interoperable and reusable [3], where
“findable” means it can be discovered by people or machines using a search engine, “ac-
cessible” means that it needs to be retrievable using secure but open and free protocols,
for example through the internet, “interoperable” means that it can be used in workflows
and/or applications, i.e., that the data and its relationships are machine-readable, and
“reusable” means that it can be applied to different settings. Data can be made findable by
the use of metadata, which describes the data and follows a defined schema.

Several efforts have already been made to encourage researchers to adopt FAIR prin-
ciples. This includes an initiative by the European Commission to partly assess research
funding applications according to their plans to provide open access to data and publica-
tions, and indirect funding of the development of sector-specific taxonomies. For example,
the Sharewind metadata registry was created by the members of the European Energy
Research Alliance Joint Programme on Wind Energy (EERA JP Wind Energy) as part
of the European FP7 Coordination Action project IRPWind [4]. In addition to this, the
topic of “open science” has been officially adopted by the new “Horizon Europe” funding
scheme (https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2
024/our-digital-future; accessed on 25 July 2022). In the United States, the Department of
Energy released a project funding call in 2020 on the topic of artificial intelligence frame-
works that utilise FAIR principles (https://www.energy.gov/articles/department-energy-
announces-85-million-fair-data-advance-artificial-intelligence-science; accessed on 25 July
2022).

Despite this progress, many barriers must still be overcome, including making research
data findable, and making data from the industry available, by, for example, solving the
problem related to the fear of losing competitive advantage. The wind energy community
is attempting to do this by, for example, developing a set of standard metadata with specific
taxonomies (https://www.wedowind.ch/task-43-space; accessed on 25 July 2022) and
by further developing the web-based data registry ShareWind.eu, allowing tagging of
research data to assign a DOI to datasets in order to improve citability. In addition to this,
data quality is key to ensuring interoperability and reusability of data [5]. A low data
quality, which includes issues such as inconsistencies, inaccuracies, missing data and lack of
metadata, was reported as one of the main barriers to data sharing in the interviews carried
out in [1]. This not only requires data standards, improved measurement equipment,
automated data filling algorithms and consistency checks, but also standardised and high
quality filtering and quality control methods [5].

However, a centralised location specifically for a particular industry sector, such as
wind energy, where all the available data are summarised, described and accessible (if
relevant), is not known to the authors. This topic is taken into account in the development
of the collaboration method in this present paper (see Section 2).

https://windeurope.org/intelligence-platform/product/wind-energy-digitalisation-towards-2030/
https://windeurope.org/intelligence-platform/product/wind-energy-digitalisation-towards-2030/
https://github.com/IEA-Task-43/digital_wra_data_standard
https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/our-digital-future
https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/our-digital-future
https://www.energy.gov/articles/department-energy-announces-85-million-fair-data-advance-artificial-intelligence-science
https://www.energy.gov/articles/department-energy-announces-85-million-fair-data-advance-artificial-intelligence-science
https://www.wedowind.ch/task-43-space
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1.2. Connecting People and Data to Foster Innovation

Previous work on the second Grand Challenge "connecting people and data to foster
innovation" includes work on internal company culture, on data-driven innovation as well
as on methods to incentivise data and knowledge sharing.

Regarding internal company culture, it has been shown that organisations need the
following things to foster innovation: (a) effective communication channels to spread ideas
across the organisation, (b) a culture which allows people to speak out openly, (c) leadership
that fosters critical thinking, and (d) autonomy that allows every employee to act [6]. In
addition to this, digitalisation strategies setting out “a commitment to a set of coherent,
mutually reinforcing policies or behaviours aimed at achieving a specific competitive
goal” have been found to be valuable for exploiting the opportunities of digitalisation [7].
However, the application of these strategies to the wind energy industry has not been
discussed in the literature.

On the topic on data-driven innovation, data are becoming increasingly important for
innovation and co-innovation processes within organisations. Many companies, including
Barilla, Twitter and Deliveroo, use digital platforms intensively to collect data from inter-
actions with their stakeholders and leverage it for their internal innovation processes [8].
The subject of “co-innovation” refers to the process of exchanging ideas and resources via
any type of physical or digital collaborative channels, involving all types of stakehold-
ers (e.g., [9]). It enables people and organisations to use modern digital technologies for
integrating and exchanging knowledge, ideas, resources and information. It is becoming in-
creasingly popular due to its proven ability to solve the type of systemic, multidisciplinary,
multi-stakeholder problem involving Big Data typical to today’s challenges [10]. The only
published work on the application of “co-innovation” concepts to energy transition chal-
lenges to the authors’ knowledge relates to a case study of Japan and China demonstrating
that technology-supplying countries and technology-importing countries can both benefit
by co-innovating products [11]. There certainly appears to be a potential gap in experience
with “co-innovation” in the wind energy industry.

Another method of connecting people and data to foster innovation is to focus on
the needs and desires of the people who are supposed to be doing the data sharing. The
results of a survey about the barriers of data sharing carried out as part of IEA Wind Task
43 show that, as well as making data FAIR, people need a real and tangible incentive in
order to share data (and knowledge) [1]. This task is challenging due to the number of
different stakeholders with different needs. For example, a data scientist might be a strong
supporter of sharing data and knowledge in order to learn from others but may work for
a company who prevents them from doing so due to legal, structural or policy reasons.
Some recent initiatives to incentivise data sharing include data marketplaces such as the
Greenbyte marketplace for wind data (https://www.greenbyte.com/marketplace/wind-
only; accessed on 25 July 2022) and the IntelStor Market Intelligence Ecosystem (https:
//www.intelstor.com/; accessed on 25 July 2022), data discovery and sharing platforms
such as the Sharewind metadata catalogue (https://sharewind.eu/; accessed on 25 July
2022) and the US DOE Data Archive & Portal (https://a2e.energy.gov/about/dap; accessed
on 25 July 2022), comparison and benchmarking activities such as IEA Wind Task 31
(https://iea-wind.org/task31/; accessed on 25 July 2022), IEA Wind Task 30 (OC6) WP3
Benchmark (https://iea-wind.org/task30/) and CREYAP: Comparison of Resource and
Energy Yield Assessment Procedures [12], and challenge-based platforms such as Kaggle
(https://www.kaggle.com/; accessed on 25 July 2022), Knowledge Pit [13] and the EDP
Open Data Platform (https://opendata.edp.com/; accessed on 25 July 2022). To the authors’
knowledge, there is no scientific literature that compares or evaluates these different
initiatives.

However, literature on the general topic of incentivising data and knowledge sharing
exists. A recent review on incentivising research data summarises the main requirements
for incentivising researchers to share data [14]. These include: (a) build on existing cultures
and practices, (b) meet people where they are and tailor interventions to support them,

https://www.greenbyte.com/marketplace/wind-only
https://www.greenbyte.com/marketplace/wind-only
https://www.intelstor.com/
https://www.intelstor.com/
https://sharewind.eu/
https://a2e.energy.gov/about/dap
https://iea-wind.org/task31/
https://iea-wind.org/task30/
https://www.kaggle.com/
https://opendata.edp.com/
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(c) promote disciplinary data champions to model good practice and drive cultural change,
(d) provide robust technical infrastructure and protocols, such as labelling of data sets, data
standards and use of data repositories.

For wind energy in particular, the topic has been investigated as part of IEA Wind
Task 43. Several interviews have been carried out regarding data sharing and sharing
incentives, as described in [1]. One of the findings was that making open-source tools
available and encouraging their use can incentivise data sharing because the shared data
get used and its added value becomes more clear. Existing open-source tools in wind
energy include the Brightdata app (https://www.brightwindanalysis.com/brightdata/;
accessed on 25 July 2022), OpenOA (https://github.com/NREL/OpenOA; accessed on 25
July 2022) and the Data Science for Wind Energy R Library (https://github.com/TAMU-
AML/DSWE-Package/; accessed on 25 July 2022). Existing initiatives to develop open data
standards include the already mentioned IEA Wind Task 43 WRA Data Model and Metadata
Challenge, as well as the ENTR Alliance (https://www.entralliance.com/; accessed on 25
July 2022).

Although there are many promising activities underway, there is limited experience
about how the results actually benefit the different stakeholders in the industry. This
present paper contributes to closing this gap.

1.3. Enabling Collaboration and Competition between Organisations

Previous work on the third Grand Challenge, “Enabling collaboration and competition
between organisations”, includes both co-innovation and fair evaluation methods.

