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1 | INTRODUCTION
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| Dongyu Liu'® |

Abstract

In this work, an object-oriented geometric engine is proposed to solve problems
with discontinuities, for instance, material interfaces and cracks, by means of
unfitted, immersed, or enriched finite element methods (FEMs). Both explicit
and implicit representations, such as geometric entities and level sets, are intro-
duced to describe configurations of discontinuities. The geometric engine is
designed in an object-oriented way and consists of several modules. For effi-
ciency, a k-d tree data structure that partitions the background mesh is con-
structed for detecting cut elements whose neighbors are found by means of
a dual graph structure. Moreover, the implementation for creating enriched
nodes, integration elements, and physical groups is described in detail, and
the corresponding pseudo-code is also provided. The complexity and efficiency
of the geometric engine are investigated by solving 2-D and 3-D discontinu-
ous models. The capability of the geometric engine is demonstrated on several
numerical examples. Topology optimization and problems with intersecting dis-
continuities are handled with enriched FEMs, where enriched discretizations
obtained from the geometric engine are used for the analysis. Furthermore,
polycrystalline structures that overlap with an unfitted mesh are considered,
where integration elements are created so they align with grain boundaries.
Another example shows that the Stanford bunny, which is discretized by a
surface mesh with triangular elements, can be fully immersed into a 3-D back-
ground mesh. Finally, we share a list of main findings and conclude that the
proposed geometric engine is general, robust, and efficient.

KEYWORDS
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Commercial softwares such as Abaqus, Ansys, and COMSOL, have become the industry standard for finite element (FE)
numerical analysis. They require, however, FE meshes that fit the problems’ geometries, that is, where the edges of finite
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elements align with the boundary and other discontinuities such as material interfaces and/or cracks. This is a compu-
tationally expensive requirement: the creation of fitted or geometry-conforming meshes for complex geometries has been
estimated to take about 80% of the total analysis time.! Furthermore, creating a good-quality mesh is a challenging endeav-
our that is prone to failure, especially for 3-D models.? Creating fitted meshes is troublesome and/or time-consuming, for
instance, for fractures,? structural optimization,®? fluid-structure interaction,’!° fiber/particle-reinforced composites,'!
and structures with irregular boundaries.'>!3 For these problems, transferring the complexity of mesh generation to the
finite element formulation has been shown advantageous. Unfitted/immersed/enriched finite element methods (FEMs)
allow for a complete decoupling between the problem geometry and discontinuities. Methods in this category include
immersed FEM, !4 unfitted FEM, ¢ the conformal decomposition finite element method (CDFEM),'”"!° and CutFEM.?°
This list is by no means exhaustive. A shared aspect among these methods that use (usually structured) unfitted dis-
cretizations is that interactions between a background mesh and the problem’s geometry have to be performed. This work
presents a general object-oriented geometric engine that can be used for mesh interactions with both implicit and explicit
representations of discontinuities in all dimensions.

Even though the proposed work is applicable for unfitted/immersed/enriched FEMs, we place emphasis on the latter
family of methods, for which the geometric engine was originally designed. Enriched FEMs have been vastly explored
to treat discontinuities such as cracks and material interfaces. In the eXtended/Generalized Finite Element Method
(X/GFEM),??* which originates from the partition of unity method,?*?* the standard finite element approximation is
augmented by enrichment functions that reproduce a discontinuity in the primal field (e.g., for cracks) or its gradient
(e.g., for material interfaces). However, although X/GFEM provides great flexibility in solving discontinuous problems
with a fixed background mesh, the method is not without issues, including loss of accuracy in blending elements for
certain choice of enrichment function,??° the need for special formulations for prescribing non-homogeneous essential
(Dirichlet) boundary conditions (BCs),?”-?® and lack of stability—that is, the condition number of the stiffness matrix may
grow much faster than that of standard FEM with fitted discretizations.?>-3! There are, however, less known enriched
finite element formulations that, while retaining the mesh-geometry decoupling feature of X/GFEM, are devoid of the
aforementioned issues. The Interface-enriched Generalized Finite Element Method (IGFEM),3 for instance, is a sim-
pler enriched formulation that can be derived from X/GFEM.?* IGFEM adds enriched degrees of freedom (DOFs) to
nodes created along discontinuities—instead of associating them to nodes of the original FE mesh as done in X/GFEM.
IGFEM recovers the standard finite element space and thus it can be seen as a method laying in between X/GFEM and
FEM. IGFEM is intrinsically stable by a proper scaling of enrichment functions or the use of a simple diagonal precondi-
tioner,> 3> and nonzero essential BCs can be prescribed strongly.*® Furthermore, multiple discontinuities within a single
finite element can be handled via a hierarchical implementation.> The method can seamlessly resolve boundaries so it
can be used to solve immersed boundary (fictitious domain) problems—and with smooth reactive tractions in Dirich-
let boundaries.***” In addition, IGFEM has been used to prescribe Bloch-Floquet periodic boundary conditions in the
analysis of phononic crystals,*® and for coupling non-conforming meshes and highly nonlinear contact problems.** In
the context of topology optimization, IGFEM has been used for compliance minimization,** and for tailoring the frac-
ture resistance in brittle structures.*’ Finally, IGFEM has also been generalized for the unified treatment of both weak
and strong discontinuities in the Discontinuity-Enriched Finite Element Method (DE-FEM).*! Since DE-FEM was first
demonstrated for 2D fracture mechanics problems,* the method has been extended to 3D,* and has been developed to
handle multiple intersecting discontinuities,** dynamic crack propagation,** and curved cracks and interfaces described
by Non-Uniform Rational B-Splines (NURBS).*> These enriched FEMs have been shown to outperform standard FEM
for solving weak and/or strong discontinuous problems, including:

« Multi-phase materials Inclusions embedded in a matrix material with distinct properties (see Figure 1A) are preva-
lent in natural materials such as bone*® and in artificial materials such as fiber-reinforced composites.*’” Multi-phase
materials can also exhibit a microstructure where there is no apparent matrix phase, as is the case with polycrystalline
microstructures (see Figure 1B). These materials, which are assemblies of small grains (crystals) with different material
properties, include polycrystalline ceramics, metals, and alloys. Because of their common use in industrial applica-
tions, multi-phase materials require accurate numerical characterization. Material interfaces, which may have a critical
effect on the macroscopic material behavior, have been modeled by assuming perfect bonding between interfaces
(C%-continuity)*° and progressive degradation of the interface by means of cohesive models (C~!-continuity).*>!

« Solidification Boundaries between phases can evolve as a consequence of temperature changes, for example, liquid to
solid (the molten metal back into the solid state during metal casting). This solidification phenomenon plays an impor-
tant role in material processing in many industries because it could lead to important variations in material properties



ZHANG ET AL. W] LEY 3

such as strength, thermal stability, and ductility.>>>3 It is therefore important to understand this phase transformation
process so it can be precisely controlled.** Due to the complex nature of the problem, where the location of phase inter-
faces varies with time, only a limited number of analytical solutions are available.>® Numerical techniques are therefore
widely used to model the discontinuous temperature gradient field at phase interfaces.>*%

« Two-phase flows A flow consisting of different phases (see Figure 1C) is commonplace in industrial applications such
as oil and gas in pipelines, and water and steam in nuclear reactor cooling systems.®! Since these phases have differ-
ent properties, the interface between them can result in discontinuous velocity/pressure fields (under a slip condition)
and their corresponding gradient fields. This characteristic makes very challenging to solve two-phase flow problems
in an analytical manner.®* Although most two-phase flow formulations obtained are based on experimental data,**
numerical simulation (based on enriched FEMSs) also provides a viable alternative to describe the flow behavior.5>-68
Two important aspects should be carefully considered for obtaining an accurate approximation: A robust representa-
tion is necessary to describe the geometric configuration of interfaces, which could be altered significantly during the
analysis. More importantly, appropriate enrichment functions should be constructed to account for the discontinuities
in the primal/gradient fields along phase interfaces.

