

Delft University of Technology

'Project smells' - Experiences in Analysing the Software Quality of ML Projects with mllint

Van Oort, Bart; Cruz, Luís; Loni, Babak; Van Deursen, Arie

DOI
10.1109/ICSE-SEIP55303.2022.9794115
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 2022 ACM/IEEE 44th International Conference on Software Engineering

Citation (APA)
Van Oort, B., Cruz, L., Loni, B., & Van Deursen, A. (2022). 'Project smells' - Experiences in Analysing the
Software Quality of ML Projects with mllint. In Proceedings - 2022 ACM/IEEE 44th International Conference
on Software Engineering: Software Engineering in Practice, ICSE-SEIP 2022 (pp. 211-220). (Proceedings -
International Conference on Software Engineering). IEEE. https://doi.org/10.1109/ICSE-
SEIP55303.2022.9794115
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSE-SEIP55303.2022.9794115
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794115
https://doi.org/10.1109/ICSE-SEIP55303.2022.9794115

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

“Project smells” — Experiences in Analysing the SoftwareQuality
of ML Projects with mllint

Bart van Oort
TU Delft

AI for Fintech Research,

ING

Delft, Netherlands

bart.van.oort@ing.com

Luís Cruz
TU Delft

Delft, Netherlands

l.cruz@tudelft.nl

Babak Loni
ML Engineering Chapter,

ING

Amsterdam, Netherlands

babak.loni@ing.com

Arie van Deursen
TU Delft

Delft, Netherlands

arie.vandeursen@tudelft.nl

ABSTRACT

Machine Learning (ML) projects incur novel challenges in their

development and productionisation over traditional software appli-

cations, though established principles and best practices in ensuring

the project’s software quality still apply. While using static analysis

to catch code smells has been shown to improve software quality

attributes, it is only a small piece of the software quality puzzle, es-

pecially in the case of ML projects given their additional challenges

and lower degree of Software Engineering (SE) experience in the

data scientists that develop them. We introduce the novel concept

of project smells which consider deficits in project management as

a more holistic perspective on software quality in ML projects. An

open-source static analysis tool mllintwas also implemented to
help detect and mitigate these. Our research evaluates this novel

concept of project smells in the industrial context of ING, a global

bank and large software- and data-intensive organisation. We also

investigate the perceived importance of these project smells for

proof-of-concept versus production-ready ML projects, as well as

the perceived obstructions and benefits to using static analysis tools

such as mllint . Our findings indicate a need for context-aware
static analysis tools, that fit the needs of the project at its current

stage of development, while requiring minimal configuration effort

from the user.

KEYWORDS

project smells, software quality, machine learning, mllint, code

smells, context-aware, static analysis, dependency management,

Python

ACM Reference Format:

Bart van Oort, Luís Cruz, Babak Loni, and Arie van Deursen. 2022. “Project

smells” — Experiences in Analysing the Software Quality ofML Projects with

mllint. In 44nd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA.

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3510457.3513041

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9226-6/22/05. . . $0.00
https://doi.org/10.1145/3510457.3513041

1 INTRODUCTION

The ubiquity of Machine Learning (ML) and Artificial Intelligence

(AI) solutions to complex computing problems demands develop-

ment processes to help transform a proof-of-conceptML experiment

into a well-engineered ML application, running continuously in a

production environment [3, 8, 12, 19]. These development processes

on the one hand incorporate novel ideas to deal with the challenges

that developing ML applications poses over developing traditional

software applications, but on the other hand also include estab-

lished Software Engineering (SE) best practices. After all, quoting

Carleton et al. [6], “An AI system is a software-intensive system,

and the established principles of designing and deploying quality

software systems that meet their mission goals on time still apply”.

However, productionising is difficult, especially in the case of

ML systems given their additional challenges, such as data man-

agement, testing and reproducibility [10, 14]. Traditional software

engineering historically struggled with this too, but has seen the

implementation of a host of tools to help with productionisation in

various stages of the software development lifecycle. For example,

using static analysis to enforce best practices and catch code smells,

helps catch bugs earlier and improve software quality attributes,

such as reliability, maintainability and reproducibility [11].

Especially in ML projects, code smells are only a small piece

in the software quality puzzle. We noticed this first-hand in our

previous research on the prevalence in code smells in open-source

ML projects: nearly half of the analysed projects struggled with

managing their code dependencies [22]. We realised that a more

holistic approach to code smells, ‘project smells’, would be required.

To the end of automatically detecting such project smells and giv-

ing practical advice on how to fix those, we implemented mllint .
mllint 1 is an open-source command-line utility to evaluate the
software quality of Python ML projects by performing static analy-

sis on the project’s source code, data and configuration of support-

ing tools. mllint aims to help ML practitioners in developing and
maintaining production-grade ML and AI projects.

We argue that many data-driven companies may benefit from

an SE for ML tool such as mllint . This research gauges how

well these project smells as detected by mllintfit the context of
ML development at our industrial partner ING. ING is a global

bank and large software- and data-intensive organisation with

a strong European base that offers retail and wholesale banking

services to 38.5 million customers in over 40 countries [9] and has

15.000 employees in IT, software and data technology [1]. ING

1https://github.com/bvobart/mllint

211

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
20

22
 IE

EE
/A

CM
 4

4t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e
(IC

SE
-S

EI
P)

 |
 9

78
-1

-6
65

4-
95

90
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SE

-S
EI

P5
53

03
.2

02
2.

97
94

11
5

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA Bart van Oort, Luís Cruz, Babak Loni, and Arie van Deursen

has extensive use-cases for increasing its business value with AI

and ML, such as assessing credit risk, fighting economic crime by

monitoring transactions and improving customer service. As part

of a major shift in the organisation to adopt AI and ML and become

data-driven, ING is defining standards for the different processes

around the lifecycle of ML applications [8].

To measure the fit of project smells in this context, we qualita-

tively analyse the reports generated by mllint on ING projects and

combine them with feedback from ML practitioners. Additionally,

we ask practitioners to run mllint on their projects and provide
us feedback on their experiences with mllint and its concepts. By
doing so, we aim to uncover the obstacles of implementing specific

best practices, as well as the perceived benefits and drawbacks of

using static analysis tools such as mllint to verify SE practices in
ML projects. Additionally, we investigate how ML practitioners per-

ceive the importance of mllint ’s linting rules on proof-of-concept
versus production-ready projects, as the former may not require as

rigorous software quality checks as the latter do.

More formally, our research questions are as follows:

RQ1 How do the project smells as detected by mllintfit the
industrial context of a large software- and data-intensive

organisation like ING?