Organisations are increasingly sharing data with various partners for collaborative
innovation purposes [8]. “Collaborative innovation” focuses on the development of collab-
orative networks between organisations, and involves sharing knowledge, experience and
resources in order to develop collaborative innovations, for example by creating structured
partnerships and alliances [15]. As well as “collaborative innovation”, the concepts of “open
innovation” and “co-creation” are commonly used in this context. “Open innovation” refers
to the acquisition of knowledge and resources from external partners, whereas “co-creation”
refers to the involvement of customers in companies’ product and service innovation pro-
cesses. In fact, the concept of “co-innovation” introduced in Section 1.2 is positioned at
the intersection of “collaborative innovation”, “open innovation” and “co-creation”. It is
therefore not only applied within companies but also to enable collaboration and competi-
tion between organisations. “Co-innovation” concepts are becoming increasingly useful
and popular due to the recent reduction in costs and increased availability of web-based
technologies. They not only accelerate the processes of knowledge creation and sharing
(e.g., [15,16]) but allow the development of specific digital interaction platforms through
which flexible and dynamic “co-innovation” processes can be implemented via combina-
tion with physical collaboration channels (e.g., [17]). Although several data sharing, open
data and challenge-based platforms already exist, as described in Section 1.2, there seems
to be a high potential for the application of "co-innovation" methods in the wind energy
sector in order to improve collaboration and competition between organisations.

Although the concept of “co-innovation” has not yet been applied in the wind en-
ergy sector, the idea of “co-creation” has received recent attention in order to improve
the acceptance of wind energy projects in local communities. For example, the links be-
tween “co-creation” and wind energy development were investigated, showing that new
roles for citizens as co-creators and co-producers of electricity and planning decisions
are needed [18]. A further study into the idea of treating citizens as co-producers of
wind energy characterised public engagement into three types of co-production: (1) Local
co-production, in spatially proximate wind energy projects; (2) Collective co-production,
performed through collaboration among different actors in the wind energy sector, joined
ownership or consumption of wind energy; (3) Virtual co-production, mediated through
information technology [19]. These studies should also be considered in the development
of a solution used to enable collaboration and competition between organisations.

https://www.brightwindanalysis.com/brightdata/
https://github.com/NREL/OpenOA
https://github.com/TAMU-AML/DSWE-Package/
https://github.com/TAMU-AML/DSWE-Package/
https://www.entralliance.com/
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Competition between organisations also has an important role to play in exploiting the
full potential of digitalisation in wind energy. In order for competition to be used effectively
to further the industry as a whole, the results need to be comparable in a fair and agreed-
upon way. This poses new challenges. Within the wind energy sector, some experience has
been gained on this topic via the benchmarking projects introduced in Section 1.2. Specifi-
cally, the benchmarking within IEA Wind Task 31 has led to the development of the Wind
Energy Model Evaluation Protocol (https://wemep.readthedocs.io/en/latest/index.html;
accessed on 25 July 2022), which provides open-source documentation on model evaluation
procedures and quality-checked verification and validation benchmarks for wind resource
assessment. In addition to this, the CREYAP project has led to recommendations for future
comparison end benchmarking projects and tools. Evaluation procedures can also be found
on the EDP Open Data Platform (https://opendata.edp.com/; accessed on 25 July 2022).

Informal comparisons of prediction models for wind energy applications have been
carried out by evaluating the prediction error in terms of Mean Absolute Error (MAE),
Maximum Absolute Error (MAXAE), Root Mean Square Error (RMSE) and correlation
coefficient (e.g., [20]). However, to the authors’ knowledge, no systematic study has been
carried out aimed at identifying relevant state-of-the-art evaluation methods that could
be applied to enhance collaboration and competition between organisations. Possible
methods that should be further investigated include Explainable Recommender Systems,
which have been suggested as a potential way of building fair and transparent tools for
evaluating Machine Learning (ML) models and work by conveying the reasoning behind
its predictions [21], as well as decision support methods such as the recent introduction
of methods for the comparison and evaluation of Artificial Intelligence (AI) tools in a fair,
transparent and explainable way [22]. These methods seem to have a high potential for
future application to the wind sector.

1.4. Goals of the Present Work

The literature review has shown that a focused effort on overcoming the barriers to a
successful digital transformation of the wind energy sector is required. In order to initiate
this process, a new collaboration method that has the potential to make wind energy data
FAIR, enable co-innovation within and between organisations, incentivise data sharing
and allow a fair evaluation of solutions is presented in this paper, together with a real case
study. The paper is focused on the overall ecosystem and its potential for addressing the
challenges of digitalisation, rather than on one of the specific aspects, which require further
investigation. The collaboration method is introduced in Section 2.1 and the case study is
described in Section 3.3. This is followed by a discussion of the results and an evaluation
of the new method in Section 4, as well as a discussion on the future development and
application of the method.

2. The Collaboration Method
2.1. Requirements

As well as the requirements from the literature review summarised at the end of
Section 1, further requirements were defined based on the results of the IEA Wind Task 43
survey presented in the “Grand Challenges in the Digitalisation of Wind Energy” paper [1].
The most important aspects named by the 30 interviewed members of the global wind
energy sector in order to improve data sharing were:

• Owner/operators: Getting all the data in one spot; IT issues; Cleaning/filtering raw
data (different time scales and resolutions, different formats); Refining and processing
data ready for machine learning model (80% of time); Interfaces to collect data reliably;

• Academia: Lack of public data; No standard format for analysing and processing data;
Poor data quality; Lack of willingness to share data, especially higher resolution; Lack
of change logs;

https://wemep.readthedocs.io/en/latest/index.html
https://opendata.edp.com/
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• Technology providers: Data quality; Different format and structure of data; Data
filtering for analyses; Data collection: different devices need to be programmed
differently; Time for downloading, cleaning, and training data.

This led to the conclusion that the new collaboration method should have the follow-
ing characteristics:

• Enable co-innovation within and between organisations;
• Incentivise data sharing and allow a fair evaluation of solutions, with a particular

focus on contextual and higher-frequency data;
• Make wind energy data FAIR (Findable, Accessible, Interoperable and Reusable);
• Provide a central location for data and knowledge related to a certain topic within

the sector;
• Include solutions and code for data filtering and standard analysis tasks;
• Allow data standards and data structure translation solutions to be published and shared.

2.2. Method Description

The collaboration method developed here enables flexible and dynamic co-innovation
within and between organisations by combining a digital challenge-based platform with
moderated workshops within a digital ecosystem. As shown in Figure 1, the new digital
ecosystem (called “WeDoWind”) is based around specific industry-relevant “challenges”, which
are defined by “challenge providers” within a topical “space” and made available to participants
of the ecosystem via the digital platform. The data required in order to solve a particular
“challenge” are provided by the “challenge providers” under the confidentiality conditions they
specify. This can include only allowing specific people to access their space, requiring them to
sign agreements or preparing the data so that it is anonymous or normalised. A “challenge” is
defined as a fixed problem with a motivation, goal, expected outcome and deadline. Examples
of existing “challenges” being run in the ecosystem include:

• Gearbox challenge: Participants should make use of the provided Supervisory and Data
Acquisition (SCADA) data in order to train, test and validate methods that will provide clear
indicators of an upcoming gearbox related fault, as well as/or a horizon-based probability of the
event occurring;

• Metadata challenge: Propose standard metadata schemes and related semantics for sharing
data in the wind energy sector in three separate steps: (1) Summarise and evaluate all existing
initiatives; (2) Identify the gaps; (3) Suggest solutions for filling the gaps;

• Brazil challenge: Define the main problems needing solutions for implementing offshore wind
energy in Brazil;

• Diversity challenge: Document existing resources for Diversity, Equity and Inclusion that
might be useful for the wind energy community, such as guidelines, toolboxes, techniques,
workshops, etc.

If a “challenge provider” wants a more specific solution with a defined evaluation
criteria and prize money, they can define a “contest” instead. If they want to discuss a more
general topic, such as general experience or ideas related to a certain area, they can post
a “request”. This system allows participants to contribute ideas, code, data, videos and
discussion topics at any time and in any form they want or can, from all over the world.
They can contribute to group discussions in workshops that are run and moderated inside
the space, or they can contribute digitally via discussion forums and digital whiteboards.
All these communications are tagged and documented within the space. Regular emails are
sent to update the participants on activities. It allows the knowledge and ideas related to a
specific “challenge” to be documented and used as a knowledge base for future “challenges”
on similar and overlapping topics.

The digital ecosystem incentivises data sharing by focusing on the needs of the people
in the wind energy sector. It provides incentives both to the “challenge providers”, who
receive solutions to their challenges in exchange for contributing data to the platform,
and to the “solution providers”, who receive data in exchange for contributing ideas and
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solutions to the challenges. In addition to this, the “challenge providers” get access to
people and their skills for recruiting or for student projects. The “solutions providers” have
the opportunity to apply and showcase their work applied to measurement data. All parties
benefit from sharing ideas and innovating together. The ecosystem provides equal access
to all people with an email address and internet connection, regardless of their background,
education, nationality, experience, gender, and more. Furthermore, the ecosystem offers
the potential to publish, develop and co-create fair methods for the evaluation of solutions.
Although the community is free to develop and apply these methods themselves, the
ecosystem operators (OST—Eastern Switzerland University of Applied Sciences) also
intend to contribute to this in the future. This could be by introducing functionalities on the
platform such as comparison-based ranking schemes for ordering posts and documents [23].
Such methods reduce the bias introduced by more popular forum ranking methods such as
“star ratings” and “thumbs up-down ratings”.