« Fluid-structure interaction Unlike two-phase flows, fluid-structure interaction (FSI) is a problem that couples fluid
dynamics and solid mechanics (loosely referred henceforth as multiphysics).® There are multiple applications of FSI,
such as dams,”® aircrafts,”! and even the cardiovascular system.”? For solving the FSI problem, capturing accurately
the interaction between fluid and solid, that is, both the fluid velocity and pressure at fluid-solid interfaces and the
structure deformation, is a challenging endeavour for which enriched FEMs have proven to be effective.”7>

« Fracture Cracks (see Figure 1D), which could nucleate along a boundary or inside the material, may have a detrimen-
tal effect on the integrity of a structure and could even result in its failure.”®’” Therefore, it is of utmost importance
to properly characterize their effect, for which a plethora of works can be found on enriched FEMs alone. Cracks
are usually modeled as strong discontinuities that introduce the kinematics of a discontinuous primal displace-
ment field.?>*! Enriched FEMs have been used to obtain stress intensity factors (SIFs) in stationary cracks,*>’® and
to model crack propagation by means of cohesive zone models’® or by comparing the stress intensity to critical
values.?!?2

« Dislocations These are linear defects that generally occur in crystalline materials, for example, metals, diamonds,
rocks, or ceramics.®! Dislocations could result in phase transformations and grain growth, and even change material
properties.®? The geometrical configuration of a dislocation is represented by a glide plane with unit normal vector n
(see Figure 1E), where either side of the glide surface shears with respect to another. Unlike cracks, the bare presence
of dislocations can result in stresses in the material, even without applying external tractions.®3 Similarly to cracks,
dislocations are treated as strong discontinuities, and the jump in the displacement field is described by the Burgers
vector b that is tangent to the glide plane.’! Therefore, similar considerations to fracture can be made when modeling
dislocations.®*8

« Shear bands These are narrow zones with intense localized shearing (see Figure 1F) that are usually observed in
s0il,% rock,’” ceramics,®® and metal.?° Created by strain localization, shear bands could lead to extreme deforma-
tions, instabilities, and even failure.”® The influence of shear bands on material behavior has been widely investigated
via theoretical and experimental studies.?”-°! Within the realm of enriched FEMs, a shear band can be modeled as a
strong discontinuity when the width of the band relative to the medium is small,>" or as two weak discontinuities
otherwise.”*%>

A common feature on the use of enriched FEMs to solve all aforementioned discontinuous problems is that a simple
(usually structured) finite element mesh is used. Yet, this flexibility does not come for free: enrichment functions need
to be created, which relies on the known location of discontinuities. In addition, the numerical quadrature of these dis-
continuous enrichment functions usually requires intersection tests between discontinuities and mesh elements, and the
further subdivision of the latter into so-called integration elements. For some problems it is also required to keep track of
the evolution of such discontinuities. In enriched FEMs all this functionality is handled by a geometric engine.

An appropriate geometric engine should be robust and work for an arbitrary number of discontinuity-mesh con-
figurations. Still, designing a robust engine is extremely challenging, simply because it is not straightforward to write
computational geometry functions that are robust when dealing with floating-point arithmetic. One may opt to use
external libraries at the expense of increasing the software dependency. For instance, open-source libraries such as the
Computational Geometry Algorithms Library (CGAL)* have been used. Ren and Younis®” used CGAL to describe and
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FIGURE 1 (A)Material inclusions embedded in a matrix with different material properties; (B) Polycrystalline materials, which are
assemblies of different small grains (crystals); (C) Two-phase flow model where liquid and gas share an interface and interact with each
other; (D) Cracks nucleate along the boundary and inside the material; (E) Dislocations lead to a discontinuous primal field where the jump
is described by the Burgers vector b; and (F) A shear band occurs under intense localized shearing

update the geometric description of cracks in hydraulic fracture propagation. Rather than using a single library, Massing
et al.”® developed a geometric package that uses data structures and algorithms from CGAL and GTS,*° showing good per-
formance in detecting intersections between two unfitted and overlapping meshes and integration over cut cells. These
computational geometry libraries, however, make software’s learning curve steeper and may not be necessary for some
implementations (overkill). Therefore, implementing an in-house geometric engine is also a viable alternative and a pop-
ular one in the enriched FEM community. In the context of X/GFEM for fracture problems, Sukumar et al.’®%° described
in detail the geometric operations for detecting elements that intersect with cracks and the data structures used to store
relevant geometric information. Instead of using level set functions to represent cracks, Pereira et al.'! adopted a mesh
with triangular elements to describe a crack surface explicitly in 3-D, and briefly described the strategy used for creat-
ing integration elements. Soghrati et al.!?? listed all possible situations when a tetrahedral element is completely split
by a material interface, and explained the scheme for performing tetrahedralization of the resulting subdomains. For
speeding up geometric operations, Bfezina and Exner!% proposed a set of algorithms aiming at calculating intersections
between 3-D background meshes and lower-dimensional simplices, whereby the number of calculations is minimized
by reusing information obtained from neighboring elements. Yang et al.'** proposed an approach for reconstructing an
explicit description of heterogeneous materials based on scanning electron microscopy images, where NURBS are used
to represent the morphology of fibers and bounding boxes are used to check for intersections between newly added and
existing inclusions. Recently, Zhang et al.** discussed a basic geometric engine that is able to deal with multiple discon-
tinuities cutting a single element hierarchically, whereby the entire hierarchy that results from splitting completely or
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partially a tetrahedron is stored in an ordered tree data structure. All these works, however, just provide a sufficient ad hoc
solution for their particular problem. As a result, these ideas cannot be easily generalized. In addition, although effective,
most works do not discuss efficiency of the computational geometry routines. Although bits and pieces on implementing
a robust geometric engine to be used with unfitted/immersed/enriched FEMs can be found in the literature, a detailed
discussion is still missing.

In this article we describe the objected-oriented design of a geometric engine that can be used to solve problems with
discontinuities by means of enriched FEMs. Although discussed in the context of interface- and discontinuity-enriched
FEMs, the engine is general and thus could also be used together with any unfitted/immersed/enriched FEM without
much modification. The engine’s main functions are: (i) Performing intersection tests between discontinuities and finite
elements; (ii) Creating enriched nodes that are collocated at the intersection between discontinuities and sides of back-
ground elements; (iii) Creating integration subdomains considering multiple discontinuities intersecting a single element;
(iv) Storing such hierarchies of integration elements in an ordered tree data structure; and (v) Creating physical groups
that are then used to assign correct material properties and/or to refer to discontinuities. The design of the engine goes
beyond basic requirements in many areas, including:

« Generality Discontinuities can be represented both implicitly (e.g., via level set functions) and/or explicitly (e.g., line
segments, polygons, or even lower-dimensional meshes). Integration subdomains in all dimensions can be created by
rules or by more advanced techniques such as Delaunay triangulation (tetrahedralization);!%>100

« Robustness The use of tolerances is mitigated wherever possible since tests based on them are prone to fail;

- Efficiency Given a coordinate, a space partitioning method (concretely a k-d tree) is used to find the background
mesh element that contains it. In addition, a dual graph data structure of the background mesh is used to efficiently
discover neighbors of cut elements (and to avoid intersection checks). Data on subdomains of cut elements’ edges (or
faces) is reused for generating subcells of neighboring elements. An ordered tree data structure is used to store hierar-
chical element information and to efficiently iterate over quadrature elements (leaves of the tree). Finally, we exploit
a flood-fill algorithm that works in conjunction with a dual graph data structure to determine which (background and
integration) elements belong to a corresponding physical domain.

The design of the geometric engine is thoroughly explained with pseudo-code, and its computational complexity
is investigated with several 2-D and 3-D examples of material interfaces and cracks. The capability of the proposed
engine is illustrated by means of several examples. First, the topology of time-dependent discontinuities represented as a
level set is optimized for minimal structural compliance in 3-D. Next, a crack junction problem, where cracks intersect
at the same location, is solved via DE-FEM. Later, a discontinuous model that includes intersected cracks and mate-
rial interfaces is investigated. Furthermore, we overlap structured meshes with polycrystalline structures described by
polygons/polyhedra, where integration elements created align with the grain boundaries. Finally, the Stanford bunny
discretized by a surface mesh with triangular elements is fully immersed into a 3-D background mesh, yielding a new
volumetric discretization with an exterior boundary that contains more triangular elements.