RQ2 What differences do ML practitioners perceive in the im-

portance of mllint ’s linting rules between proof-of-concept
and production-ready projects?

RQ3 What are the main obstacles for ML practitioners towards

implementing specific best practices?

RQ4 What are the perceived benefits of using static analysis

tools such as mllint to verify SE practices in ML projects?
The rest of this paper is structured as follows. Section 2 de-

scribes influential research in the field of SE for ML that supports

this research. Section 3 elucidates the concept of project smells

and mllint , detailing two major challenges in its development.
Section 4 explains the methodology used to answer our research

questions. In Section 5, we present the findings from applying our

methodology and answer our research questions. Section 6 then

combines and discusses these findings along the themes of version

controlling data, dependency management and static analysis tool

adoption. We then discuss the threats to the validity of our research

in Section 7 and conclude with future work in Section 8.

The contributions of this research are as follows:

• The novel concept of project smells as a holistic perspective

on software quality in ML projects.

• An open-source static analysis tool mllint 2 to help with
detecting and mitigating these project smells.

• Experiences, insights and perceptions on project smells in

an industrial context.

2 BACKGROUND

Both SE and ML are well studied in literature, though their inter-

section is still an emerging field of research [3, 12, 14].

Sculley et al. [15] were among the first to investigate risk factors

in the design of real-world ML systems at Google through the lens

of technical debt. In doing so, they unearthed several anti-patterns

2https://github.com/bvobart/mllint

in ML system design, including glue code—the tendency for ML ap-

plications to consist of code that glues together functionalities from

various general-purpose libraries—and configuration debt—the ten-

dency for both researchers and engineers to see configuration and

configurability of the ML application as an afterthought [15]. Con-

tinued research at Google investigating production-readiness and

the reduction of technical debt in ML systems, resulted in “The ML

Test Score” [5]: a rubric with 28 specific tests and monitoring needs,

along with a scoring system to determine the production-readiness

of ML systems. There are four categories, each with seven tests:

Data, Model, Infrastructure and Monitoring. Executing a test manu-

ally, documenting and distributing the results, earns the project half

a point. A full point is awarded if that test is automated and runs

regularly. The awarded points are then summed up within each cat-

egory and the lowest of these sums is the final production-readiness

score. A score between 3 and 5 is interpreted as “Strong levels of

automated testing and monitoring, appropriate for mission-critical

systems.” [5]

Amershi et al. [3] at Microsoft also used experiences from engi-

neering ML applications in their case study. Their study resulted in

several best practices and three aspects of engineering ML / AI ap-

plications that make them fundamentally different from traditional

software applications. One aspect is the discovery and management

of data: ML applications also need to deal with finding, collecting,

cleaning, curating and processing their input data. This data also

needs to be stored and versioned, for which in contrast to code

there were no well-designed technologies to do so [3]. Another

challenge is the customisation and reuse of ML models on problems

in different domains or with slightly different input formats, as

this may require retraining or even replacing the model with new

or additional training data. Finally, strict modularity between ML

models is difficult to achieve, as models are not easily extensible

and multiple models may interact with each other in unexpected

ways [3]. Kriens and Verbelen [10] recognise this and propose a

partial solution in the form of OSGi-like metadata for ML models.

The aforementioned challenges are reflected in systematic litera-

ture reviews (SLRs) such as [14], [23] and [2]. Nascimento et al. [14]

analysed the limitations and open challenges found in the SE for ML

field of research, noting that testing, AI software quality and data

management are three of the main challenges faced by profession-

als in the field. They also report on several SE practices, approaches

and tools for dealing with these challenges. On the topic of testing

ML systems, Zhang et al. [25] performed an extensive SLR of vari-

ous techniques to do this. Washizaki et al. [23] similarly performed

an SLR on SE design patterns for ML techniques, identifying several

good and bad patterns for engineering ML software. Muralidhar

et al. [13] also identify MLOps anti-patterns. More recently, Alamin

and Uddin [2] conducted an in-depth literature review, resulting in

a taxonomy of different quality assurance challenges for ML soft-

ware applications, which includes dealing with data dependencies

and ML-specific technical debt. Bogner et al. [4] further investigates

technical debt in ML systems, identifying new forms of such debt,

72 anti-patterns (most of them relating to models and data) and 46

potential solutions to them.

Our research builds on the work of SE4ML [18], who have identi-

fied 45 best practices for engineering trustworthy ML applications

[16, 17, 21]. They also measured the adoption of these best practices,

212

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

“Project smells” — Experiences in Analysing the SoftwareQuality of ML Projects with mllint ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA

both in academic and industry use [16]. Their findings indicate that

larger teams tend to adopt more best practices and that traditional

software engineering practices tend to have a lower adoption than

ML-specific best practices. More recently, they also studied chal-

lenges and solutions in an SLR about software architecture for

systems with ML components [19]. Along with new ML-specific

challenges, they also found that traditional software architecture

challenges also play an important role in architecting ML systems.

Lastly, in our previous work, we analysed the prevalence of code

smells in ML projects [22]. Aside from widespread code duplication

in ML projects and several false positives in Pylint, we coinciden-

tally found that nearly half of the projects we analysed struggled

with dependency management, so much so that manual adjust-

ments were needed to allow error-free installation of the Python

libraries that they used. This severely hurts the maintainability and

reproducibility of these projects.

3 MLLINT

Following from the related work, a pattern emerges suggesting that

code smells are only a small factor in the software quality of ML

applications. Code smells do “have a strong relationship with quality

attributes, i.e., with understandability, maintainability, testability,

complexity, functionality, and reusability” [11], but they do not paint

the complete picture, especially in ML given the extra challenges

in their development over traditional software applications.

Thus, to more accurately assess the software quality of ML appli-

cations, a more holistic approach would be required, where instead

of code smells, we analyse project smells. Such project smells are

concerned with deficits in how an ML project is managed, including

poor dependency management (as outlined in [22]), lack of version

control for code or data, unit testing, proper Continuous Integration

(CI) configurations, or effective static analysis tooling. Code smells

are also a subcategory of project smells.

To the end of automatically detecting such project smells and giv-

ing practical advice on how to fix those, we implemented mllint .
mllint is a command-line utility to evaluate the software quality
of ML projects written in Python by performing static analysis

on the project’s source code, data and configuration of support-

ing tools. The aim of mllint is threefold. First, mllint aims to
help data scientists and ML engineers in creating and maintaining

production-grade ML and AI projects, both on their own personal

computers as well as on CI. Secondly, it aims to help ML practition-

ers inexperienced with SE techniques explore and make effective

use of battle-hardened SE for ML tools in the Python ecosystem, Fi-

nally, mllint aims to help ML project managers assess the quality
of their ML projects and receive recommendations on what aspects

of their projects they should focus on improving.