The method contributes to making wind energy data FAIR by including relevant require-
ments on the data that is used in the ecosystem. Part of this involves providing a central
location for data and knowledge related to a certain topic within the sector. This allows knowl-
edge, data, code and solutions to be centralised around a particular industry challenge and
fosters collaboration and sharing. The ecosystem has the potential to include solutions and
code for data filtering and standard analysis tasks and to allow data standards and data struc-
ture translation solutions to be published and shared in the future. In order to achieve this,
specific “challenges” could be defined for certain applications. In the future, industry-agreed
common data and metadata standards will be incorporated into the ecosystem, as well as open
data analytics such as the National Renewable Energy Laboratory (NREL)’s OpenOA project
(https://github.com/NREL/OpenOA; accessed on 25 July 2022).

Figure 1. Schematic representation of the new collaboration method applied in this work, the
digital ecosystem.

3. The Case Study

In order to test the new collaboration method, a case study was applied. This involved
publishing a “challenge” in the digital ecosystem and then moderating and coordinating a
co-innovation process. It resulted in a total of six new solutions. In this section, the case
study is introduced, the co-innovation process is described, a literature review based on the
“challenge” topic is presented, the individual solutions are described and then the results
are compared and evaluated.

3.1. The Challenge

In this case study, a “challenge” provided by the company EDP was posted on the
digital platform. The contents of the challenge are shown in italics below:

In this challenge, we ask you to test your predictive brains and develop a global solution
for this problem, focusing on the capability of detecting early-stage failures and, consequently,

https://github.com/NREL/OpenOA


Energies 2022, 15, 5638 8 of 32

reducing maintenance costs. The objective is to identify the failures in five of the major Wind Turbine
components and advise an intervention to the wind farm operators in order to reduce corrective
maintenance costs. The components to be monitored will be the gearbox, the generator, the generator
bearing, the transformer and the hydraulic group. We provide two years of SCADA records from
five wind turbines and data from the meteorological mast to create, train, validate, and test your
models. This challenge is open until 30 September 2021! We don’t plan to have a strict evaluation of
the solutions submitted. Instead, our intention is to promote an open-challenge targeting a dynamic
engagement with the community where new “out-of-the-box” ideas can emerge.

The training period was defined as 1 January 2016 to 31 August 2017 and the test period
from 1 September 2017 to 31 December 2017. As well as the raw SCADA data, EDP also
provided nearby met mast data, a list of SCADA signal names, the data sheet of the wind
turbine type and the manufacturer’s power curve. A list of annotated failures and the SCADA
logs were provided for the test data period. In this work, it was decided to focus on the wind
turbine with the most number of annotated failures—wind turbine WT07. A summary of
the annotated failures for WT07 provided by EDP for the test period for each wind turbine
component is shown in Table 1. The measured wind rose, wind speed frequency distribution
and power curve (without filtering) from WT07 are shown in Figure 2. The monthly averages
of measurement data for WT07 in 2016, including the averages of availability, wind speed, wind
speed during turbine uptime and turbine downtime, as well as box plots of power, wind speed
and temperature are shown in Figure 3. The low availability during, before and after August
indicates substantial downtime due to a repair. This is probably due to the annotated failure
documented in the transformer in July and August 2016.

Table 1. Annotated failures provided by EDP for WT07.

Component Alarm Dates

Gearbox None
Generator 21 August 2017
Generator Bearings 30 April 2016 and 20 August 2017
Transformer 10 July 2016 and 23 August 2016
Hydraulic Group 17 June 2017

Figure 2. Measurement data for WT07: (a) wind rose; (b) wind speed frequency distribution; (c) power
curve (without filtering).
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Figure 3. Monthly averages of measurement data for WT07 in 2016: (a) averages of availability, wind
speed, wind speed during turbine uptime and wind speed during turbine downtime; (b) box plots of
power, wind speed and temperature, where the centre lines show the median, the edges of the boxes
the 25th percentile, the outer bars the 95th percentile and the points the outliers beyond this.

3.2. The Co-Innovation Process

As part of this case study, the following activities were carried out by the ecosystem
operators in order to encourage a co-innovation process:

• A dedicated space called “EDP Challenges” was created on the digital platform
together with EDP. The challenge description, including direct links to download the
data, was developed together with EDP and posted inside this space;

• A public “call for participants” website was created with a direct link to the registration
form. This was shared within the wind energy community using social media;

• A process for allowing EDP to decide who may participate or not was set up. This
process was not meant to reduce accessibility to the challenge, but instead to ensure
that applicants were real people interested in the challenge and not robots, bots
or imposters;

• A “Getting Started Guide” to using the digital platform was created and explainer
videos were recorded in order to help users interact on the platform;

• A series of online workshops were organised for the participants—a launch workshop,
interim workshops every month and then a final workshop. These involved brain-
storming sessions in small groups as well as question and answer sessions with EDP.
The sessions were documented on a digital whiteboard and recordings were posted in
the digital space;

• Regular email updates were sent with specific questions and actions to encourage
interaction. This included requests to summarise and comment on different possible
methods, as well as discussions of evaluation methods;

• The space was regularly checked, cleaned and coordinated by the ecosystem operators
to ensure that the information was up-to-date and understandable;

• Regular updates were communicated on social media during the challenge.
• A downloadable docker was made available to allow beginners easy access to the

data and code. This was integrated into a smaller “sub-challenge” run at the Eastern
Switzerland University of Applied Sciences.

3.3. Existing Wind Turbine Fault Detection Methods

Before the solutions submitted to this challenge are introduced, existing methods for
wind turbine fault detection as well as for model evaluation are reviewed here.
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3.3.1. Wind Turbine Fault Detection Methods

In general, condition monitoring of wind turbines is an integral part of the operation
and maintenance (O&M) of the asset. Avoiding component failure can save the asset owner
large amounts of money. For example, an analysis of over 300 offshore wind turbines and
found that failure rate per offshore turbine per year is about 10, with around 80% requiring
minor repairs (<€1000), 17.5% major repairs (€1000–€10,000) and 2.5% major replacements
(>€10,000) [24]. In addition to this, the same study identified the pitch/hydraulic, generator
and other subsystems as contributing the most to failure rates. Generators and converters
tend to have a higher level of failure rates in offshore wind turbines than onshore ones.

Maintenance can be reactive, preventive or predictive [25]: reactive maintenance
involves waiting until a component fails before replacing it, and does not involve any active
monitoring, preventative maintenance involves scheduled replacements, and predictive
maintenance involves monitoring components and predicting failures before they happen.
Components can be monitored using the standard SCADA data produced by a wind
turbines [26], as well as using specialised higher frequency measurement equipment
such as drive train vibration sensors [27], oil debris monitoring and rotor blade pressure
sensors [28].

The utilisation of operational SCADA data for condition monitoring has attracted
considerable research interest since it provides insights without the need for additional
equipment. For this, Machine Learning (ML) can be used to build an inductive model that
learns from a limited amount of data without specialist intervention. In order to do this, an
underlying set of structures or patterns are found, which help understand relationships in
data that cannot be otherwise detected. So-called ‘supervised learning’ predicts an output
variable using labelled input data, whereas ’unsupervised learning’ infers relationships
from data without labelled inputs. Supervised learning models can be categorised into re-
gression and classifiers, where regression models predict a numeric variable and classifiers
predict a categorical variable. In addition to the two categories, a semi-supervised learning
approach can be used when data points are partially labelled, for example by training the
model on the normal data and classifying future observations as anomalies when they
deviate from the normal. Examples of this category include the use of residuals from the
modelled normal data on control charts to determine abnormality [29–32].