2 | GEOMETRIC ENGINE

The proposed object-oriented design of the geometric engine is composed of several modules, as schematically illustrated
in Figure 2:

i) Discontinuities D is a collection of discontinuities, which can be represented implicitly (e.g., by means of a
level set function) or explicitly (e.g., by means of geometric entities (see Section 2.1);
ii) SpacePartitioner Sis a k-d tree data structure for partitioning the space occupied by the background mesh,
enabling fast search of background mesh element(s) containing a given point along a discontinuity (see Section 2.2);
iii) DualGraph G is a graph data structure of the background mesh for fast neighboring element search (see
Section 2.3);
iv) Interactor is used for processing the interactions between the background mesh and discontinuities (see
Section 2.4);
v) Intersector finds intersection points between discontinuities and the sides of background mesh elements (see
Section 2.5);
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FIGURE 2 Diagram of modules composing the geometric engine represented the unified modeling language (UML) notation.

vi) ElementCreator creates lower-dimensional and integration elements (see Section 2.6);

vii) Mesh M contains data structures that store data regarding finite element nodes N, elements £, and physical groups
P (where geometrical entities are combined into more meaningful groups, for example, mathematical, functional,
or material properties'®’). M is updated via adding enriched nodes and new created elements and creating new and
modifying original physical groups (see Section 2.7).

In addition, an associative container I keeps information about enriched nodes and sub-domains of cut element edges
and/or faces, and aids in creating integration elements of any cut element sharing the same cut edge/face. A hierarchical
ordered tree data structure T is used for storing cut mesh elements and their children. This tree enables fast traver-
sal of integration elements, which is required for computing their local contributions to system matrices and vectors.
Pseudo-code for the behavior of this geometric engine is given in Algorithm 1.

Algorithm 1. Geometric engine: Pre-process a background mesh for the use in the finite element analysis, such as
DE-FEM

Input: Background mesh M := {N,&,P} (node, element and physical group sets), discontinuity set D, physical group

set Pnew, and tolerance 7

function initialization(M)

S <« SpacePartitioner(M)
G < DualGraph(M)

return S, G

end function

function execution(M, S, G, D, Pnew,n)
LT « 0,0
for d; € D do
{I, T} + Interactor.interact(S,G,d;, I, T,n)
M + M.modify(D, Pnew,I, T)

return M

end function

Output: Modified mesh M := {N, &, P}
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2.1 | Discontinuities

Both implicit and explicit descriptions are allowed for representing the geometry of discontinuities. While the former
can be achieved, for instance, by means of a level set function, the latter is attained by using geometric entities in the
form of a finite element mesh—even for fundamental geometric primitives. Since these two representation methods are
fundamentally different, a separate implementation is required to deliver the same functionality, namely for determining
intersections between the background mesh and discontinuities, and for detecting background and integration elements
inside or outside discontinuities.

2.1.1 | Levelset functions

Level sets provide a flexible way to model moving/evolving boundaries.!°® They have been widely used in many fields,
such as multi-phase flows,'?° image processing,!'? and topology optimization.!'!12 A level set function ¢(x) describes
boundaries in an implicit form as the iso-contour of a smooth function, for instance the zeroth level contour. Then, ¢(x)
defined in domain D is expressed as

d(x) =0 x €0Q,
Px) <0 xeQ, €))
px) >0 xe (D\Q),

where x is the Cartesian coordinate, and Q represents a subset of D with closure Q (see Figure 3A). Level sets can be used
to represent a straight boundary, a circular material interface (shown in Figure 3B) and even the structural topology with
more complex geometric configurations.!'* In the proposed geometric engine, level sets are used to describe both static
material interfaces in multi-phase materials, and the evolving boundaries in topology optimization. For the latter, radial
basis functions (RBFs) are used to discretize the level set function,!'*!1> and coefficients multiplying RBFs are considered
as design variables that are updated during the optimization process.

2.1.2 | Surface mesh

Explicit representations based on geometric entities, such as segments, triangles, rectangles, and polygons, are used to
describe both weak and strong discontinuities in form of a surface mesh with lower dimension compared to that of the
background mesh. As shown in Figure 4A, a 1-D mesh consisting of line elements (marked by red segments) is used to
describe eight cracks intersecting a 2-D square domain. Figure 4B shows the representations of discontinuities in 3-D,
whereby a surface mesh with four rectangular elements that can either represent a crack or a material interface, splits a
cubic domain completely.

(A) (B)

FIGURE 3 (A)Level set function ¢(x) defined in a domain D with an embedding domain Q, and the shape of interface dQ (marked by
ared curve) represented as ¢(x) = 0; (B) Level set function ¢(x,y) = v/(x — Xp)? + (¥ — ¥o)?> — 1o = 0 used to describe a circular interface in 2-D
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FIGURE 4 (A) A 1-D mesh with eight line elements and eight nodes that intersects within a square domain; (B) A 2-D mesh with four
rectangular elements and nine nodes that splits a cube completely can be used to describe a material interface or a crack.

2.2 | Space partitioner

SpacePartitioner constructs a k-d tree data structure S for partitioning the k-dimensional space occupied by the
background mesh M. As with a general k-d tree for locating points in space, the k axes are cycled as the tree is constructed.
Each non-leaf node in the tree is defined as a plane perpendicular to the specific axis, dividing the space into two parts
at either side of the plane. It is worth noting that elements intersected with the plane are assigned to both parts. The
coordinate associated with non-leaf node is calculated as the average of elemental centers along the corresponding axis.
The tree construction is finalized when the element set at either side of the splitting plane remains the same, and then
these elements are stored in the tree as leaf nodes. This k-d tree is used for finding a background element enclosing a given
point, an operation that is carried out by the function findElement. Given a point, we traverse the tree from the root
and we use the point coordinates to guide the search until a leaf node is found containing potential enclosing elements.
Then geometric predicates are performed to check which element (or elements in case the point lies at an edge shared by
two elements) contains the point.

As an example, we show in Figure 5A the space partitioning of a square 2 X 2 domain discretized by a background
mesh with 3 x 3 x 2 triangular elements; the range for both x and y axes is [—1,1]. For the corresponding k-d tree
data structure shown in Figure 5B, the root node divides the space with the plane x = 0. This plane divides the back-
ground mesh into two groups of elements {0, 1,2,3,6,7,8,9,12,13,14,15} and {2,3,4,5,8,9,10,11, 14,15,16,17} to the
left and right sides, respectively. Notice there are several elements that belong to both groups since they are cut by the
plane, namely {2, 3, 8,9, 14, 15}. For the next level in the hierarchy the plane y = 0 is used, which further subdivides ele-
ments in the previous level to either side. For example, the left subtree of the root is split into {0,1,2,3,6,7,8,9} and
{6,7,8,9,12,13,14,15}. For the former element group, in the next hierarchical level a plane x = —0.3333 is obtained as
the elements’ centroid. Then this element group is divided into {0, 1, 6,7} and {2, 3, 8,9}. For the next hierarchical level
they = —0.3333 is computing, further subdividing elements into {0, 1} and {6, 7}, which are finally stored as leaves in the
three. The subdivision of other element groups follows the same procedure. Finally, we obtain a k-d tree with five levels,
with each leaf node containing two elements. In order to detect a point with coordinates (—0.25, —0.25) (marked with a
red circle in Figure 5A), we follow the red path shown in the tree (see Figure 5B), till arriving to the element set {8, 9},
after which we find the point is contained in the 8th element using simple predicates.

