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using the magnetic field
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Abstract—In this work, our focus is on indoor localization
using the indoor magnetic field as a source of position informa-
tion. This relies on the fact that ferromagnetic materials inside
buildings cause the magnetic field to vary spatially. We jointly
estimate the pose of a combined sensor module (containing a
magnetometer) as well as the magnetic field map. We show
that our previously developed algorithm for magnetic field-
based simultaneous localization and mapping can be adapted
and extended into a general framework where a multitude of
measurements can be included. We exemplify this using a foot-
mounted inertial measurement unit where we additionally assume
the availability of range measurements.

Index Terms—Indoor localization, magnetic field, SLAM, in-
ertial sensors.

I. INTRODUCTION

Indoor localization is an active research area because GPS

signals get significantly weakened inside buildings [1]. In

recent years, the indoor magnetic field has been proposed as

a source of position information for indoor localization [2]–

[7]. This relies on the fact that ferromagnetic materials inside

buildings cause the magnetic field to vary spatially, see also

Fig. 1. These spatial variations are known to be largely

constant over time [8]. A map of these spatial variations

can therefore be used as a source of position information. In

recent years, we have developed algorithms for magnetic field-

based simultaneous localization and mapping (SLAM) [2]–

[5], where we jointly estimate the location of a mobile sensor

and a map of the magnetic field in the environment. In this

work, we show that it is possible to extend the idea of SLAM

using the magnetic field to a general framework where we

estimate the sensor pose using odometry in combination with

various types of measurements that complement the position

information from the magnetic field. We exemplify this using

a foot-mounted inertial measurement unit (IMU) where we,

apart from the magnetic field, also use range measurements to

improve the pose estimation.

II. FRAMEWORK FOR INDOOR LOCALIZATION USING THE

MAGNETIC FIELD

We are interested in jointly estimating xt :=[
(xp

t)
T mT

]T ∈ X , where m denotes a stationary

magnetic field map and xp
t :=

[
(pn

t)
T (qns

t )
T
]T

denotes the

time-varying states. Here, pn
t is the sensor’s position and qns

t

its orientation. The superscript “n” explicitly indicates that we

express this position and velocity in a world-fixed navigation

frame, while the superscript “s” refers to a sensor-fixed frame.

Fig. 1. The estimated magnetic field for an experimental sequence collected
in an optical motion capture lab. In addition to the collected inertial and
magnetometer data, we simulate range measurements with respect to a
stationary beacon (small red circle) with a finite range visualized by the large
red circle.

We parametrize the orientation using a unit quaternion and

denote the rotation matrix representation of this orientation

by Rns
t and the reverse rotation by Rsn

t . Note that xp
t can also

include further states such as the sensor’s velocity or sensor

biases. We assume a calibrated combined sensor module and

model the change in xp
t as

xp
t = f(xp

t−1, ut) + wt, (1)

where ut ∈ U is an input vector, f : X × U → X and

wt ∼ N (0,Q) is white process noise.

We model the magnetic field map as a Gaussian process

(GP). GP regression scales cubically with the number of data

points. Because of this, we use a reduced-rank approximation

to the GP [9] in the same way as in [5]. This approximation

models the GP in terms of a number of basis functions on

a fixed domain, assuming that the magnetic field anomalies

are zero at the boundary. This has been shown to be a good

approximation if sufficiently many basis functions and a large

enough domain are used [9]. Hence, the three-dimensional

magnetometer measurements ym,t are modeled as

ym,t = Rsn
t C(pn

t)m+ em,t, em,t ∼ N (0, σ2
m I3), (2)

where C(pn
t) ∈ R

3×mb , with mb the number of basis functions,

depends nonlinearly on the position pn
t . Furthermore, em,t is

white measurement noise. For more details, see [5].
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Fig. 2. Overview of the proposed framework for indoor localization using
the magnetic field.

The framework allows for including any other measure-

ments that are available. The available sensors in the module

are modeled as

yi,t = hi(xt) + ei,t, ∀i = 1, . . . NS , (3)

where yi,t ∈ Yi is the measurement received from the i-th
sensor in the sensor module, hi : X → Yi is the (nonlinear)

measurement model of the i-th sensor, ei,t ∼ N (0,Ri) is

white measurement noise, and NS is the number of sensors

present in the module in addition to the magnetometer.
The framework uses an extended Kalman filter (EKF) to

estimate the states xt by using the magnetometer measure-

ments along with the other heterogeneous sensors present in

the combined sensor module. The EKF uses the odometry to

obtain a prediction x̂p,−
t . It also updates the covariance of the

state estimates x̂p,−
t in the state covariance matrix P−t . It then

uses the magnetometer and additional sensor measurements to

obtain a posterior mean x̂+
t and covariance P+

t . Note that the

magnetometer measurements provide information both about

xp
t and the map m, see (2). Hence, no explicit fingerprinting

is necessary. Slightly deviating from a standard EKF imple-

mentation, we do not update the cross covariance between

x̂p,−
t and m in P−t in the EKF prediction. This results in

a considerable speed-up of the algorithm and makes it more

robust against unmodeled errors in the odometry. An overview

of the proposed framework is shown in Fig. 2.

III. CASE STUDY

To illustrate the proposed framework for indoor localization

using the magnetic field, we apply it to the problem of local-

izing a foot-mounted IMU using magnetometer measurements

in combination with simulated range measurements.