A wide range of ML methods has proven to be able to detect developing malfunctions
at an early stage, often months before they resulted in costly component failures (see,
e.g., [20,33–35]. For a comprehensive review, refer to [36]. SCADA data-based condition
monitoring, therefore, represents a cost-efficient and effective complement to state-of-the-
art condition monitoring solutions. Its primary task is to classify the state of a turbine or
one of its components as either healthy or faulty. However, most available SCADA data
represent predominantly healthy operation with no or only comparatively few instances
of faulty conditions. In such a setting, semi-supervised anomaly detection, often called
normal behaviour modelling, has proven to be useful e.g., [37]. Normal behaviour models
(NBMs) are trained on healthy data to represent the class corresponding to the normal
state. Subsequently, deviations between model output and the measured sensor values can
be processed and evaluated to identify anomalies. For wind turbines, performance and
temperature monitoring can be distinguished. The former aims to detect abnormal devia-
tions from the turbine’s usual power output, whereas the latter aims to detect deviations
from the healthy thermal equilibrium conditions. Temperature monitoring is better suited
for detecting malfunctions in the components along the drive train, which account for the
majority of turbine downtime [38]. Ref. [33] was among the first to apply the approach
in the wind domain and prove its feasibility. Many publications with successful early
detection of malfunctions followed, e.g., [34,35,39–42]. However, no particular method has
yet been established as being optimal, due to the difficulty of comparing and quantifying
the performance of different methods.
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3.3.2. Model Evaluation Methods

Evaluation of time series anomaly detection (TSAD) algorithms, as required for fault
detection problems, is a challenging task. One reason is that classical anomaly detection
metrics were originally designed for point-based anomalies, whereas, in TSAD, we often
encounter range-based anomalies that are present for a certain period of time [43]. Another
reason is that algorithm performance is often highly sensitive to the required choice of
alarm threshold [44]. Lastly, false and missed alarms can have very different implications,
depending on the domain, and are therefore difficult to compare across applications.

Recent literature reported various evaluations on wind turbine fault detection. Most
of those evaluations are based on the distance or the difference between actual output
(Y) and predicted output (Ŷ). When SCADA data are used as input in the model, the
evaluation is commonly point-wise. For regression-based normal behaviour models, the
most common measures include mean absolute error (MAE), mean absolute percentage
error (MAPE) [45], and root mean squared error (RMSE) [46]. Classification models are
typically evaluated using accuracy, sensitivity, specificity and F1-measure [47–49]. All of
the aforementioned measures are evaluating the methods without taking into account how
it will cost or benefit the industry. Thus, it does not provide a direct estimate of potential
savings when a detection is made.

In order to transfer prediction performance to cost savings for the asset owner, the
costs and savings due to the use of a particular model compared to not using it have to be
estimated. As this step is very specific to the asset owner, there is no agreed-upon method
for doing this in the literature. On the EDP Open Data platform [50], the following method
is used for fault detection of subsystems within wind farms:

Step 1: The predicted faults for each wind turbine and subsystem (e.g., gearbox, generator, etc.)
are classified as follows:

• True positives (TP): a failure of the correct wind turbine and subsystem is correctly
predicted between two and 60 days before the actual failure;

• False negatives (FN): an actual failure is not detected between two and 60 days
in advance;

• False positives (FP): a failure is predicted that does not actually occur in the next two
to 60 days.

Step 2: Each detection type is converted into costs as follows:

• True positives (TP): translated into savings, TPs, which are the difference between
replacement costs, Costrpl , and repair costs, Costrpr;

• False negatives (FN): translated into costs, FNc, due to replacements, Costrpl ;
• False positives (FP): translated into costs, FNc, due to inspections, Costsinsp.

The replacement, repair and inspection costs assumed by EDP on their Open Data
Platform are summarised in Table 2.

Table 2. Summary of costs assumed for the EDP evaluation method.

Component Costrpl (€) (Replacement Costs) Costrpr (€) (Repair Costs) Costsinsp (€) (Inspection Costs)

Gearbox 100,000 20,000 5000
Generator 60,000 15,000 5000

Generator Bearings 30,000 12,500 4500
Transformer 50,000 3500 1500

Hydraulic Group 20,000 3000 2000

Step 3: The total prediction savings are calculated:
The costs or savings for each detection type are then summed as follows:

TPs = ∑
i=nTP

(Costrpl − (Costrpr + (Costrpl − Costrpr)(1 − ∆t/60))) (1)
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FNc = nFN × Costrpl (2)

FPc = nFP × Costinsp (3)

where nFN = total number of false negatives and nFP = total number of false positives. The
Total Prediction Savings, TPS, are then given as follows:

TPS = TPs − FNc − FNc (4)

This number represents the potential of a given prediction tool for reducing (preventive
and corrective) maintenance costs. It is used on the EDP Open Data platform in order to
compare and rank submitted solutions, and is used in the present work as well.

3.4. Description of the Submitted Solutions

In this section, the six different solutions submitted as a response to the challenge are
described. A summary of the solutions is given at the end of the section, together with a
discussion and comparison of the data pre-processing methods.

3.4.1. Normal Behaviour Models (NBM)

As mentioned in the previous section, normal behaviour models (NBMs) learn from
historical data and can be used to infer what should be the turbine’s normal operating
condition. If the actual measured values from that same sensor deviate too much from the
NBM’s prediction, it means that the turbine is operating in an abnormal condition, and
therefore an alarm is raised by the algorithm. As a given component starts to degrade and a
failure mode starts building up in the turbine, measured values of temperatures and other
sensors may start increasing in a way that is not perceptible to the naked eye but can be
captured by the mathematical analysis of this algorithm.

While the NBMs are regression-based models and make predictions for the turbine
sensors, these are estimations of how the turbine should be behaving at a distinct time
period, given the other available measurements. These predictions are not forecasts for
the following days or weeks; they are "hindcasts" to check if recent turbine operation fits
inside the normal operation threshold or not. Since this approach is aimed at monitoring a
large fleet, comprising hundreds of wind turbines each with dozens of sensors, the NBMs
employ a linear regression to model the relationship between the different sensors. This
way, both the training process and the daily predictions can be done very quickly. Previous
studies [20] have showed that linear regression, although somewhat simple, is an acceptable
choice. An initial version of this algorithm [51] used ensemble models, but an internal
study concluded that the gain in prediction accuracy was small when compared to the
increase in computational cost.

The selection of inputs to predict any of the turbine sensors is done manually, from
expert knowledge because an automatic selection algorithm based on correlation between
the candidate inputs and the target sensor may be misleading in some cases. For example,
when predicting the temperature of generator winding 1, such algorithm would proba-
bly choose the temperature of winding 2 or 3 as the highest-correlated candidate input.
However, it would be an input that adds no information to the system because any kind
of generator failure or degradation that leads to overheating would cause this effect on
the three windings. Therefore, if winding 2 increases in temperature and it was used as
input, it would lead to a higher predicted temperature for winding 1, and the failure would
remain undetected.

The objective of the training process is to minimise the error between the measured
values and the model predictions (for each sensor). After training, in the prediction stage,
this error is averaged for each day, to condense results and reduce uncertainty and the
effect of possible outliers. A sensor is classified as presenting an anomaly if the normalised
daily error (using the daily error’s mean and standard deviation calculated from the
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training process) exceeds a ±3 standard deviation range, meaning it is probably not part
of the expected error distribution. To avoid false positives and reduce the algorithm
sensitivity, an alarm is only raised to the user if three or more of the past seven days
are classified as anomalous. Figure 4 shows an example where an inverter cooling fan
malfunction was detected by the algorithm. The prediction error increases when the fan
starts malfunctioning, and alarms are sent to the operator everyday, until the problem is
corrected and the prediction error is reduced.

Figure 4. Calculated prediction error for an inverter fan malfunction for the NBM model. The
algorithm sends daily alarms to the operator until the problem is corrected and the error returns to
the acceptable range.

3.4.2. Combined Local Minimum Spanning Tree and Cumulative Sum of Multivariate Time
Series Data (LoMST-CUSUM)

Cumulative sum (CUSUM) is a memory-type control chart that works by accumulating
consecutive sample points over time to monitor changes in process. It is particularly known
to effectively detect a small shift in the process that memoryless methods would normally
fail to detect. Due to its ability to accumulate effectively small-magnitude early symptoms
over time for symptom tracking, CUSUM principles are adopted in this approach. CUSUM-
based approaches have been used in wind turbine monitoring in combination with ML
plots [30,31]. This approach also employs a chart that works like CUSUM control-chart, as
a mechanism to raise alarms as a warning that failures are potentially going to happen.

The classic CUSUM-chart uses samples measurement to establish the monitoring plot.
Most of the current approaches that employ CUSUM use a normal model residuals to
establish the plot. In this approach, the chart takes anomaly scores that are produced by
an unsupervised algorithm called Local Minimum Spanning Tree (LoMST) [52]. In order
to implement this CUSUM-inspired mechanism, three parameters need to be defined to
establish the chart. First, the offset that sets the boundary between the normal and anomaly
points; only those above the offset should be plotted on the chart. Second, the accumulation
windows that set the maximum time in which two consecutive anomaly points above the
offset will be considered to come from the same cluster of alarms. When two anomaly
points are far apart beyond the predefined time windows, the cumulative score will be
reset to zero and a new cluster of accumulation will begin again. Third, the threshold that
defines the minimum cumulative scores to be considered as alarms. Any cumulative scores
that do not reach the threshold will not be considered as an alarm. In brief, this threshold
acts as a boundary that raises alarms to the possible future failure.