2.3 | Dualgraph

DualGraph is an object that represents a dual graph data structure G := {V, S} (composed of sets of vertices ¥V and
edges S) of a given background mesh M. In this graph, vertices v;, v; represent the ith and jth finite elements, respectively,
and they are connected with an edge if the elements share an edge. For constructing this graph structure, the background
elements are iterated and an auxiliary data structure is used to store elements’ edges that are later checked for overlap with
other elements. Figure 6 shows a background mesh with 3 x 3 X 2 triangular elements and its corresponding dual graph
structure, which clearly displays with edges adjoining elements. This undirected graph is then used to find neighbors of
any given target element via the function f indNeighbors.
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FIGURE 5
different axes is represented as a dashed line with different colors; (B) The corresponding k-d tree data structure, where the red lines with

(A) The background mesh consisting of 3 x 3 x 2 triangular elements shown with numbers, where a plane perpendicular to

arrows show the path to find the elements enclosing the point (—0.25, —0.25).

FIGURE 6 Thebackground mesh consisting of 3 X 3 X 2 triangular elements with the corresponding graph structure (shown with red
vertices and edges).
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2.4 | Interactor

Interactor takes care of processing intersections between discontinuities and the background FE mesh. Intersec-
tor is used to find intersections between discontinuities and elements, forwarding that information to ElementCre-
ator to create children elements, and for storing the newly created elements in the ordered tree data structure T. For
bookkeeping purposes, an enrichment associative container I is used, where the keys are cut element edges and/or faces.
Their corresponding values include enriched nodes and newly created edges and/or faces (since original element edges
and/or faces are partitioned). Keeping these data facilitates the creation of integration elements: If an element side has
already been split into several subparts, we directly retrieve these from I for creating children of the background element
sharing this cut edge or face. Although it is possible to create integration elements of a cut background element immedi-
ately after finding it intersects a discontinuity, we defer this operation to a later time so that all integration elements are
created with a single function call. To that end, we process all discontinuity-element intersections with the aid of a queue
Q that is updated as new cut elements are found (by looking at neighboring elements of the cut element being processed),
and we keep track of cut elements with a set W. This process ends when the queue is empty, which implies that all cut
elements have been processed and that we are ready to create integration elements. The pseudo-code of function inter-
act in Interactor is given in Algorithm 2. First, looping over a list of points that describe a given discontinuity d;,
we detect elements e that intersect with this discontinuity by calling function findElement in SpacePartitioner
S, and store each cut element into the queue Q and the set W. Second, the queue Q is iterated over cut elements e;, and
Intersector is called to calculate the intersections p; of the cut element e; with the given discontinuity d;. Afterwards,
enriched nodes are created at these intersections and stored in the enrichment associative container I together with their
corresponding cut element’s edges/faces. The function findNeighbors in DualGraph G is then used to find neigh-
bors of the cut element. If these neighboring elements are not yet in the set W or are not already processed, they are
added subsequently to the queue Q and set WW. We then continue to process stored components in the queue until Q
becomes empty. As all intersections between background elements and the discontinuity d; are detected, the function
createElementsin ElementCreator is called to create children elements, which include both integration elements
and lower-dimensional elements along the discontinuity. Meanwhile, these elements e;, are stored into the tree data struc-
ture T, where they are set as children of the parent cut background elements. This tree data structure T will be later used
to update the background mesh data.

2.5 | Intersector

Intersector is the object used to find intersections between element edges (faces in 3-D) and a given discontinuity.
Also, if applicable, it also detects surface mesh nodes that belong to discontinuities inside/outside background ele-
ments. The corresponding pseudo-code of the function findIntersections is given in Algorithm 3, where enriched
nodes are created and stored in the enrichment map I. Depending on the dimension of the background mesh, different
approaches are implemented to detect element-discontinuity intersections. The procedure used is determined by the type
of discontinuity since finding intersections for explicit representations follows a different approach than that used for
implicit representations. For simplicity, we assume that the background mesh consists of triangular (tetrahedral) elements
in 2-D (3-D).

For a level set implicit representation, the approach is quite straightforward as it remains the same regardless of the
mesh dimension. First, we iterate over every edge of a background element and calculate level set values of their corre-
sponding nodes. If the level set signs are not the same, the edge is crossed by a discontinuity at the zero level set value.
The location of intersection point is then simply determined by interpolation.

For a crack described by a surface mesh, the corresponding procedure is based on algorithms for finding
segment-segment (in 2-D) or segment-plane (in 3-D) intersections. To illustrate this type of intersection, consider in
Figure 7 a discontinuity represented explicitly via a triangular (T3) element intersects a tetrahedral (T4) element. In
this situation, the tetrahedral element is considered as a 3-D geometric entity that is composed of a collection of four
triangular faces (2-D geometric entities) and six edges (1-D geometric entities). Therefore, several computational geom-
etry tests are conducted to find the intersections. First, we detect whether any of the discontinuity nodes lie inside
the tetrahedron (see a blue node in Figure 7). Then we create the corresponding enriched node at the same location
and add it to the enrichment associative container I. Second, we iterate over the four triangular faces and determine
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Algorithm 2. Interact a background mesh with a discontinuity

Input: Dual graph G, k-d tree data structure S, ith discontinuity d;, tree data structure T, enrichment associative
container I, and tolerance 7

function interact(G,S,d;,I, T,n)
e < S.findElement(d;.points)
QW + 0,0
Q. W <« addToQueue(e), addToSet(e)
do
e; < getQueue(Q)
x;,I < Intersector.findIntersections(e;,d;,I,n)
if x; #0 then
en + G.findNeighbors(e;)
if e, ¢ VW then

Q, W < addToQueue(ey), addToSet(en)
while Q # 0

for e; € W do

en < ElementCreator.createElements(e;,d;,I)

T < addToTree(ep,e;, T)

return I, T

end function

Output: Enrichment associative container I and tree data structure T

Algorithm 3. Find intersections between a background element and a discontinuity

Input: ith background element e;, ith discontinuity d;, enrichment associative container I, and tolerance 7n

function findIntersections(e;,d;,I,n)
dim < e;.dimension
do
x;,I < d;.findIntersections(e;, I, n)
dim < dim —1

while dim # 0

return z;, I

end function

Output: Intersections x; and enrichment associative container I

whether they are intersected by any of the three edges of the discontinuity’s triangle. Enriched nodes are then cre-
ated at intersection locations found (see red nodes in Figure 7) and stored into the enrichment associative container
I with linking to the corresponding triangular face; this data will be used when computing intersections in the neigh-
boring element sharing the same face. Finally, intersections between the six edges and the discontinuity’s triangular
surface element are determined (see a white node in Figure 7). As before, new enriched nodes created are added to the
enrichment associative container I and linked to the corresponding tetrahedral edges. Obviously, it is more involved
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Crack front

TR

FIGURE 7 A crack represented by a triangular surface element (marked with red) intersects a tetrahedral element. Intersection tests
are conducted to determine nodes lying inside the tetrahedron (marked with a blue node) and along its boundaries (see red nodes located at
two surfaces and a white node located within an edge).

to handle explicit discontinuities than implicit ones since more operations are required. Noteworthy, this procedure
works for any (surface and background) element type, for instance, quadrilateral (Q4) or hexahedral (H8) elements.
Although the current version of our geometric engine cannot handle discontinuities with curved edges/faces, this sce-
nario could be handled effortlessly by implementing other findIntersections functions. For instance, curved
interfaces and cracks described by Non-Uniform Rational B-Splines (NURBS) have already been handled in DE-FEM,*
whereby intersections between the background mesh and discontinuities were found by means of a Newton-Raphson
solver.

Here we show a special situation that highlights the importance of setting the tolerance # when intersecting a
background element. Consider in Figure 8 a tetrahedral element with connectivity {1,2,3,4} that intersects a rect-
angular discontinuity with connectivity {a, b, c,d}, described explicitly by means of a surface mesh. As mentioned in
Intersector, four triangular faces {1, 2, 3}, {2, 3,4}, {1, 3,4}, and {1, 2,4} are iterated to determine whether they inter-
sect the four edges of the surface element {a,b}, {b,c}, {c,d}, and {d,a}. First, two intersections are found between
{d,a} and {1,3,4} based on the coordinates of the background and surface mesh nodes. Then, other two intersec-
tions are detected when intersecting {d,a} with {1,2,4} and {2,3,4}. Since these intersections are found twice, it
is necessary to remove duplicate points by checking their coordinates. Although these intersections should overlap
exactly—for instance the intersection between {d,a} and {1,3,4}, and between {d,a} and {1,2,4} (the red/white
node in the left side of Figure 8)—the floating precision computation makes their coordinates slightly different. There-
fore, we keep one intersection as long as the distance between these intersections is within the given tolerance.
Next, intersections between the background element edges {1,2}, {2, 3}, {3,1}, {1,4}, {2,4}, {3,4} and the surface ele-
ment {a,b,c,d} are determined (see red/white and white nodes in Figure 8). Again, note that intersections between
the rectangle {a,b,c,d} and edges {1,4} and {3,4} overlap with those detected in the first step. After checking
their coordinates, these intersections should not be taken into account when creating enriched nodes. As shown in
Figure 8, only three enriched nodes {5, 6, 7} should be created for this case, although more than three intersections were
detected.