3.1 Implementation

mllint analyses a project with linting rules in five categories,

which roughly correspond to the project smells as previously out-

lined. These categories are based on well-known SE practices in

traditional software application development, as well as SE for ML

best practices from (grey) literature, such as SE4ML’s collection

of best practices [17, 18] and Google’s Rules for ML [26]. Each

category is described as follows.

Version Control This category comprises both version con-

trolling source code (with Git), as well as version controlling

data. The latter is particularly relevant to ML applications.

Dependency Management This category entails checking

whether the project manages its code dependencies (e.g. used

libraries) in a reproducible and maintainable manner, to mit-

igate the dependency management issues found in [22].

Continuous Integration The rule in this category checks

whether the project has a CI configuration file.

Code Quality This category is concerned with code smells

and runs a set of linters (Pylint, Mypy, Black, isort and

Bandit) to detect and help mitigate them.3

Testing This category analyses testing practices in the project

by counting the number of test files, the number of tests

passed and the test coverage. Since mllint performs static
analysis, it will not run the tests, but instead expects a test-

and coverage report from a prior test run.

Each category contains linting rules that analyse and score how

the best practice referred to by the category is implemented in the

project. For example, the Version Control category contains rules

such as “Project uses Git”, “Project should not have any large files in

its Git history” and “Project uses Data Version Control”. The checks

imposed by these linting rules are based upon prevalent tooling

and usage techniques found in the industry.

Additionally, users can define custom rules in their

mllint configuration by referring to a custom program that

performs this custom check and returns the resulting score and

corresponding details. This allows users to implement their own

linting rules for verifying internal team or company practices.

Additionally, it can help to prototype new rules for mllint before
they are included in mllint ’s core set of linting rules.

Figure 1: Example snippet from an mllint report rendered
to the terminal. The full report can be found on GitHub.4

After its analysis, mllint outputs a Markdown-formatted report
that is by default pretty-printed to the terminal. This report contains

3This category could be extended with tools for detecting ML-specific code smells,
such as dslinter [7].
4https://github.com/bvobart/mllint/blob/main/docs/example-report.md

213

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA Bart van Oort, Luís Cruz, Babak Loni, and Arie van Deursen

a score for each rule (between 0 and 100%), often along with details

that explain the score, provide extra information derived from the

analysis and / or provide recommendations on how to make the rule

pass. For an example of such a terminal-rendered mllint report,
see Figure 1.

The experienced practitioner might note that mllint in its cur-
rent state primarily focuses on project smells that are also applicable

to non-ML projects, but has few rules that specifically apply only

to ML projects. There are two reasons for this: first, such more

general SE tools and techniques (e.g. dependency management

and linting for code quality) are more alien to data scientists than

ML-specific tools, given the low degree of SE experience in data

scientists. Secondly and more practically, given our limited amount

of development resources for mllint , we have yet to implement
more ML-specific linting rules.

In the following two sections, we explain two of the challenges

faced in architecting mllint and its rules, along with how we ap-

proached them. Note that mllint is currently a research prototype.
There are still many linting rules to implement and a host of ML

project tools and architectures to support. As such, mllint is yet to
reach its full potential, though it does pave the way towards using

static analysis techniques to improve the quality of ML projects.

mllint is built with an extensible architecture so that the list of
supported practices can continuously be extended.

3.2 Challenge 1: Mapping high-level best

practices to practical guidelines

The SE for ML best practices found in academic sources such as [17,

18] tend to be quite high-level: they explain a concept or technique

for a project to adhere to, but often provide little direct, practical

recommendations on how to implement it correctly. An example of

this is the best practice to use static analysis tools for checking code

quality5, which does not recommend any specific linting tools to

employ or what kinds of linting rules to enable—in part, to remain

timeless and general. But especially within the plethora of language-

supporting, supplementary tools and libraries that exists within

the Python ecosystem, it can be very difficult and time-consuming

to find the right tools or configuration.

The aim of mllint is therefore to give practical advice to its
users; concrete tools, techniques and guidelines that the user can

implement such that the SE for ML best practices are fulfilled, along

with automated checks to detect the degree of adoption. However,

figuring out which exact tools to advocate for implementing which

best practice is non-trivial, especially as programming ecosystems

change. This is best done by looking at what tools are prevalent

and popular in the industry.

Additionally, mllint is an automated, command-line tool, so

based only on the project’s source code (e.g. the contents of its

Git repository), it has to be able to reliably computationally check

whether the project adheres to each practice. This makes it diffi-

cult, in some cases impossible, to verify whether certain team- or

governance-related best practices are being upheld. Two examples

of this are “Establish Responsible AI Values” and “Perform Risk As-

sessments” [18]. These are team or company processes that a source

code analysis tool such as mllintwill not be able to enforce.
5https://se-ml.github.io/best_practices/03-use_static_analysis/

To find appropriate linting rules and practical advice, we started

by exploring the practical side of the SE for ML landscape and how

their best practices relate to practical implementations. This was

done by estimating the measurability of the best practices from

SE4ML [17, 18] and Google’s Rules for ML [26]. For each practice,

we explored ways to detect adherence to it in the source code of

an ML project, how reliable such an approach would be and, by

extension, how feasible it would be to reliably and accurately mea-

sure adherence to this practice. Our indication of measurability was

given as one of five colours between red (not measurable), yellow

(technically measurable, but likely to be unreliable or inaccurate)

and green (measurable in a reliable and accurate way).

As an example, consider the best practice to use Continuous

Integration [18]. This was marked yellow, as it is easily possible to

detect whether a project has a CI configuration in its repository

–and CI configurations are also machine-readable– but it is difficult

to determine whether this configuration contains an appropriate

set of CI jobs for the project. By contrast, the best practice “Check

that Input Data is Complete, Balanced and Well Distributed” [18]

was marked green, since this data should be available through the

software repository and only requires a few statistical checks on

the data, possibly through tools like GreatExpectations6 or Tensor-

Flow Data Validation7. Finally, the aforementioned best practice to

“Establish Responsible AI Values” was marked red, as this is a team

/ organisational value that cannot be deduced from the project’s

software repository.

After this measurability analysis, we simply picked the low-

hanging fruits, i.e., the most measurable, yet also easy to implement

best practices to become our first best practices. An iterative ap-

proach was then taken in constant collaboration with experienced

ML engineers from ING to determine which best practices were

most useful next.