The LoMST algorithm works in three stages as described in [52]. First, it establishes
a so-called Minimum Spanning Tree (MST) using all data points. Second, it isolates the
cluster anomalies by removing the links of the global MST one by one. Third, it repeats
the second step to identify point-wise anomalies. At the end, an outlier score is assigned
to each of the data points, indicating the anomaly level of the point. Because LoMST is
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an unsupervised learning method, it uses the structure or pattern of the data instead of
data labels to identify any anomalies. This is an advantage because labelling can be a very
challenging task. Additional advantage is that it takes multivariate input, and the output is
a univariate anomaly score. This univariate anomaly score simplifies how the chart should
be designed.

The implementation of LoMST-CUSUM requires the three aforementioned parameters
called the offset, the accumulation window, and the threshold. These parameters are
defined based on the training data by striking the balance between maximising the failures
detection and minimizing the false positives. Figure 5 illustrates how an alarm is raised
using this approach. Latiffianti et al. [53] presents a detailed account of LoMST-CUSUM
approach and its implementation for wind turbine gearbox failure detection.

Figure 5. Illustration of how the combined LoMST and cumulative sum of anomaly score (LoMST-
CUSUM) is used to establish failures detection. In this example, the blue line indicates the time
at which a gearbox failure happened. The parameters are defined based on the training data in
five turbines.

3.4.3. Combined Ward Hierarchical Clustering and Novelty Detection with Local Outlier
Factor (WHC-LOF)

This solution combines two methods to detect the turbine failure by comparing the
parameters of a group of wind turbines based on the SCADA data (e.g., nacelle temperature
of five wind turbines). The first method is the Ward Hierarchical Clustering [54], where
the AgglomerativeClustering algorithm setup with ward mode from the Python sklearn
package was used to separate normal and anomalous conditions in twelve clusters. The
’normal’ condition is considered when the parameters of the wind turbines are similar
(e.g., nacelle temperature is the same for all turbines). When the parameter of one wind
turbine is significantly different from the other wind turbines, this cluster is classified as an
anomalous condition. The number of neighbours is a parameter that can be tuned in the
algorithm according to the similarity of each cluster, where the number twenty was used
for this case. Thus, the training data are filtered using only the normal condition data, and
the clusters identified as anomalous conditions are removed.

The second method is the Novelty Detection with Local Outlier Factor (LOF) [55],
which is used to detect the outliers associated with the failures of the wind turbine. The
training data, pre-processed by the Ward algorithm, is used to training the LocalOutlierFactor
algorithm from the Python sklearn package. Thus, any new data from the test data that do
not match with the ’normal’ condition is detected by the LOF algorithm as an outlier. The
novelty detection mode is configured in LOF instead of the outlier detection mode because
the outlier detection mode can only identify outliers found in training data, whereas
the novelty detection mode can detect unknown outliers, which is any data that are not
considered ’normal’ in the training data. Figure 6 shows an example of a turbine failure
detected using the WHC-LOF method.
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Figure 6. Time series of hydraulic oil temperature of the five turbines and the total anomaly per week
detected by the WHC-LOF method (red bar). The red dashed line is the threshold alarm when the
cumulative anomaly event is above 100/week. The black arrow indicates the expected failure in the
next weeks.

3.4.4. Normal Behaviour Model with Lagged Inputs (NBM-LI)

This solution uses a random forest regression model to predict normal turbine be-
haviour by incorporating information from previous times. When the predicted turbine
behaviour deviates significantly from the observed behaviour, an alarm is raised. The
Python xgboost random forest library was used, specifying 50 trees and a maximum depth
of two, and otherwise using the default parameters.

New signals were added to the data set, lagging the original SCADA data channels by
periods of 10, 20, 30, 40, 50, and 60 min. Furthermore, signals were added corresponding
to the ratio between the original SCADA signals and the corresponding values occurring
in these past times. Including these additional features generally reduced the error of the
prediction model, as shown in Figure 7, which plots the L-2 norm of the errors associated
with prediction of the generator slip ring temperature as a function of the number of trees
used by the random forest model (80% of the training data was used to train the regression
model and the remaining 20% was used to compute the error). While using all the available
SCADA signals achieved a lower error, it was decided to only use the generator speed and
power produced in the final model to avoid overfitting.

The testing data set was used to predict normal behaviour of the generator slip ring
temperature for each 10 min interval. The recorded slip ring temperature was then used
to compute the absolute error of each prediction. Errors larger than 15 times the standard
deviation of the errors associated with these predictions were flagged as anomaly events.
The random forest was initialised with a single random number generator seed, and could
be improved by considering the aggregate of several random number generator seeds.
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Figure 7. L-2 norm of the error of predicted generator slip ring temperature plotted as a function of
trees in the random forest model (NBM-LI). The solid lines show the results associated with only
using the generator speed and power produced. The dashed lines show the results associated with
all SCADA signals, excluding the generator slip ring temperature. The different colors represent
results associated with the baseline data set (without feature engineering), lagging the data set, and
examining the ratio of current to previous signal values in addition to lagging the data.

3.4.5. Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) focuses on maximising the correlation between
two sets of variables for fault detection [56]. In detail, training and testing samples are
first collected from input and output measurements, which are then standardised as
input and output matrices. The basic idea of CCA is to seek two weighting matrices
to maximise the correlation between input and output matrices, in which the singular value
decomposition is hence leveraged to achieve this. Finally, the residual vector is constructed
by the weighting matrices to obtain the squared prediction error (SPE) statistics. This will
reflect the trend of the system operation.

For the threshold design, the kernel density estimation (KDE) [57] is used to bound
the residual vectors in CCA. In principle, it is a non-parametric technique to estimate the
characteristics of a certain probabilistic distribution. As KDE is able to solve the problem of
non-Gaussian assumptions, it has been widely used in fault detection techniques [58]. In
CCA, the threshold is determined based on the underlying probability density function
derived from the statistics. In the fault monitoring of WT07, the way of selecting input
variables is the same as for NBM, and then the CCA model is trained with the healthy
samples. As shown in Figure 8, the SPE statistics will exceed the threshold, which indicates
the faults of the wind turbine.

3.4.6. Kernel Change-Point Detection (KCPD)

This solution detects change points (CPs) in single SCADA signals before any model is
trained. Therefore, it enables the exclusion of periods contaminated by previously present
faults or malfunctions. Each analysed signal is prepared by removal of non-operational
periods, a normalisation with respect to operational state as well as ambient conditions,
and a final re-sampling with reduced temporal resolution. Then, a kernel change-point
detection algorithm is applied in order to screen the prepared signals and flag changes
induced by irregular variations of the underlying physical system. The methodology is
described in greater detail in [59]. Note that the method works offline and is therefore not
suitable to predict failures, but to detect them in existing training data sets. Therefore, this
solution is evaluated separately from the other online methods.
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Figure 8. An example of the fault monitoring results of CCA, where the residual vector is represented
by the SPE statistics and the threshold is computed by KDE.

Application of the algorithm to the data from WT07 with the settings suggested in [59]
resulted in the detection of two CPs (compare Figure 9). The first one coincides with the
reported damage of generator bearings and is detected in the temperature measurement
of generator bearing 2, therefore providing additional information as to which of the two
bearings was presumably affected. The second CP is detected in early November 2016 in
one of the transformer phase temperatures which was reported to have been abnormally
high in the preceding months. Visual inspection of the processed signal indeed confirms a
change in the behaviour. Additionally, the SCADA log files show several hours of downtime
and local access to the turbine on the day the change point was flagged. However, the
operator has not reported any relevant maintenance activity in close temporal proximity
and therefore conclusions about the change-points origin remain speculative despite the
suggestive evidence from the data.

Figure 9. Results of the KCPD algorithm for the generator bearing (left) and the transformer (right)
with processed measurement over time (black), annotated malfunctions of the respective component
(grey dashed), and detected change points (red dashed).

3.4.7. Summary of Solutions

In Table 3, a summary of the solutions in terms of the solution providers, the method
type, the detection type, the previous application to wind turbines and if it is used for the
comparison in this paper.
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Table 3. Summary of the solutions examined in this work.