If we do not set an appropriate tolerance for checking overlapping intersections, enriched nodes with slightly dif-
ferent coordinates could be created (in this example enriched nodes {5,8} and {6,9}); this could cause errors when

FIGURE 8 Abackground element with connectivity {1, 2, 3,4} intersects with a discontinuity described by a surface mesh containing a
rectangular element with connectivity {a, b, c, d}. Full and half white nodes are intersections between the background element edges and the
rectangular element, and red/white nodes are intersections between the surface of the background element and the surface element edges.
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creating integration subdomains. Moreover, both standard and created enriched nodes are considered in creating integra-
tion elements, with the possibility of creating tiny elements such as {1, 3, 5,8} and {4, 5, 6,9}. This could cause problems
when calling the Delaunay algorithm.

2.6 | Element creator

ElementCreator uses two different strategies to create elements, that is, lower-dimensional and integration elements
are created based on specific rules or via a certain algorithm. The former, represented by the object Rule, considers
all possible cut situations and sets them as templates for generating lower-dimensional and integration elements. The
latter could use, for instance, Delaunay triangulation (tetrahedralization),'>1% which is represented accordingly by a
Delaunay object.

We explain the procedure for creating new elements using Delaunay’s algorithm which is the only technique
to handle complex situations where elements are not fully split by discontinuities. Since creating 2-D triangular
sub-domains is included in the procedure that constructs a discretization in 3-D, we focus on the description of
the latter. Algorithm 4 shows pseudo-code for the algorithm used to create lower-dimensional and integration ele-
ments. For clarity, we denote a cut background element as the parent element and integration elements that belong
to it as children or integration elements. Figure 9A shows a tetrahedral element intersected by a discontinuity repre-
sented as a surface mesh composed of three quadrilateral (Q4) elements (marked with different colors). We first create
lower-dimensional elements along the discontinuity, so surface elements describing the discontinuity are split into
smaller subdomains in the function createDiscontinuityElements. Since enriched nodes along the disconti-
nuity had already been stored by Intersector in the enrichment associative container I, it is now straightforward
to create these lower-dimensional elements. In addition, these elements are set as internal faces within a parent ele-
ment for creating children elements using the function createIntegrationElements. If these lower-dimensional
elements are not considered when creating integration elements, an incorrect situation could emerge, where internal
faces do not match the original surface elements (see Figure 9A). Later, triangular faces of this tetrahedron that are cut
by surface elements are handled, and the corresponding sub-faces are created by using Delaunay triangulation. Note-
worthy, it is necessary to trace intersected segments created between each surface element and the triangular faces,
which are shown as red segments in Figure 9B. After obtaining children faces, we store them into the enrichment
associative container I. For the neighboring element sharing the same cut face, these segments will be retrieved and
not recreated ensuring consistency of the discretization. After all cut triangular faces are handled, their corresponding
sub-faces, together with non-cut faces, are used to create children tetrahedral elements by calling constrained Delaunay
tetrahedralization.

@ oA

FIGURE 9 An explicit discontinuity composed of three quadrilateral elements intersects a tetrahedral element. (A)
Lower-dimensional elements created along the discontinuity are set as internal faces when creating integration elements (top), and wrong
internal faces (that do not match the original surface elements) could be created without considering lower-dimensional elements (bottom);
(B) When creating the children elements of a triangular face, intersections between the face and this surface mesh (marked in red segments)
are considered as constrained segments.
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Algorithm 4. Create lower-dimensional elements along the discontinuity and integration elements of a background
mesh element

Input: Parent element e,, ith discontinuity d;, and enrichment associative container I

function createElements(ep,d;,I)
eq, < createDiscontinuityElements(ep,d;) - Create lower-dimensional elements along discontinuity
ec < createlntegrationElements(ey,eq,,d;,I) - Create children of the background element

return eq,,ec

end function

function createlntegrationElements(ey,eq,,d;,I)

dim <— getDimension(ep) - Get dimension of the parent element
X, < getNodes(ep) - Get original nodes of the parent element
xp < getEnrichedNodes(ep,I) - Get enriched nodes of the parent element

if dim =1 then

I + createSegments(X,,xp) - Create segments of the edge (or line element)
ec + createElements(l) - Create children elements

if dim =2 then

edges < getEdges(ep) - Get edges of the parent element

for edge € edges do

newFEdges < createlntegrationElements (edge,eq,,d;, ) - Create children of each edge
t < Triangle.MeshInfo() - Initialize Triangle package
t < t.set_points(X,,xp) - Pass all nodes to Triangle
t < t.set_facets(newEdges) - Pass all edges to Triangle
ec + Triangle.build(t) - Create children elements

if dim = 3 then
faces < getFaces(ep) - Get faces of the parent element

for face € faces do

newFaces < createIntegrationElements(face,eq,,d;,I) - Create children of each face
t < Tetgen.MeshInfo() - Initialize Tetgen package
t < t.set_points(X,,x;) - Pass all nodes to Tetgen
t < t.set_facets(newFaces) - Pass all faces to Tetgen
ec < Tetgen.build(t) - Create children elements
return e

end function

Output: Lower-dimensional elements along the discontinuity eq, and volumetric children elements e,

2.7 | Mesh modification

The last step of the geometric engine is transforming the background mesh into the enriched discretization. This consists
of three main functions as shown in Algorithm 5: modifyNodes, modifyElements,and modifyPhysicalGroups.
The purpose of functions modifyNodes and modifyElements is straightforward, since they update the mesh data
structures via adding newly created enriched nodes and integration elements. When dealing with multi-phase problems,
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Algorithm 5. Modify the mesh data structure

Input: The original mesh M := {N,&, P} (node, element and physical group sets), discontinuity set D, physical group

set Pnew, tree data structure T, and enrichment associative container I

function modify (D, Puew,I, T)
N <+ modifyNodes(I)
E + modifyElements(T)
P <+ modifyPhysicalGroups (D, Puew, T)

return NV, &, P
end function

Output: Modified mesh M := {N &, P}

(A) (B)

FIGURE 10 (A) A circular inclusion (marked in darker color and red interface) is embedded into a square matrix; (B) A 2-D
background mesh with 5 x 5 X 2 triangular elements intersected by the circular inclusion creates integration elements (marked in red
triangles) that are assigned to a new physical group, together with 2 uncut elements that lie fully inside the inclusion (marked in darker color).

it is required to specify physical groups to different parts of the mesh that correspond to different materials. The function
modifyPhysicalGroups creates new physical domains associated with discontinuities and changes the original phys-
ical domains (see Algorithm 6). Geometric groups, which include elements inside or at either side of a given discontinuity,
are a prerequisite for the creation of physical groups. Once geometric groups are defined, Boolean operations are per-
formed on them for creating the physical groups, which could have either the same dimension as that of the background
mesh or a lower dimension—for example, lower-dimensional elements created along discontinuities. If there is no need
to create new physical groups, for instance, when modeling a fracture problem with a single material phase, all integration
and background elements are then assigned to the original physical group of the background mesh.