3.3 Challenge 2: Heterogeneity of ML projects

Another big challenge for mllint comes from the many different

kinds of ML projects. An ML project could be plain-old Python

using basic ML libraries, but could also be based on a framework

like TensorFlow or PyTorch, for each of which a different project

architecture and tooling might be preferable. If a company has their

own ML infrastructure or platform, then this could also impose

different requirements to the project’s layout and tooling. Further-

more, if the company uses proprietary tools for fulfilling certain

practices, mllintmay not recognise them and will not be able to

assess whether the best practice is followed correctly, resulting

in incorrect recommendations. All in all, some linting rules may

not make sense on certain projects, or need to adapt what they

recommend for different kinds of projects.

Aside from the technical differences, ML projects may also differ

in maturity. An ML project that is only a proof of concept does not

need to be as highly engineered, reproducible and maintainable as

a production-ready or fully productionised project. Surely, it should

get its basics right, as the best practice “Keep the first model simple

and get the infrastructure right” (rule #4 of Google’s Rules of ML

[26]) also endorses, but as an example, it may not be worthwhile

6https://greatexpectations.io/
7https://github.com/tensorflow/data-validation

214

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

“Project smells” — Experiences in Analysing the SoftwareQuality of ML Projects with mllint ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA

fixing all linter warnings or achieving full test coverage. The more

mature the project, the more important these engineering princi-

ples become though. Since mllint ’s recommendations may steer
the engineering process, mllint should account for differences in
maturity, by adjusting the weights of its rules to match what is

important to the project at the current stage of development. This

paper therefore also investigates the perceived differences in the

prioritisation of each of mllint ’s rules.
Finally, there will always be tools, techniques and practices that

mllintwill not recognise or have linting rules for, such as propri-
etary tools and internal company / team practices. To provide some

degree of support for such cases, mllint allows users to define
custom rules in its configuration that run some arbitrary script

or program to score and provide recommendations on a custom

practice. Such custom rules also provide a testing ground for new

linting rules that may later be published as a plugin to mllint , or
even be built into mllint .
Summarising, the challenge of heterogeneity of ML projects to

tools like mllint is still an open challenge. However, our proposals
to solving it may at least limit its impact. These include configura-

bility of enabled rules (with sensible defaults), automatic adaptation

of linting rules to different kinds of technology stacks present in

projects, and custom linting rules.

4 METHODOLOGY

To answer the research questions posed in the introduction, we

employed a mixed-methods approach. An overview of this is dis-

played in Figure 2. First, we gathered and qualitatively analysed the

mllint reports of eight ML projects at ING. Secondly, we asked
and encouraged ML practitioners from ING and open-source com-

munities alike, to try mllint on one or more of their projects and
evaluate the reports that it produced. Subsequently, we ran a survey

with 22 users of mllint to evaluate the efficacy of the tool, as well
as gather insights on how users prioritise each of the implemented

rules. We also used insights from informal, open-ended interviews

performed with ML practitioners within ING, partially instigated by

a desire for deeper elaboration on some of the survey’s answers.8

4.1 Qualitative analysis of mllint reports
To help answer RQ1, we gathered and qualitatively analysed the

reports that mllint generated for eight ML applications within
ING. For seven of these projects we got access to the source code

and ran mllint on it ourselves. For the other, we asked one of its
developers to run mllint on their project themselves and forward
us the report, which we then discussed with the developer.

The analysis of the reports then consists of three stages. First,

we manually browse through each report to inspect the scores and

details for each linting rule, assessing what project smells were

detected and how deeply ingrained in the project they are. Are they

simple oversights during development? Are they mllint false pos-
itives? Were the developers unaware of the advocated best practice

so far? Does the project show evidence of them applying the best

practice, but in way different to what mllint recognises, or did the
developers actively choose not to implement the best practice being

8While the survey was anonymous, the participant could fill in an email address for
us to contact if answers were found to be either unclear or particularly interesting.

advocated by the rule? Whenever uncertain, we ask the project’s

developers for further clarification and verification of these ideas.

Secondly, combining the insights taken from multiple reports,

we deduce patterns in the prevalence of the detected project smells.

Which project smells are most and least often detected? Are there

any project smells that are systemically ignored, or do the develop-

ers have suitable alternatives for these practices? This results in a

list of key ideas and insights about mllint ’s project smells.
Finally, to validate the findings and gauge the significance of the

key ideas taken from stage 2 within the context of ING, we discuss

the findings and key ideas with experienced ML engineers at ING.

4.2 Survey

Based on our research questions, we designed a survey9 to evaluate

the efficacy of mllint as a tool and gather insights on the prioriti-
sation of each rules. The survey starts by gathering demographics

such as the participant’s profession, the type of organisation they

work in, their team size & composition and their experience in

the fields of SE and ML. We then asked participants about their

experiences with mllint by asking about their first impressions,
the amount of mllint recommendations they have or would apply
to their ML projects, and how much they agree or disagree with a

few statements on how helpful the descriptions of mllint ’s rules
are and whether they would consider employing mllint in their
ML project development and code review process.

Next, in separate questions, we ask what benefits and drawbacks

static analysis tools such as mllint have for the participant in
validating SE practices for ML projects. We use this to answer

RQ4 and RQ3 respectively. We also ask questions about rules that

the user disabled or was not able to implement and what was

obstructing them in doing so, which we also use for answering

RQ3. Furthermore, we ask participants what features or rules they

think mllint is still missing and what features they think could be
improved.

In the final part of the survey, to answer RQ2, we ask partici-

pants to rate the importance of each of the linting rules currently

implemented in mllint . Possible answers are on a Likert-scale,
ranging from ‘Not important’ to ‘Absolutely Essential’, with the

addition of an ‘I don’t know’ option. Since the priority of each rule

may be different in different stages of the lifecycle of an ML project,

we ask the participant to do this for both a proof-of-concept and

a production-ready ML project. Since it may not be entirely clear

what these terms entail, we provide the user with the following

definitions:
Proof-of-concept project A project that primarily serves as

an example to show that the concept of the project works

and will scale. Imagine that this is to show supervisor that it

is worthwhile to further develop this project into one that

can eventually be deployed to the production environment.

Production-ready project A project that is mature enough

to be deployed to the production environment (or already is).

This requires rigorous project quality standards, such that

the application is stable and will behave as expected.

For open-ended questions, we codified each of the answers by

analysing each answer, sentence by sentence, marking the topics

9Survey available online: https://doi.org/10.6084/m9.figshare.18777821.v1.