Solution NBM LoMST-CUSUM WHC-LOF NBM-LI CCA KCPD

Contributer Voltalia,
France

TAMU,
USA

Fed. Inst.
Santa
Catarina,
Brazil

Univ.
Colorado,
USA

TU Delft,
Netherlands

TU Berlin,
Germany

Type

S SS S S U U(“S” = Supervised,
“U” = Unsupervised,

“SS” = Semi-supervised)

Real time? Yes No Yes Yes Yes No

Type of detection
PW CB PW CB CB CB(“PW” = Point-wise,

“CB” = Chart-based)

Previous application to wind turbines? Yes [51] No No No Yes [60] Yes [59]

Used in comparison? Yes Yes Yes Yes Yes No

Additionally, it is important to discuss and compare the data pre-processing methods
because data quality is a major concern in SCADA data analysis [61]. Researchers have
developed various approaches ranging from manual data screening [33] via automated
threshold checks [20] to advanced statistical filtering methods [34]. The discussion between
the solution providers has revealed that results are indeed often sensitive to pre-processing
settings, which is why we want to give a concise overview on the approaches taken.
Mandatory data quality checks, such as identification of missing values, constant values
or parameter range checks were mostly conducted manually by domain experts. Other
choices for automated pre-processing were filtering out non-operational periods, reduction
of temporal resolution, unsupervised clustering methods and iteratively excluding data
points with poor training performance from the training set. Table 4 gives an overview of
the pre-processing methods applied within each solution in the present work. In general,
we encourage reporting pre-processing in detail, due to their importance for reproducing
reported results.

Table 4. Overview of data pre-processing approaches by solution.

Solution NBM LoMST-CUSUM WHC-LOF NBM-LI CCA KCPD

Filtering Iterative during
training

Manual/Domain
expert

Ward Cluster
Algorithm

Manual/Domain
expert

Manual/Domain
expert

Non-operational
based on power

Time resolution 10 min 1 h 10 min 10 min 10 min 24 h

3.5. Evaluation of Solutions

The solutions were first evaluated using EDP’s method described in Section 3.3.2 [50].
EDP’s own model is included in the analysis as well as the five models NBM-LI, NBM,
LoMST-CUSUM, CCA and WHC-LOF. No information about EDP’s own model is known
to the authors.

The results of the predictions for the wind turbine WT07 for each model applied to
the training data and the test data are shown in Figure 10. The coloured dots mark the
dates of the predicted failure of each component considered for each model, and the area
shaded blue on the right marks the test period. The red circles refer to the annotated failures
provided (labelled “SCADA”). The one annotated failure that was identified in the test
period was not known to the participants of the challenge, and therefore the test period
represented a blind test. However, due to the very short test period and the corresponding
lack of annotated failures during this period, both periods will be considered in this analysis.
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For CCA, the detected faults in the test period were not specific to a particular component
and therefore are labelled “Fault”.

Figure 10. Comparison of fault predictions for each model for WT07.

The time between the predicted alarms and each annotated failure was first calculated
for each component and model. Figure 11 shows this time in the upper figure (a negative
value refers to “before”) for each component and model using the same colours as the
previous plot. The lower plot shows a frequency distribution of these times, split into
bins of 30 days. The most frequent time differences are in the −30, 0 and 30 day bins,
as expected.

Figure 11. Time before annotated failure for each model and the its distribution.

Next, each predicted fault was classified as True Positive (TP), False Negative (FN) or
False Positive (FP) as described in Section 3.3.2. A summary of the number of each type
of fault for each model is given in Table 5, split into the training and test periods. For the
CCA model in the test period because the component experiencing the alarm could not be
identified, the first fault prediction within 2–60 days before an annotated failure was treated
as a TP, and the savings were calculated for the damaged component (the Hydraulic Group).
In addition to this, the same prediction was assigned an FP, and inspection costs were
included for all the components except for the Hydraulic Group. Further faults detected
after this were classified as FPs, and inspection costs were included for all the components
except for the Hydraulic Group.
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Table 5. Number of each type of predicted fault for each model for the training and test periods.

NBM LoMST-CUSUM WHC-LOF NBM-LI CCA EDP

Train Test Train Test Train Test Train Test Train Test Train Test

TP 0 0 4 1 1 1 1 0 1 1 1 0

FN 6 1 2 0 5 0 5 1 5 0 5 1

FP 3 2 7 3 2 2 2 1 0 4 1 0

The resulting savings due to TPs and the costs due to FNs and FPs as defined in
Section 3.3.2 are summarised in Figure 12. For the training period, it can be seen that the FN
costs dominate for all models. This is because it is assumed that FNs lead to replacement
costs, which are high. For the test period, the costs and savings are generally much lower
because only one annotated failure occurred, and the models predicted fewer FNs. The
dominating fault type is FP, which are assumed to lead to an inspection.

(a) Training period

(b) Test period
Figure 12. Savings and costs due to different fault type for each model, EDP evaluation method
(2–60 days).
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The Total Prediction Savings (TPS) as defined in Section 3.3.2 are shown in Figure 13
for each model for the training and test periods. A positive value refers to positive savings
compared to the situation if no prediction tool would be used. It is very interesting that
all the models lead to losses for the training period, ranging from €50,000 to €250,000
depending on the model. This means that, even models that have been trained with
historical data could perform worse than no predictions, and asset owners should not
automatically assume that prediction tools lead to savings. For the training data, two of the
models, LoMST-CUSUM and WHC-LOF, lead to small savings of up to €10,000 compared
to no predictions. The other models, including the EDP model, all lead to losses between
€20,000 and €40,000. It should be noted that, because the time period was short and only
one failure occurred in this time, these results should be treated with care. Further analyses
over longer periods would increase the confidence in the results.

(a) Training period

(b) Test period
Figure 13. Total Prediction Savings (TPS) for each model, EDP evaluation method (2–60 days).

In order to quantify the value of the results of this challenge to the challenge providers
EDP, the differences between the TPS obtained with each model submitted for the challenge
and the TPS using the EDP model were calculated. These represent the expected savings
brought by a switch from the EDP model to another model, and are summarised in
Tables 6 and 7. The LoMST-CUSUM model performs significantly better than the EDP
model for the training period, and would have saved EDP €122,242. For the test period,
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which is more important for assessing performance for unknown faults, the LoMST-CUSUM
model saves EDP €24,867 and the WHC-LOF model would save them €30,500.

In addition to this, the difference between the average of all the TPS values obtained
with each model and the TPS using the EDP model was calculated to be €2424 for the
training period and €3781 for the test period. This represents the improvement EDP would
expect using this collaboration method rather than if they had chosen one random partner
from the five.

Table 6. Total Prediction Savings (TPS) and improvement over EDP (∆TPS) for each model for
training period.

Average NBM LoMST-CUSUM WHC-LOF NBM-LI CCA EDP

TPS −€175,826 −€251,000 −€56,008 −€176,250 −€205,000 −€188,450 −€178,250

∆TPS - −€72,750 €122,242 €2000 −€26,750 −€10,200 -

Table 7. Total Prediction Savings (TPS) and improvement over EDP (∆TPS) for each model for
test period.

Average NBM LoMST-CUSUM WHC-LOF NBM-LI CCA EDP

TPS −€16,219 −€29,500 €4867 €10,500 −€24,500 −€38,683 −€20,000

∆TPS - −€9500 €24,867 €30,500 −€4500 −€18,683 -

4. Discussion of Results

The application of the EDP evaluation method has allowed the submitted solutions to
the case study challenge to be compared and evaluated. However, the evaluation method
includes several assumptions, some of which are investigated in this section. Following
this, each method is evaluated qualitatively, further challenges of the evaluation method
are discussed and, finally, the new collaboration method itself is discussed.

4.1. Assumptions of the EDP Evaluation Method

The following key assumptions were thought to affect the evaluation results:

1. A predicted alarm may lead to savings if detected even earlier than 60 days before
the fault. Figure 14 shows the effect of altering the definition of TP from 2–60 days to
2–90 days (including adjusting Equation (1));

2. A predicted alarm may lead to savings if detected even later than two days before
the fault. Figure 14 shows the effect of altering the definition of TP from 2–60 days to
1–90 days;

3. It may very well be the case that not every annotated failure leads to a failure that
requires complete replacement or a component. This would reduce the costs of an FN.
Figure 14 shows the effect of halving the replacement costs for each component on
the TPS for each model (using 2–60 days);

4. An asset owner may decide not to inspect repeating alarms for the same components.
This would reduce the number of FPs. Figure 14 shows the effect of removing
inspection costs for repeat alarms for each component on the TPS for each model
(using 2–60 days).

The effect of the variations on the TPS are different depending on the model. Altering
the TP period from 2–60 days to 2–90 days generally has a positive effect on the TPS for
the training data, the difference ranging from about €20,000 for LoMST-CUSUM to more
than €100,000 for WHC-LOF. This is because the faults previously classified as FPs are now
classified as TPs. For CCA and EDP, there is no effect because no extra TPs are captured.
For the test data, altering the TP period from 2–60 days to 2–90 days only has a small
effect. This is due to the fact that no new TPs have been captured. However, the formula
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for calculating the TP savings has changed slightly due to the change from 60 to 90 days,
increasing the TP savings slightly.