To explain this last step of the geometric engine, consider in Figure 10A a 2-D square matrix containing a circular
inclusion (marked in red) of a different material, which is described by a level set function. The model is discretized by a
mesh composed of 5 X 5 X 2 triangular elements. Then, 42 integration elements and 14 lower-dimensional line elements
along the material interface are created via cutting 14 background elements (see Figure 10B). For assigning these elements
to their corresponding geometric groups, we start with any integration element and determine its group by checking its
nodes’ level set values. Next, neighboring integration elements are also assigned to their corresponding geometric group
based on the same strategy. As only one discontinuity is considered in this example, the inclusion’s geometric group
coincides with a physical group associated with different material properties. As shown in Figure 10B, 18 integration and
2 original elements are added to this new physical group—and are removed from their original physical group.

In the case of handling models that contain multiple interfaces and/or cracks, the function selectDisconti-
nuities is used to select the discontinuities associated with new physical groups Pyew. For instance, when solving a
problem with a crack and an inclusion, only the discontinuity representing the material interface is required to create
its corresponding physical group. However, when modeling a problem with multiple phases, geometric groups could
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Algorithm 6. Create and modify physical groups

Input: Background mesh M, discontinuity set D, physical group set Ppew, and tree data structure T

function modifyPhysicalGroups(M, D, Phew, T)
Drnew < selectDiscontinuities (D, Pnew)
Ggroup < propagateGeoGroups (M, Dnew, Prew, T)
P <« assignPgroups(Ggroup, Pnew, M)

return P

end function

function propagateGeoGroups(Dyew, Pnew, T, M)

dims < list(dimensions(Pnew))

for d; € Dpew do

for dim € dims do

if dim == M.dim then

ep < intersectDiscontinuity(d;, M)
ec < getTreelLeaves(ep,T)

ein < findElementsInside(d;,e.)
Ggroup + addToGroup(ein)

if dim < M.dim then

eq, + getDiscontinuityElements(d;)

Ggroup <+ addToGroup(eg,)

return Ggroup

end function

function assignPgroups(Ggroup, Prnew)
for p; € Prew do
pi < boolean(Ggroup)
P «+ update(p;)

return P

end function

Output: Updated P

be combined into a single physical group with a single material property. The geometric engine makes this possible
by means of Boolean operations performed on geometric groups associated with different discontinuities. For instance,
Figure 11 shows two overlapping material interfaces represented implicitly. In order to collect elements shared by them
into a single physical group, as shown in Figure 11A, the Boolean operation Intersection is used to choose elements
from the corresponding geometric groups. Other operations, such as Subt raction or Union, are also available to create
complex physical groups (see Figures 11B,C, respectively).

3 | COMPUTATIONAL COMPLEXITY

The complexity of the geometric engine depends on that of each individual component. It is well known that finding the
nearest neighbor in a k-d tree for any given point has time complexity O(log |£]) on average, where |£] is the number of
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(A) (B) (€)

FIGURE 11 Two overlapping circular material interfaces, where different parts are assigned to a new physical group: (A) Intersection
between discontinuities; (B) Subtraction of the right discontinuity; (C) Union of discontinuities

elements in the background mesh. DualGraph takes constant time (i.e., (1)) to obtain neighbors of the target element,
where a maximum number of neighbors equals to the number of element sides. The time complexity of Interactor
depends on the number of background elements intersected by discontinuities. Every cut element is tested for intersec-
tion against all discontinuities for constructing new children elements; this is done by iterating over all element edges
and faces, which asymptotically has constant time complexity ©@(1). Considering Delaunay’s algorithm for the creation of
children elements, the time complexity is O(| N, | log | Ne|) in 2-D''¢ and O(| N |) in 3-D,"” respectively, where | V| is the
number of original and enriched nodes in a cut background element. Noteworthy, as | N,| is relatively small, asymptot-
ically ElementCreator has constant time complexity both in 2-D and 3-D. Since discontinuities have one dimension
less than that of the background mesh—that is, they are lower-dimensional manifolds—as problems increase in size, the
number of intersected (and integration) elements becomes less significant compared to the total number of background
mesh elements. We can therefore estimate the total complexity of the Interactor as O(|€]'/?) and O(|€|*/?) in two and
three dimensions, respectively.

2-D and 3-D models with discontinuities are used to corroborate the time complexity of the geometric engine. For 2-D,
a square domain contains 9 discontinuities (represented by 9 line elements) with arbitrary orientations (see Figure 12A).
This computational domain is then discretized with increasingly finer meshes with 882, 3362, 13,122, 51,842, 206,082,
821,762, and 3,281,922 constant strain triangles. The cubic 3-D model contains 6 discontinuities described by 12 tri-
angular elements (see Figure 12B), and is discretized by meshes containing 750, 4374, 29,478, 215,622, and 1,647,750
linear tetrahedra. In order to show the efficiency of the geometric engine, we first compare the computational complex-
ity for finding cut elements via a brute-force approach that loops over all background elements to the method that uses
SpacePartitioner to locate elements that contain given points of a discontinuity. The computational time x has
been normalized by the maximum value obtained by both methods. From Figures 13A,B, it can be seen that, asymptoti-
cally, the brute-force approach and SpacePartitioner associated with the problem size scale as O(|£]) and O(log |£]),
respectively. Next, the computational time for interacting discontinuities with the background mesh is studied via three
different strategies: (i) A brute-force approach that iterates over all background elements; (ii) The brute-force approach
to find cut elements but then calls Dualgraph to find neighbors of cut elements; (iii) Adopting both SpaceParti-
tioner and Dualgraph. The normalized computational time » for 2-D and 3-D examples with respect to the number
of background elements |£]| is shown in Figures 14A,B, respectively. For both examples, the first strategy has complex-
ity O(]€]) and is therefore the most time-consuming; the second strategy has the same complexity, but takes less time
with the help of Dualgraph; the last approach is the least expensive one, scaling as estimated above as O(|€|/?) in
2-D and O(|&€|*/?) in 3-D.

4 | NUMERICAL EXAMPLES

In this section we demonstrate the capability of the proposed geometric engine with several complex 2-D and 3-D discon-
tinuous problems. We set a tolerance of 1071 for detecting intersections in all examples. Two examples focus on creating
a new discretization without conducting analysis, whereas the rest of the examples uses IGFEM and DE-FEM to solve
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FIGURE 12 (A)2-D structure including 9 cracks represented by line elements; (B) 3-D model with 6 discontinuities described as
triangular elements
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FIGURE 13 Complexity for finding cut elements with given points of discontinuities via brute-force method and
SpacePartitionerin(A)2-D and (B) 3-D

weakly and strongly discontinuous problems, respectively. Since no units are given, geometrical parameters, Young’s
moduli, and magnitudes of applied tractions can be taken from any consistent unit system.

41 | Topology optimization

The first example considers evolving material interfaces described by a level set in the context of topology optimization.
Figure 15A shows the schematic of a 3-D cantilever beam problem with the corresponding initial hole seed design used;
the back surface is clamped and a downward line traction £ is applied along the middle of the front surface. The cantilever
beam is discretized by a structured background mesh with 40 x 20 X 10 X 6 tetrahedral elements of size a. Young’s moduli
E; =1 and E, = 107 are assigned for solid and void domains, respectively. Both of them have the same Poisson’s ratio
of 0.3. Although it is possible to directly use nodal level set values as design variables—thus the level set function is
discretized by means of standard finite element shape functions—we use instead compact radial basis functions (RBFs)'!4
to parameterize the level set function. This choice, whereby the design space is decoupled from the FE discretization,
shows benefits comparable to a filter in density-based topology optimization.3? The design space with the same dimension
as that of the cantilever beam is discretized using a grid of 21 x 11 X 6 RBFs, with a supported radius of ry = \/5 - a, where
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FIGURE 14 Complexity for interacting discontinuities and the background mesh via looping over elements, brute-force method with
DualGraph, and SpacePartitioner with DualGraph in (A) 2-D and (B) 3-D

(A) (B)

FIGURE 15 3-D Cantilever beam topology optimization problem: (A) Schematic where the back surface is clamped and a downward
line traction ¢ is applied along the middle of the front surface. The figure also shows the initial hole seed design; (B) Optimized design for
minimal structural compliance after 200 iterations

a is the grid size. The cantilever beam is optimized for minimum structural compliance (i.e., maximum stiffness) with
solid material constrained at 55% of the total volume of the design domain. Figure 15B shows the optimized design with
satisfied volume constraint after 200 iterations. This example shows the geometric engine’s ability to handle moving level
set—thus implicit—weak discontinuities in 3-D. For more information on level set-based topology optimization using
IGFEM we refer to van den Boom et al.>