215

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA Bart van Oort, Luís Cruz, Babak Loni, and Arie van Deursen

Using ML best practices taken from:

Literature & SE4ML
Measurability analysis

Experienced ML Engineers at ING
Lessons learned from previous research

mllint development

ING, Twitter, Reddit, GitHub

Promote mllint

Gathered from ING ML applications

Analysis
1. Assess detected project smells

2. Extract key ideas & insights
3. Validate with experienced ML engineers at ING

Gather & analyse mllint reports

ING & Public survey of ML engineers and data scientists using mllint

Topics
Experiences with mllint

Obstructions to implementation of practices
Benefits & drawbacks to static analysis tools

Prioritisation of mllint rules

Survey

Validating with co-authors and
experienced ML engineers

Synthesize & report
results

Figure 2: Overview diagram of the methodology used in this paper.

that they discuss and denoting their sentiment towards it; are they

being positive or negative, or listing advantages or caveats to take

into account? We also took note of any specific, insightful remarks

from the answers. As an example, the phrase “mllint provides a
good checklist of things to do to improve ML project quality” would

be marked as having a positive sentiment and tagged with ‘quality

checklist’, ‘project quality’ and ‘guides planning’.

The survey was spread among ML practitioners at ING through

their data science and data engineering mailing lists and Slack

channels and the AI for FinTech Research Lab. It was also presented

at ING’s ML engineering chapters and two workshop sessions were

held at ING Analytics, one live and one pre-recorded. Furthermore,

we publicised mllint and a public copy of the survey through

our academic network, a tweet and a Reddit post. The discussion

that the Reddit post triggered, as well as notes from open-ended

discussions conducted with experienced ML engineers from ING

after the survey, were codified similarly to the survey answers and

used to answer RQ3 and RQ4.

In total, 22 people filled in our survey, most of them ML en-

gineers, of which one chapter lead ML Engineering, two chapter

leads Data Science, two ML researchers and two PhD students. 14

participants work at ING, 4 at some other non-tech company and 4

at a university or non-commercial research lab. On average, par-

ticipants had between 2 to 6 years of experience at developing ML

applications and between 4 to 10 years of experience in Software

Engineering (defined in the survey as “designing, implementing,

testing and maintaining complex software applications”). They tend

to work in teams of 6 to 9 members, of which on average 4 have a

strong background in SE.

Most participants noted they had used mllint on one project
at the time of filling in the survey, only three participants had run

mllint on two to five projects. Impressions are overall positive,
with participants noting that the terminal interface is pretty and

that the reports are well-organised, as well as “informative to people

unfamiliar with ML tooling and/or Python workflows”. One partici-

pant noted the tool “should be a standard on ML projects”. However,

participants also noted that mllint is still early in development and
that some were overwhelmed with the amount of terminal output,

especially in the presence of many code quality linter messages.

Figure 3: Countplot ofML experience among our survey par-

ticipants.

Figure 4: Countplot of SE experience among our survey par-

ticipants.

5 RESULTS

Applying our methodology, we found the following answers to our

research questions.

5.1 RQ1: How do the project smells as detected

by mllintfit the industrial context of a large
software- and data-intensive organisation

like ING?

In total, eight ML projects at ING were analysed. Four of these were

proof-of-concept projects, two projects were production-ready, one

project was in the process of being made production-ready and

one project was an example project. Listing by mllint category as
described in subsection 3.1, our key findings and observations are

as follows10.

10We omit the CI category, as its implementation in mllint has a false positive.

216

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

“Project smells” — Experiences in Analysing the SoftwareQuality of ML Projects with mllint ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA

Version Control

Every project was using Git to version control their code. Three

projects had large files in their Git history, some of it training

data, some of it large Jupyter Notebook files. However, none of

the projects that we analysed were version controlling their data

using the Data Version Control (DVC)11 tool, though it is known

that some projects at ING do use it. Data acquisition methods differ

per project: some receive it at run-time, one had scripts to retrieve

the data from an external database, some instructed the user to

download the data from an internal document sharing platform.

Dependency Management

Dependency management was done well in two projects, in one

project not at all and in other projects with a combination of

requirements.txt and setup.py, of which mllint doesn’t recog-
nise whether it is used in an effective, maintainable and repro-

ducible way. Manual inspection showed that these projects do

groom their requirements.txt files, there was no evidence of
direct pip freeze usage as was prevalent in [22] and some of

these projects were neatly separating their runtime dependencies

from development dependencies. However, there were also two

projects that duplicated the contents of their requirements.txt
in their setup.py.
Code Quality

The example project and (being made) production-ready projects

adopt static analysis tools to lint for code smells, as indicated by

instructions to run linters in the documentation or linter config-

urations in their repositories. These projects are not free of code

smells though, as particularly Pylint was eager to complain, though

it is disputable what degree of its messages were false positives or

irrelevant. The other proof-of-concept projects, however, were not

using static analysis tools, as shown by their lack of linter configu-

ration, lack of linter usage instructions and abundance of detected

code smells.

Testing

The two production-ready projects and example project have au-

tomated tests that also pass. Two proof-of-concept projects had

varying amounts of tests, but some of them fail due to import

errors12. The other three projects, including the one being made

production-ready, did not have any tests.

5.2 RQ2: What are the differences between

perceptions on mllint ’s linting rules for
proof-of-concept versus production-ready

ML projects?

From our survey, we have gathered the following results, as listed by

linting rule (sub-)category. For the average importance, we encoded

our five Likert-scale answers to integers between -2 and 2, and

took the mean of the responses. For the range of importance, we

subtracted and added the standard deviation from / to the mean,

then rounded to the nearest integer, mapping back to a Likert-scale

answer.

Version Control – Code

For both proof-of-concept as well as production-ready projects,

11https://dvc.org/
12Note: this may also be caused by a misconfiguration on our end, though where
available we did diligently follow instructions in the repository for running the tests.

survey participants on average find usage of Git in ML projects

between moderately important and absolutely essential, averaging

very important. For production-ready projects, usage of Git is even

unanimously seen as absolutely essential.

Version Control – Data

The importance of the rules on the (correct) use of DVC is dis-

puted: for proof-of-concept projects, survey participants find this

between not important and very important, averaging to slightly

important. For production-ready projects, survey participants find

this between slightly important and absolutely essential, averaging

to very important. Note, however, that the rules in this category

primarily relate to the usage of the tool DVC, rather than the actual

practice of version-controlling data, for which there exist many

other options besides DVC.

Dependency Management

For proof-of-concept projects, the use of proper dependency man-

agement tooling is found to be between slightly important and

absolutely essential, averaging very important. While all other rules

on proof-of-concept projects were lowest rated as not important,

this rule was the only rule to be lowest rated as slightly important.

For production-ready projects, this rule was rated between very

important and absolutely essential, averaging absolutely essential,

with the lowest rating being moderately important.

For both types of projects, however, the importances of using

a single dependency manager and making a correct distinction

between runtime and development dependencies, was disputed.