A. Odometry
We use a standard dynamic model [10] where the ac-

celerometer measurements ya,t and the gyroscope measure-

ments yω,t are used as inputs ut to the model (1). In other

words, the dynamic model does not make any explicit as-

sumption about the motion of the sensor but rather models the

change in position, velocity and orientation to correspond to

the measured acceleration and angular velocity. More specifi-

cally,
⎡
⎣
pn
t+1

vn
t+1

qns
t+1

⎤
⎦ =

⎡
⎣
pn
t + Tvn

t +
T 2

2 (Rns
t ya,t + gn − ea,t)

vn
t + T (Rns

t ya,t + gn − ea,t)
qns
t � expq

(
T
2 (yω,t − eω,t)

)

⎤
⎦ , (4)

Algorithm 1 Inertial sensor-based foot-mounted indoor local-

ization using the magnetic field

Input: Accelerometer, gyroscope and magnetometer measure-

ments {ya,t, yω,t, ym,t}NT

t=1 and additional available mea-

surements {yr,t}NT

t=1.

Output: Estimated position, velocity, orientation and magnetic

field map x̂+
t for t = 1, . . . , NT .

1: Initialize the state x̂+
0 .

2: for t = 1 to NT do
3: Odometry: Update x̂p,+

t−1, P
p,+
t−1 to x̂p,−

t , P p,−
t using the

dynamic model (4), the inertial measurements, the zero

velocity and zero height updates.

4: Measurement update: Compute x̂+
t , P

+
t :

5: If magnetometer measurements are available, update

the state estimate and its covariance using (2).

6: If range measurements are available, for each bea-

con i, update the state estimate and its covariance

using (5).

7: end for

where gn denotes the Earth’s gravity, T the sampling time

and ea,t ∼ N (0, σ2
a I3), eω,t ∼ N (0, σ2

ω I3). Furthermore, �
denotes the quaternion multiplication and expq converts a 3-

dimensional vector to a unit quaternion [10].

Moreover, we exploit the fact that the IMU is foot-mounted

to enhance the accuracy of the odometry by using zero velocity

and zero height updates. The foot steps are detected in the

same way as in [11].

B. Measurement model

In addition to the magnetic field measurement model (2), we

assume that range measurements yr,t with respect to a beacon

at a fixed position pn
b are available which can be modeled as

yr,t = ‖pn
t − pn

b‖2 + er,t, er,t ∼ N (0, σ2
r ). (5)

C. Methods

Similar to the approach in [5] we use an EKF with error

states and relinearize the state for each measurement update.

We initialize the magnetic field map based on the GP prior,

for more information see [5]. This initialization relies on

knowledge of a number of hyperparameters. As is common

in existing methods, we assume that these hyperparameters

are known and fixed.

IV. RESULTS

We evaluate the workings of Algorithm 1 using data col-

lected with a foot-mounted IMU (Xsens MTi-100).1 Ground

truth data was collected using an optical motion capture

system (Optitrack). The experimental setup is shown in Fig. 3.

We simultaneously collected inertial measurements at 200

Hz and use magnetometer measurements at 2 Hz. Range

measurements were simulated from a beacon placed at the

1Our Matlab implementation producing the results can be found on
https://github.com/fridaviset/MagSLAM-Framework.
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Fig. 3. The experimental setup (top right) and the estimated path by
the proposed framework with the captured ground-truth (top left) and the
translation errors of the different algorithms (bottom). The collected ground-
truth data is shown in red, the odometry is shown in blue, and the output of
Alg. 1 is shown in black. Additionally, the simulated beacon and its range
are shown as red circles in the top left plot.

location shown in Fig. 3. We assume that the beacon has a

range of 1.5 m, visualized as the red circle, that the range

measurements are available every 20 samples, corresponding

to a sampling time of 10 Hz, and that σ2
r = 0.1. We collected

two square laps of data but to better illustrate the workings

of our algorithm, we extend the data set by repeating it four

times. We use the same hyperparameters as in [3] for the

magnetic field map. Furthermore, we assumed that the range

measurements were only available for the first 200 seconds.

In Fig. 3 it can be seen that while the odometry drifts,

resulting in a position RMSE of 2.36 m, the RMSE of

Algorithm 1 is 0.27 m. The estimated magnetic field map is

visualized in Fig. 3 but can be seen more clearly in Fig. 1.

In both figures, we visualize the norm of the magnetic field

while the opacity is inversely proportional to the uncertainty

of the GP map posterior.

We compare the estimation accuracy of Algorithm 1 with

using the algorithm either without magnetometer measure-

ments or without range measurements. This results in RMSEs

of 0.60 m and 0.61 m, respectively. The results shows the

efficacy of the proposed framework in solving the indoor lo-

calization problem. Additionally, it shows that by including the

combination of magnetometer with another type of measure-

ments (range measurements), the accuracy of the localization

output is improved.

V. CONCLUSIONS

We presented a framework for indoor localization using the

magnetic field and illustrated its efficacy using a foot-mounted

IMU and assuming the availability of range measurements.

One of the challenges in practice is the computational com-

plexity of constructing the magnetic field map and we plan

to address this in future work. For instance, the hexagonal

maps from [2] can be used to make the approach scalable to

larger domains. We are also interested in exploring different

types of additional sensors to use in the framework or to

replace the inertial measurements with wheel odometry from

a mobile robot. Note that the method does not work if there is

insufficient information about the pose in the measurements.

An interesting direction of future work is therefore also to

explore the minimum amount of information that is needed

for magnetic field SLAM or reversely, how sensors can be

combined to result in a robust solution for indoor localization.
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