4.2 | Intersecting discontinuities
4.2.1 | Fracture junction

In this example DE-FEM is used to resolve multiple intersecting cracks. As shown in Figure 16A, a star-shaped frac-
ture is placed at the center of a finite plate with dimensions 1.25 x 1.25, where unit magnitude bi-axial tractions f are
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FIGURE 16 (A)Schematic diagrams for star-shaped cracks in a finite plate; (B) The displacement u distribution with the deformed
model discretized by the background mesh consisting of 45 X 45 X 2 triangular elements.

prescribed normal to the boundary. Cracks, represented explicitly as line elements of unit length, intersect at the cen-
ter of the domain. The background mesh used has 45 X 45 X 2 triangular elements. After detecting intersections between
cracks and background elements and creating integration elements, a new discretization with 712 integration elements
is obtained. For modeling crack junctions using DE-FEM, the number of strong nodes (for resolving the jump in dis-
placement) added in the junction depends on the number of intersecting cracks. In other words, we need to create a
displacement jump between each two intersecting cracks, and if n cracks intersect, we need at least n — 1 strong enriched
nodes, since the last displacement jump can be formed by a linear combination of all other displacement jumps. In our
example, since six line segments intersect, five strong nodes are generated. The resulting displacement field is shown
in Figure 16B. More details on the use of DE-FEM for resolving multiple intersecting discontinuities can be found
in Liu et al.®?

4.2.2 | Resolving both weak and strong discontinuities

Figure 17A shows a 2 x 2 plate that contains a material interface (marked with blue) and a crack (marked with red).
While the former is represented using a level set function, for the latter we use a one-dimensional surface mesh. An
elastic material with Young’s modulus E; = 1 and Poisson’s ratio v; = 0 is assigned to the domain at the left side of the
interface, and E, = 2 and v, = 0 is assigned to the rest of the plate. While the left boundary is fully constrained, only
the vertical displacement is restricted along top and bottom edges. Horizontal tractions t; = e; and t, = 2e; are imposed
on the right edge below and above the crack, respectively. For this example, which aims at illustrating the hierarchical
data structure used to store the information of cut elements and their corresponding subdomains, a simple background
mesh with 5 X 5 X 2 triangular elements is used. The result obtained via DE-FEM is shown in Figure 17B, where it can be
seen that two independent kinematic fields with constant state of stress o are recovered at either side of the crack. The
resulting discretization after processing the interaction between both discontinuities with the non-fitted mesh is given in
Figure 18, where a representation of the tree data structure shows the three hierarchical levels created to store integration
elements. For instance, the background element (hatched in Figure 18) intersects with both the material interface and the
crack. The material interface first splits this element (added to the first level of the tree data structure) into three children
elements, which are created at the second level of the hierarchy. Later, these elements intersect with the crack, and their
corresponding integration elements are stored at the last level (leaves of the tree). More details about this example can be
found in van den Boom et al.*®
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FIGURE 17 (A) A square domain with dimensions 2 x 2 includes both a material interface (marked with blue) and a crack (marked
with red); horizontal tractions Hil =1and ”izn = 2 are imposed on the right boundary below and above the crack, respectively. (B) Two
independent kinematic fields with constant state of stress ¢ are generated in either side of the crack.
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FIGURE 18 The new discretization created after interacting discontinuities with the background mesh, where a cut element (hatched)
intersects with both material interface (marked with blue) and crack (marked with red); the corresponding children elements are created and
stored into a hierarchical tree data structure with three levels.

4.3 | Polycrystalline materials

In this example, subdividing the computational domain into grains is aggravated by the correct assignment of material
properties. Here grains are represented explicitly with polygons in 2-D and polyhedra in 3-D. Polygons are represented
by segments forming a closed surface. This is achieved by defining a proper nodal connectivity—similarly to the way we
store the node connectivity of finite elements. Analogously, surface polygons are required to describe the corresponding
polyhedra.

We showcase the geometric engine’s capability to cope with polycrystalline models in 2-D and 3-D. The 2-D model
shown in Figure 19A is composed of 30 polygonal grains with different material properties (every color corresponds to
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FIGURE 19 Polycrystalline models (A,C) and their finite element discretizations after interacting with the geometric engine (B,D).
The figure shows that the geometric engine is able to properly construct integration elements and that the right material properties are
assigned (color-coded regions).

a different material), and a structured mesh of 25 x 25 X 2 triangular elements is used. As apparent from Figure 19B,
the geometric engine is able to correctly assign the appropriate material properties to each grain. Obtaining the same
results in 3-D is more challenging. Figure 19C shows 157 polyhedra used to describe the 3-D polycrystalline model, on a
background mesh composed of 17 X 17 X 17 X 6 tetrahedral elements. The result of interacting the polycrystalline model
with the background mesh in Figure 19D shows the proper creation of integration elements and assignment of material
properties.

44 | Immersing lower-dimensional manifolds

Here we demonstrate the geometric engine’s ability to immerse a 2-D surface mesh (composed of triangular elements)
into a 3-D tetrahedral mesh. To this end we use the well-known Stanford bunny in the computer graphics literature,''®
which is discretized by a coarse surface mesh containing 1,006 triangular elements (see Figure 20A). This surface
mesh is then fully immersed into a structured mesh composed of 20 x 20 X 20 X 6 tetrahedral elements, as shown in
Figure 20B. A total of 3,768 background elements are cut by the surface mesh (see Figure 20C), resulting in 57,172
newly created integration elements. The resulting new volumetric discretization of the Stanford bunny is composed of
2,844 background and 28,066 integration elements, and the original surface mesh is split into 20,319 triangular elements
(see Figure 20D).
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FIGURE 20 (A)The Stanford bunny surface mesh discretized by 1006 triangular elements; (B) The background mesh consisting of
20 X 20 X 20 X 6 tetrahedral elements; (C) 3768 background tetrahedral elements intersected by the surface mesh; and (D) The new
volumetric discretization of the Stanford bunny model with 2844 background and 28,066 integration elements

5 | EXTENSIONS FOR OTHER UNFITTED/IMMERSED/ENRICHED FEMS

The proposed geometric engine could be readily applied to unfitted FEMs. Similarly to IGFEM, unfitted FEMs that are
used to solve discontinuous problems need to detect subdomains at either side of material interfaces. A tessellation of cut
elements is also required to create integration elements that are used for calculating local arrays. These steps are currently
considered in the proposed geometric engine: cut elements, together with their corresponding integration elements (and
also lower-dimensional elements along discontinuities), are stored in the ordered tree data structure. Finite elements that
are not cut by interfaces can be found in either original volumetric and newly created physical groups. Therefore, the
proposed geometric engine can be used as is for unfitted FEMs.