The former was rated between slightly vs. moderately important

and absolutely essential, averaging moderately vs very important.

The latter was rated between not vs. slightly important and very

important vs. absolutely essential, averaging moderately important.

Continuous Integration

For proof-of-concept projects, the use of CI was rated between

slightly and very important, averaging moderately important. For

production-ready projects, this was rated between moderately im-

portant and absolutely essential, averaging very important.

Code Quality

The recommendation to use code quality linters does see a signifi-

cant shift in importance between proof-of-concept and production-

ready projects. For a proof-of-concept project, our survey partici-

pants rate this between not important and very important, averaging

moderately important. For a production-ready project, they rate this

between moderately important and absolutely essential, averaging

very important.

As for the actual linting tool being used, there is no significant

difference in the perceived importance. There is a slight tendency

towards the code formatting tool Black in proof-of-concept projects

and towards the security-focused linter Bandit in production-ready

projects. Overall, we find that the usage of code quality linters is

more important than a total absence of linter warnings.

Testing

The importance of having automated tests in a proof-of-concept

ML project is disputed and perceived to be between slightly and

very important, averaging moderately important. For a proof-of-

concept project, however, their importance is significantly higher,

between moderately important and absolutely essential, averaging

very important. Passing the tests and having a test coverage report

is also seen as moderately vs. very important.

217

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA Bart van Oort, Luís Cruz, Babak Loni, and Arie van Deursen

5.3 RQ3: What are the main obstacles for ML

practitioners towards implementing

specific best practices?

Survey participants noted that out of mllint ’s rules, they were
most obstructed in implementing the practices about code quality

linters and dependency management.

“Linters, specially regarding code quality, can be overwhelming if

not properly configured. Not all warnings pointed are necessarily bad

for your code, not all justified warnings are equally bad, so it needs to

be used parsimoniously.”

Regarding code quality, survey participants complained that lin-

ters generally suffer from a high degree of false positives and that

configuring these linters is often cumbersome and time-consuming.

They experience a catch-22 situation: on the one hand, using the de-

fault configuration leaving all rules enabled, in many cases results

in an overwhelming amount of linter warnings that in the eyes of

the user often do not relate to the project in a functionally meaning-

ful way (e.g., trailing whitespace and proper docstring formatting,

but also false positive type-checking errors). On the other hand,

selectively enabling or disabling linting rules by configuring each

linter for the project, is found to be time-consuming, difficult and

cumbersome, especially for those inexperienced with the tool or

the kind of linting rules and their importance to the quality of the

project. This is especially found to be difficult in a team situation,

as each developer may have different preferences / opinions about

specific linting tools and rules.

Regarding dependencymanagement, while mllint recommends
using Poetry or Pipenv, some survey participants note that they

prefer to stick with Python’s standard requirements.txt and

setup.py files. While they do acknowledge that these are easy

to misuse, especially for those inexperienced with them, several

arguments are made for them. First, they argue that a disciplined

developer or team can still use Python’s standard tooling in an

effective, maintainable and sufficiently reproducible manner, espe-

cially when combined with Docker. Secondly, if they are already

sufficiently proficient at this, they do not want to re-learn to do

with Poetry what they can already do with Pip. Thirdly, they note

that they do not want to be forced to use external tooling (outside

of Python) to interact with a project. Finally, they note that Poetry

may conflict with other tools they are using in the project, such

as Versioneer. Solving such conflicts creates extra overhead and

may be further complicated by a smaller user base as opposed to

standard Python tools to help with solving these conflicts.

Generalising with other mentions of less specific obstructions,

we find that:

(1) Configuration of tools, especially static analysis tools, is

perceived as difficult, cumbersome and time-consuming.

(2) False positives are a significant obstruction to the adoption of

static analysis tools. They produce noise andmay distract the

user towards irrelevant or trivial issues, resulting in overhead

to selectively ignore them or adjust the configuration of the

tool to match their preferences.

(3) While some tools are recognised to be useful to inexperi-

enced practitioners in reducing mistakes, experienced practi-

tioners prefer to use tooling they are already used to, instead

of having to learn a new tool. They may also be hesitant to

add more tools to a tool stack they already deem sufficient.

(4) New tooling may conflict or have unexpected interactions

with existing tooling. Solving these problems causes extra

overhead for practitioners. The expectancy of such problem-

atic interactions also creates apprehension towards adopting

these tools.

5.4 RQ4: What is the perceived benefit of using

static analysis tools such as mllint to check
SE guidelines in ML projects?

Participants note that they find tools such as mllint to be particu-
larly useful for enforcing best practices, maintaining consistency in

the project and discovering useful new tools in the Python ecosys-

tem to improve their project quality. They also mention that static

analysis tools such as mllint can help guide the direction that

further development efforts should take in the road towards pro-

ductionisation of the project. In doing so, these tools’ reports can

be used as a project quality checklist.

“It is a great way to enforce best practices, avoid common pitfalls

and automate "common sense". Without such tools it’s easy to be

sloppy on project quality.”

Participants find static analysis tools such as mllint to also

be useful for doing code review by helping to “bring attention of a

reviewer to potentially problematic pieces of code introduced, specially

when integrated to automated CI pipelines.”. Usage of these tools in

CI is a popular suggestion, though varying suggestions are made

as to the frequency of running them (e.g. on every pull request, at

every release, or before finalising the project).

6 DISCUSSION

This section collects, combines and discusses our findings, sec-

tioned along three themes: version controlling data, dependency

management and static analysis tool adoption.

6.1 Data version control

While the results from RQ1 showed that none of the projects we

analysed were using the tool DVC, this does not necessarily mean

that industry ML practitioners are not version controlling their data.

Validating with experienced ML engineers at ING, we find various

ways in which data is managed: some projects only require data

from the user at run-time, some have data small enough to fit in

the code repository, but most prevalently, data is either pulled from

a Hadoop filesystem or shared through other internal data sharing

solutions, requiring the ML developer to download it manually.

One ML engineer mentioned that they had experimented with DVC

before, but found that it produced some overhead and preferred

to stick with the semi-versioned workflow that they already had.

Each of these methods has a varying degree of version control and

a varying suitability towards certain types of data (consumption).

Overall, there seems to be a lack of standardised tooling for

dealing with varying kinds of data dependencies, as practitioners

generally stick with what is most practical or known to them. This

presents a significant challenge to static analysis tools for detecting

data version control techniques.