Altering the lower bound of the TP period from two to one days only has an effect on
TPS for the CCA model for the training data. This is because three faults were predicted
within one day of the annotated failure with the CCA. These faults were classified as FPs for
a range of 2–60 days but as TPs for a range of 1–90 days. There is no effect for the test data.

Halving the replacement costs for each component leads to a large reduction in TPS
for each model for the training period (compared to the original case). This is because
the replacement costs dominate for this period and therefore have a large effect on the
savings. This is not the case for the test period because of the low number of FNs. For the
NBM-LI, NBM and EDP models, the savings are increased on the order of €10,000, and for
the LoMST-CUSUM, the CCA and WHC-LOF, the savings are decreased by about €10,000.
These differences are due to the different numbers of FNs and TPs, which are both affected
by the replacement costs.

Removing inspection costs for repeat alarms only affects the TPS of the model LoMST-
CUSUM for the training data because this is the only model that contained repeat alarms
(for the generator bearing). Even then, the effect is fairly small (on the order of €10,000. For
the test data, it only affects the TPS for the CCA model. In this case, the TPS is increased
quite significantly (on the order of €50,000) because five repeat alarm predictions occurred.

In conclusion, the evaluation method assumptions can have a large effect on the results.
The assumptions mainly affected all the models in the same way, meaning that the final
choice of model remained the same, regardless of the assumptions. Further analysis with a
longer test data period would be useful for understanding these effects in more detail.

4.2. Qualitative Evaluation of Each Method
4.2.1. NBM

The NBM model generated alarms for most of the analysed failures. Nevertheless,
since they were raised with higher anticipation, the evaluation criteria classified most
of them as FPs. This highlights the difficulty in comparing prediction models that have
different characteristics. One of the drawbacks of the NBM model is that it is unable to
detect failures that happen suddenly (such as a sensor malfunction), being more targeted
at detecting components’ degradation over time. It did not identify the problem at the
hydraulic group because it probably had poor correlation to the other available turbine
sensors, leading to a prediction with increased uncertainty.

4.2.2. LoMST-CUSUM

The LoMST-CUSUM has a high hit rate in most of the components. Because the
method has an advantage in accumulating effectively small-magnitude early symptoms
over time, it performs well at detecting wear-out component failures (i.e., due to a longtime
running in poor working conditions) rather than the temporary and random type of failures.
In some of the cases, i.e., using different data (turbines), the method produces too many
FPs. This is the focal point that can be improved. Finding the right subset of signals is the
key to detection.

4.2.3. WHC-LOF

The WHC-LOF method was able to detect most of the failure events in this challenge.
It has the advantage to predict unknown outliers and does not need a large dataset to
train every specific failure because the algorithm is trained with only data considered
normal. There is no time dependence because it is possible to find patterns by comparing
the parameter from multiple turbines instead of using the time series of one or more
parameters. This time independence was probably the success to detect the failure of the
hydraulic group in the test period. This method has the disadvantage to be site-specific
and the pre-processing analysis to identify the anomaly clusters is necessary for each group
of turbines and failure type.
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(a) Training period

(b) Test period
Figure 14. Effect of variations on Total Prediction Savings (TPS) for each model.

4.2.4. NBM-LI

Introducing lagged variables increased the predictive capability of the model. This
information from previous times can be informative by providing context to the current
state of the turbine. For example, if there is a trend of decreasing rotor speed, this would
mean that the rotor was previously running quickly, so we might expect hotter main bearing
temperatures than in the case of an increasing rotor speed.

This method requires choosing which SCADA signals to predict the normal behaviour
of, associating abnormalities with potential failures in an associated component. During
analysis of the data set, errors in the predicted generator slip ring bearing temperature
were found to be indicative of failures in the generator bearing, so the normal behaviour of
this signal was associated with the health of this component.
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4.2.5. CCA

The CCA method can detect faults of most components by training the model with
normal data and describing the trend of the wind turbine operational state with statistics.
When a fault occurs during the test, the statistics will exceed the threshold, so the model
can identify the known and unknown wind turbine abnormal states. The selection of
measurement variables and training samples has a great influence on the performance
of the model, so it is necessary to select different variables and training samples for a
large number of experiments. In addition, CCA is an anomaly detection method. In this
challenge, the model is constructed for the whole wind turbine, so it is impossible to obtain
specific fault types. It could be used to monitor specific component conditions in the future
by modelling specific components separately.

4.2.6. KCPD

KCPD was able to demonstrate its abilities as a data pre-processing method by iden-
tifying change-points in SCADA signals that are caused by changes in the underlying
data-generating process. The resulting benefits are threefold. Firstly, it enables clean
training data for NBMs, a necessary precondition for the approach to work, through the
exclusion of training periods containing change-points. Secondly, it adds information to the
malfunctions annotated by operators, e.g., which signal and therefore sub-component was
affected specifically by a certain maintenance action. In addition, lastly, it enables the data
scientist to pose further specific inquiries (signal, component and time) regarding potential
maintenance actions not reported. All in all, the method is a valuable addition to reduce
ambiguities in real-world SCADA data processing.

4.3. Challenges of the Evaluation Method

One of the main challenges encountered in the evaluation process was quantifying
the financial gain. When an algorithm raises an alarm and a team is sent to perform
maintenance, it is impossible to know for sure how this failure mode would evolve if it
had remained undetected, and therefore it is difficult to estimate the theoretical future
maintenance/replacement cost and the achieved gain in detecting the failure early. In
addition to this, it is difficult to estimate the lead-time when the algorithm raises an alarm,
and therefore the success of a model depends highly upon the definition of a true positive.

Another source for evaluation-related challenges is the heterogeneity of the provided
solutions. This becomes clear when comparing the rules the different algorithms apply
to generate alarms (see Table 8). Formally, it can be difficult to directly compare models
that generate different alarm KPIs (Key Performance Indicator), different outputs and
formats. A more profound difficulty, however, arises from the potential multitude of
hyperparameters involved in alarm generation for each algorithm. Every anomaly de-
tection algorithm requires some threshold to distinguish between normal and abnormal
conditions, and its choice usually depends on the the domain specific risks associated with
false classifications [44]. In SCADA-based wind turbine monitoring, this manifests itself
for example in averaging of anomaly metrics over time or specific rules, such as ‘alarms
on x consecutive days’, to increase algorithm robustness against false alarms. The results,
however, can be highly sensitive to the choice of such alarm generation thresholds and
rules which complicates an effective evaluation and comparison between methods. As a
starting point, we encourage reporting of performance metric sensitivity to hyperparameter
choices rather than results for one specific setting only (threshold, averaging, etc...). More-
over, ML research has suggested evaluation metrics independent from specific threshold
choices, such as the area under the receiver operating curve (AUROC or simply ROC, see
e.g., [44,62,63]) and their adoption is therefore suggested in the future.
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Table 8. Overview of data post-processing approaches by solution.

Solution Alarm KPI Temporal Resolution Threshold Remark

NBM Model error 24 h +/− 3std (training) Alarm if on >3 out of last 7 days

LoMST-CUSUM Cost function 1 h Different by component Empirical from training data

WHC-LOF Cumulative 1 week >100 total anomaly per week

NBM-LI Model error 10 min +/− 15std (training) All anomalies raised alarms

CCA SPE 10 min 13.42 –

KCPD Cost function 24 h 80 Empirical from different external SCADA data sets

4.4. Evaluation of the Collaboration Method

The collaboration method applied in this work resulted in the successful creation of
six new fault detection models for the challenge providers to use. A total of 80 people
from 26 different countries signed up to participate, with a diverse range of backgrounds
and experiences. We carried out a total eight different workshops attended by different
participants. There was an active exchange of ideas on the digital platform. The people who
did not contribute a solution had access to all the discussions and results, and ultimately
benefited from the process as well.

The benefits of the method can be summarised as follows:

• EDP received six new solutions to their challenge, two of which performed signifi-
cantly better than their own method for the provided datasets. The average perfor-
mance of all solutions was slightly better than the EDP method;

• EDP obtained access to the knowledge and code exchanged during the workshops
and on the digital platform, as well as to the people participating. They were able to
further their understanding on the topics of fault detection, data pre-processing and
model evaluation;

• The monthly meetings combined with the digital platform provided an excellent
opportunity for participants to exchange ideas and knowledge, as well as to ensure
continued motivation and guidance;

• A range of people with different backgrounds got access to the challenge, leading to a
large diversity of solutions and to some interesting exchanges, which would not have
otherwise happened;

• The participants got to apply their methods to measurement data from a real wind
farm under real conditions in collaboration with a real customer;

• The participants learned the difference between theoretical studies and real studies
together with customers, when the required data are not always available in exactly
the required format or volume.

• All the participants received access to the documentation of the workshops and the all
of the knowledge related to the topic shared within the project;

• All the participants made new contacts and connections;
• Both EDP and the participants had the opportunity to discuss and test various evalua-

tion methods.