As with IGFEM, immersed FEMs separate the background mesh into two classes: non-cut and cut elements. The
former uses the standard shape functions for the assembly. For cut elements, the original basis functions are modified
to piecewise functions for capturing discontinuous behaviors in cut elements, which requires detecting intersections
between discontinuities and elements. Since no integration elements are created in this method, only the information
obtained from Intersector (stored in container I) is needed. Therefore, the geometric engine can also be used as is
for immersed FEMs.
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Extending the proposed geometric engine so that it can be used with X/GFEM is straightforward. Similarly for
X/GFEM, intersections between the background mesh elements and discontinuities need to be detected and integration
elements need to be created—to ensure the integration of smooth functions. However, contrary to IGFEM and DE-FEM,
where new enriched nodes are created along discontinuities, in X/GFEM newly created integration elements are also
connected to “dummy nodes” that have no associated degrees of freedom; this is because in X/GFEM enriched nodes are
added to nodes of the original finite element mesh. Dummy nodes can nevertheless be added to the original nodes array
as long as we use another mechanism that performs the bookkeeping of enriched DOFs. For instance, an associative con-
tainer could be used to store information of enriched nodes associated to a given standard mesh node—the latter’s id
becoming the key in the data structure with the corresponding value being the associated enriched DOFs. This container
would then be used during the computation of local elemental arrays, and for obtaining element freedom tables that are
used to map DOFs from local to global matrices and vectors. It should also be mentioned that, when using X/GFEM for
solving fracture mechanics problems, appropriate enrichments are commonly used to capture singularities near crack
fronts. Both topological and geometrical enrichment strategies have been used in this regard;!'® while the former only
enriches nodes of elements cut by the crack front, the latter enriches a region contiguous to the crack front that is inde-
pendent of mesh size—which remains roughly the same as the finite element mesh is refined and therefore yields a more
accurate solution. The geometric engine proposed in this article could easily be extended to work with either type of
enrichment strategy. For a topological enrichment strategy, the detection of elements that contain the crack front was out-
lined in Section 2.5. This could be combined with a search for neighboring elements by means of the dual graph, following
Section 2.7, for finding all elements within the geometrical enrichment region. An X/GFEM implementation could also
benefit from the proposed geometric engine by means of the explicit representation of crack fronts, for example, by means
of a mesh, so that crack propagation simply entails advancing the front by simply adding new elements. Notice also that
an explicit representation of the crack front makes it straightforward to place a local cylindrical coordinate system, which
is required for the definition of the singular enrichments and for computing stress intensity factors.

6 | SUMMARY AND CONCLUSION

In this work we proposed an object-oriented geometric engine especially designed for unfitted/immersed/enriched FEMs,
which aims at interacting a background mesh with discontinuities for generating a new discretization. Considering the
representation of discontinuities, both implicit and explicit methods are implemented to describe their corresponding
geometric configurations. The geometric engine adheres to the requirements of generality, robustness, and efficiency.
The geometric engine design contains several main modules: SpacePartitioner creates a k -d tree data structure for
partitioning the background mesh and is used to identify elements enclosing a given point. DualGraph builds a graph
structure for finding neighbors of any given element. These two components are called in other modules for facilitating
geometric operations. Interactor focuses on creating enriched nodes at intersections between discontinuities and the
background mesh via calling Intersector. Integration elements are created within ElementCreator and stored
in a hierarchical data structure used for the assembly. Later, enriched nodes and integration elements are added to the
original mesh data in Mesh, where new physical groups associated with discontinuities are created, for instance, when
solving multi-phase problems. Together with detailed explanations, the corresponding pseudo-code of each module was
also provided. We investigated the computational complexity of the geometric engine through several 2-D and 3-D models
including weak and strong discontinuities, where the behavior of the computational time associated with the number of
background elements |£| is asymptotically approaching O(|€|*/?) (in 2-D) and O(|€|?*?) (in 3-D).

Furthermore, several challenging numerical examples were used to investigate the capability of the geometric engine
with IGFEM and DE-FEM. First, a 3-D topology optimization example for minimizing structural compliance was used,
where a level set function describes the structural boundary and the structural analysis is performed via IGFEM. Next, a
fracture junction problem was solved by means of DE-FEM, where several cracks intersect with each other within a single
background element. Later, an example including intersected weak and strong discontinuities was proposed to show the
hierarchical data structure that stores cut background elements and integration elements. Moreover, we incorporated
polycrystalline materials that are represented as polygons in 2-D or polyhedra in 3-D into a background mesh, where new
physical groups associated with the corresponding grains are created for assigning different material properties. Finally,
the Stanford bunny model with a complex geometry configuration, which is discretized as a surface mesh with 1,006
triangular elements, was immersed into a 3-D background mesh, where the new volumetric discretization conforming to
the surface of the bunny was generated.
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A summary of the main findings of this work is listed in the following:

« Delaunay triangulation (tetrahedralization) behaves well for creating the corresponding integration elements in 2-D
and 3-D. However, if only considering the background mesh with triangular or tetrahedral elements, it is also practical
to set specific routines to construct integration elements. For instance, there are only a few scenarios when a triangle
is split with a line segment completely. Although more cases should be taken into account for splitting a tetrahedron,
it is still doable to implement the corresponding scheme to perform tetrahedralization. Although this alternative could
increase the difficulty of the implementation and could require more efforts in considering all possible cut situations,
the resulting geometric engine would not require any extra package based on Delaunay algorithm.

« Discontinuities can be handled in either hierarchical or unified way within the geometric engine. For instance, when
only one surface mesh is used to represent several cracks, where each surface element is considered as a crack, these
cracks can be processed as a single discontinuity. However, these cracks can also be seen as a collection of surface
meshes, each containing only one element, where each crack (surface mesh) is one discontinuity that is processed
in a hierarchical way. Generally, the latter would create more integration/children elements, as children elements
associated with previous discontinuities would be split by the remaining cracks. Therefore, in terms of efficiency, the
former method is recommended when handling discontinuous models with multiple cracks.

« Asexplicit representations can be used to describe discontinuities, computational geometry operations among geomet-
ric entities are conducted to detect intersections and create integration elements. For instance, intersections between
background and surface elements are detected via segment/segment and segment/triangle tests based on coordinates in
Intersector. Moreover, it is important to make sure that no duplicated enriched nodes are created at the same loca-
tion by checking their coordinates. It is thus critical to set an appropriate tolerance value for intersection tests to ensure
the robustness of the proposed procedure. The value of this tolerance should be related to the background/surface
mesh size. For instance, if the average length of intersecting primitives is 0.1, the difference between overlapping inter-
sections could be chosen (arbitrarily) to be within 1078, This value of tolerance should be reduced if the mesh size is
reduced for the geometric engine to yield the same intersections.

« Considering efficiency, when handling any cut background element, it is important to store the information about
sub-domains of cut element edges and/or faces, which can save the computational cost and avoid the precision issue
related to check the location of intersections. On the one hand, this data can be directly used to create children of
any background elements sharing these edges/faces. On the other hand, it is useful for handing discontinuities in
a hierarchical way, as any sub-edges and/or sub-faces created by the handled discontinuities could be split by the
following ones.

Although the proposed geometric engine is general, robust, and efficient when dealing with discontinuities, there is
still room for improvement:

« Parallelization could make the geometric engine more efficient. A possible parallel implementation could consider the
following aspects: (i) A domain decomposition technique could be used to subdivide the background mesh in several
subdomains of contiguous elements; information about subdomain boundaries would need to be stored as well to detect
duplicate nodes (which overlap in space but that are otherwise shared by different processes); (ii) The geometric engine
in this manuscript could then be applied sequentially to each process independently to detect intersections between
discontinuities and background elements in each subdomain. Integration elements and enriched nodes would then be
created independently; and (iii) Instead of communicating to ensure that duplicate enriched nodes have a unique id,
we could use multi-point constraints (MPCs) or another form of constraint enforcement to deal with duplicate nodes.
This would necessitate communicating enriched nodes that intersect with subdomain boundaries and checking for
coordinates within tolerance.

« Although evolving interfaces described implicitly can readily be handled, the evolution of explicit discontinuities is
still missing in the current geometric engine. For instance, crack propagation could be implemented by representing
crack fronts explicitly. It would be straightforward to extend the geometric engine to handle crack propagation in
2-D, whereby new crack segments are added to the lower-dimensional mesh, connecting the old tips with the new
ones. Crack propagation in 3-D would be more involved, as discussed elsewhere.!?° Extending the proposed geometric
engine for 3-D crack propagation should therefore properly consider the geometry of the front after advancing it: New
vertices along the crack front should be checked for overlap to ensure no duplicates are present. These nodes should be
properly ordered (for instance, after projecting them to a plane) for the creation of new surface elements and to ensure
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that new segments created along the crack front do not intersect with one another and have the proper orientation.
Finally, depending on the problem, the crack front could intersect with itself, so intersection tests should envision such
cases. Newly created nodes along the crack front, which would be added to the nodes array of the surface mesh, would
then be used together with nodes of the original crack front to create new surface elements (for instance by means of
constrained Delaunay’s algorithm); these newly created surface elements would then be added to the updated surface
mesh.
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