218

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

“Project smells” — Experiences in Analysing the SoftwareQuality of ML Projects with mllint ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA

6.2 Dependency management

Overall, dependency management is perceived to be very important

vs. absolutely essential and is done better in our industrial context

than in the open-source context seen in [22], though practices still

differ significantly between projects and developers. Some prefer

to use external tooling such as Poetry, others prefer to create a

manual workflow around Python’s standard requirements.txt
and setup.py files. Such a workflow was argued by several ML

engineers to be effectively usable with disciplined and sufficiently

experienced users, though they do recognise that they are prone to

misuse with less experienced users.

This is particularly troubling in ML project development, given

the gap in SE experience in data scientists. Unlike other popular lan-

guage ecosystems such as NodeJS (npm or yarn), Go (built-in) and

Rust (cargo), which external tools like Poetry take heavy inspiration

from, the Python language ecosystem still lacks a standardised, easy-

to-use, consistently used, maintainable and reproducible method of

managing code dependencies.

6.3 Static analysis tool adoption

Results show a mixed sentiment towards static analysis tools. Com-

bining findings from RQ1 and RQ2, we identify a tendency against

using these linters during the development phase of the project and

instead only adopting them during the productionisation phase,

as an after-the-fact check on code quality. However, research has

shown that linters are particularly useful during development for

automatically fixing code styling (maintaining code consistency),

avoiding complex code, and finding potential bugs early [20]. Es-

pecially in ML applications, where one run of the program could

take hours, linters can save the user from an unfortunate typo in

the program that would void all the time spent running it.

So why do practitioners refrain from adopting static analysis

tools during their ML project development? Findings from RQ3,

corroborated by existing research [20], show two primary obstruc-

tions towards their adoption: a high rate of false positives and

cumbersome, time-consuming configuration.

False positives in static analysis tools are particularly common

in dynamically typed, interpreted languages such as Python. Our

previous research also found Pylint to produce a high rate of false

positives on imports, both local imports as well as prominent ML

libraries [22]. This problem is easier stated than solved, however,

which calls for more development efforts and research into prevent-

ing false positives in static analysis on Python code, both from a

tooling and linguistic perspective.

Practitioners could also selectively disable the rules that produce

false positives in the configuration of their linters. However, as our

findings corroborate, creating andmaintaining linter configurations

is also a significant challenge in their adoption [20]. Practitioners,

especially those in a team and / or inexperienced with the linter or

their importance to the code quality of the project, find it difficult,

cumbersome and time-consuming to define their standards and

configure their linters to fit them.

Thus, for tool developers to have their tools become widely used,

there seems to be an inherent trade-off between having a tool that is

abstract or malleable enough to fit as many applications as possible,

while also requiring as little configuration effort from the user as

possible. To achieve this, one set of recommendations is to simplify

the configuration of the tool as much as possible: do not give the

user unnecessary configuration options [24]. Similar to tools like

gofmt, govet and Black: set standards and defaults that every user
can agree on, then provide users with minimal knobs to adjust

these, which barely leaves any room for bikeshedding.

However, many static analysis tools, including mllint , are too
complex or deal with too opinionated subjects to set one standard.

Thus, there is also a need for context-aware static analysis tooling:

by either automatically detecting or having the user configure in

a simple way what the context of the project under review is, the

tool can automatically adjust linting practices to conform to the

user’s needs. In the case of mllint , this context would include
the project’s (desired) maturity (e.g. proof-of-concept, production-

ready), use-case or tool stack. Context-aware static analysis func-

tionality could be realised by using presets or profiles, similar to

ESLint [20] and isort, though more research on this subject is

recommended.

7 THREATS TO VALIDITY

7.1 Analysed projects & survey participants

In the qualitative analysis of mllint reports of ING ML projects,

we were only able to get access to mllint reports of eight projects.
There may also be a selection bias in the projects that we got access

to, as we were unable to get access to ML projects of more sensitive

natures, due to internal regulations around either what data they

process or what functionality they perform. We are thus unsure of

the generalisability of this dataset towards the state of ML projects

at ING. We attempted to mitigate this problem by validating our

generalised findings with experienced ML engineers at ING.

The limited number of survey participants (22) also presents a

challenge to this research’s validity. It was difficult to gain survey

responses, in part also since it required participants to have experi-

ence running mllint on one of their own ML projects. However,
the more qualitative nature of our survey questions and analysis

of the answers, combined with validation with experienced ML

engineers, may help to mitigate this challenge.

We also find a lack in diversity among our survey participants,

given that most of the participants are ML engineers with extensive

experience in SE. While it is interesting to research how our tool

relates to experienced engineers, it would be interesting to include

more data scientists with little experience in SE in our survey.

7.2 Construct validity

For this research, we primarily focused on the project smells that

mllint is able to detect reliably. However, there are many more
project smells to be catalogued and to be detected by mllint . Ad-
ditionally, there are many more tools, techniques and SE practices

that mllint does not yet recognise or recommend, but are valid
ways of mitigating project smells. Some of mllint ’s linting rules
may currently also pertain more to the use of a tool that imple-

ments a certain ML project best practice, than to the practice itself,

such as the rules about data version control with DVC. Therefore,

until extended to support more, mllint can only reliably detect a
limited set of project smells, consequently limiting the scope of this

research.

219

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

ICSE 2022 – SEIP, May 21–29, 2022, Pittsburgh, PA, USA Bart van Oort, Luís Cruz, Babak Loni, and Arie van Deursen

Furthermore, for the RQ4, we focus on perceived benefits of static

analysis tools, though it may be more interesting to investigate

observable benefits. This could be done, for example, by asking

ML practitioners to use mllint in the development of their ML

projects for a prolonged period of time and then seeing how the

software quality of their ML projects increases over time. While

this was considered, we acknowledge that mllint is not yet mature
enough to accurately measure the full software quality of an ML

project. To the best of our knowledge, there is also no other tool that

can accurately measure the full software quality of an ML project,

without limiting its scope to only one or a few aspects of software

quality. This poses a challenge to future research on this subject.

8 CONCLUSION & FUTUREWORK

In conclusion, this research introduced the novel concept of project

smells as a more holistic view over code smells for assessing the

software quality in ML projects and implemented a novel static

analysis tool, mllint , to help detect and mitigate these deficits
in ML project management. We investigated: 1) how these project

smells fit the industrial context of ING; 2) the perceived importance

of mllint ’s linting rules for ML practitioners on proof-of-concept
versus production-ready projects; 3) the primary obstacles towards

implementing solutions to these project smells and 4) the perceived

benefits of using static analysis tools such as mllint to verify SE
practices in ML projects.

Future work should primarily focus on further development

of mllint , formally defining project smells and analysing their
observable impact on the software quality of ML projects. Another

interesting research direction is to investigate howML development

ecosystems can be redesigned or extended to inherently prevent

such project smells from occurring.