The challenges related to the method include:

• The digital platform requires further functionalities, such as automatic notifications
and regular summaries, in order to improve activity;

• It is important for the ecosystem operators to ensure that the challenge provider
remains fully engaged throughout the project;

• Further datasets over longer time periods and including more faults would improve
the evaluation process;
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• More information about the actual maintenance activities that took place in the turbine,
with information such as what was done (component fixed or replaced?) and the
associated cost would be useful in the future;

• A pre-defined evaluation method would help direct the efforts more clearly from
the start;

• A co-innovation process allowing different solutions to be combined may improve the
results even more;

• A more formally-defined set of workshops including pre-defined goals and steps for
each workshop would help the co-innovation effort;

• Definition of standard data formats or even the provision of a standardised docker
for uploading code would reduce the evaluation effort and make the results more
accessible to the challenge providers;

• Some broader challenges related to data sharing and co-innovation that have been
highlighted during this work need to be solved (see Section ).

The combination of these benefits and challenges can be used for developing future
co-innovation processes.

5. Impact of the Results on the Wider Community

In this section, the impact of the results of this work on the wider community is
discussed, firstly in terms of applying the developed algorithms in practice and then in
terms of the general applicability of the collaboration method.

5.1. Application of the Algorithms

Data driven O&M applications in the wind energy domain have followed the develop-
ments in the field of ML. In terms of model classes and architectures, we have seen a move
from classical, shallow algorithms to deeper and more complex architectures. Conceptually,
there has been an extension of classical NBM approaches towards combining methods
beyond supervised learning and incorporating the latest results from anomaly detection
research. This is also reflected by the variety of contributions within this paper.

However, in practice, we often see that the adoption of new approaches severely lags
the development in academia. Many wind farm owner/operators currently limit their
analysis to rather simple approaches, with real-time decision support only implemented at
a very basic level.

We think that there are several reasons for this—and many of them can be addressed
with the help of collaborative, digital ecosystems. Firstly, many studies focus on a relatively
small, homogeneous database while in practice operators have large, diverse portfolios to
manage. The digital ecosystem can help mitigate this effect by accumulating data sets from
multiple data providers and making them available in a unified format, providing a more
realistic environment for developing and benchmarking new methods. Additionally, this
enables testing on how well the developed methods scale to a large database, an integral
requirement in practice. Other major challenges are related to data quality and model
transparency. While the former is widely known [61] and the wind energy community
has started to address them (e.g., [59]), the latter has rarely been addressed so far in
wind specific applications, despite the fact that eXplainable AI (XAI) has developed into
a major subfield in ML research [64]. Digital ecosystems can help to overcome these
hurdles, for example by setting challenges specifically targeted to these issues or enforcing
transparency and robustness requirements for challenge solutions. We think that it is
important to address these issues as a research community. Otherwise, there is a risk that
further developments, e.g., towards the latest, even more complex ML architectures will
(again) show impressive results but struggle with adoption in practice. Moreover, they can
bring together researchers and operators directly to discuss the practical issues of specific
solutions as well as develop the most relevant research questions in collaboration.

Finally, an open data mindset is required to effectively bring the latest generation
of ML methods, transformer architectures, to the wind energy domain. These models
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are not only characterised by their outstanding performance on many computer vision
and Natural Language Processing (NLP) tasks; they also require massive amounts of data
to be trained. While transfer learning approaches allow the use of pre-trained models,
such as BERT, GPT or T5 [65], significant amounts of domain specific, labelled data are
still required to fine-tune them. Moreover, this data might be of different nature than the
standard wind turbine SCADA data sets often shared today. Transformers originated in
NLP, and therefore would be the architecture of choice for any NLP-related tasks in the
wind energy domain. With respect to condition monitoring, these could include knowledge
extraction from maintenance reports or the generation of descriptive text based on model
results. Initial steps in this direction have been taken by [66], where transformer models are
used to first generate event descriptions based on SCADA sensor patterns and then to select
matching maintenance actions from a lookup-table. Further developments in this area,
however, depend heavily on the availability of domain specific, labelled text documents.
To date, such data can hardly be found open source due to the prevailing confidentiality
concerns of data owners and the cost of domain expert annotations. Collaborative digital
ecosystems could act as trusted mediators between data owners and users, potentially
applying some data anonymisation techniques [67] and thereby facilitating the transfer of
latest ML methods to the wind energy domain. Furthermore, they could be used to develop
common solutions against adversarial attacks [68] as well as for ensuring data security and
privacy when used for real-time decision support.

5.2. Application of the Collaboration Method

The challenge-based digital ecosystem introduced in this paper has a high potential to
be used by the wider community (within and beyond wind energy), As well as providing
realistic environments for developing and benchmarking new ML methods and testing
how well the developed ML methods scale to a large database, this could include providing
"safe spaces" to share data and knowledge on particular topics or surrounding particular
open data sets, making key challenges from different stakeholders easily accessible to a
diverse range of people with varying experience and perspectives, providing a central
location for documenting information and sharing knowledge, bringing together students
and companies from all over the world and developing community-based data standards
and data privacy solutions.

In order to do this, several broader challenges need solving. These include:

• A general fear of losing competitive advantage or communicating a negative message
related to data sharing and open innovation that still exists in some organisations or
entire industries [69];

• A lack of organisational structures that accommodate co-innovation or data sharing in
some industries (e.g., [70]);

• The traditional approach of “silos” learned by the current workforce both through
their education [71] and through their organisation [72];

• The issue of data privacy and security related to sharing commercially sensitive data;
• A general “black and white” thinking of many people and organisations when it

comes to data and knowledge sharing, where “black” refers to “sharing everything
with the public” and “white” refers to “sharing nothing”. There is a large grey area
that can be exploited to the benefit of everyone.

In general, this paper aims to present a single example of a bottom-up approach that
will gain momentum and grow as more and more people and organisations get brave
enough to test and try out new co-innovation approaches. The more the benefits can be
highlighted and the challenges can be worked on together, the more success the approach
will have and the more open people and organisations will become.
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6. Conclusions

A literature review on the challenges related to implementation of digitalisation in
the wind energy industry showed that there is a strong need for new solutions that enable
co-innovation within and between organisations.

Therefore, a new collaboration method based on a digital ecosystem was developed
and demonstrated. The method incentivises data sharing and allows a fair evaluation
of solutions, makes wind energy data FAIR, provides a central location for data and
knowledge related to a certain topic within the sector, includes solutions and code for
data filtering and standard analysis tasks, and allows data standards and data structure
translation solutions to be published and shared.

The ecosystem is centred around specific industry-relevant "challenges", which are defined
by "challenge providers" within a topical "space" and made available to participants of the
ecosystem via the digital platform. The data required in order to solve a particular "challenge" is
provided by the "challenge providers" under the confidentiality conditions they specify. This can
include only allowing specific people to access their space, requiring them to sign agreements
or preparing the data so that it is anonymous or normalised. A “challenge” is defined as a fixed
problem with a motivation, goal, expected outcome and deadline.

The method was demonstrated via a case study, the EDP Wind Turbine Fault Detection
Challenge. The aim of this challenge was to identify failures in five of the major Wind Turbine
components and advise an intervention to the wind farm operators in order to reduce corrective
maintenance costs. The collaboration method was applied via a dedicated space created on the
digital platform. The ecosystem owners supported the challenge providers by coordinating the
entire challenge process, including the acquisition of participants, moderating and documenting
workshops, offering support using the digital platform, sending regular email updates and
providing a downloadable docker for beginners.

Six solutions using Normal Behaviour Models, Combined Local Minimum Spanning
Tree and Cumulative Sum of Multivariate Time Series Data, Combined Ward Hierarchical
Clustering and Novelty Detection with Local Outlier Factor, Normal Behaviour Model
with Lagged Inputs, Canonical Correlation Analysis and Kernel Change-Point Detection
were submitted to this challenge. Evaluation of the results showed several advantages and
disadvantages of the different methods. Two of the methods performed significantly better
than EDP’s existing method in terms of Total Prediction Costs (order of €120,000), and the
average of all the solutions was slightly better (order of €2000). During the evaluation
process, several challenges were experienced relating to the heterogeneity of the provided
solutions, such as different alarm KPIs, different outputs and different formats.

The case study demonstrated that the digital ecosystem is a promising solution for
enabling co-creation in wind energy. It provided a number of benefits for both challenge
and solution providers, including access to data, code, knowledge and people skills. Future
improvements being developed include more formal evaluation methods, digital platform
notifications as well as standardised data and data structures for improved evaluation and
access to the results.

Finally, the paper allowed the potential and the challenges related to co-innovation
and data sharing in general to be identified and discussed. The work provides a basis and
an inspiration for future studies and initiatives attempting to improve collaboration within
and across industries in general.
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