Regarding the development of mllint , more linting rules need
to be implemented (particularlyML-specific rules), such as on assert-

ing data quality, having a reproducible, end-to-end ML pipeline and

linting for ML-specific code smells. Additionally, existing linting

rules should be extended with more in-depth analysis of the project

under review, with support for more toolsets and ML frameworks.

Future research could also investigate how context-aware static

analysis can be applied in practice and how existing static analysis

tools can adopt this. For mllint it would entail implementing meth-
ods for detecting or in a simple way configuring the technology

stack or ML framework used in the project and the project’s (de-

sired) maturity. mllint can then selectively disable non-applicable
rules and adjusts the weights of other rules to fit with what is im-

portant for the project at that stage of development. However, the

effort required to configure mllint correctly, must also be minimal.

REFERENCES
[1] AFR. 2021. AI for Fintech Research. https://se.ewi.tudelft.nl/ai4fintech/ (accessed:

06 Oct. 2021).
[2] Md Abdullah Al Alamin and Gias Uddin. 2021. Quality Assurance Challenges

for Machine Learning Software Applications During Software Development Life
Cycle Phases. arXiv:2105.01195 [cs.SE]

[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In Proceedings
of the 41st International Conference on Software Engineering: Software Engineering
in Practice (Montreal, Quebec, Canada) (ICSE-SEIP ’19). IEEE Press, 291–300.
https://doi.org/10.1109/ICSE-SEIP.2019.00042

[4] Justus Bogner, Roberto Verdecchia, and Ilias Gerostathopoulos. 2021. Charac-
terizing Technical Debt and Antipatterns in AI-Based Systems: A Systematic
Mapping Study. In 2021 IEEE/ACM International Conference on Technical Debt
(TechDebt). 64–73. https://doi.org/10.1109/TechDebt52882.2021.00016

[5] Eric Breck, Shanqing Cai, Eric Nielsen, M. Salib, and D. Sculley. 2017. The ML
Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction.
2017 IEEE International Conference on Big Data (Big Data) (2017), 1123–1132.

[6] Anita D. Carleton, Erin Harper, Tim Menzies, Tao Xie, Sigrid Eldh, and Michael R.
Lyu. 2020. The AI Effect: Working at the Intersection of AI and SE. IEEE Software
37, 4 (2020), 26–35. https://doi.org/10.1109/MS.2020.2987666

[7] M.P.A. Haakman. 2020. Studying the Machine Learning Lifecycle and Improving
Code Quality of Machine Learning Applications. Master’s thesis. Delft University
of Technology.

[8] Mark Haakman, Luís Cruz, Hennie Huijgens, and Arie van Deursen. 2021. AI
lifecycle models need to be revised. An exploratory study in FinTech. Empirical
Software Engineering (2021).

[9] ING Bank N.V. 2021. ING at a glance | ING. https://www.ing.com/About-
us/Profile/ING-at-a-glance.htm (accessed: 06 Oct. 2021).

[10] Peter Kriens and Tim Verbelen. 2019. Software Engineering Practices for Machine
Learning. arXiv:1906.10366 [cs.SE]

[11] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc.
2020. Code smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software 167 (2020), 110610.

[12] T. Menzies. 2020. The Five Laws of SE for AI. IEEE Software 37, 1 (2020), 81–85.
https://doi.org/10.1109/MS.2019.2954841

[13] Nikhil Muralidhar, Sathappah Muthiah, Patrick Butler, Manish Jain, Yu Yu, Katy
Burne, Weipeng Li, David Jones, Prakash Arunachalam, Hays ’Skip’ McCormick,
and Naren Ramakrishnan. 2021. Using AntiPatterns to avoid MLOps Mistakes.
arXiv:2107.00079 [cs.LG]

[14] Elizamary Nascimento, AnhNguyen-Duc, Ingrid Sundbø, and Tayana Conte. 2020.
Software engineering for artificial intelligence and machine learning software:
A systematic literature review. CoRR abs/2011.03751 (2020). arXiv:2011.03751
https://arxiv.org/abs/2011.03751

[15] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. In Advances
in neural information processing systems. 2503–2511.

[16] Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. 2020. Adoption
and Effects of Software Engineering Best Practices in Machine Learning. In
Proceedings of the 14th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM) (Bari, Italy) (ESEM ’20). Association for
Computing Machinery, New York, NY, USA, Article 3, 12 pages. https://doi.org/
10.1145/3382494.3410681

[17] Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. 2021.
Practices for Engineering Trustworthy Machine Learning Applications.
arXiv:2103.00964 [cs.SE]

[18] Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. 2021. SE-ML
Engineering best practices for Machine Learning. https://se-ml.github.io/
practices/ (accessed: 06 Oct. 2021).

[19] Alex Serban and Joost Visser. 2021. An Empirical Study of Software Architecture
for Machine Learning. arXiv:2105.12422 [cs.SE]

[20] Kristín Tómasdóttir, Maurício Aniche, and Arie van Deursen. 2020. The Adoption
of JavaScript Linters in Practice: A Case Study on ESLint. IEEE Transactions on
Software Engineering 46, 8 (2020), 863–891. https://doi.org/10.1109/TSE.2018.
2871058

[21] Koen van der Blom, Alex Serban, Holger Hoos, and Joost Visser. 2021. AutoML
Adoption in ML Software. In 8th ICML Workshop on Automated Machine Learning
(AutoML). https://openreview.net/forum?id=D5H5LjwvIqt

[22] Bart van Oort, Luís Cruz, Maurício Aniche, and Arie van Deursen. 2021. The
Prevalence of Code Smells in Machine Learning projects. In 2021 IEEE/ACM 1st
Workshop on AI Engineering - Software Engineering for AI (WAIN). 1–8. https:
//doi.org/10.1109/WAIN52551.2021.00011

[23] Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gael Gueheneuc.
2019. Studying Software Engineering Patterns for Designing Machine Learning
Systems. arXiv:1910.04736 [cs.SE]

[24] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, You Have given Me Too Many Knobs!: Under-
standing and Dealing with over-Designed Configuration in System Software. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Machinery, New
York, NY, USA, 307–319. https://doi.org/10.1145/2786805.2786852

[25] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine Learning Test-
ing: Survey, Landscapes and Horizons. IEEE Transactions on Software Engineering
(2020), 1–1. https://doi.org/10.1109/TSE.2019.2962027

[26] Martin Zinkevich. 2021. Rules of Machine Learning: | ML Universal Guides |
Google Developers. https://developers.google.com/machine-learning/guides/
rules-of-ml (accessed: 06 Oct. 2021).

220

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:55:09 UTC from IEEE Xplore. Restrictions apply.

